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Interplay between effects of barrier tilting and scatterers within a barrier
on tunneling transport of Dirac electrons in graphene
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Dirac-electronic tunneling and transport properties with both finite and zero energy band gap are investigated
for graphene with an in-plane tilted potential barrier embedded with scatters. For a tilted barrier, by using
Wentzel-Kramers-Brillouin approximation, an analytical solution is obtained first for transmission coefficient
of Dirac electrons in gapped graphene in the absence of any scatters. In the presence of either a single or a
continuous distribution of scatters embedded within a tilted barrier, however, a numerical scheme based on
finite-difference approach is developed for accurately calculating both transmission coefficient and tunneling
resistance of Dirac electrons. Here, the combination of a tilted barrier and a scatter potential can be viewed
as an effective barrier-potential profile facilitated by a proper gate structure. Meanwhile, a full analysis and
detailed comparisons are presented for the interplay between effects of both distributed scatters in a barrier and
barrier tilting on tunneling transport of Dirac electrons in graphene. The barrier-tilting field and scatter position
are found to play a key role in controlling a peak of tunneling resistance as well as in its switching to a cusp
by a mid-barrier-embedded scatter as the incident energy reaches the Dirac point in a barrier. Different from
a single scatter, a continuous distribution within a barrier can enhance the unimpeded incoherent tunneling for
head-on collision while greatly suppressing skew ones with increasing barrier-tilting field. All these predicted
attractive transport properties are expected to be extremely useful for designing both novel electronic and optical
graphene-based devices and electronic lenses in ballistic-electron optics.
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I. INTRODUCTION

Graphene, a one-atom-thick allotrope of carbon, being a
conductor with exceptionally large mobility at a large range
of ambient temperatures, makes a strong case for a number of
ballistic transport nanodevices. It has unique electronic prop-
erties due to its linear energy dispersion with zero band gap, as
well as a spinor two-component wave function. These unique
characteristics give rise to some highly unusual electronic and
transport properties [1–4].

These peculiar properties result in a fact that a potential
barrier becomes transparent to electrons arriving at normal
incidence regardless of its height or width. This effect, known
as Klein tunneling [1], restricts the switching-off capability
(i.e., complete pinch-off of electric current) for logical appli-
cations, and makes graphene difficult to achieve logical func-
tionalities without use of chemical modification or patterning
[5–8].

On the other hand, such a situation also offers a unique
possibility to fabricate various ballistic devices and circuits in
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which electrons experience focusing (i.e., direction filtering)
by one or several potential barriers. Practically, a zero-band-
gap two-dimensional material acquires an important advan-
tage over metals in its capability to tune the conductivity by
means of either chemical doping or a gate voltage for creating
an in-plane potential barrier with a desired geometrical pattern
[9–11].

Interestingly, the induced planar barrier structure within a
graphene sheet can be realized by applying a gate voltage.
This is quite different from the design of a high-electron-
mobility transistor. For example, by using different inhomoge-
neous profiles of static bias voltage, various band alignments
and junction structures, such as bipolar (p-n, n-p, p-n-p,
n-p-n, etc.) as well as unipolar junctions (n-n′, p-p′), can be
facilitated [12–18] to achieve desired gate-voltage (barrier-
height) dependence of electrical conductance. In spite of
the considered junction being abrupt or smooth, its angular
selectivity for carrier transport makes it a unique one in
comparison with conventional semiconductor junctions, e.g.,
metal-oxide-silicon field-effect transistors.

Other significant roles played by our proposed tunable
junctions include Veselago lens [19,20] by exploiting optics-
like behavior of ballistic Dirac electrons, Fabry-Perot interfer-
ometer [13], subthermal switches [5], and Andreev reflections
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[21]. Therefore, in order to design next-generation graphene-
based electronics, it is crucial to gain a full understanding
of physics mechanism for ballistic transports across various
types of potential barriers in graphene. Negative refractive
index with a single ballistic graphene junction, which is
associated with electron-hole switching, has already been
observed experimentally [5,15], and it strongly affects the
operation of an electric switch [5,22,23].

In connection with related graphene studies, the works
by Katsnelson et al. [24,25] described the Klein paradox,
i.e., unimpeded tunneling for a head-on collision through
a square potential barrier in graphene, as one of the fun-
damental properties of any Dirac-cone structure due to its
relativistic energy dispersions. In bilayer graphene, however,
there exists a high impedance and a full reflection for such
types of potential barriers. In addition, the paper by Zalipaev
et al. represented the first attempt to evaluate electron wave
function in semiclassical Wentzel-Kramers-Brillouin (WKB)
approximation for graphene with a finite energy gap. These
results could be applied to studying electron tunneling and
finding transmission coefficient for potential barriers with
various profiles [26]. Furthermore, the reported research by
Reijnders et al. addressed the optical properties of graphene
with an energy gap by using the semiclassical model [27].
Finally, Choubabi et al. considered a linear potential barrier
which oscillates uniformly in time and obtained a solution for
the energy spectrum including several modes associated with
oscillations [28].

An investigation on impurity-assisted electron tunneling
conductance was reported for a very specific case of undoped
or intrinsic graphene [29], in which a resonant-type conduc-
tance enhancement was found for the case with a single impu-
rity atom. In the presence of one-dimensional fluctuations of
a disorder potential, its connection to Anderson localization
was further discussed. On the other hand, the defect effect on
transport properties was also studied, including one-parameter
scaling with respect to sample size [30] and some critical phe-
nomena induced by electron-electron interactions in graphene
and topological insulators [31].

Various theoretical models have been adopted aiming to
obtain electron transport in graphene, including transfer ma-
trix [32–34], nonequilibrium Green’s function [6,35], tight-
binding model [36,37], as well as semiclassical WKB ap-
proximation [14,17,36]. However, there are still few studies
on electronic transport properties using finite-difference ap-
proach [38] (FDA) in numerical calculation for an arbitrary
potential profile. A crucial advantage of FDA is a possibility
to take into account a single or multiple and even a continuous
distribution of scatters embedded within a barrier. A number
of fabricated optical devices face such a situation, which
detriments the device performance [8,23] while trying to
accomplish ballistic p-n junction characteristics experimen-
tally. Alternatively, some smooth p-n and n-p-n junctions
in graphene were realized and analyzed theoretically (see
Refs. [7,8,12,13,15,39,40] for details).

From the perspective of newly proposed methodology, the
use of FDA introduced in this paper makes it possible to
accurately calculate tunneling of Dirac electrons in graphene
through a tilted potential barrier in the presence of either a sin-
gle or a continuous distribution of scatters embedded within a

barrier. From the viewpoint of introducing new physics, on
the other hand, applying FDA allows ones to exactly analyze
effects of barrier tilting as well as of scatters on tunneling of
Dirac electrons. More importantly, by taking advantage of our
newly developed methodology, the FDA facilitates a direct
comparison for the interplay between effects of distributed
scatters in a barrier and barrier tilting on tunneling transport
of Dirac electrons in graphene, which becomes the main focus
of the current paper.

The main goal of our paper is to develop a new technique
for calculating wave functions anywhere in the barrier region
and beyond it, transmission and reflection coefficient based on
the finite-difference numerical solution of the Dirac scattering
equation inside the barrier region. This method is extremely
powerful and could be applied to any types of potential pro-
files. Specifically, our method allows us to consider electron
tunneling in the presence of scatters embedded within a tilted
barrier, including single scatter or continuously distributed
scatters. As an application of this FDA, we have studied the
competition between different effects from distributed scatters
in a barrier and from barrier tilting for tunneling transport of
Dirac electrons in a graphene layer.

The remaining part of this paper is organized as follows.
In Sec. II, we present analytical results within the WKB
approximation for both large and small tilting-field limits,
accompanied by numerical results for transmission coefficient
as functions of both incident angles and electron energy.
We introduce FDA in Sec. III for calculating transmission
coefficient of Dirac electrons in graphene in the presence of
a tilted potential barrier embedded with either a single or
a continuous distribution of scatters, along with numerical
results of transmission coefficient as functions of incident
angles, electron energy, scatter positions, and strengths, as
well as tunneling resistance as a function incident incident
energy, with various values of tilting field, scatter positions,
and strengths. Finally, our concluding remarks are presented
in Sec. IV.

II. TUNNELING THROUGH A TILTED BARRIER
IN WKB APPROXIMATION

In this section, we highlight the physics behind tunneling
transport of ballistic Dirac electrons. For this purpose, we
will first introduce the Wentzel-Kramers-Brillouin (WKB)
approximation so as to analyze explicitly the dynamics of
Dirac-electron tunneling.

Let us consider a tilted potential barrier, as shown in Fig. 1,
with the potential VB(x) = V0 + αx, while VB(x) = 0 outside
of the barrier region. For this case, the effective x-dependent
wave number k(x) can be written as

k(x) = ε − VB(x)

h̄vF
= ε − V0

h̄vF
− ax, (1)

where ε is the kinetic energy of an incoming particle, which
is conserved for an elastic scattering with the barrier, and a ≡
α/(h̄vF ). For a square barrier, as considered in Ref. [2], we
simply set a = 0 and will use it to build up our perturbation
theory for a weak tilting field.

For simplification we introduce a unitary transforma-
tion for a gapless Dirac Hamiltonian, i.e., a π/2 rotation
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FIG. 1. Schematics for the tilted barrier VB(x) = V0 + αx in the
region of 0 � x � WB, as shown in the left panel, and two classical
turning points at x = x0 ± ξc in the right panel.

around the x axis, as employed in Ref. [14]. This leads to
the mixed eigenfunction �(x | ky) = [φ+, φ−]T , where φ± =
(φB ± φA)/

√
2. If VB(x) ≡ V0 for a constant barrier, we find

the eigenfunction

�0(x, y | ky) =
[
φ+
φ−

]
eikyy = 1

2

[
eiθk + 1

eiθk − 1

]
eik(0)

x x+ikyy, (2)

where θk = tan−1(ky/k(0)
x ) is the in-plane angle in the momen-

tum space, k(0)
x =

√
[(1/h̄vF )(ε − V0)]2 − k2

y , and the wave-
function amplitude is independent of x and y.

In the most general case, the wave-function amplitudes
ψ±(x, y) satisfy the following equations [14]

∓i
∂ψ±
∂x

∓ ∂ψ∓
∂y

= k(x) ψ±. (3)

Throughout our derivation, the translational symmetry in the
y direction is kept always since our potential VB(x) varies only
along the x axis. Correspondingly, we write down ψ±(x, y) =
exp(ikyy) φ±(x). This simplifies Eq. (3) into

∓i ∂xφ±(x) ∓ iky φ∓(x) = k(x) φ±(x), (4)

where ∂xφ(x) ≡ dφ(x)/dx. As a special case, one can easily
verify that the solution �0(x, y | ky) in Eq. (2) satisfies Eq. (4)
as VB(x) = V0 or a = 0 is taken in Eq. (1) for k(x).

A. WKB semiclassical approach

The general form of semiclassical WKB expansion for
a tunneling-electron wave function �(x, y | ky) can be ex-
pressed as [26]

�(x, y | ky) = e(i/h̄) S�(x)
∞∑

s=0

(−ih̄)s �s(x, y | ky), (5)

where S�(x) = h̄
∫

x dξ kx(ξ ) represents an action. Here, we
will only consider the leading s = 0 term in Eq. (5) and obtain

�±(x, y | ky) = 1

2
C�(x | ky) (ei�(x | ky ) ± 1)

× exp

[
i

h̄
S�(x)

]
eikyy, (6)

where kx(ξ ) = (1/h̄vF )
√

[ε − VB(ξ )]2 − (h̄vF k�)2 ,

k� = (1/h̄vF )
√

(h̄vF ky)2 + �2
G is independent of ξ , and

2�G is the band gap between the valence and conduction
bands. Furthermore, we have also introduced the following

two dimensionless quantities in Eq. (6), i.e.,

C�(x | ky) = 1

kx(x)

{
k−(x) + i

�G[ε − �G − VB(x)]

(h̄vF )2 ky

}
,

�(x | ky) = tan−1

[
h̄vF k+(x)

ε − �G − VB(x)

]
, (7)

where k±(x) = kx(x) ± iky. It is straightforward to verify that
the above solution reduces to that of gapless graphene with
�G = 0, yielding [14]

�±(x, y | ky) = k+(x) ± k(x)

2
√|k(x)| kx(x)

exp

[
i
∫ x

dξ kx(ξ )

]
eikyy,

(8)
where k(x) has already been defined in Eq. (1).

As an electron moves uphill with increasing potential, the
sum of its potential and kinetic energies remains to be a
constant. Therefore, the kinetic energy of the electron will
decrease on its way. For this situation, we need to define a
turning point for a semiclassical trajectory, at which kx(x) = 0
but the total kinetic energy is still positive due to ky �= 0.
Setting k(x) = 0 in Eq. (1), we find the turning point x0 =
(ε − V0)/α, where a Dirac electron changes into a Dirac hole.
Moreover, the range corresponding to |x − x0| < ξc becomes a
classically forbidden region in which kx(x) become imaginary,
where ξc = h̄vF ky/α for �G = 0. If this forbidden region
lies entirely within the tilted-barrier region, the transmission
coefficient T (α | ky) is found to be [26]

T (α | ky) � exp

[
−2

∫ x0+ξc

x0−ξc

dξ

√
k2

y

]
= exp

(
−4k2

y

a

)
, (9)

which is a clear manifestation of the conservation of the Klein
paradox for a tilted barrier.

For the case with �G > 0, the result in Eq. (9) could be
generalized to

T�(α | ky) � exp

[
−2

∫ x0+ξc

x0−ξc

dξ

√
k2
�(ξ )

]

= exp

{
−4

a

[
k2

y + (�G/h̄vF )2
]]

,

with ξc = 1

α

√
(h̄vF ky)2 + �2

G . (10)

Therefore, Klein paradox will not exist for any α and ky

values. In addition, an exact solution for the wave function
in this case could also be obtained by using the results in Ref.
[14], as shown in Appendix.

B. Perturbative solution for small tilting

Here, we would like to emphasize that all the results
obtained in the previous subsection suffer a limitation, i.e.,
they are valid only if the electron-to-hole switching occurs
inside the barrier region. However, this becomes invalid if
either the slope α of a potential profile or the barrier width
WB becomes very small.

To seek for a perturbative solution within a barrier, we first
assume a very small slope α to ensure a = α/h̄vF � k2(x).
We further assume ε > VB(x) so that particle-hole switching
will not occur. As a result, the wave function takes the form
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ψA,B(x, y) = φA,B(x) exp(ikyy) and Eq. (4) can be applied to
find solution for φA,B(x). In this case, however, a π/2 rotation
for φ±(x) is not needed.

For VB(x) = V0 + αx, the electron momentum is k(x) =
k0 − ax, where k0 = (ε − V0)/h̄vF and a = α/h̄vF . From this,
we find ∂xk(x) = −a, which becomes a small parameter in
expansion. Based on these assumptions, we acquire a second-
order differential equation with respect to the first wave-
function component φA(x), yielding

∂2
x φA(x) + a

k0 − ax
∂xφA(x)

+
[

(k0 − ax)2 − aky

k0 − ax
− k2

y

]
φA(x) = 0. (11)

Considering the fact that |a| � 1, we approximate the above
equation as

∂2
x φA(x) +

(
a

k0
+ a2x

k2
0

)
∂xφA(x) +

[
k2

0 − k2
y

− a

(
ky

k0
+ 2k0x

)
+ a2

(
x2 − xky

k2
0

)]
φA(x) = 0. (12)

Now, let us look for a perturbative solution of Eq. (12)
in the form of φA(x) = φ

(0)
A (x) + a φ

(1)
A (x) + a2 φ

(2)
A (x) + · · ·

and include only the terms up to the first nonvanishing linear
correction to φA(x). Therefore, we get the zeroth and first
order equations, respectively,

a0 :∂2
x φ

(0)
A (x) + (

k2
0 − k2

y

)
φ

(0)
A (x) = 0, (13)

a1 :∂2
x φ

(1)
A (x) + (

k2
0 − k2

y

)
φ

(1)
A (x) + 1

k0
∂xφ

(0)
A (x)

−
(

ky

k0
+ 2k0x

)
φ

(0)
A (x) = 0. (14)

Moreover, making use of the relation in Eq. (4) for two
components of the wave function, i.e.,

φB(x) = ∂xφA(x) − ky φA(x)

i(k0 − ax)
≡ φ

(0)
B (x) + a φ

(1)
B (x), (15)

we find

φ
(0)
B (x) = −i

k0

[
∂xφ

(0)
A (x) − ky φ

(0)
A (x)

]
, (16)

φ
(1)
B (x) = −i

k2
0

{
k0

[
∂xφ

(1)
A (x) − ky φ

(1)
A (x)

]
+ x

[
∂xφ

(0)
A (x) − kyφ

(0)
A (x)

]}
. (17)

Consequently, for the zeroth order solution, we are dealing
with the tilting-free case having a = 0 or a square barrier

VB(x) = V0. From Eq. (13) we easily find its solution

φ
(0)
A (x) = c(0)

1 eikxx + c(0)
2 e−ikxx with kx =

√
k2

0 − k2
y ,

(18)
which is a superposition of the forward and backward plane
waves [2]. In this case, from Eq. (16) the corresponding
solution for the second component of the wave function is
given by

φ
(0)
B (x) = c(0)

1

(
kx + iky

γ k0

)
eikxx + c(0)

2

(−kx + iky

γ k0

)
e−ikxx

≡ γ
(
c(0)

1 eiθk eikxx − c(0)
2 e−iθk e−ikxx

)
, (19)

where γ = sign(ε − V0) = ±1 is the electron-hole index
within the barrier region and θk = tan−1(ky/kx ) for Dirac elec-
trons inside the barrier region. Assuming ε > V0, we always
have γ > 0 and no electron-hole switching will occur. Two
constants c(0)

1 and c(0)
2 in Eqs. (18) and (19) can be determined

by boundary conditions at both sides of a barrier.
Specifically, the incoming wave function is taken as

[2,39,40]

�i(x) = 1√
2

[
eiφk/2

e−iφk/2

]
eik(0)

x x, (20)

where VB(x < 0) = 0, k(0)
x =

√
(ε/h̄vF )2 − k2

y and φk =
tan−1 (ky/k(0)

x ) is the incident angle of Dirac electrons. Here,
the transversal electron wave number ky remains as a constant
during the whole tunneling process.

Moreover, we notice that c(0)
1 and c(0)

2 in Eqs. (18) and
(19) are not normalized, and they can be determined by the
continuity boundary condition at x = 0, leading to

c(0)
1 = [γ + ei(φk+θk )] (1 + e2iφk )

D(kx, φk | θk )
,

c(0)
2 = ei(2kxWB+θk ) (1 + e2iφk ) (γ eiθk − eiφk )

D(kx, φk | θk )
,

D(kx, φk | θk ) = γ + ei(φk+θk )[2 + γ ei(φk+θk )]

+ 2 ei(2kxWB+φk+θk )[γ cos (θk − φk ) − 1].

(21)

Here, c(0)
1 and c(0)

2 in Eq. (18) play the role of transmission and
reflection amplitudes, respectively, within the barrier region.
Using the result in Eq. (21) and the continuity boundary
condition at x = WB as well, we can further calculate the
transmission coefficient t (0) as

t (0) = γ e−ikxWB cos θk cos φk

γ cos(kxWB) cos θk cos φk + i sin(kxWB) (γ sin θk sin φk − 1)
, (22)

which is identical to the corresponding results in Ref. [2] for a square barrier.
In a similar way, we can find the first order solution from Eq. (14) for φ

(1)
A (x), yielding

φ
(1)
A (x) = c(1)

1 eikxx + c(1)
2 e−ikxx + F (x | kx, θk ) with
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F (x | kx, θk ) = e−ikxx

4k3
x

{
c(0)

2 (−kx exp(−iθk )(2kxx − i) + k0[2kxx(1 + ikxx) − i])

+ i c(0)
1 e2ikxx(−ikx exp(+iθk )(2kxx + i) + k0[2kxx(kxx + i) − 1])

}
. (23)

Here, the two new undetermined constants c(1)
1 and c(1)

2 are
completely different from the zero-order constants c(0)

1 and
c(0)

2 in Eq. (21), and they physically represent the first-order
corrections to transmission and reflection amplitudes inside
the barrier region. By using these computed first wave-
function components φ

(0)
A (x) and φ

(1)
A (x) in Eqs. (18) and (23),

it is straightforward to find the second wave-function com-
ponent φ

(1)
B (x) from Eq. (17) although its explicit expression

becomes too tedious to write out.
Now, we are able to determine the coefficients c(1)

1 and c(1)
2

in Eq. (23) and the correction t (1) to the transmission coef-
ficient t (0) in Eq. (22). Corresponding to the wave functions
in Eqs. (17) and (23), we can express the transmission and
reflection coefficients as t = t (0) + a t (1) and r = r (0) + a r (1),
respectively. Using the two boundary conditions at x = 0 and
x = WB, we arrive at two equations for r (1) and t (1), given by

r (1)

[
1

−e−iφk

]
=

[
φ

(1)
A (x = 0 | kx, θk )

φ
(1)
B (x = 0 | kx, θk )

]
, and

t (1)

[
1

eiφk

]
eik(0)

x WB =
[
φ

(1)
A (x = WB | kx, θk )

φ
(1)
B (x = WB | kx, θk )

]
eikxWB . (24)

Finally, the transmission amplitude T (ε, φk |V0, α) can be
simply found from T (ε, φk |V0, α) = |t (0) + at (1)|2, where
t (0) and t (1) are presented in Eqs. (22) and (24).

Mathematically, our obtained perturbative solution in
Sec. II B holds only for a small barrier tilting. However,
the expressions in Eqs. (9) and (10) represent the general
solutions to Dirac-electron tunneling through a tilted barrier
in WKB approximation. We present the numerical results of
Eqs. (9) and (10) for a large barrier tilting in panels (a) and
(b) of Fig. 2. Here, a large graphene gap �G significantly
suppresses T (ε, φk |V0, α) for all values of a, as shown in
Fig. 2(a), while the increase of tilting parameter a enhances
T (ε, φk |V0, α) for all values of �G, as seen in Fig. 2(b). From
Figs. 2(c) and 2(e), we further find that the full transmission
for a head-on collision remains unchanged even for a tilted
barrier with a �= 0. For small a values, the electron-hole
transition does not take place within the barrier region. In this
case, a finite a only slightly modifies the resonances of oblique
tunneling but not the Klein paradox for the head-on collision.

III. EFFECT OF SCATTERS ON
DIRAC-ELECTRON TUNNELING

In this section, we would concentrate on studying effects
of distributed scatters within a tilted barrier region on the
ballistic transport of Dirac electrons in gapped graphene. For
this purpose, we first lay out the general formalism based on
a finite-difference approach (FDA) for any barrier potentials.
As an example, we apply the FDA to reveal scatter effects on
Dirac-electron tunneling, including different scatter strengths

and positions. The main advantage of the FDA is its capabil-
ity to determine exact electron wave functions for arbitrary
potential profiles [38].

We will consider both cases with a zero or finite energy
gap for graphene. Technically, an energy gap (∼200 meV)
could be introduced by placing a graphene sheet on top
of either insulating silicon-based [41] or hexagonal boron-
nitride substrate [42]. It could also be realized by patterned
hydrogen adsorption [43] or imposing a circularly polarized
off-resonance laser field [44,45]. This gap opening leads to
substantial modifications of electronic states, electric trans-
port, and collective properties of graphene, e.g., plasmon
dispersions [46–48].

A. Electronic states of gapped graphene

For gapped graphene, there exists a finite energy band gap
EG = 2�G between the valence and conduction bands with
energy dispersion εγ (k) = γ

√
(h̄vF k)2 + �2

G , where γ = ±1
correspond to electron and hole state, respectively. The Hamil-
tonian matrix associated with this dispersion possesses an
additional �̂z term on top of the Dirac Hamiltonian for gapless
graphene [39,48], yielding

Ĥg(r) = −ivF �̂x,y · ∇r + VB(x) �̂0 + �G �̂z, (25)

where r = {x, y}, �̂x,y,z are two-dimensional Pauli matrices,
�̂0 is a (2 × 2) unit matrix, and VB(x) represents an arbitrary
spatially-nonuniform barrier potential.

In general, the scattering-state solution for the Hamiltonian
in Eq. (25) has a two-component (spinor) type of wave func-
tion �γ (r) = exp(ikyy) �γ (x) = exp(ikyy) [φγ

A (x), φ
γ

B (x)]T ,
where γ = sign[ε0(k) − VB(x)] = ±1 represents the electron-
hole index and ε0(k) is the given energy of an incident
electron. For the case with a constant barrier potential V0,
however, the Hamiltonian in Eq. (25) can be greatly simplified
as

Ĥ(0)
g (k | θk ) =

[
V0 + �G h̄vF k−

h̄vF k+ V0 − �G

]
, (26)

where k = (k(0)
x , ky) and k± = k(0)

x ± iky. In this case, the
scattering-state wave function related to the Hamiltonian in
Eq. (26) gains the explicit form [39,49]

� (0)
γ (r) = 1√

2γ δε0(k)

[ √|δε0(k) + �G|
γ
√|δε0(k) − �G| eiθk

]

× exp
(
ik(0)

x x + ikyy
)
, (27)

where θk = tan−1(ky/k(0)
x ), δε0(k) ≡ ε0(k) − V0 � �G for

γ = +1, while δε0(k) � −�G for γ = −1. Here, two com-
ponents of the wave function in Eq. (27) are not the same
but they are still interchangeable for electrons and holes with
γ = ±1.
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FIG. 2. Transmission amplitude T (ε, φk ) in graphene for fixed V0/EF = 2 and various barrier tilting parameters specified by different a
values. Panels (a) and (b) display T (ε, φk ) from Eq. (10) for gapped graphene as functions of �G and ak2

F , respectively, with fixed ky = 0.5 kF .
Panels (c)–(e) present density plots for T (ε, φk ) from Eqs. (22) and (24) for gapless graphene �G = 0 as functions of ε/EF and φk in
(c),(e) and functions of WBkF and φk in (d),(f) with ε/EF = 1 for a = 0 (middle row) and for a = 0.1 k−2

F (bottom row). Here, V0/EF = 2,
EF = h̄vF kF = 6.28 meV is taken for the energy unit and kF is the unit for wave number of electrons.

B. Effects of barrier-distributed scatters

For the Hamiltonian in Eq. (25), a pair of scattering-state equations within the barrier region are derived as

dφB(x)

dx
+ ky φB(x) = i

h̄vF
[ε0(k) − VB(x) + Vs δ(x − xs) − �G]φA(x),

dφA(x)

dx
− ky φA(x) = i

h̄vF
[ε0(k) − VB(x) + Vs δ(x − xs) + �G]φB(x). (28)

Here, we consider a barrier under a tilting field E0, which gives rise to VB(x) = V0 − eE0 x in the barrier region, where both V0

and E0 can be either positive or negative. Additionally, ky of electrons remains conserved during a tunneling process along the x
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direction. Moreover, a single scatter at 0 < x = xs < WB is introduced within the barrier region with its strength −Vs, which can
be positive (attractive) or negative (repulsive).

Mathematically, we can divide the electron wave function corresponding to three separated regions. To the left of the barrier
x < 0, we acquire the wave function

�<(x) = s(ε0)

[
1

eiφk

]
exp

(
ik(0)

x x
) + r(ε0)

[
1

−eiφk

]
exp

( − ik(0)
x x

)
, (29)

where φk = tan−1(ky/k(0)
x ), s(ε0) and r(ε0) represent incoming and reflected wave-function amplitudes. To the right of the barrier

x > WB, on the other hand, the wave function takes the form

�>(x) = t (ε′
0)

[
1

eiφk′

]
exp(ik′

xx), (30)

where φk′ = tan−1(ky/k′
x ) and t (ε′

0) is the transmitted wave-function amplitude.
Results in Eqs. (29) and (30) can be applied to construct boundary conditions on both sides of a barrier. For the wave function

within the barrier region, however, the FDA must be employed to seek for a numerical solution of Eq. (28). Following the
procedure adopted in Ref. [38] for a two-dimensional electron gas, we discrete the whole barrier region 0 � x � WB into NB (odd
integer) equally spaced slabs, and each slab has the same width �0 = WB/NB. Consequently, two coupled differential equations
in Eq. (28) can be solved simultaneously through a backward-iteration procedure in combination with two continuity boundary
conditions at x = WB and x = 0. Especially, as �G = 0 we find the following backward iterative relation for 1 � j � NB + 1
and x j = ( j − 1)�0, i.e.,

{
φA(x j−1)

φB(x j−1)

}
=

{
φA(x j )

φB(x j )

}
− ky�0

{
φA(x j )

−φB(x j )

}
+ i�0

h̄vF
[ε0(k) − V0 + eE0x j + Vs δ(x j − xs)]

{
φB(x j )

φA(x j )

}
, (31)

where Vs = Vd �0 and Vd represents the point-scatter potential.
By using Eq. (30), the first continuity boundary condition at xNB+1 = WB = NB�0 leads to

{
φA(xNB+1)

φB(xNB+1)

}
= t (ε′

0(k′))
{

1

eiφk′

}
exp(ik′

xNB�0) exp

⎡
⎣ky�0

NB+1∑
j=2

(−κ (x j ))/
√|κ (x j )|

⎤
⎦

x j �=xD

, (32)

where κ (x j ) = [(1/h̄vF )(ε0(k) − V0 + eE0x j )]
2 − k2

y , ε′
0(k′) = h̄vF

√
k′2

x + k2
y = ε0(k) + eE0WB, and (x) is a unit-step func-

tion. Physically, the last exponential factor in Eq. (32) does not affect the transmission coefficient if κ (x j ) > 0, corresponding to
a semiclassical regime. However, this factor can significantly reduce the transmission coefficient but not the reflection coefficient,
if κ (x j ) < 0, connecting to a quantum-tunneling regime. The backward iteration in Eq. (31) can be performed all the way down
to x1 = 0.

In a similar way, using Eq. (29) and another continuity boundary condition at x1 = 0, we find

{|s(ε0)|2
|r(ε0)|2

}
= 1

4

{|a|2 + |b|2 + 2Re(ab∗eiφk )

|a|2 + |b|2 − 2Re(ab∗eiφk )

}
, (33)

where we have defined the notations

{
a

b

}
≡

{
φA(x1)

φB(x1)

}
= s(ε0)

{
1

eiφk

}
+ r(ε0)

{
1

−eiφk

}
. (34)

The transmission coefficient T (k, φk | E0,Vd , xs), which is defined as the ratio of the transmitted to the incident probability
current densities [1,2], is given by

T (k, φk | E0,Vd , xs) = |t (ε′
0)|2

|s(ε0)|2 , (35)

since electrons on both sides of the barrier have the same group velocity vF . Numerically, it is easy to set t (ε′
0) ≡ 1, then to find

s(ε0) through Eq. (34) after having performed all the backward iterations, and finally obtain the ratio in Eq. (35).
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Using the calculated transmission coefficient in Eq. (35), we are able to compute the coherent-tunneling electric current J0

per length, yielding

J0 = 4e

A
∑

k

T (k, φk | E0,Vd , xs) vF cos φk[ f0(ε0(k)) − f0(ε0(k) + eEdcWB)], (36)

where Edc is a weak applied bias field between two electrodes, A is the graphene sheet area, f0(x) = {1 + exp [(x − u0)/kBT ]}−1

is the Fermi function for thermal-equilibrium electrons at temperature T , and u0(T ) is the chemical potential of electrons. For a
weak electric field, we have eEdcWB � ε0(k), which leads to

J0 ≈ 4e2vFU0

A
∑

k

T (k, φk | E0,Vd , xs) cos φk

[
−∂ f0(ε0(k))

∂ε0

]
, (37)

where U0 = EdcWB represents the voltage drop across the barrier and U0/(J0A) gives rise to tunneling resistance R. If T is low,
i.e., kBT � EF with EF = h̄vF kF as the zero-temperature u0 or Fermi energy, we find

J0 ≈ 4e2vFU0

A
∑

k

T (k, φk | E0,Vd , xs) cos φk δ(h̄vF k − EF )

= U0

π

(
2e2

h

) ∫ ∞

0
dk k δ(k − kF )

∫ π/2

−π/2
dφk T (k, φk | E0,Vd , xs) cos φk

= Edc kFWB

(
2e2

h

){
1

π

∫ π/2

−π/2
dφk T (kF , φk | E0,Vd , xs) cos φk

}
, (38)

where kF = √
πn0 is the Fermi wave vector and n0 is the areal electron doping density. Finally, we obtain the two-terminal sheet

tunneling conductivity σ (kF , E0,Vd , xs) (in units of 2e2/h), given by [50]

σ (kF , E0,Vd , xs) = J0

Edc
= kFWB

π

∫ π/2

−π/2
dφk T (kF , φk | E0,Vd , xs) cos φk. (39)

Specifically, for normal incidence of electrons with φk ≡ 0, we simply get σ0(kF , E0) = (kFWB) T (kF | E0,Vd , xs).
By going beyond a single scatter for the coherent tunneling, to simulate effects of barrier-distributed scatters on the

incoherent tunneling of Dirac electrons, we introduce a normal distribution function and replace the transmission coefficient
T (kF , φk | E0,Vd , xs) in Eqs. (35) and (39) by its average T (k, φk | E0,Vd ), yielding

T (k, φk | E0,Vd ) = 1

ND

∫ WB

0
dxs T (kF , φk | E0,Vd , xs) ρ(xs | ξs) ≈ �0

Ns

NB∑
s=2

T (kF , φk | E0,Vd , x∗
s ) ρ(x∗

s | ξs), (40)

where x∗
s = (s − 1)�0, the introduced scatter distribution function is assumed to be

ρ(x∗
s | ξs) = 1√

2πξ 2
s

exp

[
− (x∗

s − WB/2)2

2ξ 2
s

]
(41)

with the chosen standard deviation ξs = �0 and WB/2 = [(NB + 1)/2]�0. In addition, the normalization factor in Eq. (40) is
given by

Ns =
∫ WB

0
dxs ρ(xs | ξs) ≈ �0

NB∑
s=2

ρ(x∗
s | ξs). (42)

For convenience, in numerical calculations we further approximate the delta function in Eq. (31) by

δ(x j − xs) ≡ δ(x j − x∗
s ) ≈ �s/π

(x j − x∗
s )2 + �2

s

(43)

with another chosen broadening parameter �s = �0.

C. Numerical results and their discussions

In Sec. III C, we will present numerical results for demon-
strating effects of barrier tilting, single barrier-embedded
scatter, and continuously distributed scatters within a barrier,

respectively. We also present comparisons and detailed dis-
cussion of these results to reveal new physics and highlight
the interplay between effects of distributed scatters in a barrier
and barrier tilting on tunneling transport of Dirac electrons in
graphene.
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FIG. 3. Comparison of calculated transmission coefficients T (ε, φk | E0 = 0) with Vd = 0 as a function of incident angle φk based on either
an analytical solution (black-solid curves) or FDA (red-dotted curves) for four different barrier thickness WB = 1 nm (upper left), 5 nm (upper
right), 50 nm (lower left), and 110 nm (lower right), where V0 = 285 meV, E0 = 0, and ε = 80 meV are chosen for calculations.

1. Effect of barrier tilting

For a validation of our FDA, we first compare our nu-
merical results in the absence of scatters (Vd = 0) with those
from an analytical solution [2] for a square barrier VB(x) = V0.
Figure 3 displays a comparison for calculated transmission
coefficients T (ε, φk | E0 = 0) as a function of incident angle
φk using either an analytical solution [2] (black solid curves)
or our FDA (red dashed curves). The results in this figure
clearly indicate that our FDA is valid and can be applied to
arbitrary potential profiles VB(x) including a tilted barrier or
barrier-distributed scatters.

As a starting point, using the FDA we will first explore
the effects of barrier tilting on the ballistic transport of Dirac
electrons by neglecting barrier-distributed scatters. For this
situation, the numerical results of T (ε, φk | E0) are presented
in Fig. 4 as a function of incident angle φk for various values
of tilting field E0. Our results indicate that the Klein paradox,
i.e., T (ε, φk | E0) = 1 at φk = 0, persists for all considered
tilting field E0 values, either positive or negative. From this fig-
ure we see very-large-angle resonant tunneling only occurs for
|E0| ≈ 0. As |E0| becomes large, however, resonant tunneling
is squeezed into a very narrow angle region around φk = 0,
promoting tunneling collimation as predicted by WKB result
in Eq. (9). Such variations observed in T (ε, φk | E0) can be at-
tributed to the tilting modification of a barrier potential profile
VB(x) compared with a simple square barrier VB(x) = V0.

Figure 5 displays density plots of T (ε, φk | E0) as functions
of both incident energy ε and incident angle φk with six
different values for tilting field E0. Here, we take the case
with E0 = 0 as a starting point for our comparisons and
discussions, where the Klein paradox and collimation effect
exist accompanied by many sharp resonances (i.e., branching
and needling features). As E0 increases from zero to 25 kV/m

in the upper row of panels for reduced barriers, these resonant
branching and needling features are greatly obscured although
the Klein paradox persists. On the other hand, as E0 decreases
from zero to −35 kV/m in the low row of panels for enhanced
barriers, both branching and needling regions expand signifi-
cantly to higher incident energies of electrons.

The calculated tunneling coefficient T (ε, φk | E0) can be
put into Eq. (39) to find tunneling conductivity or resistivity
(its inverse) for coherent tunneling of Dirac electrons through
a tilted barrier in graphene in the absence of scatters. Here,
the resistivity strongly depends on the tilting field E0 due to
E0 dependence in T (ε, φk | E0). For ballistic Dirac electrons in
the absence of a barrier, their conductivity should be an integer
multiple of 2e2/h, as indicated by Eq. (39). In the presence
of scattering by impurities or phonons, the occurring resistive
force will lead to a tilting-dependent conductivity which is
accompanied by joule heating of electrons [51,52]. Here, how-
ever, a tilting-dependent conductivity is induced by a tunnel-
ing barrier which only reflects incoming electrons elastically
and coherently, leading to a destructive interference. Such
a behavior can be attributed to a strongly-modulated barrier
tilting (E0 dependence) in tunneling coefficient T (ε, φk | E0),
as shown in Eq. (39).

In Fig. 6, we present the calculated resistance ratios R/R0

as functions of incident electron energy ε for different de-
creasing (left panel) and increasing (right panel) tilted bar-
riers. We find from this figure that the resistance peak height
decreases with increasing positive E0 and the peak position
shifts down to lower incident energy ε at the same time. For
increasing negative E0, on the other hand, the peak position
shifts upward with ε but the peak height remains nearly
unchanged. Furthermore, the resistance peak is broadened
with increasing |E0|, and the broadening effect becomes much
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FIG. 4. Polar plots for transmission coefficient T (ε, φk | E0 ) as a function of incident angle φk for different tilting fields E0, where both
results for a reduced barrier E0 > 0 (left) and an enhanced barrier E0 < 0 (right) are shown in this figure for a full comparison. Here, WB =
110 nm, V0 = 285 meV, ε = 80 meV (left), and 400 meV (right) are chosen.

stronger for negative E0 values. Such a resonant feature in
ε dependence provides a unique opportunity for controlling
tunneling current of Dirac electrons by choosing different
Fermi energies EF or doping densities n0 in graphene.

As shown in Fig. 7, the transmission coefficient
T (ε, φk | E0) at E0 = 5 kV/m (reduced barrier) is suppressed
only for large incident angles |φk| with increasing barrier
width WB due to enlarged switching from a semiclassical
regime to a quantum-tunneling regime inside the barrier re-
gion, as well as due to increased interference effect in reflec-

tions from both barrier edges. Meanwhile, the major peak of
T (ε, φk | E0) for |φk| around zero becomes sharper with more
and more suppressed side peaks, leading to enhanced collima-
tion of Dirac-electron tunneling with increasing barrier width.

2. Effect of single barrier-embedded scatter

As a next step, using the same FDA we will further explore
the effect from a single barrier-embedded scatter on the coher-
ent tunneling of Dirac electrons by neglecting first the barrier

FIG. 5. Density plots of T (ε, φk | E0 ) as functions of both ε and φk, where WB = 110 nm, V0 = 285 meV and different values of E0 are
assumed in various panels.
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FIG. 6. The ε dependence of the resistance ratio R/R0 (inverse conductance) for coherent tunneling of Dirac electrons in graphene,
calculated from Eq. (39), through a tilted barrier with different values for tilting fields E0. Here, R0 is the resistance for normal incidence
with φk = 0 and results for both reduced (left) and enhanced (right) barriers are presented for comparisons. Moreover, we set WB = 110 nm
and V0 = 285 meV for calculations.

tilting or simply setting E0 = 0. As displayed in Fig. 8, we
learn from the left panel that the presence of a single scatter in
the barrier region can dramatically enhance the collimation of
Dirac-electron tunneling with xs = WB/2, and such an effect
is weakened as we move the scatter away from the barrier
center. On the other hand, if we vary the scatter strength Vd

from positive (attractive) to negative (repulsive), we find from
the right panel that an attractive scatter tends to collimate
better the tunneling of Dirac electrons in comparison with a
repulsive scatter. All the features demonstrated in Fig. 8 imply
a full control over enhancement in collimating tunneling of
Dirac electrons by using a single barrier-embedded scatter for
a fixed incident energy.

The left panel of Fig. 9 presents a density plot for
T (ε, φk | E0,Vd , xs) as functions of both ε and φk for a single
scatter embedded in a square barrier at xs = WB/2, from which
we observe a new strong and sharp resonance around ε ≈ V0

by comparing with the upper-left panel of Fig. 5 for E0 = 0

FIG. 7. Transmission coefficient T (ε, φk | E0 ) at E0 = 5 kV/m as
a function of incident angle φk for various barrier widths WB = 110
(black), 200 (orange), 300 (purple), 400 (green), and 500 nm (red),
where V0 = 285 meV and ε = 80 meV.

and no scatter. In the right panel of Fig. 9, we further present
a comparison of the tunneling-resistance ratios R/R0 as a
function of incident energy ε for three different positions of a
barrier-embedded attractive scatter with Vd = 50 meV at xs =
WB/2. In connection with a resistance peak appearing around
ε/V0 ≈ 1 for no scatter, the inclusion of an attractive scatter at
xs = WB/2 turns this peak into a very deep cusp surrounded
by two asymmetric shoulders. Such an observation can be
attributed to the effect from a scatter-induced constructive
interference around the Dirac point on the coherent tunneling
process of Dirac electrons in the system, as demonstrated
by the left panel of this figure. As the scatter is moved
away to xs = 3WB/4, the cusp depth is greatly reduced while
symmetrizing two shoulders at the same time. Surprisingly,
this deep cusp changes back to a peak for xs = WB/4 due to
switching to an opposite destructive interference around the
Dirac point. The occurrence of such a deep cusp in tunneling
resistance in Fig. 9 reveals the effect from coherent super-
position of multiple reflections from a single mid-barrier-
embedded attractive scatter on tunneling of Dirac electrons
as the incident energy approaches the top of a square barrier
or the Dirac point within a barrier.

In Fig. 10, we further present a comparison of the
tunneling-resistance ratios R/R0 as a function of ε for five
different strengths of a single scatter at xs = WB/2 in order
to show the influence of scatter identity on the coherently
superposed multiple reflections from a single scatter at the
middle of a barrier. From this figure, we first notice that
the cusp remains independent of values of Vd , i.e., either
an attractive or a repulsive scatter. Moreover, two shoulders
around the cusp become weak with increasing |Vd | values. In-
terestingly, only the attractive scatter with Vd = 100 meV can
symmetrize these two shoulders, but not the repulsive scatter
with Vd = −100 meV, in strong contrast to incoherent scatter-
ing by randomly-distributed scatters [51,52]. Meanwhile, the
depth of a cusp also remains largely unchanged with Vd since
it results from a constructive interference around the Dirac
point within a barrier due to multiple coherent scatterings
from a single scatter at xs = WB/2, and thus depends only on
phase accumulation or scatter position. In the presence of a
single mid-barrier scatter, the unique tunneling selection by an
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FIG. 8. Polar plots for transmission coefficient T (ε, φk | E0,Vd , xs ) with a single scatter as a function of incident angle φk for different
scattering positions xs (left) and strengths Vd (right), where WB = 110 nm, V0 = 285 meV, ε = 80 meV, and E0 = 0 are chosen for calculations.
Moreover, we also set Vd = 50 meV in the left panel, while xs = WB/2 in the right panel.

incident energy close to the square-barrier top for switching
a resistance peak for no scatter to a cusp can be utilized for
designing an energy filter for incident Dirac electrons.

3. Effect of continuously distributed scatters within a barrier

From Figs. 8–10, we have understood that both tunneling
transmission coefficient and tunneling resistance can be varied
by selecting different positions or strengths for a single scatter
embedded in a square barrier. To be more realistic, as a final
step, still using the FDA, we would investigate the interplay
between continuously distributed scatters in a barrier and
barrier tilting in electric transport of Dirac electrons within
a graphene layer. For this purpose, however, a summation
over all positions of continuously distributed scatters within a
barrier should be performed for averaging transmission coeffi-
cients corresponding to different scatter positions. To facilitate
such a summation, we introduce a Gaussian-type distribution
function for all of the scatters within a barrier, as presented in
Eq. (41). Consequently, the obtained average T (k, φk | E0,Vd )

can be fed into Eq. (39) for calculating incoherent tunneling
resistance in the presence of continuously distributed scatters
within a tilted barrier.

We find from the left panel of Fig. 11 for ε = 80 meV that
the dramatic changes in T (ε, φk | E0,Vd ) only occur within
the angle region roughly bounded by |φk| = π/6, which are
accompanied by enhanced collimation of incoherent tunnel-
ing through a square barrier containing scatters with strong
strengths Vd = ±100 meV. Moreover, this enhancement of
collimated tunneling appears relatively larger for attractive
scatters (blue curve) compared to that of repulsive scatters
(green curve). In the right panel of Fig. 11, on the other
hand, we exhibit the φk dependence in T (ε, φk | E0,Vd ) for
different values of E0 in order to uncover the physics for
competition between continuously distributed scatters within
a barrier and tilting field E0. By comparing with the blue curve
for E0 = 0 in the left panel of this figure, as E0 increases
from zero in the right panel, the continuously-distributed
scatters within a barrier gradually exclude more and more
high-φk contributions to T (ε, φk | E0,Vd ) until all side peaks

FIG. 9. Density plots of T (ε, φk | E0,Vd , xs ) as functions of both ε and φk (left), as well as the ε dependence of the resistance ratio R/R0

(right), for coherent tunneling of Dirac electrons in graphene through a square barrier embedded with a single scatter at different positions xs.
Here, we set WB = 110 nm, V0 = 285 meV, E0 = 0, and Vd = 50 meV for calculations. Moreover, we also set xs = WB/2 in the left panel.
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FIG. 10. The ε dependence of the resistance ratio R/R0 for
coherent tunneling of Dirac electrons in graphene through a square
barrier embedded with a single scatter having different strengths Vd .
Here, we set WB = 110 nm, V0 = 285 meV, E0 = 0, and xs = WB/2
for calculations.

are completely quenched (purple curve) for a fully collimated
tunneling. This incoherent-tunneling result is quite different
from that for coherent tunneling in the left panel of Fig. 8 for
a single scatter embedded in a square barrier or no scatters at
all. The features in Fig. 11 demonstrate in details interplaying
between effects of distributed scatters in a barrier and barrier
tilting on incoherent tunneling of Dirac electrons in graphene.

To acquire a full understanding about the competition
between effects of distributed scatters and barrier tilting on
ballistic transport of Dirac electrons, we present in Fig. 12
the dependence of tunneling resistance R/R0 on the incident
energy ε of electrons for different scatter strengths Vd (left)
or barrier tilting fields E0 (right). From the left panel of
Fig. 12, we first observe that the cusp as well as two shoulders,
which result from a single mid-barrier scatter as seen in

Fig. 10 for a square barrier, disappear and are replaced by
a single robust peak for |Vd | � 50 meV. As Vd = 100 meV
for the attractive-scatter distribution, this tunneling-resistance
peak shifts to lower energy in comparison with the weakened
upward-shifting peak for the repulsive-scatter distribution at
Vd = −100 meV. Here, the effect from a mid-barrier-scatter
induced constructive interference around the Dirac point, as
seen in Fig. 10 for a square barrier, has been fully suppressed
due to incoherent-tunneling nature for distributed scatters in a
barrier. In the right panel of Fig. 12, we further examine the
role of barrier tilting played in incoherent tunneling transport
of Dirac electrons in the presence of continuously distributed
attractive scatters within a barrier. From this panel, we find
the single peak in the left panel for the square barrier shifts
down in energy due to reduction of the effective barrier height
with increasing E0 from zero. Moreover, multiple side peaks
appear only on the low-energy shoulder, while their strengths
decrease, as E0 goes up from zero.

IV. SUMMARY AND REMARKS

In summary, to gain insight about the tunneling mechanism
of Dirac electrons in graphene, we have first employed a
WKB perturbation theory for studying electron transmission
through a slanted barrier with a weak tilting field compared to
the inverse barrier width and characteristic electron momenta.
Based on the WKB approximation, we have derived a set of
equations, corresponding to different orders of expansion pa-
rameter, and obtained analytical solutions of these equations
at the same time. From analysis of these explicit solutions, we
have demonstrated how the tunneling resonances of a square
barrier are affected by applying a tilting field. Physically,
we have extended a previously developed WKB theory for
electron transmission in the opposite limit for a large tilting
field, in which electron-to-hole switching occurs within the
barrier region. Moreover, a finite energy gap in graphene is
included and we have shown that both head-on and skew

FIG. 11. Polar plots for average transmission coefficient T (ε, φk | E0,Vd ) having continuously distributed scatters within a barrier as a
function of incident angle φk, where WB = 110 nm, V0 = 285 meV, and ε = 80 meV are chosen for calculations. Moreover, in the left panel
we assume E0 = 0 but set Vd = 100, 50, 0, −50, and −100 meV, as indicated, for different scatter strengths. In the right panel, however, we
have Vd = 100 meV while set E0 = 5, 10, 15, and 20 kV/m, as indicated, for various reduced barriers.
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FIG. 12. The ε dependence of the resistance ratio R/R0 for incoherent tunneling of Dirac electrons in graphene through continuously
distributed scatters within a barrier, where WB = 110 nm and V0 = 285 meV are chosen for calculations. In the left panel, we have E0 = 0
while Vd = 100, 50, 0, −50, and −100 meV, as indicated, for different scatter strengths. In the right panel, however, we set Vd = 100 meV but
have E0 = 0, 5, 10, 15, 20, and 25 kV/m, as indicated, for various reduced barriers.

transmissions will be suppressed exponentially in the presence
of an energy gap and a large transverse momentum.

Going beyond a slanted barrier, we have further developed
a full numerical approach based on the finite-difference ap-
proach for accurately calculating tunneling transport of Dirac
electrons through an arbitrary barrier potential. Here, the com-
bination of a barrier tilting field and a local scatter potential
can be viewed as an effective barrier profile realized by a
series of gate combinations. By using this finite-difference
approach, Dirac-electronic tunneling and transport properties
have been investigated for graphene with an in-plane tilted
potential barrier embedded with distributed scatters. In the
presence of either a single or a continuous distribution of
scatters within a tilted barrier, both transmission coefficient
and tunneling resistance of Dirac electrons are calculated
numerically. Based on these numerical results, we have pre-
sented a full analysis as well as a detailed comparison for the
interplay between effects of distributed scatters in a barrier
and barrier tilting on tunneling transport of Dirac electrons.
We have found from the comparison that the barrier-tilting
field, also the scatter position, can play a key role in control-
ling the peak in tunneling resistance and the peak switching to
a cusp by a single mid-barrier scatter as the incident electron
energy approaches the Dirac point of a barrier. Importantly,
from our calculations we predict that a continuous distribution
of scatters in a barrier can increase collimating incoherent
tunneling under a high barrier-tilting field, and at the same
time, will greatly suppress large-angle skew tunneling. Mean-
while, the continuously distributed scatters also suppress the
constructive interference around the Dirac point and turn a
cusp into a peak in tunneling resistance as a function of
incident energy of electrons.

From the application perspective, our current study implies
a tunable filtering of Dirac electrons by a barrier-tilting field
for nearly normal incidence, which could be utilized for
designing electronic lenses. The uniqueness of this feature
is that we can specify a range for incident electron energies
used for focusing. Moreover, the tunneling resistance could
be reduced and a conductance minimum can be shifted in
energy just by controlling titling-field polarity and strength,

barrier height, and thickness. Therefore, our model system can
be employed to tune the refractive index of such an energy
barrier in ballistic-electron optics. Furthermore, as the elec-
tron incident energy approaches the top of a square barrier,
the switching from a peak in tunneling resistance to a cusp
appears when a single scatter potential is introduced at the
center of a barrier, which is attributed to an induced construc-
tive interference around the Dirac point within a barrier for
the coherent tunneling of Dirac electrons and can be used as
either an energy blocker or an energy filter simply by adjusting
a barrier-potential profile. All these revealed properties are
expected to be extremely valuable for the development of
electronic and optical graphene-based devices.
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APPENDIX: EXACT WAVE FUNCTION

In this Appendix, we seek for an exact solution for the
electron/hole wave function in the finite-slope region of a
barrier, as seen in Fig. 1, with potential VB(x) = V0 + αx.
If two boundaries of the barrier region stay far away from
the electron-to-hole crossing point x = x0, i.e., k(x0) ≈ 0, the
wave function could be written as [14]

� (B)(x | ky) =
{

c1

[
F (η, ζ )

G(η, ζ )

]
+ c2

[
F �(η, ζ )

G�(η, ζ )

] }
eikyy,

(A1)

where η(x) = (x − x0)
√

a, ζ (ky) = ky/
√

a, the symbol �

means taking complex conjugation, and the two arbitrary
constants c1 and c2 will be fixed by the boundary conditions
on each side of the barrier region. Moreover, two functions
F (η, ζ ) and G(η, ζ ) in Eq. (A1) can be expressed explicitly

115424-14



INTERPLAY BETWEEN EFFECTS OF BARRIER TILTING … PHYSICAL REVIEW B 101, 115424 (2020)

by a Kummer confluent hypergeometric function M(a, b | z)
as [14]

F (η, ζ ) = exp

(
− i

2
η2

)
M

(
− i

4
ζ 2,

1

2

∣∣∣ iη2

)
,

G(η, ζ ) = −ζη exp

(
− i

2
η2

)
M

(
1 − i

4
ζ 2,

3

2

∣∣∣ iη2

)
.

(A2)

The wave functions outside of the barrier region are easily
obtained for the incoming and reflected waves, yielding

� (L)(x | k) = 1

2

[
eiφk

±1

]
eik(0)

x x eikyy+ rk

2

[−e−iφk

±1

]
e−ik(0)

x x eikyy,

(A3)

where φk = tan−1(ky/k(0)
x ). Similarly, for the transmitted

wave we have

� (R)(x | k′) = tk′

2

[
eiθk′

±1

]
exp(ik′

xx)eikyy, (A4)

where θk′ = tan−1(ky/kx ) tan−1(ky/k′
x ). The transmission co-

efficient tk′ and the reflection coefficient rk can be obtained
by matching the wave functions at two boundaries at x =
0 and x = WB, i.e., � (B)(x = 0 | ky) = � (L)(x = 0 | k) and
� (B)(x = WB | ky) = � (R)(x = WB | k′). Therefore, we acquire
four equations for these two-component wave functions,

which can be used to determine four unknowns c1, c2, rk,
and tk′ , and the calculated tk′ can be further employed for
evaluating the transmission Tk′ = |tk′ |2.

Here, we would like to emphasize that although the ob-
tained solution in Eq. (A1) is exact, it holds true only for
a very thick barrier satisfying 0 � x0 � WB. Additionally,
using this approach we cannot address the limiting case with
a small slope a → 0.

For the boundaries of a very thick barrier with a substantial
slope α, we find very large absolute value of η(x) = (x −
x0)

√
a, and the wave function reduces to

lim
η→∞ � (B)(x, | ky)

=
[

0
1

]
exp

[
− i

2
η2(x)

]
eikyy,

lim
η→−∞ � (B)(x, | ky)

= eikyy

{
exp

[
− π

2a
k2

y

] [
0
1

]

× exp

[
− i

2
η2(x)

]
+ const

[
0
1

]
exp

[
i

2
η2(x)

]}
,

(A5)

which leads to the transmission Tk′ = exp (−πk2
y /a). This

result is the same as that obtained from a semiclassical theory.
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