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Two-spin entanglement induced by scattering of backscattering-free
chiral electrons in a Chern insulator
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The existence of robust chiral edge states in a finite topologically nontrivial Chern insulator is a consequence
of the bulk-boundary correspondence. In this paper, we present a theoretical framework based on lattice Green’s
function to study the scattering of such chiral edge electrons by a single localized impurity. To this end, in the
first step, we consider the standard topological Haldane model on a honeycomb lattice with strip geometry. We
obtain analytical expressions for the wave functions and their corresponding energy dispersion of the low-energy
chiral states localized at the edge of the ribbon. Then, we employ the T -matrix Lippmann-Schwinger approach
to explicitly show the robustness of chiral edge states against the impurity scattering. This backscattering-free
process has an interesting property that the transmitted wave function acquires an additional phase factor.
Although this additional phase factor does not affect quantum transport through the chiral channel, it can carry
quantum information. As an example of such quantum information transport, we investigate the entanglement of
two magnetic impurities in a Chern insulator through the dissipationless scattering of chiral electrons.
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I. INTRODUCTION

In the past decade or so, topological materials, due to
their exceptional physical properties, have attracted lots of
interest, especially in the fields of condensed matter and
atomic physics [1,2]. These kinds of materials exhibit some
exotic phenomena such as dissipation-less edge transport or
Majorana fermions. The existence of such topologically pro-
tected edge modes is a consequence of the bulk-boundary
correspondence [1,2], which is the existence of (d − 1)-
dimensional boundary sates inside the energy gap of a
d-dimensional topologically nontrivial band structure. The
emergence of such robust boundary states in topological
materials plays an important role in designing quantum de-
vices without decoherence [3]. It is important to note that
the physical properties of these edge states depend on the
topological classes of the materials forming the boundary.
For instance, in the Chern insulators the most convenient way
of classifying topological invariant in the Hamiltonian is the
so-called Chern number [4], C, which shows the existence of
C chiral conducting edge channels [5] in which an electron is
allowed to move only in a specific direction.

In 1988, Duncan Haldane proposed a prototype lattice
model of spinless electrons which exhibit anomalous quan-
tum Hall effect in a periodic magnetic field such that the
resultant flux through the unit cell is zero [6]. Indeed, this
is a pioneering example of a system with quantized Hall
conductance in which the time-reversal symmetry breaks in
the absence of a net magnetic field or discrete Landau lev-
els. The phase diagram of this model, as it is known [6],
contains both the trivial and the Chern insulator domains
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where the corresponding Chern number of the topological
phase is C = ±1 in comparison to the trivial phase in which
C = 0. Therefore, this system supports a single chiral edge
channel which is protected topologically. Then, one concludes
that such chiral edge electrons are robust against impurity
scattering or disorder and cannot undergo backscattering. Al-
though this robustness against the weak local perturbations is
a consequence of topological protection and has been studied
numerically [7–9], there is still a general lack of a rigorous and
direct analytical analysis for such dissipationless transport.
This is due to the lack of our knowledge about the analytical
expressions for the wave functions of topological edge states.
This issue is addressed for some topological systems very
recently [10], but it is still an open question for the Haldane
model and will be discussed in the following.

Even though Chern insulators are the first discovered type
of topological insulators, the experimental realization of such
systems in realistic materials succeeded recently [11]. More-
over, using the ultracold fermionic atoms in a periodically
modulated optical lattice, it is now possible to implement
the Haldane model in an experimental setup which allows
tunability of the physical properties of the model [12,13].

On the other hand, one of the most interesting aspects of
quantum science is to understand and control the transport of
quantum information and create entanglement among differ-
ent subsystems of a quantum-scale system [14]. In this regard,
one-dimensional (1D) dissipationless channels in topological
materials, as we discussed before, are promising candidates
[15–17] in which the spin of an electron propagating along
the 1D edge could act as a flying qubit [18]. Although it is
obvious that, due to the topological protection of edge states,
the scattering of such a chiral edge electron by an impurity
will not change the electronic conductance (transmission) of
the corresponding edge channel, it is still not clear whether it
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can change other quantum properties of the incident electron
or not. Indeed, the interaction of single impurity with the
chiral edge states may give rise to the generation of an addi-
tional phase factor in the chiral electron’s wave function. This
additional phase factor is, however, quite interesting since it
can be used as a resource for quantum entanglement gener-
ation, which is the most basic type of quantum information
processing.

The present paper is an attempt to answer the above-raised
questions analytically using the scattering phenomena. In
this paper, we propose a scheme for efficiently generating
entanglement between two magnetic impurities (spin-1/2)
embedded in a Chern insulator. We consider the Haldane
model for a strip geometry (zigzag ribbon) and obtain the
corresponding wave functions of the chiral edge electrons
analytically. Using this wave function, we present in detail
the scattering formalism of these chiral edge electrons by
the quantum-dot spin qubits fixed at the edge of the zigzag
nanoribbon. We explicitly calculate the transmitted wave
function of backscattering-free edge electrons scattered by
such impurities using the Lippmann–Schwinger equation and
Green’s function approach [19]. In this case, the scattered
wave function through the localized scatterers acquires a
phase factor that we use to entangle two magnetic impurities
located at the edge sites of the ribbon as qubits participating
in the scattering process.

The rest of the paper is organized as follows. After the
Introduction, in Sec. II we consider the general Hamiltonian
of the Haldane model to derive the localized wave function of
chiral edge states as well as the corresponding lattice Green’s
function for such states. We also calculate the scattering of
such chiral edge electrons by an impurity which is modeled
as a diagonal on-site potential using the standard T -matrix
approach on a lattice, adopted by many authors [20–23]. In
Sec. III, we perform explicit calculations of the entanglement
generated between a flying chiral qubit and a fixed localized
spin qubit. The generalization of this formalism to the case of
two spin qubits localized far from each other is also discussed
in this section. Finally, the conclusions are summarized in
Sec. IV.

II. HALDANE MODEL, EDGE STATES,
AND GREEN’S FUNCTION

As a generic example of a Chern topological insulator,
we consider the standard Haldane model [6] for a two-
dimensional (2D) honeycomb lattice structure which is illus-
trated in Fig. 1. This lattice consists of two triangular sublat-
tices A and B, indicated by blue and red sites, respectively. In
this model, the motion of spinless fermions at each lattice sites
can be described by hopping to nearest- and next-to-nearest-
neighbor sites. The tight-binding Hamiltonian for this model
is given by

H = H0 + H1,

H0 =
∑
〈i, j〉

t1(c†
iAc jB + H.c.) + M

∑
i∈A

c†
iAciA − M

∑
i∈B

c†
iBciB,

H1 =
∑
〈〈i, j〉〉

t2eiφi j (c†
iAc jA + c†

iBc jB + H.c.), (1)

FIG. 1. The 2D honeycomb lattice structure with two sublat-
tices A and B marked by blue and red points, respectively, and
the elementary translation vectors a1 and a2. Dashed arrows show
the directions along which the phase factor φ of the next-nearest-
neighbor hoppings, t2, is positive, otherwise, φ is negative.

where c†
i (ci ) is the fermionic creation (annihilation) operator

at site i and t1 and t2 are real hopping amplitudes between
nearest neighbors on the different and the same sublattices,
respectively. The phase factor φi j = φ shown in Fig. 1 is con-
sidered to be positive for anticlockwise hoppings and negative
for clockwise hoppings. Therefore, it breaks the time-reversal
symmetry of the Hamiltonian since it acts as a staggered
magnetic field. Furthermore, the on-site energy +M on A sites
and −M on B sites breaks the spatial inversion symmetry of
the model and opens a trivial gap at the so-called Dirac points.

The well-known topological phase diagram of the Haldane
model [6] on a bulk honeycomb lattice is shown in Fig. 2. The
topological phase transition from a Chern to trivial insulator
takes place at |M| = 3

√
3t2 sin φ. The resulting phase regions

are indicated by different Chern numbers C = ±1 and C = 0,
respectively, in Fig. 2. It is important to note that, according

-6

-4

-2

 0

 2

 4

 6

-3 -2 -1  0  1  2  3

C=0

C=-1 C=+1

M
/t 2

φ

FIG. 2. The exact phase diagram—as calculated by Haldane
[6]—of the topological Haldane model as a function of the on-site
energy, M (measured in units of t2), and the staggered phase φ. The
regions with nonzero Chern number, C = ±1 are the topologically
nontrivial phase which is separated from the trivial phase with zero
Chern number, C = 0.
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FIG. 3. Schematic representation of a zigzag honeycomb ribbon
with Nz = 4 zigzag chains across the width of the ribbon. The dashed
rectangle across the width of the ribbon denotes the supercell along
this ribbon. Two typical magnetic impurities located at the top edge
of the ribbon are shown at sites (m = 0, n = 0, A) and (m = 3,

n = 0, A).

to the bulk-boundary correspondence [1,2], when the Chern
number of the bulk system is nonzero, C = ±1, the bound-
ary of the confined system provides chiral conducting edge
modes.

A. Edge states

In the following, we consider the Haldane model for a
system with the geometry of a ribbon which has finite height
in the y direction whereas is periodic in the x direction with
a zigzag edge as depicted in Fig. 3. The ribbon width Nz is
defined by the number of zigzag chains along the y direction.
As shown in Fig. 3, each lattice site of this ribbon can be
described simply by a set of three parameters (m, n, ν) in
which m and n are the supercell and zigzag chain index,
respectively, and ν = A, B refers to the sublattices. In what
follows, the distance of two nearest-neighboring lattice sites
on the same sublattice is set as the unit of the length scale,
a = 1.

In the absence of impurity, due to the existence of transla-
tional symmetry in the x-direction, the wave number kx is still
a good quantum number. We are interested in the topologically
nontrivial phase, C = ±1, in which there is a midgap band
crossing (between the valance and the conduction bands) at
kx = 0. This results in the formation of edge bands within
the gap of the bulk Haldane model. Therefore, we can do our
calculations for the case φ = π/2 to have a large gap and set
t2 = 0.3t1 to obtain rather flat edge bands. We also take M = 0
for simplicity.

Figure 4 shows the band structure of the Haldane model for
a ribbon of width Nz = 80 which is obtained numerically. This
seems to be sufficiently wide to suppress the backscattering of
edge modes [9,24]. It is obvious that close to the zero energy,
two edge bands composed of edge states cross the Fermi
energy. Such edge states are well known as chiral edge states
because they only propagate in one direction along the edge.
These states are robust to any kind of disorder and impurity
because there are no states possible for backscattering. This
is what we expect from topological protection and has been

FIG. 4. Band structure of the Haldane model for a zigzag ribbon
of width Nz = 80 and t1 = 1.0(eV), t2 = 0.3(eV), and φ = π/2
obtained numerically via exact diagonalization. The dispersion of
the edge states is obvious in the gap region between the lower band
edge of the upper continuum and the upper band edge of the lower
continuum. The dashed (red) lines show a plot of the analytical
expression for edge states energy dispersion which is obtained in
Eq. (6).

investigated numerically [9]. We are now going to achieve it
analytically in the remainder of this section.

To proceed further, we need to have the explicit analytical
expressions of the edge states wave-functions as well as
their corresponding energy dispersion. We are particularly
interested in the zero-energy solutions of the Schrödinger’s
equation for the Hamiltonian of Eq. (1), H |�kx 〉 = 0. Since
the hopping amplitude t2 (in H1) is smaller than its corre-
sponding hopping t1 (in H0) we can ignore H1 first and take
it into account later perturbatively. In this regime where the
Hamiltonian of Eq. (1) only includes hopping between near-
est neighbors, the corresponding wave function of the zero
energy states has nonzero amplitude only in one sublattice
(namely, A) [23,25,26]. Furthermore, due to the existence of
translation symmetry in the x direction, the wave function of
an edge state which is localized at the top edge of the ribbon
can be described by the following ansatz:

|�kx (m, n, A)〉 ∝ eikxmψ (n)|m, n, A〉. (2)

Therefore, the equation characterizing the wave function am-
plitude at the m = 0 zigzag chain, for the zero-energy edge
states, is

ψ (0)
(
ei kx

2 + e−i kx
2
) + ψ (1) = 0, (3)

which can be solved as

ψ (1) = −2ψ (0) cos

(
kx

2

)
. (4)

It is now possible to apply the same argument for the wave
function amplitude at the m = 1 zigzag chain to obtain the
same form of the solution. Thus the wave function amplitude
at the sites of the nth zigzag chain from the edge of the ribbon
is proportional to the factor of ψ (n) = [2 cos( kx

2 )]n. We should
note that this solution is valid only when | cos( kx

2 )| < 1
2 , which

defines the region π − π
3 < kx < π + π

3 in which the edge

115416-3



M. SOLTANI AND M. AMINI PHYSICAL REVIEW B 101, 115416 (2020)

band exists. Thus, we can now write the normalized edge
states as∣∣�kx

〉 = 1√
π

∑
m,n

eikxmγkx ψ (n)|m, n, A〉, 2π

3
< kx <

4π

3
,

(5)

in which γkx =
√

1 − 4 cos2( kx
2 ) is the normalization factor.

Using the wave function of Eq. (5) and employing the
standard first-order perturbation theory, one can now easily
obtain the energy dispersion relation of such edge modes. It is
the expectation value of the second term of the Hamiltonian
in Eq. (1) which can be written as

E (k) = 〈
�kx

∣∣H1

∣∣�kx

〉 = 4t2 sin (kx ). (6)

The leading order for this energy dispersion of the edge modes
reads as

E (k) ≈ 4t2k = h̄v f k, (7)

where v f ≈ 4t2/h̄ is the Fermi velocity of chiral edge elec-
trons.

It is now interesting to compare this analytical expression
of the energy dispersion obtained for the edge states with the
numerical band structure of the Haldane ribbon in Fig. 3. The
dashed (red) lines in Fig. 3 show the analytical representation
of expression in Eq. (6) which shows an excellent agreement
with the corresponding numerical edge band in the low-energy
regime.

It is, however, important to note that within this approxima-
tion, so long as we are away from the energies where the edge
modes enter the continuum of the bulk states, the edge -state
wave function will not change. But, if we are interested in the
high-energy regime (close to the lower band edge of the upper
continuum), we need to consider higher-order corrections.
In what follows, we restrict our attention to the low-energy
regime only.

In this regard, it is also important to emphasize the basic
difference between Eq. (6) and the energy dispersion relation
of the edge states for a honeycomb ribbon in the absence of
the staggered phase φ in the Hamiltonian of Eq. (1) which is
obtained in Refs. [25,27]. The difference lies in the fact that
here we obtain an odd energy dispersion relation while the one
obtained in Refs. [25,27] is an even energy dispersion which
significantly changes the transport properties of chiral edge
modes as we will discuss in the following.

Before closing this subsection, let us comment that it is
also possible to effectively describe the chiral edge modes, by
a massive Dirac model, based on the Jackiw-Rebbi mecha-
nism [28]. According to this mechanism, any sign change of
the Dirac mass leads to localized midgap zero-energy states
which is discussed in the continuum limit in Refs. [29,30].
However, since we are interested in the scattering of electrons
by a localized on-site impurity, we need the components of
the edge-state wave functions explicitly to calculate the lattice
Green’s function below.

B. Robustness of chiral edge states against the impurity
scattering

In this subsection, we use the Lippmann-Schwinger ap-
proach [19] to study the effect of a single impurity on the elec-

tronic transmission of chiral edge states in the topologically
nontrivial phase of Haldane model. For simplicity, we drop
the sublattice indices from now on since we want to focus on
a single chiral edge channel which is composed of edge states
localized at the top edge of the ribbon.

For analytical calculations, it is convenient to model a
single impurity located at the edge of the ribbon as an on-site
potential term, namely,

V̂ = V0|0, 0〉〈0, 0|. (8)

To study the effect of this local impurity on the transport
properties of chiral electrons in a quantum regime, we need to
find the so-called T̂ -matrix [20–23] which is generally written
as

T̂ = V̂ (1 − ĜV̂ )−1, (9)

where Ĝ is the Green’s function of defect-free chiral electrons
described by the Hamiltonian of Eq. (1). Using the impurity
potential of Eq. (8) the T̂ -matrix reduces to

T̂ = V0|0, 0〉〈0, 0|
1 − V0G0,0;0,0

(10)

where G0,0;0,0 = 〈0, 0|Ĝ|0, 0〉 is the matrix element of
Green’s function operator Ĝ of the chiral edge states which
can be written as

Ĝ =
∫ |�kx 〉〈�kx |

E − E (k) + i0+ dk. (11)

We now insert into the above formula the general expression
of the chiral edge modes as well as their energy dispersion
for the low-energy regime which is given by Eqs. (5) and
(7) respectively. The integration in Eq. (11) can be performed
according to the methods of residues [23,25] which results in

〈0, 0|Ĝ|0, 0〉 = i|ψ (0)|2v f . (12)

By the same token, we can now derive the following matrix
elements which we need later on:

〈m′, n′|Ĝ|m, n〉 =
∫

ψ∗(n′)ψ (n)eik(m−m′ )

E − E (k) + i0+ dk. (13)

We need now to be careful using the methods of residues. The
reason is that when m > m′(m < m′), we need to close the
integration contour in the upper (lower) half complex plane.
This results in

〈m′, n′|Ĝ|m, n〉 =
{

2iψ∗(n)ψ (n′)eik(m−m′ ) if m > m′
0 if m < m′.

(14)

Having made these expressions for the matrix elements
of the Green’s function, it is straightforward to calculate an
eigenstate, |�out〉, of the full Hamiltonian (in presence of the
impurity potential) using the Lippmann-Schwinger equation
[19] as

|�out〉 = |�in〉 + ĜT̂ |�in〉 = |�in〉 + ĜV̂

1 − iα
|�in〉, (15)

in which α = ψ2(0)V0. If we set |�in〉 = |�k〉, we get

|�out〉 =
(

1 + 2iα

1 − iα

)
|�k〉 = eiφ0 |�k〉, (16)
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where tan(φ0/2) = α. In the final expression of Eq. (16),
the transmission coefficient is always one and the reflection
coefficient is always zero. This result illustrates that the prop-
agating chiral modes at the edge of the ribbon will not back-
ward scatter and will totally transmit through the impurity
potential. It comes as no surprise since we expected the chiral
edge states to be robust against the impurity scattering due to
the topological protection (this was also shown by numerical
computations in Ref. [9]).

The interesting thing in Eq. (16) is the appearance of an
additional phase φ0 in the transmitted wave function with
respect to the incident wave function. Although this additional
phase factor cannot affect the transmission properties of the
chiral edge channel, it can be used to entangle two different
magnetic impurities located at the edge of the ribbon. This is
what we will discuss in the next section.

III. ENTANGLEMENT ANALYSIS

In this section, we study the phenomenon of quantum
entanglement generation between two magnetic impurities
through the electron scattering which is discussed in Ref. [31].
We present two different cases of single and double impurity
in the following and show how the pairwise entanglement
generated via chiral electron scattering in a Chern insulator
is related to the additional phase factor which we introduced
before.

A. Single impurity

Using the results obtained in the previous section and
employing the approach of Ref. [27], we can now study the
entanglement between a single localized magnetic impurity
and low-energy chiral electrons in the Haldane model. We
observe that, in the presence of a single on-site impurity, for
a given incoming chiral state, the reflection and transmission
amplitudes of the final wave state read, respectively, as r = 0
and t = eiφ0 . Now, let a single on-site spin-1/2 magnetic im-
purity be introduced to the system with the following impurity
potential:

V̂ = V0Ŝ1 · Ŝc|0, 0〉〈0, 0|, (17)

where Sc and S1 are the corresponding dimensionless spin
operators of the incident chiral electron and localized impu-
rity, respectively, and V0 is the on-site impurity potential. It
is convenient to work in the computational basis in which the
spin interaction Ŝ1 · Ŝ2 can be written as

Ŝ1 · Ŝc = 1
4 (|t〉〈t | − 3|s〉〈s|), (18)

where t and s refer to triplet and singlet spin states, respec-
tively. After taking into account the spin degree of freedom,
one can write the Green’s function of Eq. (11) as

Ĝ =
∫ |�kx 〉〈�kx | ⊗ 1̂S1 ⊗ 1̂Sc

E − E (k) + i0+ dk, (19)

and the impurity potential of Eq. (17) as

V̂ = V0(Ŝ1 · Ŝc)(4×4) ⊗ |0, 0〉〈0, 0|, (20)

where 1Sc and 1S1 are the identity matrices on the spin spaces
of the chiral conducting and impurity electrons, respectively.

Now, we represent an incoming wave state as

|�in〉 = |�kx 〉|Sin〉 (21)

where |�kx 〉 and |Sin〉 are the spatial and spin states of the
incoming wave state, respectively. Therefore, the outgoing
state takes the following form:

|�out〉 = |�kx 〉̂t |Sin〉, (22)

in which t̂ is the matrix of transmission coefficients and can
be easily evaluated replacing Eqs. (19) and (20) into Eq. (9)
as

t̂ = eiφ0t |t〉〈t | + eiφ0s |s〉〈s|, (23)

which can be represented in the following matrix form:

t̂ =

⎡⎢⎢⎢⎣
eiφ0t 0 0 0

0 eiφ0t +eiφ0s

2
eiφ0t −eiφ0s

2 0

0 eiφ0t −eiφ0s

2
eiφ0t +eiφ0s

2 0

0 0 0 eiφ0t

⎤⎥⎥⎥⎦. (24)

In the above formula, tan(φ0s/2) = − 3
4V0|ψ (0)|2 and

tan(φ0t/2) = 1
4V0|ψ (0)|2.

If we consider |Sin〉 = | ↑↓〉, which means that the chiral
conducting electron and impurity have initially up and down
spins, respectively, then we have

|�out〉 = |�kx 〉(̂t |↑ ↓〉) = 1√
2

(
eiφ0s |s〉 + eiφ0t |t〉) (25)

= ei φ0s+φ0t
2

(
cos

(
	φ0

2

)
|↑ ↓〉 + i sin

(
	φ0

2

)
|↓ ↑〉

)
.

This shows that the outgoing state is an entangled state and
for 	φ0 = φ0s − φ0t = π/2 reaches its maximum value.

B. Double impurity

In this subsection, the previous problem should be ex-
tended to the scattering of a chiral electron by two separate
noninteracting magnetic impurities which are schematically
shown in Fig. 3. If we consider the first spin to be located at
site (m = 0, n = 0) and the second one at site (m, n = 0), then
the potential matrix changes to

V̂ = V̂00 ⊗ |0, 0〉〈0, 0| + V̂mm ⊗ |m, 0〉〈m, 0|, (26)

with

V̂00 = (V00)8×8 = V0(S1 · Sc)4×4 ⊗ 12,

V̂mm = (Vmm)8×8 = V0(S2 · Sc)4×4 ⊗ 11.
(27)

Using this form of representation the transition matrix T̂ in
Eq. (9) changes to

T̂ = V̂ (1 − χ̂ )−1, (28)

in which χ̂ is a 16-dimensional square matrix with the follow-
ing form:

χ̂ =
[

Ĝ00 Ĝ0m

Ĝm0 Ĝmm

] [
V̂00 0

0 V̂mm

]
. (29)

The matrix block Ĝmm′ of Eq. (29) reads Ĝmm′ =
GE (m0; m′0) 1spin, where GE (0m; 0m′) can be easily evaluated
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using Eq. (14) as

GE (00; 00) = 2i|ψ (0)E |2,
GE (00; m0) = 2i|ψ (0)E |2eikm,

GE (m0; 00) = 0,

GE (m0; m0) = 2i|ψ (0)E |2,

(30)

and identity operator 1spin reads as 1spin = 11 ⊗ 1c ⊗ 12. It
is now possible to obtain the overall matrix form of the trans-
mission coefficients by performing a mathematical calculation
associated with this case as

t̂ ′ = t̂2̂t1, (31)

where t̂1(̂t2) is the corresponding matrix of transmission coef-
ficients through the first (second) impurity potential and, using
Eq. (24), can be written as

t̂1 = t̂ ⊗ 11,

t̂2 = t̂ ⊗ 12. (32)

This is what we expect physically due to the vanishing of the
off-diagonal block GE (m0; 00), which leads to the absence of
backscattering from the second impurity.

If we now set |�in〉 = |ψkx 〉|↑ ↓↓〉, the outgoing wave state
is t̂ ′|↑ ↓↓〉, which means that the conducting electron has up
spin and both impurities have down spin, then we can obtain
the two-impurity reduced density matrix as

ρ̂ =

⎡⎢⎢⎢⎣
0 0 0 0

0
(

sin
(

	φ0

2

)
cos

(
	φ0

2

))2
ieiφ0s sin

(
	φ0

2

)
cos

(
	φ0

2

)
0

0 −ie−iφ0s sin
(

	φ0

2

)
cos

(
	φ0

2

)
sin2

(
	φ0

2

)
0

0 0 0 cos2
(

	φ0

2

)
⎤⎥⎥⎥⎦. (33)

Given ρ̂, one can calculate the corresponding degree of the
entanglement in the final spin state of the system by means
of the negativity [32]. It is defined as the sum of the absolute
values of the eigenvalues λi of the partially transposed reduced
density matrix which results in

N =
∑
λi<0

|λi| = − cos2

(
	φ0

2

)

+
√

cos4

(
	φ0

2

)
+ sin2 (	φ0). (34)

This shows that the chiral electron scattering leads to en-
tanglement generation between the spin impurities and the
maximal entanglement is reached at 	φ0 = π

2 , which results

in N =
√

5−1
2 .

C. The effect of indirect exchange interaction
on the entanglement

In this subsection, we discuss the effect of indirect ex-
change interaction on the entanglement between two magnetic
impurities. Generally, due to the absence of backscattering
in a Chern insulator, it is a promising candidate for quan-
tum entanglement generation between two spatially separated
magnetic impurities in the edge channel. Therefore, if the im-
purity separation is large enough, the interimpurity interaction
will be negligible and we do not need to include it in our
entanglement analysis. However, it is worth discussing the ef-
fect of an effective Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [33] on the entanglement generated between two
spatially separated spins at short distances. Although we will
see below that the presence of RKKY interaction decreases
the entanglement between two impurities in our problem, but,
as discussed in Refs. [34,35] it can be interesting to study
the effects of both scattering and RKKY interaction on the
entanglement between two magnetic impurities.

To study the RKKY interaction, we consider the RKKY
Hamiltonian

ĤRKKY = JRKKY(0, 0; m, 0)̂S1 · Ŝ2, (35)

where JRKKY is the effective coupling depending on the dis-
tance between the impurities located on sites (0,0) and (m, 0)
and can be written in terms of the unperturbed lattice Green’s
functions as [36]

JRKKY(0, 0; m, 0) = c
∫ EF

−∞
dE Im [GE (00, m0)GE (m0, 00)],

(36)

where c = −V 2
0 h̄2

2π
. It is now obvious that the contribution of

the edge states to this integral is zero since GE (m0, 00) = 0.
The remaining contribution from the bulk states can be ap-
proximated with results corresponding to systems with chiral
electrons and linear band structure [37,38].

To account for this additional term, we need to rewrite the
Green’s function operator in Eq. (19) as

Ĝ =
4∑

i=1

∫ |�kx 〉〈�kx | ⊗ |Ei〉〈Ei|
E − (E (k) + Ei ) + i0+ dk, (37)

in which |Ei〉 = |t〉(i = 1, 2, 3) and |E4〉 = |s〉 refer to triplet
and singlet spin states of the RKKY Hamiltonian, respec-
tively. The only difference which now should be considered
is in the Eq. (29) where we have to replace the matrix block
Ĝmm′ with

Ĝmm′ = GE1 (m0; m′0)|s〉〈s| + GE2 (m0; m′0)|t〉〈t |, (38)

where E1 = E − 3
4 JRKKY and E2 = E + 1

4 JRKKY. Now, we can
consider the incoming wave sate composed of both spatial
and spinorial space as |�in〉 = |�kx 〉|↑, s〉 which shows the
conduction electron with wave vector k0, which has up spin
in the z direction and the paired impurity state |s〉, which
is a singlet state. The outgoing wave state |�out〉 can be
obtained, following the procedure which we discussed in

115416-6



TWO-SPIN ENTANGLEMENT INDUCED BY SCATTERING … PHYSICAL REVIEW B 101, 115416 (2020)

the previous subsection. Since the total Hamiltonian Ĥ +
V̂ + ĤRKKY commutes with the total spin in the z direction
(Sz = Sz

1 + Sz
2 + Sz

c ), the outgoing state has the following
form:

|�out〉 = T̂1|�kx 〉|↑, s〉 + T̂2|�k′
x
〉|↑〉(|↑ ↓〉 + |↓ ↑〉)

+ T̂3|�k′
x
〉(|↓〉|↑ ↑〉),

(39)

in which the wave vector k′
x relates to the incoming wave

vector kx through the conservation of energy as Ek′
x
= Ekx −

JRKKY and T̂1, T̂2, and T̂3 can be evaluated using Eq. (28) with
Eq. (38).

Since the spin state of impurities before scattering was
a fully entangled singlet state in comparison to their state
after the scattering in which the two impurities are entangled
with the conducting electron, we conclude that in this case,
scattering reduces the entanglement. However, it is interesting
that the spin degree of freedom is entangled to the electron
spatial degree of freedom which can be used in quantum
nondestructive measurement experiments.

IV. SUMMARY

In summary, in this paper, we have introduced a scheme
for entangling two distant magnetic impurities in a Chern
insulator through the interaction with a single chiral electron.

We have shown explicitly and analytically that, when a chiral
edge electron scatters by an impurity which is located at the
edge of the Haldane ribbon, it acquires an additional phase.
We found that this additional phase can be used to generate en-
tanglement between two magnetic spin- 1

2 impurities far away
from each other. Moreover, we have derived analytically and
validated numerically the wave functions and corresponding
energy spectrum of the chiral edge states that appeared in the
Haldane model which can be used in future studies of this
model analytically.

Finally, it is important to point out that although we use a
perturbative approach to derive the edge-state wave functions,
we do not have to worry about changing the strength of on-site
impurity potential V0 which controls the additional phase fac-
tor φ0 as well as the entanglement between impurities because
our scattering analysis is exact and can be applied to the case
of large scattering potentials (V0 → ∞) [23]. Thus, our results
are robust to variations of V0, while we are interested in the
scattering of low-energy electrons in which the edge modes
can be described by Eqs. (5) and (6), respectively.
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