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Step-by-step advancement of the charge density wave in the rf-synchronized modes and oscillations
of the width of Shapiro steps with respect to the rf power applied

S. G. Zybtsev,1 S. A. Nikonov ,1 V. Ya. Pokrovskii ,1,* V. V. Pavlovskiy,1 and D. Starešinić2
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The sliding of the room-temperature charge density wave (CDW) in the monoclinic phase of NbS3 under rf
power is studied. The threshold field, Et , and Shapiro steps’ width, δE, show aperiodic Bessel-type oscillations
as a function of rf voltage. Here we demonstrate experimentally that, if presented as a function of CDW path
length in each half period of the rf voltage, Et and δE show periodic oscillations, the period being equal to the
CDW wavelength. The result is found to be universal for different compounds and gives clear understanding of
the synchronization effects in terms of forced oscillations of a particle in a periodic potential.
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I. INTRODUCTION

Sliding of the charge density waves (CDW) in quasi-one-
dimensional conductors [1,2] is always opposed by some kind
of pinning. In all the cases the pinning force is periodic in the
CDW displacement, with the period typically equal to λ, the
CDW wavelength. Therefore the CDW sliding can be char-
acterized with the fundamental (or “washboard”) frequency
ff proportional to the CDW velocity: during the time 1/ ff the
CDW travels by one wavelength, λ, or, in terms of phase, gains
phase δϕ = 2π .

rf interference is one of the characteristic and fascinating
features of the CDWs in quasi-one-dimensional conductors
[1–3]. ac voltage at a frequency, f , varying from the kHz
to GHz region, if applied to the sample, can result in the
synchronization of CDW sliding. This happens when the
fundamental frequency, ff , or one of its harmonics or subhar-
monics, coincides with f . Then the ac field begins to “dictate”
the velocity of the CDW sliding preventing its change. As a
result, ranges of electric field, E, appear on the I-V curves,
over which the nonlinear current, Inl, i.e., the current provided
by the CDW, is constant or nearly constant. These ranges, δEi

(or δVi in voltage units) are usually referred to as Shapiro
steps (ShSs), where i is the number of the step. The ShSs
can be better seen in the “differential I-V curves”, i.e., in the
dependences of the differential conductivity, σd ≡ dI/dV , on
dc voltage Vdc. In this presentation the ShSs appear as dips on
the σd(Vdc) curves. In case of complete CDW synchronization,
or “mode locking,” σd drops down to the level of quasiparticle
conductivity, σd(0).

The ShSs were primarily observed in Josephson junctions
(JJs) [4,5], later—in the vortex flux-flow mode [6]. The
phenomenon points out a similarity of physics of CDW and
superconductivity. In both physical systems the ShSs show
oscillations of widths as a function of rf voltage rms value,
Vrf [3,5,7–10]. Similarly, oscillations of the threshold field,

*pok@cplire.ru

Et (or voltage, Vt) can be observed in CDW systems [8–10],
akin to the oscillations of the critical current of the JJs. The
oscillations in superconducting systems are well described by
the aperiodic Bessel function of the rf voltage [5].

The similarity of the effects in CDW with superconductors
at first inspired the description of CDW dynamics in terms
of Zener tunneling across a gap [11,12] later attributed to
the collective pinning [8,13]. The shapes of the I-V curves in
CDW samples appeared quite similar with those of JJs (with I
and V interchanged), and the description of the oscillations
with the Bessel function appeared more or less successful.
However, further studies of the CDW dynamics in different
compounds, and in the samples of different dimensions, pu-
rity, and defect structure showed that the physics of CDW
depinning and dynamics can be rather rich [14]. A number
of different models, such as dynamic phase transition [15],
coherent creep [16], and phase-slippage controlled depinning
[17] have been suggested, each being a success in a particular
case. The tunneling model associated with the name of John
Bardeen was rejected, mainly because of the unreasonably
small values of the tunneling barrier [14]. This resume of the
CDW studies is that the physics of CDW is much more diverse
than that of superconductors.

The understanding of the oscillations of Et and δEi vs rf
voltage has evolved together with the understanding of the
CDW dynamics. In the publications following Ref. [8] the
tunneling model was not considered as the central one [18],
while the oscillations appeared to be only roughly described
by the Bessel function [19]. Evidently, for each model of
CDW dynamics one will get an individual description of the
oscillations as a function of Vrf .

The goal of the present work was to find a general treatment
of the ShSs, which could explain the oscillations of their
magnitude, and would be independent of the mechanism of
the CDW transport. The starting idea was that the conditions
of synchronization must be uniquely defined by the time-
dependent travel of the CDW on the length scale of the
washboard potential, and that this travel can be directly found
from the experiment.
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For the present studies we chose the monoclinic phase of
NbS3 (NbS3-II). This typical CDW conductor is at the same
time unique showing three CDW transitions, one of which is
above and another—well above the room temperature, with
TP1 = 360 K and TP0 ≈ 460 K, correspondingly. The third
CDW forms at TP2 = 150 K. All the three CDWs, CDW-1,
CDW-0, and CDW-2 can slide in electric field. The transport
of CDW-1 shows extremely high coherence and the highest
frequencies of the synchronization, up to nearly 20 GHz
[10]. Oscillations of Vt and δVi vs rf voltage were recently
reported for CDW-1 [10]. We chose NbS3-II for the present
studies not only because of the high coherence of CDW-1
and of the convenience of studies at room temperature, but
also because of its fast response to the changing electric
field. The latter will be important for the processing of the
experimental results.

In this paper we report multiple oscillations of Et and δEi as
a function of rf voltage at frequencies f = 20–400 MHz and
show experimentally that they are periodic in CDW displace-
ment during each half period of the rf field. In particular, we
show that the first minimum of Et corresponds to rf voltage
inducing CDW displacement by λ forward and back, the
second minimum by 2λ, etc. As for ShSs, δE1 shows the first
minimum when the CDW advances by 2λ during the first half
period and returns back by λ during the other half period, the
second when it advances by 3λ and returns by 2λ, etc. The
oscillations appear periodic in the half difference of the CDW
displacements during the first and second half periods of the
rf voltage, the period being equal to λ. The even harmonics
(including Et , the “zeroth” harmonic) oscillate in antiphase
with the odd ones.

These results are repeated on two different CDW com-
pounds, NbSe3 and TaS3, and find an evident physical inter-
pretation in terms of oscillations in the washboard potential.
For example, the first minimum of Et is observed, when the
ac voltage swings the CDW up to the edges of the well of
the potential.

II. APPROACH AND BASIC ASSUMPTIONS

The relaxation rates (inverse relaxation times) for the
CDWs are known to lie in the GHz range and above (see
Ref. [20] for orthorhombic TaS3 (o-TaS3) and NbSe3). Al-
though the pinning frequency was not measured for CDWs
in NbS3-II, the frequencies up to 20 GHz of ShSs [10] argue
that CDW-1 shows rather small relaxation times. Therefore,
we consider CDW-1 (below we name it just “CDW”) as a
massless overdamped object. As the frequencies of rf voltage,
within 400 MHz in our experiments, are well below the
inverse relaxation times characterizing the dynamics of CDW-
1, CDW responds instantaneously to the external voltage.
This allows analyses of the CDW travel under mixed ac-
dc field basing on the shape of the stationary I-V curves,
obtained without rf field. In particular, given time-dependent
voltage, V(t), and the Inl(V ) curve one gets the values of CDW
current at each point of time. Knowing the ratio Inl/ ff , namely
the ratio of nonlinear current, I1, at the first ShS to the rf
frequency, one can rescale the instantaneous value of Inl into
the corresponding fundamental frequency.
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FIG. 1. Values of 2Vt
∗ vs δx ≡ (δx1–δx2)/2 under sine-wave

rf voltage applied. Here δx = δx1 = –δx2 and is found two ways:
integrating the CDW current under time-dependent voltage and
calculating the travel under square-wave voltage with the same rms
value. Sample No. 1, 20 μm × 1.4 × 10−2 μm2.

It is also implied that the CDW velocity is only slightly
modulated by the washboard potential [21]. The latter as-
sumption looks reasonable, at least, for CDW displacements
by integer number of wavelengths, when the periodic velocity
variation averages out.

Below, we start the analysis of the CDW dynamics under
the effect of square-wave rf voltage, for which the estimates
of the CDW travels are most simple. Under dc voltage, Vdc,
mixed with rf voltage of amplitude Vrf (coinciding with its
rms value) the CDW current will have the form of rectan-
gular wave switching between two levels: Inl|V =V dc+V rf and
Inl|V =V dc−V rf . Then, knowing ff at each half period of the
rf voltage, ff |V =V dc+V rf and ff |V =V dc−V rf , we can find the
corresponding displacements of the CDW in a given time
interval. In particular, the advancement of the CDW during
each half period of the rf voltage, t = 1/2 f , in units of
λ equals δx1 = ff |V =V dc+V rf/2 f and δx2 = ff |V =V dc−V rf/2 f
[23]. The equivalent form is δx1,2 = Inl|V =V dc±V rf/2I1. Vdc is
taken in the center of a ShS.

For calculating the CDW travel under the sine-form rf
voltage, its value was divided by �2. Alternatively, the CDW
travel was calculated integrating the CDW current over the
changing in time sine-form voltage. Both approaches gave
similar results with only a slight difference at small voltages,
Vrf ∼ Vt (see Fig. 1).

III. EXPERIMENT

The most coherent CDW sliding can be observed in the
high-Ohmic samples [10]. Therefore, we selected high-quality
NbS3-II samples from the high-Ohmic “subphase” with
typical cross-sectional area 10−2 μm2. A pair of gold contacts
separated by 20–50 μm was deposited on each sample with
laser ablation technique. The σd(Vdc) curves were measured
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FIG. 2. (a) A set of σd vs Vdc curves under sine-wave rf irradiation
with Vrf increasing in equal steps from 0 to 0.9 V (upper curve), for
Sample No. 1. All the curves, except for the lower one, are shifted
upwards in increments of 6.8 M �−1. f = 75 MHz. (b) A fragment
of one of the σd vs Vdc curves (at Vrf = 290 mV). The rectangles have
the same areas as the correspondent dips. Their widths give the values
of Vt

∗ and δV ∗
i. The broken lines show the levels of σd(0) and σd(∞)

(see text).

at room temperature with the conventional lock-in technique.
The rf voltage was applied to the NbS3-II samples through
a coupling capacitor. At f = 20–80 MHz the commercial
generator AKTAKOM AWG-4082 (Russia) was used. For f
below 40 MHz it could be switched into the square-wave
mode. For generating voltage at f up to 400 MHz we used
the �4-144 generator (made in USSR). Special probes, the
units of the high-frequency oscilloscopes LeCroy HDO6104
and Tektronix TDS3054C, were applied for calibration of the
rf voltage directly at the samples’ terminals at f < 100 MHz
to the accuracy of about 5%.

IV. RESULTS

Figure 2(a) presents a set of σd(Vdc) curves measured for
the sample No. 1 under sine-wave rf irradiation of different
amplitudes. All the curves measured under nonzero rf voltage
show distinct suppression of the threshold field and ShSs as

FIG. 3. (a). Values of 2Vt
∗ and δV ∗

i of the first three steps
(i = 1–3) vs rf voltage for sample No 1. f = 75 MHz (see Fig. 2).
(b) Similar dependences (i = 1–2) under square-wave ac voltage at
f = 20 MHz for sample No. 2. (35 μm × 1.05 × 10−2 μm2). 2Vt

∗ ≈
2 × 0.17 V at Vrf = 0. The solid lines are guides for the eye. The
δV ∗

i(Vrf ) curves are shifted upwards.

dips of σd at V > Vt . In this presentation the vertical shift of
the curves is proportional to the rf voltage, and one can notice
nonsinusoidal oscillations of Vt and of the width of ShSs
vs Vrf .

Before presenting the oscillations of the threshold voltage
and Shapiro steps, it is necessary to define how to measure
their magnitudes. A change of Vrf modifies both the width
and the amplitude of the ShSs. Below, we rescale the dips
to complete synchronization, i.e., replace each of them by a
rectangle with upper and lower sides at σd(∞) and σd(0),
respectively, and having the same area as the original dip
[Fig. 2(b)]. Here, σd(∞) is the saturation value of conductivity
above Vt , which is well defined for the highly coherent CDW
(Fig. 2). The width of such a rectangle, δV ∗

i, gives the
magnitude of the ShS. (Integrating the peaks’ area in dV/dI
vs Idc axes [3] gives approximately the same result).

Similarly, the decrease of Vt is accompanied by a change of
the shape of the I-V curve around Vdc = 0. Particularly, with
the increase of Vrf the Vt value at first falls down to zero, and
then the dip of the σd(Vdc) around Vdc = 0 begins to decrease.
By analogy with ShSs, we rescaled each σd(Vdc) curve into a
rectangular 2Vt

∗ wide and σd(∞)-σd(0) high [Fig. 2(b)].
Figure 3(a) shows the values of 2Vt

∗ and δV ∗
i for i =

1–3 as functions of rf amplitude for the sample presented in
Fig. 2. Like in Refs. [8] and [10] they show aperiodic oscilla-
tions, which tend to become periodic at large values of Vrf .
Figure 3(b) shows similar curves for another sample under
square-wave ac voltage of 20-MHz frequency. For the low-
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frequency rf signal the ShSs are located very dense along
the Vdc axis, and the oscillations of Vt

∗ and δV ∗
i are not so

pronounced. However, as we mentioned above, the travel of
CDW under square-wave voltage can be more easily esti-
mated. Therefore, we begin the processing of our results with
the data presented in Fig. 3(b).

V. PROCESSING OF EXPERIMENTAL RESULTS

The Inl(Vdc) dependence at Vrf = 0 for the sample No. 2
is shown in the inset to Fig. 4(a). The ShSs give the ratio
Inl/ ff = 2.37 nA/MHz for this sample, and thus the Inl(Vdc)
curve can be rescaled into the ff (Vdc) dependence.

Figure 4(a) shows the values of Vt
∗ and δV ∗

i vs
CDW displacements in units of λ for sample No. 2.
Here the x axis shows the half difference between the
CDW displacements within the two half periods, δx ≡
[ ff |V =V dc+V rf/2 f – ff |V =V dc−V rf/2 f ]/2 ≡ (δx1–δx2)/2. In a
general sense, δx can be considered as the measure of the
effect of rf voltage on the CDW travel: in the limit of Vrf → 0,
δx → 0 as well. In other words, δx indicates the CDW travel
at each half period in the frame moving with the CDW average
velocity. With the exception of the smallest Vrf , the δx1 and δx2

values indicate CDW displacements in opposite directions.
Thus, 2δx = |δx1| + |δx2| and can be also considered the total
travel of the CDW during one period of the rf voltage. In
the particular case of Vdc = 0 (resting frame, zeroth ShS) δx
gives the CDW displacements at each half period of rf voltage,
which are equal and opposite in signs: δx1 = −δx2.

In Fig. 4(a) the results are better visible for the oscillations
of Vt

∗. One can see that the first minimum of Vt
∗ corresponds

to δx = 1. The second Vt
∗ minimum is around δx = 2, the

third around δx = 3, although these minima are worse de-
fined.

More clear results can be found for the case of higher-
frequency rf voltage of sine-wave form applied to the whisker
[Fig. 3(a)]. Here, the CDW travel was calculated by replacing
the sine-wave signal by a rectangular one with amplitude
divided by �2 (Fig. 1).

In the synchronized modes the sum δx1 + δx2 must be
equal to λ for the first ShS, 2λ for the second ShS, etc. [24].
The check of this condition is presented in Appendix A, where
the calculated values of δx1, δx2, and δx1 + δx2 at different
ShSs are shown as a function of rf voltage (see Fig. 9). Thus,
this figure displays a “checksum” for the determination of the
CDW travel and gives an estimate of a possible discrepancy
of δx1,2 with the actual values.

The oscillations appear periodic plotted either as a function
of CDW displacement during each half period of rf voltage,
i.e., δx1 or δx2 [Fig. 4(b)], or of δx [Fig. 4(c)]. In both presenta-
tions the period of oscillations of Vt

∗ and δV ∗
i is the same and

close to λ (Fig. 5). The first minimum of Vt
∗ is achieved when

the rf voltage swings the CDW by λ, the second by 2λ, etc.
[see also Fig. 4(a)]. In the δx units δV ∗

1 oscillates in antiphase
to Vt

∗ [Fig. 4(b)]. In general, for even i the ShSs oscillate
in phase with Vt

∗, for odd i in antiphase. Thus, Vt
∗ value

behaves as the zeroth harmonic, demonstrating again that the
part of I-V curve between −Vt and +Vt could be treated as the
zeroth ShS.

FIG. 4. (a) 2Vt
∗ and δV ∗

i (i = 1–2) for sample No. 2 vs δx.
Rectangular rf voltage is applied [see Fig. 3(b)]. The δV ∗

i(Vrf )
curves are shifted upwards. Inset: Inl vs Vdc dependence without
irradiation. The dashed lines illustrate the definition of Inl (and ff )
for the calculation of CDW travels in each of the half periods of the
rectangular voltage. (b) 2Vt

∗ and δV ∗
i (i = 1–3) vs δx1 (the positive

values) and δx2 (the negative or 0 values) for sample No. 1 exposed
to sine-wave rf voltage [see Fig. 3(a)]. The same vs δx is shown in
panel (c). The δV ∗

i(Vrf ) curves are shifted upwards. The solid lines
are guides for the eye.

We also observed oscillations under rf voltage with
400-MHz frequency. Although we did not calibrate Vrf at the
sample terminals in this case, with a single fitting parameter,
i.e., the coefficient of the rf voltage attenuation, we obtained
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periodic oscillations of Vt
∗ and δV ∗

i, similar with those in
Figs. 4(b) and 4(c).

The higher is f , the longer is the period of Vt
∗ oscillations

in units of Vrf . In fact, higher voltage is needed for CDW to
pass the same way, λ, in the shorter time, 1/2 f . This clarifies
the statement of Ref. [8] that the period of the oscillations is
roughly proportional to the ac frequency.

To check if the periodicity of the oscillations as a function
of δx is universal, we tested the procedure on two different
CDW compounds: NbSe3, where such oscillations have been
studied previously in detail, and o-TaS3, for which the oscil-
lations have not yet been reported. On both compounds we
observed oscillations of Et and δE1. The experiment and the
results of its processing are presented in Appendix B. We
found that the maxima and minima of the zeroth and the first
ShSs are placed at the same values of the δx, as for NbS3

[Figs. 4(a) and 4(c)] (see also Ref. [25]). Thus, the result
of the rescaling of the oscillations is universal for different
compounds.

VI. DISCUSSION

The physical sense of Vt
∗ oscillations is most transparent.

In terms of the washboard potential, under small Vrf in the
stationary regime the CDW is oscillating around the potential
minimum [Fig. 6(a)]. The higher is Vrf , the larger is the
amplitude. When the swing of the oscillations is approaching
λ, i.e., the CDW is oscillating by nearly ±λ/2 around the
minimum, it nearly reaches the highest energy at the return
points, as shown in Fig. 6(a). Any dc voltage would throw
the CDW over the corresponding energy maximum into the
neighboring valley. Although after sign reversal of the rf
voltage the CDW will return to the “home” valley, the next
rf wave will cast it further into the new valley, etc. Thus, due
the positive feedback, the CDW will begin to travel gradually,
giving rise to a charge transfer. Therefore, at this Vrf value Vt

∗
will show a minimum (in the ideal case—zero), in agreement

FIG. 6. Illustrations of the effects of rf voltage on Vt (a), (b) and
δV1.(c). (a) corresponds to the first minimum of Vt , (b) to the second,
and (c) corresponds to the first minimum of δV1.

with the experiment (Fig. 4). A similar consideration can
be repeated for rf voltage inducing CDW oscillations with
sweep of 2λ [Fig. 6(b)], 3λ, etc. It is remarkable and contrary
to intuition that the central point of the oscillations by ±λ

(and somewhat less) is positioned at a potential maximum.
However, calculations for a JJ (see below) justify that this
can occur.

Note that the minima of Vt
∗ correspond to CDW travels by

integer numbers of λ, the case for which the determination of
δx is most exact. The minima of δV ∗

i also match integer δx1

and δx2 values. For example, the minima of δV ∗
1 correspond

to δx1 and δx2 equal to 2 and −1, 3 and −2, 4 and −3, etc.
[Fig. 4(b)]. For δV ∗

2 minima δx1 and δx2 are close to 2 and 0,
3 and −1, 4 and −2, etc., respectively [Fig. 4(b)].

The similarity of Vt
∗ and δV ∗

i variations suggests consid-
ering the mode locking as forced oscillations of the CDW in
the washboard potential as well. By analogy, at the minima of
δV ∗

i the return points appear near the potential maxima. How-
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FIG. 7. Example of σd vs Vdc curve under irradiation. Only the
Vdc = 0 tick allows distinguishing the zeroth ShS from others. Sam-
ple No. 3, 21 μm × 1.3 × 10−2 μm2. f = 80 MHz, Vrf = 840 mV.

ever, for the case of ShSs the oscillations appear asymmetric
in the forward and back paths.

Figure 6(c) illustrates δx1 and δx2 for the case when the first
ShS approaches its first minimum: the CDW jumps forward
by δx1 = 2, and then returns back by δx2 = −1 (δx = 1.5).
Any change of Vdc will break the synchronization condition.
The effect of Vdc variation is similar with that of small Vdc

on Vt
∗ at its first minimum [Fig. 6(a)], which we considered

above. For lower or larger values of Vrf (and δx) the CDW
oscillates between points below the potential maxima, and the
oscillation becomes stable upon the variations of Vdc. Thus,
the width of the ShS grows with deviation of δx from 1.5.

The amplitude of the ShSs as a functions of back-forward
jumps in the washboard potential has been discussed also
in the theoretical paper [19]. The similar considerations of
Vt

∗ and δV ∗
i variation further clarify the common origin of

the effects, which can be treated as resonance phenomena
(see also Refs. [26,27]). In some experiments it was easy to
mix-up the ShSs and the point Vdc = 0 on the σd(Vdc) curves.
Figure 7 shows such an example.

According to Fig. 4, the maxima of Vt
∗ (except for the

trivial case of Vrf = 0) or δV ∗
i correspond to half integer

δx1,2. In this case the CDW oscillates approximately between
the middles of the slopes of the washboard potential. The
large slopes at the return points give rise to the high negative
feedback on a variation of Vdc. This explains the stability
of the ShSs. However, this conclusion is not as intuitively
evident as for the minima of the ShSs. A particular model
is needed for relating the maxima with δx. Here we are
discussing only the qualitative consequences of our experi-
ment, so we will not consider the ShSs maxima in detail. In
addition, the calculation of the fractional δx1,2 values could
be not so exact because of the λ-periodic modulation of
the CDW velocity.

We are making the only exception for the first maximum
of the first ShS. It is achieved at δx a little bit below 1
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FIG. 8. Normalized Josephson critical current Ic/Ic0 as a function
of the phase sweep 2ϕ0 normalized by 2π . Ic0 is critical current in the
absence of external radiation. f / fc = 20 ( fc = eVc/π h̄).

[Figs. 4(b) and 4(c)]. One can see [Fig. 4(b)] that the ShS is
noticeable only for δx2 � 0. No synchronization is observed
when the CDW is moving forward during both half periods
of Vrf (δx1,2 > 0). The width of the ShS grows while δx2 = 0,
until the CDW begins moving back during the second half
period. During this rest the CDW can restore its coherence: if
some domains have fallen behind or passed ahead of the main
stream during the first half period, they can relax during the
second one down to the energy minimum and join the major
CDW phase. This result corroborates with the conclusion of
Ref. [28], where rectangular voltage has been applied to the
samples as well. The authors noticed that for perfect mode
locking the CDW must be at rest during some time interval,
i.e., V(t) should enter the range |V | < Vt for some time. A
similar explanation of the first maximum of the first ShS was
suggested in Ref. [8].

Finally, we must note that a similar approach can be ap-
plied to JJs. The well-known analogy of CDW sliding and the
Josephson effect [29] is based on the similarity of the CDW
displacement equation and evolution equation of condensate
phase ϕ in the resistively shunted junction (RSJ) model of JJ
(see Appendix C for more detail). External rf electromagnetic
radiation forces phase oscillations with an amplitude ϕ0. The
phase sweep in units of 2π , 2ϕ0/2π , is the analog of a CDW
displacement δx under rf voltage at Vdc = 0. The resulting Ic

vs 2ϕ0/2π dependence is shown in Fig. 8. The oscillations
appear periodic with the period equal to 1, which coincides
with that of Vt oscillations (Fig. 4).

It is also important that the RSJ model provides the
change of the central point of the oscillations with rf voltage.
It confirms that when the phase sweep exceeds a certain
value, namely, corresponding to the first zero of Ic, the
oscillations become stabilized not around a minimum, but
around a neighboring maximum of the periodic potential (see
Fig. 12 in Appendix C), in concord with Fig. 6(b). At the
next Ic zero the central point again switches to a minimum,
etc.

115425-6



STEP-BY-STEP ADVANCEMENT OF THE CHARGE … PHYSICAL REVIEW B 101, 115425 (2020)

VII. CONCLUSION

Multiple oscillations of the threshold field and Shapiro
steps’ width as a function of the amplitude of rf field have been
reported for NbS3-II, NbSe3, and TaS3. We have demonstrated
a simple algorithm which transforms the Bessel-type oscilla-
tions into periodic ones. Namely, one should take the I-V curve
of the sample without irradiation and get the Inl(Vdc) depen-
dence. Then, taking the time-dependent value of the ac+dc
voltage across the sample, V(t), one should integrate Inl[V (t )]
with respect to time over each of the half periods of the rf
voltage. Dividing the results by the ratio of Inl to the funda-
mental frequency one will determine the corresponding CDW
displacements in units of λ. Then, if plotted vs these displace-
ments, or vs half difference of these displacements, Et and δE
will show periodic oscillations, the period being equal to λ.

In a sense, our studies have revealed the “proper” x axis
for the oscillations, in which they appear periodic. As an
illustration for this statement, one can make an example of
the f dependence of the voltage or current of a ShS: the
physical sense of the ShSs becomes clear when f is plotted
vs the nonlinear current at the step, which can be treated as
the proper x axis for scaling the fundamental frequency.

The result of the present studies is purely experimental
and, at the same time, has a simple model-free physical sense.
For example, the first minimum of Et marks the rf voltage
inducing oscillations by ±λ/2, whose self-stabilization around
the minimum of the washboard potential is obvious for lower
amplitudes. Accordingly, a small dc field will push the CDW
in the next potential valley and, thus, depin it. The following
variations of Et with Vrf can be also described in terms of
oscillations in the washboard potential, whose return points
are self-stabilized at a certain level.

The variations of ShSs magnitudes can be treated in terms
of forced oscillations of the CDW as well, although asymmet-
ric in advancement forward and back in the periodic potential.
In particular, the minima of ShSs correspond to oscillations
of the CDW between return points coinciding with maxima of
the potential.

Our experiment also clearly shows the common nature of
Et and δE variations with rf voltage.

ACKNOWLEDGMENTS

We are grateful to S. V. Zaitsev-Zotov for useful discus-
sion. The support of RFBR (Grants No. 20-02-00827 and
No. 18-02-00931) is acknowledged. The processing of the I-V
curves was supported by the Russian Scientific Foundation
(Grant No 17-12-01519). V.V.P. has analyzed the oscillations
of ShSs in the Josephson junctions within the framework of
the State task.

APPENDIX A: CHECK OF δxi CALCULATIONS

Figure 9 shows δx1, δx2, and the calculated total displace-
ment δx1 + δx2 for each ShS vs Vrf . At the ith ShS, according
to the definition, the sum δx1 + δx2 must be equal to iλ,
where i = 0, 1, 2, 3, . . . . (i = 0 for Vt

∗, the zeroth ShS). From
Fig. 9 one can see that the resulting CDW displacements agree
with the expectations for i = 0, 1, 2, 3 with the following
reservations:

FIG. 9. δx1, δx2 and δx1 + δx2 vs rf voltage calculated at different
ShSs for sample No. 1. The broken lines show the “control sums,”
i.e., the expected values of δx1 + δx2.

(1) One should take into account that although for
|Vdc − Vrf | < Vt according to the model the CDW is resting,
actually it is moving within the potential well.

(2) For high values of i the calculated CDW displacement
appears a little bit higher than iλ. The overestimate can be
attributed to lag in CDW switching between the sliding states
at Vdc + Vrf and Vdc–Vrf , so that the actual CDW travel appears
a little bit lower than the value calculated in the approximation
of stationary sliding, i.e., instantaneous switching.

APPENDIX B: TEST OF THE δxi VALUES
FOR TaS3 AND NbSe3

See Figs. 10 and 11.

APPENDIX C: PHASE GAIN IN THE JOSEPHSON
JUNCTIONS

The similarity of CDW and JJ can be achieved by sub-
stitution of electric field and current density in CDW case
by Josephson current and voltage, correspondingly. Therefore
Et is replaced by Josephson critical current Ic, and CDW
characteristic current Jt = Et/ρ∞ can be defined similarly
with Josephson characteristic voltage Vc = IcRn, where Rn is
JJ normal-state resistivity and ρn is the CDW resistance in the
high-voltage linear part of I-V curve.

JJ has a 2π phase-periodic energy:

Ej = h̄Ic

e
sin2 ϕ

2
, (C1)

where h̄ is Planck’s constant and e is electron charge [30].
External electromagnetic radiation of the amplitude Vrf forces
ac current with the amplitude Is through JJ and phase os-
cillations with the frequency f and the amplitude ϕ0, which
modify the observable dc critical current Ic. Unlike the case of
CDW, the condensate phase ϕ cannot be measured, but, in
return, the RSJ model perfectly describes the observable
dynamics of JJ at temperatures near the critical one. Ic shows
oscillating behavior with an increase of the rf power. It can be
shown for the RSJ model that at the low-frequency limit ( f �
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FIG. 10. NbSe3 under 50-MHz irradiation. (a) A set of Rd vs Vdc

curves under sine-wave rf irradiation with Vrf increasing in equal
steps (from the lower to the upper curve). All the curves, except for
the lower one, are shifted upwards. (b) Values of 2Vt

∗ and δV ∗
1 vs

Vrf . (c) Values of 2Vt
∗ and δV ∗

1 vs δx. The studies were performed
in the four-probe configuration. Distance between current probes,
716 μm; between potential probes, 83 μm; sample width, 6 μm;
cross-sectional area, 3.5 μm2. T = 120 K.
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fc, where fc = eVc/π h̄) Ic is a periodic function of ϕ0 with the
period equal to π . Taking into account that the potential well
width in (C1) is equal to 2π , this period corresponds to the
extent of phase oscillations over one, two, etc. wells, similar
to that in Fig 5.

At the high-frequency limit ( f 	 fc) an analytical expres-
sion for Ic can be obtained [30]:

I∗
c

Ic
= J0

(
Is fc

Ic f

)
, (C2)

where J0 is the Bessel function. Using the relation ϕ0(Is) cal-
culated from the same model, one can show that the distance
between Ic(ϕ0) zeros (or maxima) is multiple of π . While ϕ0

is the amplitude of the phase oscillations, the phase sweep
in units of 2π , 2ϕ0/2π , is equivalent to CDW displacement
δx under rf voltage at Vdc = 0 (Fig. 4). The resulting Ic vs
2ϕ0/2π dependence is shown in Fig. 8. One can see that the
oscillations appear periodic with the period equal to 1, which
coincides with that of Vt oscillations (Fig. 4).

For Fig. 8. the calculation was performed for relatively
high frequency ( f / fc = 20). Although a direct estimate of
fc for the case of CDW is not obvious, for the experimental
values of f the value of Vrf is well above Vt already at the
first Vt minimum. Even for f = 20 MHz the correspondent
value is Vrf = 0.28 V, while Vt

∗ ≈ 0.17 V [Fig. 3(b)]. For f =
75 MHz the reserve is still higher [Fig. 3(a)]. This means that
the effect of constant voltage Vdc = Vrf on the CDW is stronger
than the effect of the washboard potential, and we are close
to the high-frequency limit. In this case an oscillating Vt (Vrf )
dependence with decreasing amplitude is expected. It is only
a Bessel-like dependence, because a true Bessel curve can be
obtained only with a sinusoidal phase dependence of energy
(C1), but nevertheless the Vt (δx) dependences demonstrate
equally spaced zeros similar to that in the ac Josephson effect
(Fig. 8.).

The periodicity appears the same for different f values,
but in the low-frequency limit the first zero of Ic corresponds

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

<ϕ
>/
π

2ϕ0/2π

FIG. 12. Central point of the oscillations vs phase sweep 2ϕ0

normalized by 2π for f / fc = 20.

to 2ϕ0/2π = 1, in contrast to 2ϕ0/2π = y1/π = 0.765 in the
high-frequency limit, where y1 is the first Bessel function root
value (Fig. 8). Our accuracy of rf voltage calibration does not
allow to tell if δx is closer to 0.77 than to 1. One should keep
in mind that although the f values in our experiment could be
considered as high, the value 0.77 implies sinusoidal pinning
potential.

It is also interesting that the RSJ model provides the change
of the central point of the oscillations with rf voltage. It
confirms that at a certain sweep of phase oscillations, namely,
corresponding to the first zero of Ic, the oscillations become
stabilized not around a minimum, but around a neighboring
maximum of the periodic potential, Fig. 12, in concord with
Fig. 6(b). At the next Ic zero the central point again switches
to a minimum, etc.
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