
PHYSICAL REVIEW B 101, 115412 (2020)

Transport in two-dimensional Rashba electron systems doped with interacting magnetic impurities
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We study the transport properties of two-dimensional electron systems with strong Rashba spin-orbit coupling
(SOC) doped with interacting magnetic impurities. Interactions between magnetic impurities cause the formation
of magnetic clusters with temperature-dependent mean sizes distributed randomly on the surface of the system.
Treating magnetic clusters as scattering centers, by employing a generalized relaxation time approximation we
obtain the nonequilibrium distribution functions of Rashba electrons in both regimes of above and below the
band-crossing point (BCP) and present the explicit forms of the conductivity in terms of effective relaxation
times. We demonstrate that the combined effects of SOC and magnetic clusters cause the system to be anisotropic
and the magnetoresistance strongly depends on both the clusters’ mean size and spin, the strengths of SOC, and
the location of Fermi energy with respect to the BCP. Our results show that there are many contrasts between the
transport properties of the system in the two regimes of above and below the BCP. By comparing the anisotropic
magnetoresistance (AMR) of the two-dimensional Rashba systems with the surface AMR of three-dimensional
magnetic topological insulators, we also point out the differences between these systems.
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I. INTRODUCTION

Two-dimensional electron systems with Rashba spin-orbit
coupling (SOC) play leading roles in novel spintronics. Lock-
ing of the spin degrees of freedom with the spatial motion
of itinerant electrons splits the spin-degenerate band of the
system into two parabolic bands with opposite spin-helicity
intersecting each other at the band-crossing point (BCP). The
presence of two bands with different spin states is one of
the hallmarks of two-dimensional Rashba electron systems
(2DRSs) in spintronics applications, especially in the ma-
nipulation of the spin state of electrons in the absence of
external magnetic fields [1–7]. Topological changes of Fermi
surface and the variations of band structure from two spin
states to the valley band with a single spin state in passing
through the BCP lead to several phenomena in the low-density
regime [8–10], such as qualitatively significant modifications
of thermoelectric and thermopower properties [10,11], modi-
fications of the classical Dyakonov-Perel mechanism of spin
relaxation [9], and the enhancement of the superconducting
critical temperature in 2DRSs with strong SOC [8].

Doping of 2DRSs with magnetic impurities leads to many
exotic phenomena [12–16] such as the anomalous Hall effect
and anisotropic magnetoresistance (AMR). The combined ef-
fects of Rashba SOC and localized spins significantly modify
the transport properties of the system; they lead to resonant
enhancement of anomalous Hall conductivity [12] and giant
AMR [17]. For systems with low impurity concentrations,
interactions between magnetic impurities are negligible and
the transport properties of the system are properly given by
considering single-impurity scattering effects [17]; however
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when doping increases these interactions become crucial.
One of the effective solution for systems with high impurity
concentrations is taking the effects of multiple scatterings into
account [18]. In this paper we use the concept of magnetic
clusters and study the effects of magnetic clusters on the
transport properties of 2DRSs. Exchange interactions between
magnetic impurities cause the formation of clusters where
they are constructed of correlated magnetic impurities fluc-
tuating consistently in the same direction. The clusters’ mean
sizes (CMSs) and their number (CN) depend on temperature.
The cluster model was first proposed in Refs. [19,20] for
explaining the temperature dependence of the magnetoresis-
tance of magnetic semiconductors, and recently developed
for investigating the surface conductivity of three-dimensional
magnetic topological insulators [21]. In this paper by treating
magnetic clusters as scattering centers randomly distributed
on the surface of the 2DRSs, and considering a long-range
scattering potential, we demonstrate that the combined effects
of Rashba SOC and magnetic clusters cause the system to be
anisotropic and the anisotropy strongly depends on different
parameters such as the clusters’ mean size and spin direction,
the strengths of SOC, and the locations of Fermi energy with
respect to the BCP. We obtain the nonequilibrium distribution
functions of electrons in different bands within the semiclas-
sical Boltzmann approach, and compute the conductivity and
the AMR of the system in both regimes of above and below
the BCP. We demonstrate that for large CMSs the angular
dependence of the AMR is unconventional in comparison with
conventional ferromagnets. We also show that there are many
contrasts between the transport properties of the system in the
two regimes of above and below the BCP.

This paper is organized as follows. In Sec. II, we obtain
the band structure of 2DRSs and present the generalized
relaxation time approximation (GRTA) in order to find the
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FIG. 1. The band structure of the 2DRS. Above the BCP (εF > 0)
Fermi energy intersects the band n, at the point kn(εF ) = k0

F(n
√

ε̃R +√
1 + ε̃R ). However, when the Fermi energy lies in the interval

− εR
2 < εF < 0, it intersects the branch ν at the point kν (εF ) =

k0
F[

√
ε̃R − (−1)ν

√
ε̃R − 1]. The parameter k0

F =
√

2mεF/h̄2 is the
Fermi wave number of free electrons (without SOC). ε̃R is defined
as εR/2εF for εF > 0, and εR/(2|εF|) for εF < 0.

nonequilibrium distribution functions of electrons in each
bands. In Sec. III, we present the explicit form of the con-
ductivities in the two-band regime. In this section we also
compare the relaxation times obtained by other approaches.
The results of the single-band regime are presented in Sec. IV.
The summaries and conclusions are given in Sec. V. At the
end of this paper we present the details of our calculations in
three different Appendices.

II. SCATTERING POTENTIAL AND GRTA

The Hamiltonian of a 2DRS is given by

H0 = h̄2k2

2m
+ α(σykx − σxky), (1)

where the first term is the kinetic energy of electrons with
effective mass m, and the second term is the Rashba SOC
with the strength of α. The Pauli matrices σx,y indicate spin
of electrons, and kx,y are the two components of the electrons’
wave vector, k. The eigenenergies and eigenstates of the
Hamiltonian H0 are given by

εn(k) = h̄2k2

2m
− nkα = h̄2

2m
(k − nkR)2 − εR

2
, (2)

ψn(k, r) = eik·r
√

2A

(−nie−iφ

1

)
, (3)

where n (= ±) represents the Rashba bands, εR = mα2

h̄2 is the
Rashba energy (εR/2 is the minimum value of the band + at
kR = mα

h̄2 ), A is the area of the 2DRS, and φ = arctan(ky/kx )
is the polar angle of the k vector. In the presence of SOC,
the energy spectrum splits into two energy bands + and
−, intersecting each other at the band-crossing point (BCP),
illustrated in Fig. 1.

Strong SOC has been observed in several materials
[22–25], such as the Te-terminated surface of the polar semi-
conductor BiTeX (X=I, Br, and Cl) [26–31], where Rashba
SOC is on the order of 1.7–3.8 eVÅ, which is one order of
magnitude larger than the Rashba SOC in conventional III-V
semiconductor heterostructures.

Above the BCP, band velocities are readily obtained as
v± = h̄

m (N0/N±)k±, where N±(ε), the density of states (DOS)
in the bands ±, is given by

N±(ε) = N0
k±(ε)

k±(ε) − nkR
. (4)

Here, N0 = m
2π h̄2 is the DOS of 2D free electron systems.

Above the BCP, band velocities are always in the direction
of the k vector. Below the BCP, the energy + behaves non-
monotonically: it decreases by increasing k for k < kR (branch
2), becomes minimum at kR, and increases by k for k > kR

(branch 1). The band velocities for the two branches 1 and 2
are given by vν = (−1)ν h̄

m (N0/Nν )kν , where the DOS Nν (ε)
is given by

Nν (ε) = N0
kν (ε)

|kν (ε) − kR| . (5)

In a two-dimensional electron system doped with magnetic
impurities, the interaction between an electron with spin σ at
the position r, with an impurity with spin S located at R, is
given by the following Hamiltonian:

HσS = −J (r − R)σ(r) · S(R), (6)

where J (r − R) is the exchange coupling. In dilute magnetic
systems itinerant electrons interact with individual single
magnetic impurities, and the exchange coupling is modeled by
the Dirac δ function as J (r − R) ∝ J0δ(r − R), where J0 is a
coupling constant on the order of a few meV [32–34]. When
doping of magnetic impurities increases, the interactions be-
tween magnetic impurities become significant and we should
consider their effects on the transport properties of the system.
Actually, the exchange interactions between impurities lead
to the formation of various magnetic domains with different
sizes in the entire system. These ordered domains, which
are called “magnetic clusters,” are constructed of correlated
magnetic impurities with the same spin directions. Scattering
of electrons by these clusters (rather than single impurities)
alters the transport properties of the system [21]. In order to
investigate the effects of magnetic clusters on the conductivity,
we model the scattering potential of electrons by clusters as

HσS = J0 exp(−|r − R|/ξ )σ(r) · S(R), (7)

where ξ is the clusters’ mean size, depending on both tem-
perature and impurity-impurity exchange coupling, and σ is
the spin of the magnetic cluster located at R. The scattering
potential in Eq. (7) is long-range and ξ appears as a char-
acteristic length, indicating the range of scattering potential.
Without loss of generality, we consider the spins of clusters
as classical vectors in the yz plane, i.e., S = S(0, sin θ, cos θ ),
where θ is the tilt angle of S with the axis normal to the surface
of the 2DRS (see Fig. 2).

In order to obtain the nonequilibrium distribution function
of electrons in the presence of magnetic clusters, we use
the semiclassical Boltzmann approach. In the presence of
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FIG. 2. The schematic illustration of a single magnetic cluster
with size of ξ , centered at R = 0. Red arrow represents cluster’s spin
S, and θ is the tilt angle of S with the z axis. S is subjected to rotation
in the zy plane.

a uniform electric field E, the nonequilibrium distribution
function of electrons in the band n, fn(k, E), satisfies the
following relation:(

∂ fn

∂t

)
coll

= evn(k) · E
(

∂ f 0
n

∂εn

)
, (8)

where vn(k) is the band velocity, and f 0
n is the Fermi-Dirac

distribution function in the band n. By considering elastic
scatterings and using detailed balance, the left-hand side of
Eq. (8) is also written as [35](

∂ fn

∂t

)
coll

=
∑
n′,k′

wn,n′ (k, k′)[1 − fn(k)] fn′ (k′)

−
∑
n′,k′

wn′,n(k′, k)[1 − fn′ (k′)] fn(k), (9)

where wn,n′ (k, k′) is the transition rate between the two eigen-
states of the Hamiltonian H0 (|nk〉 and |n′k′〉). Using Eqs. (8)
and (9), the Boltzmann equation is written as

evn(k) · E
(

∂ f 0
n

∂εn

)
=

∑
n′,k′

wn,n′ (k, k′)[ fn′ (k′) − fn(k)], (10)

where the interaction between electrons has been neglected.
In the isotropic 2DRSs (θ = 0), the scattering rate depends

on the angle between k and k′ (φ = φ − φ′), and relaxation
times of electrons in the bands + and − depend only on
the magnitudes of k and k′. By using standard methods
such as the modified relaxation time approximation (MRTA)
[17,36] and other analytical exact solutions of self-consistent
equations for relaxation times [11,37], we can solve Eq. (10).
But in the anisotropic case, when θ �= 0, the scattering rates
as well as the relaxation times depend on both the magnitudes
and the directions of k and k′, so it is no longer possible to use
the standard methods for obtaining the nonequilibrium distri-
bution function fn. Using the method developed by Vybrony
et al. [17], we approximate fn as

fn − f 0
n = eEvn(k)

(
∂ f 0

n

∂εn

)
[an(�) cos χ + bn(�) sin χ ],

(11)

where � is the polar angle of the band velocity vn, and χ is
the angle between the electric field and x axis.

Above the BCP, band velocities are always in the direction
of the k vector and the polar angle � is equal to φ. Below
the BCP, in branch 1, the band velocity v1 and the k vector
are parallel and � = φ. For this branch we will write the
nonequilibrium distribution function the same as the two-band
case. However, in branch 2 the band velocity v2 is antiparallel
with k, and � = −φ. The distribution functions of electrons
in this branch will be expressed in terms of the polar angle of
the k vector, with some modifications.

In the following we investigate the transport properties of
the 2DRSs, for the two regimes of εF > 0 and εF < 0, in the
two separate sections.

III. TWO-BAND SCATTERING (εF > 0)

The conductivity of electron systems is obtained from the
following general formula:

σi j = −e

Ej

∑
n

∫
d2k

(2π )2
vi

n(k) fn(k, E), (12)

where i and j denote the x and y directions, and vi
n(k) is

the band velocity along the i direction. Above the BCP the
band velocity is given by vn(k) = vn(k)(cos φ, sin φ) and the
conductivities in the x and y directions are obtained as (see
Appendix A)

σxx = e2

4π

∫
kdk

∑
n=±

[
v2

n (k)

(
−∂ f 0

n

∂εn

)
cn

1(k)

]
,

σyy = e2

4π

∫
kdk

∑
n=±

[
v2

n (k)

(
−∂ f 0

n

∂εn

)
sn

1(k)

]
,

(13)

where the coefficients c±
1 (k) and s±

1 (k) are introduced in
Appendix A. They have a dimension of time and depend on
the parameters k, θ , ξ , and α. We treat them as momentum
relaxation times of electrons along the x and y directions and
define the following dimensionless variables: τ±

x = ω0c±
1 and

τ±
y = ω0s±

1 , where ω0 = π h̄ηcJ2
0 S2

4AmεF
is a scale factor with units

of the scattering rate.
Since the temperature region where ξ and ηc vary is

much smaller than the Fermi temperature of the system, we
can approximate the function ∂ f 0

n /∂εn with the Dirac delta
function δ(ε − εF). For example the Curie temperature for the
ferromagnetic IV-VI compounds like Ge1−xMnxTe is about
80 K [38]. Moreover, in a large class of materials containing
heavy 5d elements together with rare-earth or transition metal
elements, the critical temperature is much lower than the
Fermi temperature. These materials are nonmagnetic in the
bulk but exhibit 2D magnetism at the surface. For example
EuIr2Si2 with nonmagnetic bulk reveals controllable 2D fer-
romagnetism below 48 K [39].

With the above assumptions, the conductivities (13) reduce
to

σxx = σ0

√
ε̃R + 1

∑
n=±

τ n
x (εF)[n

√
ε̃R +

√
ε̃R + 1],

σyy = σ0

√
ε̃R + 1

∑
n=±

τ n
y (εF)[n

√
ε̃R +

√
ε̃R + 1],

(14)
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where σ0 = ( e2

2h ) 8mAε3
F

πηcJ2
0 S2 h̄2 is the conductivity of the system in

the absence of SOC when ξ is about the Fermi wavelength
of free electrons λ0

F = h/
√

2mεF. ηc is the number of clusters
(CN) with mean size. In general, both ξ and ηc depend on
temperature. They are not independent and we should take
into account the dependence of ηc to ξ on the conductivity.
However, according to the function of ηc(ξ ) considering this
dependence does not change the behavior of the conductivity,
qualitatively, and one can consider the number of clusters ηc

as an scale factor in the conductivity.
When the spins of magnetic clusters are normal to the

surface of the 2DRS (θ = 0), the scattering amplitude depends
only on φ and the system is isotropic. In this case, the coef-
ficients matrix in Eq. (A7) reduces to a block-diagonal matrix
and the relaxation times τx = (τ+

x , τ−
x ) and τy = (τ+

y , τ−
y ) are

simplified to

τx = τy = τ = A−1
0 · d1, (15)

where τ = (τ+, τ−).
We have plotted in Fig. 3 the relaxation times τ± versus

CMS, for different strengths of SOC. As is seen they de-
crease by increasing ξ̃ , become minimum, and gradually go
to infinity at large CMSs. The emergence of such a minimum
(which is a combined effect of SOC and magnetic clusters)
is attributed to the efficient scattering of electrons when their
Fermi wavelength is comparable with CMS. At a given Fermi
energy, the Fermi wavelength of electrons in the band n
depends on the strength of SOC as λn

F = λ0
F/(

√
ε̃R + 1 +

n
√

ε̃R). When CMS increases, maximum scattering of elec-
trons in the band n occurs at λn

F ∼ 2πξ . Since λ+
F �= λ−

F ,
minimums of τ± appear at different CMSs. For small SOCs
the Fermi wavelength λn

F behaves as λn
F ∼ λ0

F(1 − n
√

ε̃R), and
the separation between minimums increases by SOC as

√
ε̃R.

For large SOCs the minimum of τ+ gradually approaches the
point ξ̃ = 0, but τ− becomes minimum at larger CMSs. Also,
since λ+

F is smaller than λ−
F , the relaxation time τ+ is always

larger than τ−.
In the isotropic case the relaxation times τ n

x and τ n
y and

consequently the conductivities along the x and y directions
are equal (σxx = σyy = σ ). We have plotted in Fig. 4 the
conductivity σ versus CMS, for different strengths of SOC.
For small CMSs the conductivity is very large; however by
increasing CMS it decreases rapidly, becomes minimum at a
ξ̃ (say ξ̃min), and finally increases monotonically, as shown in
Fig. 4. To describe this nonmonotonic behavior, we investigate
the behavior of the scattering amplitude. Let us write the T
matrix as

T n,n′
k,k′ = T θ

n,n′T ξ

k,k′ , (16)

which is a multiple of two parts: (1) The spin-dependent part,
T θ

n,n′ , which depends on the tilt angle θ . This part is given by

T θ
n,n′ = cos θ (nn′eiφ − 1) − sin θ (n′e−iφ′ + neiφ ). (17)

(2) The ξ -dependent part, written as

T ξ

k,k′ =
∫

dre−ik·re−r/ξ eik′ ·r, (18)

which depends on the clusters’ mean size, ξ .
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FIG. 3. The relaxation times of electrons in the bands + and −
vs ξ̃ = ξ

√
2mεF/h̄2, for different strengths of SOC, when the spins

of magnetic clusters are normal to the surface of the 2DRS (θ = 0).
Here, Fermi energy is located above the BCP.

For large CMSs, in the limit of ξ → ∞, the ξ -dependent
part of the T matrix becomes proportional to the Dirac delta
function δ(k − k′), and consequently only intraband forward
scatterings have determinant effects on the T matrix. On the
other hand, from the spin-dependent part we see that at θ = 0,
the intraband scattering amplitudes, T θ

+,+ and T θ
−,−, are equal

to exp(iφ) − 1. These amplitudes are vanishing for φ = 0,
which means that no intraband forward scattering occurs in
the system. Summing up the above arguments, we conclude
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FIG. 4. The conductivity of the isotropic 2DRS (θ = 0) vs CMS
for different strengths of SOC. At a given Fermi energy above the
BCP (εF > 0), by increasing the strength of SOC, the conductivity
increases and its minimum emerges at smaller values of ξ̃ .

that at θ = 0, for ξ → ∞ the scattering amplitude approaches
zero which results in an infinite conductivity.

For small CMSs, in the limit of ξ → 0, the scattering
potential becomes weaker, and thus no scattering happens in
the system and the conductivity is very large.

We can also explain the physics behind the nonmonotonic
behavior of the conductivity by comparing the CMS, ξ , with
the average Fermi wavelength of electrons. This wavelength
is readily obtained as

λav
F = N+

N+ + N−
λ+

F + N−
N+ + N−

λ−
F = λ0

F√
1 + ε̃R

. (19)

At a given ε̃R, when CMS increases, backscattering of elec-
trons by clusters increases until ξ becomes comparable with
λav

F . When ξ ∼ λav
F /2π the ability of clusters to scatter elec-

trons is greatly increased and electrons are most efficiently
scattered by magnetic clusters. At this point the conductivity
becomes minimum. But for CMSs larger than λav

F , this ability
decreases and the conductivity enhances monotonically by
increasing CMS.

The location of the minimum of the conductivity depends
on the strength of SOC. In the absence of SOC, the Rashba
system (1) reduces to a free electron system and the conduc-
tivity always decreases by increasing ξ̃ . However, when SOC
increases, due to the relation in Eq. (19) the average Fermi
wavelength becomes smaller and thus ξ̃min decreases.

A comparison with other approaches. So far, several meth-
ods have been proposed to solve the Boltzmann equation for
isotropic 2DRSs. In the method presented by Xiao et al., by
developing the Boltzmann technique they established a set of
self-consistent equations for the transport times [11,37]. Their
calculations are based on the exact transport time solution
(ETTS) of the Boltzmann equation in the Born approximation.
In this method, by introducing an isotropic transport time for
electrons with energy ε in the band n, via

fn − f 0
n =

(
∂ f 0

n

∂εn

)
E · vn(φ)τ n(ε), (20)

ξ

τ

0 1 2 3 40

50

100

150

~ ξ
0 1 2 3 4

~

FIG. 5. The relaxation times in the bands + and − vs CMS when
ε̃R = 0.25. Left: The dashed lines are the results of ETTS method,
and the solid lines are obtained by GRTA. Right: The dashed lines
are the results of MRTA, and the solid lines are obtained by GRTA.

and using the Boltzmann equation, we obtain the following
self-consistent equation for the relaxation times:

1

τ n
ETTS(εF)

=
∑
n′=±

∫
dφ′

2π
wn,n′ (εF)

×
[

1 − cos(φ)
vn′ (φ′)
vn(φ)

τ n′
(εF)

τ n(εF)

]
. (21)

By solving this integral, we reach two linear equations for
the relaxation times τ+ and τ− (not shown). In Fig. 5 (left
panel), we have plotted the relaxation times obtained by the
ETTS method. The results of the GRTA are also plotted for
comparison. As is seen, these two methods are completely
consistent.

The modified relaxation time approximation (MRTA) is an-
other method for solving the Boltzmann equation for isotropic
2DRSs. In this method, the relaxation time in the band n is
given by [17,36]

1

τ n
MRTA(εF)

=
∑
n′=±

∫
dφ′

2π
wn,n′ (εF)

[
1 − cos(φ)

vn′ (φ′)
vn(φ)

]
.

(22)

In both the ETTS and GRTA methods, we need to solve two
coupled equations in order to obtain the relaxation times,
while in the MRTA method the band dependence of τMRTA

is neglected. In Fig. 5 (right panel), we have plotted the
relaxation times obtained by the MRTA. In the band −, due
to the larger Fermi wavelength, we expect the relaxation time
to be smaller, but in the GRTA, because of the coupling
between the two bands, the relaxation time τ− is larger than
the corresponding one in the MRTA. Similarly, in the band
+, because of the coupling with the band −, the relaxation
time is smaller than the corresponding one in the MRTA.
Regardless of the differences in these methods, the behaviors
of the relaxation times versus CMS are qualitatively the same.
The same discussions are also valid when the Fermi energy is
located below the BCP.

Anisotropic magnetoresistance

When the spins of magnetic clusters are aligned in a direc-
tion given by θ (see Fig. 2), the system is highly anisotropic
and the conductivities in the x and y directions behave differ-
ently. The conductivity σxx increases after the minimum and
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FIG. 6. Left column: The conductivity of the 2DRS along x
and y directions vs CMS, for different values of the tilt angle θ ,
when ε̃R = 0.5. Right column: The conductivity of the 2DRS along
x and y directions vs CMS, for different strengths of SOC, when
θ = π/6. Here, Fermi energy is located above the BCP.

saturates at large CMSs; however σyy decreases by increasing
CMS as shown in Fig. 6. Such a different behavior can be
explained as follows. When the electric field is applied along
the x axis, most of electrons involved in σxx move in the x
direction, and due to the spin-orbit locking their spins lie in
the y direction. By increasing the tilt angle θ , Sy becomes
larger and due to the electron-cluster interaction the spin
accumulation along the y axis increases which, in turn, causes
the increase of conduction electrons along x direction. But, for
conductivity along y axis, electrons’ spins are perpendicular to
Sy. When Sy becomes larger, electrons try to align their spin
with Sy to minimize the exchange energy. Again due to the
SOC, electrons have to change their direction of motion which
leads to a reduction of σyy.

As an amount of the anisotropy of the system, we investi-
gate the behavior of AMR, defined as

AMR = σxx − σyy

σxx + σyy
. (23)

In Fig. 7, we have plotted the AMR versus CMS, for different
values of the tilt angle θ , when the strength of SOC is ε̃R =
0.75. By increasing ξ̃ , the AMR increases monotonically and
saturates to unit at large values of ξ̃ . Also, by increasing the
tilt angle θ the AMR increases, implying that the system is
more anisotropic when clusters’ spin lies on the surface of
the 2DRS. We have also plotted in Fig. 7 the AMR versus
ξ̃ for different strengths of SOC when θ = π

2 . As is seen,
by increasing ε̃R the anisotropy of the system enhances (this
behavior, i.e., the increase of AMR by increasing the strength
of SOC, occurs only for the regime of εF > 0. In the regime
of εF < 0 the AMR experiences a minimum at an ε̃R, which
will be discussed in next section. In order to see the angular
dependence of the AMR, we have also plotted in Fig. 7 the
AMR versus θ , for different values of CMS, at ε̃R = 0.5.
As is seen, the angular dependence of the AMR changes by
varying ξ̃ . The unconventional behavior of the AMR as a
function of the tilt angle θ is a combined effect of SOC and
magnetic clusters. The maximum value of the AMR increases
by increasing ε̃R. To show this dependence for very small
CMSs, we have also plotted in Fig. 7 the AMR versus ε̃R for
different CMSs, at θ = π/2. As is clearly seen the anisotropy
exists even at very small SOCs; it grows monotonically by
increasing SOC and saturates to 1. This property is not seen
in the regime of εF < 0. As we will show in the next section,
below the BCP, for small CMSs the AMR is almost constant
with respect to ε̃R.

The behavior of the conductivity in 2DRSs is generally
similar to the surface conductivity of 3D magnetic topolog-
ical insulators [21]. However, in contrast to the topological
insulators, in 2DRSs ξ̃min strongly depends on the strength of
SOC (see Fig. 6). By decreasing the SOC, ξ̃min increases and
goes to infinity in the limit of ξ̃ → 0.

IV. SINGLE-BAND SCATTERING (εF < 0)

Below the BCP, the conductivity of the 2DRS is obtained
as (see Appendix B)

σxx = σ0

√
ε̃R − 1

∑
ν=1,2

τ ν
x (|εF|)[

√
ε̃R − (−1)ν

√
ε̃R − 1],

σyy = σ0

√
ε̃R − 1

∑
ν=1,2

τ ν
y (|εF|)[

√
ε̃R − (−1)ν

√
ε̃R − 1],

(24)
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FIG. 8. The conductivity of the isotropic 2DRS for different
strengths of SOC, when Fermi energy is located below the BCP
(−εR/2 < εF < 0).

where ε̃R = εR/(2|εF|). In the isotropic case, τ 1
x = τ 1

y and
τ 2

x = τ 2
y , and the conductivities along the x and y directions

are identically the same. In Fig. 8, we have plotted the conduc-
tivity of the system versus ξ̃ for different strengths of SOC.
Similarly to the two-band case, by increasing ξ̃ the conduc-
tivity decreases rapidly, becomes minimum at ξ̃min ∼ λav

F /2π ,
and then increases gradually. Here, the Fermi wavelength
of electrons in the branch ν is given by λνF = λ0

F/[
√

ε̃R −
(−1)ν

√
ε̃R − 1] and the average Fermi wavelength is given

by λav
F = λ0

F/
√

ε̃R. In contrast to the two-band case, below
the BCP the conductivity decreases by decreasing the SOC
and goes toward zero in the limit of ε̃R → 1. Actually, by
decreasing SOC the numbers of electrons with the same
k (k1F ≈ k2F) but opposite velocities are almost equal and
consequently conductivity is zero. In contrast, above the BCP
the velocities in the bands + and − are always in the same
directions and the system possesses a nonzero conductivity.

Anisotropic case (θ �= 0)

Below the BCP the behavior of the conductivities σxx and
σyy, is generally the same as the corresponding ones above
the BCP. However, there are some obvious contrasts between
these two regimes, which are seen in the behavior of the AMR.
In Fig. 9, we have plotted the AMR of the system versus ξ̃ , for
different strengths of SOC and various tilt angles θ . Unlike the
two-band case, for a given θ the starting point of the AMR at
ξ̃ = 0 is independent of SOC. The behavior of the AMR with
respect to CMS is not monotonic for different strengths of
SOC. In order to demonstrate such a nonmonotonic behavior,
we have also plotted in Fig. 10 the AMR versus ε̃R for
different values of ξ̃ and various tilt angles θ . For small CMSs,
unlike the two-band case, the AMR is almost independent
of ε̃R and the SOC does not have significant effects on
the anisotropy of the system. By increasing CMS the AMR
becomes more sensitive to ε̃R: it decreases by increasing ε̃R,
becomes minimum, and then increases to a value less than
1 (this value depends on the CMS). When CMS increases
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FIG. 9. The AMR vs CMS for different strengths of SOC.

the minimum approaches the point ε̃R = 1. For larger CMSs
this minimum disappears and independently of the strength
of SOC the AMR becomes almost 1. The reason behind such
kind of behavior can be understood by looking at the direction
of electric current in the presence of an electric field. When
a field is applied along the x axis, two types of currents
are generated in the system: one is by electrons with wave
vector k1F along the x axis, and the other is by electrons
with wave vector k2F in the −x direction. Since the current
in branch 1 is larger than 2, a net current flows along the
x direction. Moreover, the Fermi wavelength λ1F is smaller
than λ2F for all values of ε̃R > 1; therefore for a given ξ̃ , by
varying ε̃R electrons with k1F reaches the efficient scattering
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FIG. 10. The AMR versus the strength of SOC, for different
CMSs, when (a) θ = 90◦, (b) θ = 60◦, (c) θ = 30◦, and (d) θ = 10◦.
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FIG. 11. The AMR as a function of the tilt angle θ , for different
CMSs, when ε̃R = 1.25. The black dashed line is for TIs doped with
magnetic impurities, where the scattering potential is the Dirac δ

function.

point where λ1F ∼ 2πξ , and due to the maximum scattering
of electrons in branch 1 and also the negative conductivity
of electrons in branch 2, σxx is minimum. By increasing ε̃R,
Fermi wavelength of electrons in branch 1 decreases, and
positive conductivity along x axis begins to be enhance. These
variations in σxx cause a minimum to emerge in the AMR
versus ε̃R. By applying the electric field along the y axis,
the variations of σyy are exactly the same as σxx, but since
σxx is larger than σyy, it has a dominant contribution on the
AMR. By decreasing ε̃R the Fermi wavelength of electrons
in branch 1 increases and hence the minimum approaches
the point ξ̃ = 0. Also, for large enough CMSs, the Fermi
wavelength of electrons in branch 1 remains always smaller
than ξ̃ and no efficient scattering occurs for electrons in this
branch, so by increasing ξ̃ this minimum disappears and for
very large values of ξ̃ the AMR saturates to 1. For large
values of ε̃R, the Fermi wavelength of electrons in branch 1
becomes smaller, and by a decrease of the CMS the minimum
location approaches infinity and the AMR becomes a constant
(this constant is determined by the clusters’ tilt angle). The
main reason for this behavior is the anisotropic band structure
below the BCP.

Figure 11 shows the angular dependence of the AMR. Like
the two-band case, the AMR behaves unconventionally for
large CMSs (for ξ̃ almost larger than 1). For small CMSs the
AMR is given by

AMR = sin2 θ/(2 + cos2 θ ), (25)

which is nothing but the AMR of 3D magnetic topological in-
sulators with short-range Dirac δ scattering potential [21,40].

V. SUMMARY AND CONCLUSION

We presented a comprehensive study of the transport prop-
erties of 2DRSs with strong SOC doped with interacting
magnetic impurities. Exchange interactions between magnetic
impurities cause the formation of magnetic clusters whose

mean sizes (CMSs) and number (CN) depend on temperature.
Treating magnetic clusters as scattering centers and modeling
the interaction of itinerant electrons with magnetic clusters
by a long-range scattering potential, we demonstrated that
the combined effects of Rashba SOC and magnetic clusters
cause the system to be anisotropic. Using a semiclassical
Boltzmann approach we computed the relaxation times, the
conductivities, and the AMRs of the system in both regimes
of above and below the BCP. We demonstrated the following:
(i) In the isotropic case the conductivity is a nonmonotonic
function of CMS: it decreases by increasing CMS, becomes
minimum at ξ̃min., and then increases by CMS. By increasing
the strength of SOC the conductivity increases for all CMSs.
(ii) In the anisotropic case, the AMR strongly depends on
the CMS: it increases by increasing CMS and saturates to
unit at large CMSs. Moreover, the angular dependence of the
AMR is unconventional in comparison with the well-known
cos2 θ angular dependence seen in ferromagnets. For small
CMSs, below the BCP the angular dependence of the AMR
is consistent with 3D magnetic topological insulators. (iii) In
contrast to the two-band regime in which the AMR always
increases by increasing the strengths of SOC, in the single-
band regime it experiences a minimum at an ε̃R which strongly
depends on the CMS. For small CMSs, in the single-band
regime the AMR is almost constant and does not change
by varying ε̃R; however in the two-band regime the AMR
strongly depends on the strength of SOC even at small CMSs.

Both the CMS and CN depend on temperature. By knowing
their temperature dependence, the temperature dependence
of conductivities can be obtained, which is crucial in in-
vestigation of the thermoelectric properties of the 2DRSs.
The temperature dependencies of the CMS and CN can be
obtained using Monte Carlo simulations, which are left for
future study.

APPENDIX A: THE CONDUCTIVITY
OF 2DRS ABOVE THE BCP

When the Fermi energy is located above the BCP, both
bands are involved in the transport properties of the 2DRS,
and we should take the contributions of backscatterings
and intra-band scatterings into account in computing the
nonequilibrium distribution functions ( f+ and f−). Substitut-
ing Eq. (11) into (10), and writing E · vn as Evn cos(φ − χ ),
we achieve the following integral equations:

cos φ = w̄+(φ)a+(φ) −
∫

dφ′[w++(φ, φ′)a+(φ′)

+ w+−(φ, φ′)a−(φ′)],

cos φ = w̄−(φ)a−(φ) −
∫

dφ′[w−−(φ, φ′)a−(φ′)

+ w−+(φ, φ′)a+(φ′)], (A1)

sin φ = w̄+(φ)b+(φ) −
∫

dφ′[w++(φ, φ′)b+(φ′)

+ w+−(φ, φ′)b−(φ′)],

sin φ = w̄−(φ)b−(φ) −
∫

dφ′[w−−(φ, φ′)b−(φ′)

+ w−+(φ, φ′)b+(φ′)], (A2)
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where wn,n′ (φ, φ′) = A(2π )−2
∫

k′dk′wn,n′ (k, k′), and
w̄n(φ) = ∫

dφ′[w+n(φ, φ′) + w−n(φ, φ′)]. Using Fermi’s
golden rule, the transition rate is written in terms of the
scattering amplitude |Tn,n′ (k, k′)|2 as

wn,n′ (k, k′) = 2π

h̄
|Tn,n′ (k, k′)|2δ(εnk − εn′k′ ). (A3)

Within the first Born approximation, the T matrix is given
by Tn,n′ (k, k′) ≈ 〈nk|HσS|n′k′〉, where HσS is the scatter-
ing Hamiltonian, given by HσS = ∑

r,R HσS . Since magnetic

clusters are uncorrelated and distributed randomly on the
2DRS, one can show that 〈|Tn,n′ (k, k′)|2〉ens = ηc|HσS (k −
k′)|2, where 〈. . . 〉ens denotes ensemble average, and HσS (k −
k′) is the Fourier transformation of Eq. (7) at R = 0. As the
unperturbed Hamiltonian in Eq. (1) is gapless and the time-
reversal symmetry is preserved in the system, other mecha-
nisms such as skew scattering, anomalous velocity, and side
jump have vanishing contributions to the transport properties
of the system (anomalous Hall conductivity is zero) and the
lowest-order Born approximation gives reliable results for the
transport of the system [41].

By considering elasticity of the scattering we obtain

wn,n′ = ω0
Nn

N0
ξ̃ 4 1 − nn′(cos 2θ cos φ cos φ′ + sin φ sin φ′)(

1 + ξ 2
[
k2

n + k2
n′
])3

(1 − �n,n′ cos φ)3
,

w̄n(φ) = ω0

∑
n′=±

ξ̃ 4
(
1 + n′

√
εR/2ε

εR/2ε+1

)
(
1 + ξ 2

[
k2

n + k2
n′
])3(

1 − �2
n,n′

) 5
2

[
3

2
πnn′�n,n′ sin2 θ cos 2φ + π

(
2 + �2

n,n′ − 3nn′ cos2 θ
)]

,

(A4)

where �n,n′ = 2ξ 2knkn′
1+ξ 2[k2

n+k2
n′ ]

, ω0 = π h̄ηcJ2
0 S2

4AmεF
, and ξ̃ = ξ

√
2mεF/h̄2.

In order to solve Eqs. (A1) and (A2), we employ the Fourier expansions of a±(φ) and b±(φ) as

a±(φ) =
∞∑

m=0

c±
2m+1 cos[(2m + 1)φ], (A5)

b±(φ) =
∞∑

m=0

s±
2m+1 sin[(2m + 1)φ], (A6)

which satisfy the particle number conservation. Since the functions wn,n′ (φ, φ′) and w̄n(φ) are invariant under the transformations
(φ, φ′) → (−φ,−φ′) and (φ, φ′) → (π − φ, π − φ′), the functions a±(φ) and b±(φ) should satisfy the relations a±(−φ) =
a±(φ), a±(π − φ) = −a±(φ), b±(−φ) = −b±(φ), and b±(π − φ) = b±(φ); hence only the Fourier coefficients c±

i and s±
i with

odd i have appeared in the above expansions. c±
2m+1 and s±

2m+1 have a dimension of time and depend on the CMS, the CN, the
tilt angle θ , and the Rashba energy εR. By substituting Eq. (A5) into both relations in Eq. (A1), we obtain the following set of
linear equations for the coefficients c±

i :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 C1 0 . . . . . . . . .

C1 A1 C2 0 . . . . . . . . .

0 C2 A2 C3 0 . . . . . .

0 0 C3 A3 C4 0 . . .

0 0 0 C4 A4 C5 . . .

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c3

c5

c7

c9

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1/ω0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d3

d5

d7

d9

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A7)

where the matrix elements are the following 2 × 2 matrices:

A0 =
[

L+
0 + K+

0 G−
0 + D−

0
G+

0 + D+
0 L−

0 + K−
0

]
, (A8)

and

Am =
[

K+
m D−

m
D+

m K−
m

]
, Cm =

[
L+

m G−
m

G+
m L−

m

]
, (A9)
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where L±
m , K±

m , G±
m , and D±

m are the following dimensionless functions:

L±
m (ε, ξ, θ )/ξ̃ 4 = κ±± + κ±∓ −

F (m,�±±)(1 − cos 2θ )
(
1 ±

√
εR/2ε

εR/2ε+1

)
(1 + 2ξ 2k2±)3

,

K±
m (ε, ξ, θ )/ξ̃ 4 = μ±± + μ±∓ −

[Q(m,�±±) − {F (m,�±±) + F (m + 1,�±±)}(1 + cos 2θ )]
(
1 ±

√
εR/2ε

εR/2ε+1

)
(1 + 2ξ 2k2±)3

,

G±
m (ε, ξ, θ )/ξ̃ 4 =

F (m,�±∓)(1 − cos 2θ )
(
1 ±

√
εR/2ε

εR/2ε+1

)
(1 + ξ 2[k2± + k2∓])3

,

D±
m (ε, ξ, θ )/ξ̃ 4 = −

[Q(m,�±∓) + {F (m,�±∓) + F (m + 1,�±∓)}(1 + cos 2θ )]
(
1 ±

√
εR/2ε

εR/2ε+1

)
(1 + ξ 2[k2± + k2∓])3

,

(A10)

where

κnn′ =
3
2πnn′�n,n′ sin2 θ

(
1 + n′

√
εR/2ε

εR/2ε+1

)
(
1 + ξ 2

[
k2

n + k2
n′
])3(

1 − �2
n,n′

) 5
2

, (A11)

μnn′ =
π

(
2 + �2

n,n′ − 3nn′ cos2 θ
)(

1 + n′
√

εR/2ε

εR/2ε+1

)
(
1 + ξ 2

[
k2

n + k2
n′
])3(

1 − �2
n,n′

) 5
2

, (A12)

and

F (m, y) =
∑
l=0

π (2l + 2)!

4(l − m)!(l + m)!

( y

2

)2l
=

∑
k=0

π (2m + 2k + 2)!

4k!(2m + k)!

( y

2

)2m+2k

=π (1 + m)(1 + 2m)

2

( y

2

)2m

2F
1

[
3

2
+ m, 2 + m, 1 + 2m, y2

]
,

Q(m, y) =
∑
l=0

π (2l + 3)!

(l − m)!(l + m + 1)!

( y

2

)2l+1
=

∑
k=0

π (2m + 2k + 3)!

k!(2m + k + 1)!

( y

2

)2m+2k+1

= 2π (m + 1)(3 + 2m)
( y

2

)2m+1

2F
1

[
2 + m,

5

2
+ m, 2 + 2m, y2

]
. (A13)

Here, 2F1[ 3
2 + m, 2 + m, 1 + 2m, y2] and 2F1[2 + m, 5

2 + m, 2 + 2m, y2] are hypergeometric functions. Since for εR/εF � 0,
we have 0 � �n,n′ < 1, the functions F (m,�n,n′ ) and Q(m,�n,n′ ) are simplified as

F (m,�n,n′ ) =
π

[
2 + �2

n,n′ + 6m
√

1 − �2
n,n′ − 4m2

(
1 − �2

n,n′
)]

4�−2m
n,n′

(
1 +

√
1 − �2

n,n′
)2m(

1 − �2
n,n′

) 5
2

,

Q(m − 1,�n,n′ ) =
3π − 3π

√
1 − �2

n,n′ (1 − 2m) + 4πm(m − 1)
(
1 − �2

n,n′
)

�1−2m
n,n′

(
1 +

√
1 − �2

n,n′
)2m−1(

1 − �2
n,n′

) 5
2

. (A14)

The vectors cm and dm in Eq. (A7) are the following two-component vectors:

cm =
[

c+
m

c−
m

]
,dm =

⎧⎪⎨
⎪⎩

[
1

1

]
, m > 1,

0, m = 1.

(A15)

For solving the linear equations in (A7), we have to truncate the series (A5) at some point. For an specified ξ , θ , and εR, by
selecting a proper number of trigonometric functions in the series (A5), we obtain the a+(φ) and a−(φ) functions, precisely [21].

115412-10



TRANSPORT IN TWO-DIMENSIONAL RASHBA ELECTRON … PHYSICAL REVIEW B 101, 115412 (2020)

By selecting the first j-independent trigonometric functions, the matrix equation (A7) reduces to⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A0 C1 0 0 . . . 0
C1 A1 C2 0 . . . 0

0 C2 A2 C3 . . .
...

...
...

...
...

... 0
0 . . . 0 C j−1 A j−1 C j

0 . . . 0 0 C j A j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c1

c3

c5
...

c2 j−1

c2 j+1

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1/ω0

⎡
⎢⎢⎢⎢⎢⎢⎣

d1

d3

d5
...

d2 j−1

d2 j+1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A16)

Now we have a set of j + 1 equations with j + 1 variables.
Since d2 j+1 = 0 for j � 1, we begin with the two last equa-
tions j + 1 and j; then by eliminating the coefficient c2 j+1 we
reach the following equation:

C−1
j · C j−1 · c[2( j−2)+1] +  j · c[2( j−1)+1] = 0, (A17)

where

 j = C−1
j · A j−1 − A−1

j · C j . (A18)

By using the ( j − 1)th equation of (A16) and Eq. (A17) we
can eliminate the coefficient c2 j−1. Repeating this method to
the first equation of (A16) we reach

ω0c1 = (+
1 )−1 · C−1

1 · d1, (A19)

where

+
i = C−1

i · Ai−1 − (+
i+1)−1 · C−1

i+1 · Ci . (A20)

By obtaining c1 from Eq. (A19) and substituting it into
Eq. (A7), the other ci vectors, and finally the functions a±(φ),
are obtained in terms of k, α, ξ, θ , and ηc.

By the same procedure, we have also obtained the func-
tions b±(φ) in terms of the nonzero coefficients s±

i =
s±

i (k, α, ξ, θ, ηc), with odd i. All these nonzero coefficients
are given in terms of s1 by the relation

ω0s1 = (−
1 )−1 · C−1

1 · d1, (A21)

where sm = [
s+

m
s−

m
], and

−
1 = C−1

1 · B0 − (+
2 )−1 · C−1

2 · C1, (A22)

with

B0 =
[

K+
0 − L+

0 D−
0 − G−

0
D+

0 − G+
0 K−

0 − L−
0

]
. (A23)

APPENDIX B: THE CONDUCTIVITY OF
THE 2DRS BELOW THE BCP

When the Fermi energy is located in the interval −εR/2 <

εF < 0, we have unconventional intrabranch and interbranch

scatterings in the band +, with the scattering rate

wν,ν ′ = ω0
Nν

N0
ξ̃ 4 1 − cos 2θ cos φ cos φ′ − sin φ sin φ′(

1 + ξ 2
[
k2
ν + k2

ν ′
])3

(1 − �ν,ν ′ cos φ)3
,

w̄ν (φ) = ω0

∑
ν ′

ξ̃ 4
[
(−1)1+ν−ν ′ +

√
εR/2|ε|

εR/2|ε|−1

]
(
1 + ξ 2

[
k2
ν + k2

ν ′
])3(

1 − �2
ν,ν ′

) 5
2

×
[

3

2
π�ν,ν ′ sin2 θ cos 2φ+π

(
2+�2

ν,ν ′ −3 cos2 θ
)]

,

(B1)

with �ν,ν ′ = 2ξ 2kνkν′
1+ξ 2[k2

ν+k2
ν′ ]

. In order to obtain the nonequilibrium

distribution functions of electrons in branches 1 and 2, we
should solve two equations like (A1) and (A2). Because
of the nonmonotonic dispersion of the band +, below the
BCP the band velocity of electrons is not always parallel
to their k vector. In order to include this issue in our cal-
culations, we replace φ by �ν (φ), defined by vν (ε, φ) =
vν (ε, φ)(cos �ν, sin �ν ), where �1 = φ and �2 = φ + π .
Therefore, according to the relation vν = (−1)ν h̄

m (N0/Nν )kν ,
and the method used to obtain the nonequilibrium distribution
functions, we define the nonequilibrium distribution functions
of electrons in the branch ν as (see Appendix C)

fν − f 0
ν = eEvν

(
∂ f 0

ν

∂εν

)
[aν (�ν ) cos χ + bν (�ν ) sin χ ],

(B2)

where aν (�ν ) and bν (�ν ) satisfy the following relations:

cos �2 = w̄2(φ)a2(�2) −
∫

dφ′[w2,2(φ, φ′)a2(�′
2)

+ w2,1(φ, φ′)a1(�′
1)],

cos �1 = w̄1(φ)a1(�1) −
∫

dφ′[w1,1(φ, φ′)a1(�′
1)

+ w1,2(φ, φ′)a2(�′
2)], (B3)

sin �2 = w̄2(φ)b2(�2) −
∫

dφ′[w2,2(φ, φ′)b2(�′
2)

+ w2,1(φ, φ′)b1(�′
1)],

sin �1 = w̄1(φ)b1(�1) −
∫

dφ′[w1,1(φ, φ′)b1(�′
1)

+ w1,2(φ, φ′)b2(�′
2)]. (B4)

For solving the coupled Eqs. (B3) and (B4), the same as the
two-band case, we use the Fourier expansions of aν (�ν ) and

115412-11



A. N. ZAREZAD AND J. ABOUIE PHYSICAL REVIEW B 101, 115412 (2020)

bν (�ν ), and achieve

aν (�ν ) =
∞∑

m=0

cν
2m+1 cos[(2m + 1)�ν],

bν (�ν ) =
∞∑

m=0

sν
2m+1 sin[(2m + 1)�ν],

(B5)

where cν
2m+1 and sν

2m+1 are coefficients with a dimension of
time. By using the relation (12), and considering the orthogo-
nality of trigonometric functions, the conductivity for − εR

2 <

εF < 0 is obtained in terms of only the first coefficients of
the expansions, cν

1 and sν
1. As mentioned in the two-band

case, these coefficients act as momentum relaxation times
of free electrons and can be regarded as effective relaxation
times along the x and y directions. By defining τ ν

x = ω0cν
1 and

τ ν
y = ω0sν

1 we obtain the conductivities of the 2DRS, as in
Eq. (24).

APPENDIX C: BOLTZMANN EQUATION BELOW THE BCP

In elastic scatterings, the magnitude of electron velocity v

does not change, and the nonequilibrium distribution function
of electrons in anisotropic systems depends on the angle of
velocity with x axis (�). The nonequilibrium distribution
function can be written up to the linear order of the electric
field as follows [42]:

f − f 0 = e

(
∂ f 0

∂ε

)
vkE · τ(�), (C1)

where τ(�) is the relaxation time vector. In order to obtain the
relaxation time vector we define the coefficients a(φ) and b(φ)

as relaxation times along the x and y axes, and write Eq. (C1)
in the form of Eq. (B2) for each branch. In order to use the
relation (B2) in the Boltzmann equation, we need to write �ν

(the angle of the velocity of electrons in the branch ν with
x axis) in terms of φ, the polar angle of the k vector. In the
systems with monotonic band structure, the electron velocity
v is always parallel to the k vector and �ν = φ. But in 2DRSs
with strong Rashba SOC, below the BCP, the electron velocity
and wave vector are not always in the same direction and
depending on the branch band, v is parallel or antiparallel to
the k. By considering the relation �ν = φ + [1 + (−1)ν]π/2,
according to the angular dependence of the functions aν (�ν )
and bν (�ν ) on �ν [aν (�) and bν (�) respectively depend on
cosine and sine functions], the relations in Eqs. (B3) and (B4)
reduce to the following equations:

cos φ = w̄ν (φ)aν (φ)

−
∑
ν ′

∫
dφ′wν,ν ′ (φ, φ′)(−1)ν−ν ′

aν ′ (φ′), (C2)

sin φ = w̄ν (φ)bν (φ)

−
∑
ν ′

∫
dφ′wν,ν ′ (φ, φ′)(−1)ν−ν ′

bν ′ (φ′). (C3)

As in the two-band scattering case, by employing the Fourier
series of aν (φ) and bν (φ) and performing some straightfor-
ward calculations, we reach the relaxation times in branches 1
and 2, and finally obtain the conductivity and the AMR of the
system.
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