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High-frequency exciton-polariton clock generator
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Integrated circuits of photonic components are the goal of applied polaritonics. Here, we propose a compact
clock generator based on an exciton-polariton micropillar, providing optical signal with modulation frequency
up to 100 GHz. This generator can be used for driving polariton devices. The clock frequency can be controlled
by the driving laser frequency. The device also features low power consumption (1 pJ/pulse).
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I. INTRODUCTION

Optical computing is an important long-standing goal in
the field of photonics [1,2]. Different approaches were used
in the field during the past 70 years, including analog optical
computing [3,4], combined electro-optical circuits [5], pho-
tonic neural networks [6], and digital optical computing [7–9].
Integration of the photonic components raises several key
problems linked with miniaturization, such as the protection
from the parasite reflections, potentially solved by the recently
emerged topological photonics [10,11]. But one of the main
problems has been linked with the high powers required for
optical switching via the Kerr nonlinearity or other mecha-
nisms used in nonlinear optics [12–14]. One option to solve
this issue can be to reduce the size of the nonlinear cavities,
such as is done for nanolasers [15]. Another option is to
enhance nonlinearities using the strong light-matter coupling
[16,17], which allows one to use the significant interactions
between the matter part of the eigenmodes [18–20].

Cavity exciton polaritons [17] (polaritons) are a good
example of such a promising platform showing an increase by
a factor of 104 with respect to the ordinary Kerr nonlinearity
in standard inorganic semiconductors [20,21] as well as in 2D
monolayer materials [22,23] and perovskites [24]. Thanks to
these properties, many nonlinear polariton devices have al-
ready been proposed and implemented [25–29]. Such devices
exhibit low operation powers and fast switching times. They
can be assembled into logical circuits capable of functioning
at very high operating frequencies. However, in order to be
correctly tested and to be ultimately useful, these circuits have
to be driven not by an external pulsed (or even cw) laser, as it is
typically the case in experiments, but by an integrated “clock
generator” able to provide the expected operation frequency.

In electronics, the clock generators always contain a non-
linear element (such as an inverter), which is often combined
with a resonant element (such as a quartz crystal) for fre-
quency stability. The most well-known example is the Pierce
oscillator [30]. In general, the nonlinear circuits used for
generating oscillations date back to the beginning of the 20th
century [31] and are called multivibrators. They are often
based on bistable nonlinear elements exhibiting two possible

stationary outputs for a given single input. Biasing the bistable
element makes it impossible for it to remain in these stationary
states, and thus the element is constantly switching between
the two at a well defined rate. It is therefore logical to apply
this well-developed approach in photonics.

Bistable elements showing low switching powers have
been extensively studied in polaritonic systems [32]. Multi-
stability was shown to appear in these systems because of the
spin degree of freedom and because of the spin-anisotropic
interactions [21,33,34]. However, these works were focused
on the stationary regime. On the other hand, the oscillations
of coupled polariton modes with nonlinearities started to be
studied at the same time, both under pulsed [35] and cw
excitation [36]. Usually, Josephson coupling refers to spatially
separated modes, but from the mathematical point of view the
same coupling concerns spatially coexisting spin components
[35]. Such four-mode system was shown to exhibit high-
frequency chaotic oscillations [37]. Later, it was shown that
the minimal configuration capable of exhibiting both periodic
and chaotic oscillations is actually a pointlike system with two
spin projections [38]. In a more recent work, a homogeneous
cavity-polariton wire was shown [39] to arrange itself into a
network of coupled oscillators displaying self-pulsations or
dynamical chaos. However, none of these works focused on
the precise purpose of high-frequency clock signal generation,
that is, on the generation of a relatively strong propagating
output signal with a periodic modulation of intensity with
well-controlled frequency, and on the optimization of the
parameters of the generator.

In this work, we lay the cornerstone for the future polariton
computer. We design and optimize a high-frequency polariton
clock generator that could be used in various configurations
to drive the optical logical devices. The generator has the
simplest possible configuration: a single polariton micropillar
with an output channel. Coherent nonlinear oscillations based
on the parametric scattering have already been observed in a
single polariton pillar [40], which makes the implementation
of our proposal quite realistic. Before complete polariton
circuits are built, the clock generator can be used for testing
the switching performance of various nonlinear elements. The
operating frequency of such elements is found of the order
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of a few hundreds GHz, close to the THz gap, which makes
difficult the use of other types of generators, for example,
electro-optical ones.

II. THEORETICAL DESCRIPTION

For relatively low wave vectors, the polariton wave func-
tion ψ (r, t ) is well described by a nonlinear Schrödinger
equation (Gross-Pitaevskii equation) with pump and decay. To
simplify the initial theoretical description, we neglect the non-
parabolicity of the polariton dispersion and the polarization
degree of freedom:

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + α|ψ |2ψ + Uψ − ih̄

2τ
ψ + P e−iωt ,

(1)

where m = 5 × 10−5m0 is the typical polariton mass (m0 is
the free electron mass), α = 5 μeV μm2 is the coefficient
of polariton nonlinear interactions [41,42], τ is the polariton
lifetime (varying from few ps to few hundred ps), U (r) is the
confinement potential obtained by lithography (few tens of
meV scale), and P(r) is the pump. Its frequency ω is measured
with respect to the energy of a free polariton (approximately
1500 meV in this material system). This is a full 2D model,
which we shall use for the numerical simulations of the
system. The chosen parameters are typical for GaAs samples.

The system we consider, described by the potential U (x, y),
consists of a polariton micropillar of a circular cross section
(radius R). A single mode in the presence of a quasiresonant
pump and nonlinearity is known to be bistable [32], but it
cannot exhibit a complex behavior, such as oscillations. To
obtain such behavior, at least two modes are required. This
can be obtained either by considering two degenerate modes
of coupled pillars [36,43] or two nondegenerate modes of a
single pillar, which can be two spatial modes [40] or two
spin components [38] with a sufficiently large polarization
splitting. We have chosen the configuration with two spatial
modes of a single pillar, because it offers a good level of
control on the splitting between the two modes, crucial for
tuning the output frequency. We note that the presence of the
output channels brings an extra contribution in the effective
decay rate, which makes the configuration based on the split-
ting between the two spin projections difficult to use, since it
requires the polarization splitting to be much larger than the
broadening. The cylindrical pillar is supposed to be pumped
exactly in the center with a relatively small pumping spot,
optimized for the overlap with the two pumped states.

In order to obtain a qualitative understanding of the be-
havior of the system, we decompose the global wave func-
tion ψ (x, y, t ) on the basis of the quantized modes of the
micropillar ψn(x, y). These modes are solutions of the sta-
tionary eigenvalue equation Ĥ0ψn = Enψn, where Ĥ0 is the
conservative part of Eq. (1) with the potential U restricted to a
single pillar (without the output channel). The decomposition
is written as ψ (x, y, t ) = ∑

n cn(t )ψn(x, y)e−iEnt/h̄, where the
complex coefficients cn(t ) are the amplitudes of the corre-
sponding modes, whose absolute values squared |cn(t )|2 give
the emission intensity. Projecting the nonlinear Schrödinger
equation (1) on the eigenstates gives a system of coupled

FIG. 1. Energies (dotted lines) and wave functions (solid lines)
of the two lowest-energy symmetric modes of a micropillar. A
possible position of the laser energy is shown as a dashed line. Inset:
spatial images of the two states, with the pillar boundary shown as a
white dashed circle.

equations for cn(t ). The coupling appears because of the
interacting term 〈ψm|α|ψ |2|ψn〉 �= 0, mixing the eigenstates.
We need to take into account only the modes that are supposed
to be strongly populated, that is, the modes exhibiting a large
overlap integral with the pump. The modes of a cylindrical
pillar can be written as ψn,l = χn,|l|J|l|(kr)eilφ , where n, l are
the radial and azimuthal quantum numbers, J is the Bessel
function of the first kind, k = h̄−1

√
2mEn,l , χ is a normaliza-

tion constant, and the energies are determined by the zeros
of the Bessel function: En,l = h̄2 j2

n+1,l/2mR2 [ jn+1,l is the
(n + 1)st zero of the Bessel function Jl ]. Since the pumping is
symmetric, all wave functions with nonzero l have a vanishing
overlap with the pump. The two states of interest, the closest
to the bottom and thus the easiest to obtain and to observe,
shall be denoted as ψa = ψ0,0 and ψb = ψ1,0 (see Fig. 1).
The projection of the nonlinear term |ψ |2 can be simplified by
analyzing the expected behavior. Indeed, only the ground state
can exhibit a bistable jump and become strongly populated,
because Ea < h̄ω. In such conditions, the contribution of
the other mode to the coupling term can be neglected. The
coupling term therefore reads

〈ψa|α|ψ |2|ψb〉 = α|ca|2
∫∫

ψ∗
a |ψa|2ψb dr dφ = J|ca|2.

(2)

The sign of J depends on the relative phase of the modes,
which, in turn, depends on their actual frequency position with
respect to the laser. The two modes are going to have opposite
phases because Ea < h̄ω < Eb (approximately π phase dif-
ference if the decay is neglected), and thus J < 0. This can
be understood qualitatively as follows: the admixture of the
upper state brings the ground state closer to the Thomas-Fermi
limit [44]. Numerical evaluation of the Bessel functions gives
JS ≈ 1.3α. For the nonlinear shift in the energy of each mode,
we neglect the contribution of the other mode and of the
interference terms, because of the smaller overlap integrals.
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FIG. 2. Real (a) and imaginary (b) parts of the energy of weak

perturbations of the stationary solution for a pillar of R = 4.5 μm, a
polariton lifetime τ = 7 ps, and a laser frequency of h̄ω = 0.9 meV.

With all these approximations, the coupled mode equations
can be written as

ih̄
∂ca

∂t
=

(
h̄ωa + αa|ca|2 − ih̄

2τ

)
ca + J|ca|2cb + Pae−iωt ,

(3)

ih̄
∂cb

∂t
=

(
h̄ωb + αb|cb|2 − ih̄

2τ

)
cb + J|ca|2ca + Pbe−iωt .

To simplify the analysis, we then assume αa = αb = α0 (the
self-interactions in the two modes are approximately the
same) and Pa = Pb = P0 (the overlap of the pump with the two
modes is almost the same). In order to identify the necessary
conditions for the oscillations, we then perform a stability
analysis. We begin by writing the system (3) in the stationary
limit, where the only frequency in the system is the laser
frequency, ψa,b(t ) = ψ s

a,be−iωt :

(
h̄(ωa,b − ω) + α0

∣∣cs
a,b

∣∣2 − ih̄

2τ

)
cs

a,b + J
∣∣cs

a

∣∣2
cs

b,a + P0 = 0.

Following the Bogoliubov–de Gennes approach, we study
the weak perturbations of the stationary solution ψa,b(t ) =
e−iωt (ψ s

a,b + Ua,be−iEt/h̄ + V ∗
a,beiE∗t/h̄), which results in a sec-

ular equation allowing one to find the eigenenergies E of
these excitations. The positive imaginary part ImE > 0 of
any eigenvalue means that the corresponding perturbation
grows exponentially, and the real part of its energy is a good
estimation for the frequency of the self-sustained oscillations
ωosc ≈ ReE/h̄, once a new regime settles down. Figure 2
shows the real and imaginary parts of the energies of weak
perturbations as a function of pumping P0 (parameters given
in the caption). We see that there is a range of pumping
values (between 2 × 103 and 3 × 103 particles/ps) which
correspond to the growth of the perturbations ImE > 0. It
is in this range of parameters that our device is expected to
operate. Moreover, since the real part of the energy is almost
constant in this range, the generator is well protected from the
fluctuations of the driving laser intensity.

The approximate frequency of the generated clock oscilla-
tions can be found numerically from the solution of the fourth
order secular equation, but, in order to have a clear analytical
estimate, we need to reduce the system size, keeping only the
important terms: the energies of the two modes (taking into
account the effect of the bistability) and their coupling. For
this estimate, we assume that the frequency of the lower mode
jumps to the frequency of the pump, which determines both
its energy and its occupancy. The reduced two-coupled modes

Hamiltonian reads

Ĥred =
(

h̄ω J h̄ω−Ea
α

J h̄ω−Ea
α

Eb

)
, (4)

which allows one to find the frequency of the oscillations
as ν =

√
(Ea − h̄ω)2 + 4(Eb − h̄ω)2J2/α2/2h (the factor 1/2

appears because we analyze the oscillations of intensity).
For a pillar of R = 4.5 μm with the mode energies of Ea =
0.2 meV and Eb = 1 meV, and a laser frequency of h̄ω =
0.9 meV, this expression predicts a frequency of 86 GHz,
very close to the value of 91 GHz predicted by the numerical
solution of the Bogoliubov–de Gennes equations.

III. RESULTS AND DISCUSSION

In order to check our analytical predictions, we perform
two sets of numerical simulations. The first set is based on
the full 2D Gross-Pitaevskii equation (1) and the second is
based on the two-mode approximation (3). The results of
one 2D simulation are shown in Fig. 3 (parameters are given
in the caption). Panel (a) shows the spatial distribution of
intensity in the system composed of a circular pillar with two
output channels. The visible periodic spatial modulation of
intensity in the channels is due to the propagating periodically
oscillating signal. Figure 3(b) shows the time dependence of
the polariton density for a fixed point in a channel, far from
the pillar and the boundary of the system. High-contrast stable
periodic oscillations are clearly visible. These oscillations set
in during the initial transitional period of 1–2 hundreds of ps,
and remain stable for at least 40 ns, with no sign of variations
with long characteristic time visible over this period. The 2D
simulations are too expensive numerically to be carried over
much longer times. We have also checked that the oscillations
remain stable in the presence of an uncorrelated noise (weak
with respect to the pump), simulating the effects of sponta-
neous polariton scattering.

The corresponding spectral density is shown in panel 3(c).
The main frequency is 70 GHz, very close to the simple
analytical estimate of 74 GHz provided by the equation (4).
This high oscillation frequency is obtained for realistic pa-
rameters, as we discuss below. A second harmonic is also

FIG. 3. (a) Spatial polariton density snapshot from a 2D numer-
ical simulation. Propagating density pulses can be observed in the
channels. (b) Oscillations of the polariton density for a pillar of
R = 5 μm, a laser frequency of h̄ω = 0.82 meV, and a pumping of
p = 2000 ps−1. (c) Spectral density of |ψ (r, t )|2 showing a resulting
frequency of ν = 70 GHz.
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FIG. 4. (a) Frequency as a function of � for δ = 0.3 meV
constant. (b) Dependence of the frequency with δ for � = 0.8 meV
constant. The pumping varies between 1500 and 3000 ps−1.

visible in the spectrum; it appears because of the deviation
of nonlinear oscillations from perfectly harmonic ones, which
is also visible in the time-resolved intensity plot of Fig. 3(b).

Figure 4 presents the dependence of the most practically
important parameter—the clock frequency—on the parame-
ters of the system which can be varied experimentally. These
parameters include the energy difference between the two
modes of the pillar � = Eb − Ea (determined by the size of
the pillar) and the laser detuning with respect to the middle
frequency δ = h̄ω − (Ea + Eb)/2. As an example, for a pillar
of R = 4.5 μm and a laser frequency of h̄ω = 0.9 meV, we
obtain � = 0.8 meV and δ = 0.3 meV. Figure 4(a) shows
the increase of the frequency from 70 to above 100 GHz
with the increase of mode splitting � (for a constant detuning
δ = 0.3 meV), meaning the smaller the pillar, the higher the
oscillation frequency. The detuning δ of the laser is also an
important parameter in order to optimize the output frequency,
as shown in Fig. 4(b). Unfortunately, both � and δ cannot
be increased indefinitely, because the efficiency of the laser
pumping decreases with its detuning with respect to the mode.
For a mode linewidth of γ ≈ 0.1 meV, the maximal exper-
imentally realistic offset is ∼7γ ≈ 0.7 meV [42]. It means
that the realistic values of δ in Fig. 4(b) are below 0.3 meV.
Nevertheless, we provide the results for higher values of
δ, which might be accessible for broader pillar resonances.

These two figures confirm that the operation frequency can
be tuned in a broad range of values. The most accessible
way for tuning the clock generator is via the pumping laser
frequency.

We stress that in the 2D simulations the value of the
lifetime is different in the pillar (7 ps−1) and in the channels
(300 ps−1), which can be easily achieved experimentally. This
is important, because it is the decay rate γ which constrains
the maximal operation frequency via δ and �. Sufficiently
high decay rate is required for high-frequency operation. We
also note that the generator frequency is relatively stable with
respect to the pumping power: it changes only by 10% within
the whole range of pumping powers where the oscillations can
be observed (for constant � and δ). Besides the frequency,
another important parameter of the clock generator is the
power consumption. The power of the optical pump used to
drive the system is of the order of 10 μW. This is approx-
imately 10 times higher than in the best modern electronic
clock generators. However, since the operation frequency of
the present device is much higher, energy consumption per
pulse is of the order of 1 pJ, much better than in electronics.

To conclude, we have studied the possibility of fabrication
of a clock generator for integrated polaritonic circuits based
on a single polariton micropillar. Such a device demonstrates
high generation frequencies of about 100 GHz, required to
fully exploit the potential of polariton circuits for ultrafast data
treatment. We have shown that the operation frequency can be
controlled by the laser detuning (in situ) or by changing the
pillar radius.
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