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Nonlinear spin torque, pumping, and cooling in superconductor/ferromagnet systems
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We study the effects of the coupling between magnetization dynamics and the electronic degrees of freedom
in a heterostructure of a metallic nanomagnet with dynamic magnetization coupled with a superconductor
containing a steady spin-splitting field. We predict how this system exhibits a nonlinear spin torque, which can be
driven either with a temperature difference or a voltage across the interface. We generalize this notion to arbitrary
magnetization precession by deriving a Keldysh action for the interface, describing the coupled charge, heat, and
spin transport in the presence of a precessing magnetization. We characterize the effect of superconductivity
on the precession damping and the antidamping torques. We also predict the full nonlinear characteristic of
the Onsager counterparts of the torque, showing up via pumped charge and heat currents. For the latter, we
predict a spin-pumping cooling effect, where the magnetization dynamics can cool either the nanomagnet or the
superconductor.
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I. INTRODUCTION

The intriguing possibility to control magnetization dynam-
ics by spin torque suggested over two decades ago [1] and
its reciprocal counterpart [2,3] of spin pumping [4] have
been widely studied in magnetic systems. In such systems
charge and spin transport are closely linked and need to be
treated on the same footing. Recently there has also been
increased interest in coupling superconductors to magnets and
finding out how superconductivity affects the magnetization
dynamics [5–19]. On the other hand, recent work has shown
that a combination of magnetic and superconducting systems
results in giant thermoelectric effects [20–24] which couple
charge and heat currents. These works [21,22] also imply a
coupling of spin and heat. However, a general description of
the implications for the magnetization dynamics, dynamical
heat pumping effects, and the behavior in the nonlinear regime
at energies comparable to the superconductor gap �, has been
lacking.

In this work, we fill this gap by constructing a theory which
provides a combined description of pumped charge and heat
currents, spin torques, magnetization damping, voltage, and
thermal bias. We consider a metallic nanomagnet F with a
magnetization precessing at a rate � which is determined by
an external magnetic field, the shape of the magnet, and the
crystal anisotropy, [26] at a slowly varying angle θ to the
precession axis [Fig. 1(a)]. The magnet is tunnel coupled to
a superconducting electrode S that also contains a constant
spin-splitting (exchange or Zeeman) field [25,27].
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Main features of the problem can be understood in a
tunneling model, shown schematically in Fig. 1(b). Both the
spin splitting h and nonzero � shift the spectrum, whereas
� generates also effective spin-dependent chemical potential
shifts [28] providing a driving force which pumps the cur-
rents across the interface. The interplay of the two enables a
coupling between the magnetization dynamics and the linear-
response thermoelectric effect [20,21,23] originating from the
spin-selective breaking of the electron-hole symmetry in the
superconductor with respect to the chemical potential. As
a consequence, a temperature difference between the two
systems leads to a thermal spin torque, which in a suitable
parameter regime yields an antidamping sufficient to obtain
flipping or stable precession of the nanomagnet. The Onsager
counterpart of the thermal spin torque is a Peltier-type cool-
ing (or heating) driven by the precessing magnetization. In
the nonlinear response, the precession also pumps a charge
current, as already shown in [29]. We discuss the general
picture for the spin-split superconductor, and, in addition to
the thermomagnetic effects, find the Keldysh action [Eq. (20)]
describing the stochastic properties of the S/F junction. The
action allows identifying thermodynamical constraints, cur-
rent noises, a spintronic fluctuation theorem, and describes the
probability distribution of the magnetization direction and the
spectrum of its oscillations.

The manuscript is structured as follows: We introduce
a simple tunneling model in Sec. II and discuss the tun-
neling currents in Sec. III. Implications on magnetization
dynamics are considered in Sec. IV, including thermal
transport associated with the ferromagnetic resonance and
physics of spin torque oscillators driven by the thermal ef-
fects. In Sec. V we focus on studying the stochastic mag-
netization dynamics based on a Keldysh action approach
to the tunneling model, and discuss probability distribu-
tions and linewidths for the oscillators. We conclude in
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FIG. 1. (a) Schematic ferromagnetic island–superconductor tun-
nel junction (F/I/S) setup. The direction m of magnetization in F
precesses at a rate � at an angle θ around the axis (ẑ) of its effective
field. Electron tunneling and intrinsic damping produces torque τ

on m. The superconductor has an internal spin splitting exchange
field h, from external magnetic field, or a ferromagnetic insulator
(FI) bilayer structure [25]. We consider also thermal and electric
biasing (δT,V ). (b) “Semiconductor picture” for pumping, in the
frame rotating with m (for h ‖ ẑ). Gray solid line is the chemical
potential when � = 0. Increasing the precession frequency to � �= 0
shifts both the spectrum and the chemical potentials (dashed lines)
by � cos θ in F and by � in S. The exchange field h only shifts the
spectrum in S.

Sec. VI. Certain details of derivations are postponed to the
Appendixes.

II. TUNNELING MODEL

The main effects can be understood with a tunneling
Hamiltonian description (below h̄ = e = kB = 1),

H = HS + R̂(t )HF R̂(t )† +
∑
j j′σ

Wj j′e
−iV t c†

jσ d j′σ + H.c., (1)

where c jσ and d jσ are the F and S conduction elec-
tron operators and W the tunneling matrix elements for
spin/momentum states σ = ±, p j , and V is a bias voltage.
The Hamiltonian HS describes the spin-split superconduc-
tor [23], and HF the magnet with magnetization paral-
lel to the ẑ direction. The magnetization direction m(t ) =
(cos φ sin θ, sin φ sin θ, cos θ ) is specified by a spin rotation
matrix R̂(t )c jσ R̂(t )† = ∑

σ ′ Rσσ ′ (t )c jσ ′ . In the frame rotating
with R [28,30], assuming m(t ) varies adiabatically so that
an equilibrium electron distribution is maintained, the Berry
phase ϕ(t ) = ∫ t dt ′φ̇(1 − cos θ ) can be absorbed (c.f. Refs.
[31,32] and Appendix B) to the spin rotation,

R = e−iφ(t )σz/2e−iθ (t )σy/2eiφ(t )σz/2e−iϕ(t )σz/2, (2)

where σx/y/z are the spin matrices. Varying m(t ) results to
effective spin-dependent voltages [30] in the tunneling part.
For uniform precession, they are �σσ ′ = (σ − σ ′ cos θ )�/2
[see Fig. 1(b)]. From the model, we can compute in leading
order in W the tunneling charge, energy, and spin currents
(Ic, Ė , Is) via a standard Green function approach (see Ref.
[33] and Appendix A). The assumption of local equilibrium
implies that the rates of tunneling and other nonequilibrium-
generating processes on the magnetic island should be small
compared to electron relaxation [34–36].

Consider precession with frequency � around the z axis,
φ(t ) = �t with |θ̇ | � �. From the above model, we find the
time-averaged currents and h̄τz = −(m × Is × m)z, [1,28] the
z component of the time-averaged spin transfer torque:

Ic = GT

2e

∫ ∞

−∞
dε

∑
σσ ′

〈σ |σ ′〉2NS,σ NF,σ ′ [ fF − fS], (3)

ĖS = GT

2e2

∫ ∞

−∞
dε

∑
σσ ′

ε〈σ |σ ′〉2NS,σ NF,σ ′ [ fF − fS], (4)

τz = −GT sin2 θ

8e2

∫ ∞

−∞
dε

∑
σσ ′

σNS,σ NF,σ ′ [ fF − fS]. (5)

Here, fF = f0(ε − V − �σσ ′, TF ), fS = f0(ε, TS ) are the
Fermi distribution functions in F and S, 〈σ |σ ′〉2 = (1 +
σσ ′ cos θ )/2 the spin overlap between m and the z axis,
and NS/F,σ=± the densities of states (DOS) for up/down
spins [quantization axis m(t ) for F, and ẑ for S] normalized
by the Fermi level DOS per spin, and GT the tunneling
conductance. Of these, Eq. (3) was previously discussed in
Ref. [29] for h = 0. Using a basic model for F and S, we
have NF,σ = 1 + σP and NS,σ = ∑

±
1±σ ĥ·ẑ

2 N0(ε ∓ h), where
P = (νF,+ − νF,−)/(νF,+ + νF,−) is the spin polarization in
terms of the majority/minority Fermi level DOS νF,±, and
N0(ε) the Bardeen-Cooper-Schrieffer density of states [37].
The tunneling described by Eqs. (3)–(5) can be understood in
a semiconductor picture, as shown in Fig. 1(b). The broken
electron-hole symmetry around the chemical potentials for
both spins in S and spin polarization in F results to thermally
driven spin currents causing torques, and the rotation-induced
potential shifts pump charge and heat currents.

III. TUNNELING CURRENTS

Expanding for small voltage bias V , temperature difference
δT = TS − TF , and the precession speed �, the time-averaged
currents are described by a linear-response matrix:⎛⎝ Ic

ĖS

τz

⎞⎠ =
⎛⎝ G Pα cos θ 0

Pα cos θ GthT α
2 sin2 θ

0 −α
2 sin2 θ −G

4 sin2 θ

⎞⎠⎛⎝ V
−δT/T

�

⎞⎠,

(6)

where G and Gth are the linear-response electrical and ther-
mal conductances. Here, α = −(GT /2)

∫ ∞
−∞ dεε[NS,+(ε) −

NS,−(ε)] f ′
0(ε) is a thermoelectric coefficient [20,21], which

originates from the exchange field h generating the electron-
hole asymmetry in the superconductor. It is nonzero only
when S is both superconducting and has a spin splitting h �= 0.
The response matrix L in Eq. (6) has the Onsager sym-
metry Li j = Ltr

ji, where tr refers to time reversal, αtr = −α,
Ptr = −P.

The coefficient for charge pumping is here zero, unlike
in the ferromagnet-ferromagnet case [30], because the spin-
(anti)symmetrized DOS of S is also (anti)symmetric in energy.
This also suppresses linear-response contributions to charge
current from thermal magnetization fluctuations [31], which
are also related to the magnon spin–Seebeck effect [3,18,31].

Importantly, the spin splitting of the superconductor en-
ables the precession to pump energy current at linear response,
and as its Onsager counterpart, there is nonzero thermal
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spin torque (terms with α �= 0). This is made possible by
the nonzero thermoelectric coefficient [20,21] driving spin
currents due to a temperature difference. This effect is (in
metals) parametrically larger by a factor εF /� 
 1 than that
from normal-state DOS asymmetry [3,35,38] in systems with
Fermi energy εF .

A. Symmetries

Let us now consider the joint probability P of changes δns

and δES in the electron number and energy of S, and a change
δmz in the magnetization of F, during a time interval of length
t0. It satisfies a fluctuation relation [39,40]:

Pt0 (δn, δES, δmz ) = eT −1
F V δn+(T −1

S −T −1
F )δES+T −1

F �Sδmz

× Ptr
t0 (−δn,−δES, δmz ). (7)

Here, we denote S = VMs/(h̄γ ) as the effective macrospin of
the ferromagnetic island, V and γ are the F volume and gyro-
magnetic ratio, and Ms the magnetization. Moreover, Ptr cor-
responds to reversed polarizations and precession (NS/F,σ �→
NS/F,−σ , � �→ −�). The Onsager symmetry of Li j in Eq. (6)
is a consequence of fluctuation relations [41]. The energy
transfer δEF into the ferromagnet (generally, δEF �= δES)
is determined by energy conservation δEF + δES = V δn +
�Sδmz, which implies ĖS + ĖF = IcV − �τz. These results
arise from the symmetries of Eqs. (19) and (20) below, for the
case where there is no external magnetic drive.

B. Nonlinear response

The pumped charge current is shown in Fig. 2(a), and the
energy current into S in Fig. 2(b). The charge pumping is
nonzero above the quasiparticle gap, |�| � � ± h [29]. The
heat current shows the presence of a region of cooling of
either of the two leads, depending on the relative orientation
of h and �ẑ. Nonzero h enables the N/S cooling effect to be

(a)

(b)

(c)

FIG. 2. (a) Pumped differential current for TS = TF = 0.1 TC

where TC is the critical temperature of the superconductor. Blue,
yellow, and red lines are for h = −hẑ, hx̂, hẑ, respectively. (b) and
(c) Energy current into the superconductor ĖS (blue line) and into
the magnet ĖF (red line) for (b) h = −hẑ and for (c) h = hẑ. F and
S are at temperature T = 0.6 TC . Dashed lines represent the linear
response. In all figures, V = 0, θ = π

8 , P = 1, and h = 0.3�0, where
�0 is the superconductor gap at zero temperature.

present already at linear response, similarly as with voltage
bias [23,42].

IV. MAGNETIZATION DYNAMICS

The Landau-Lifshitz-Gilbert-Slonczewski (LLG) equation
for the tilt angle is

−S∂t cos θ = τz − SA0� sin2 θ + η , (8)

where the spin transfer torque τz is given by Eq. (5). We
include the intrinsic Gilbert damping [28] phenomenologi-
cally, and A0 is the dimensionless damping constant. More-
over, η is a Langevin term describing the torque noise
[32,39,44,45] with the correlation function 〈η(t )η(t ′)〉 =
2[D(θ ) + SA0T ] sin2(θ )δ(t − t ′); see below. Equilibrium
torques are here included in the LLG effective magnetic field
�ẑ (see Appendix A). We consider the limit of weak damping,
where it is sufficient to consider only the equation for the z
component.

A. Heat balance in ferromagnetic resonance

Let us consider a ferromagnetic resonance (FMR) [26] in a
thin magnetic layer on a spin-split S, driven by a resonant cir-
cularly polarized rf magnetic field (at frequency ω = �), and
in the case of S acting as a reservoir at a fixed temperature T .
The electrical circuit is open, so that no charge flows between
F and S. The FMR driving acts as a power source. We
assume that a fraction λ ∈ [0, 1] of the power dissipated by
the intrinsic Gilbert damping heats the F electrons; the value
of λ depends on into which bath(s) its microscopic mechanism
dissipates the energy (see also Sec. V A below). In a steady
state, the total energy current into F, the overall torque, and
the charge current are zero:

ĖF,tot = ĖF + λPG = 0, (9)

τz + τz,rf + τz,G = 0, (10)

Ic = 0, (11)

where τz and Ic are the contributions related to the tunneling
between F and S, from Eqs. (3) and (5), and ĖF = IcV −
�τ z − ĖS is found from the tunneling model via a similar
calculation as in Eq. (4). Moreover, τz,G = −SA0� sin2(θ )
and PG = SA0�

2 sin2(θ ) are the torque due to the intrinsic
damping and the rate of work done by it. At resonance, the
rf drive creates a torque τz,rf = γS (m × hrf )z = γShrf sin θ ,
where hrf is the amplitude of the rf field. From the above it
follows that the power,

ĖS + ĖF,tot = Prf − (1 − λ)PG, (12)

is absorbed by the electron system, where Prf = �τz,rf is the
total rf power absorbed at resonance [28].

Expanding Eqs. (3)–(5) in the linear order in V , δT/T , and
θ2, but not in �, we find the charge and heat currents,⎛⎝ Ic

ĖS

τz

⎞⎠ =
⎛⎝ G Pα P(G − G̃)

Pα GthT α + α̃ + G̃�
2

0 0 −G̃

⎞⎠⎛⎝ V
−δT/T

�
4 θ2

⎞⎠. (13)
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Unlike the linear-response matrix in Eq. (6), the above matrix
is not symmetric, as there is no Onsager reciprocity between
τz and θ2. The coefficients are

α̃ = GT

2

∫ ∞

−∞
dε

∑
σ

(
ε − σ�

2

)
NS,σ (ε)

f0(ε−σ�) − f0(ε)

�
,

(14)

G̃ = GT

2

∫ ∞

−∞
dε

∑
σ

σNS,σ (ε)
f0(ε − σ�) − f0(ε)

�
. (15)

These coefficients are defined so that lim�→0 G̃ = G and
lim�→0 α̃ = α, and they assume the values G̃normal = GT and
α̃normal = 0 in the normal state.

The torque balance (10) determines the precession angle
θ ≈ γShrf/(SAeff�), where SAeff = SA0 + G̃

4 . To quadratic

order in hrf , ĖF = G̃�2θ2/4 − ĖS . Using this, and the condi-
tions (9) and (11) for heat and charge currents, we find the
FMR induced temperature difference and voltage,(

V
− δT

T

)
=

(
G Pα

Pα GthT

)−1
(

−P(G−G̃)
4 �

−α+α̃
4 � + [

G̃
8 + λSA0

]
�2

)
θ2.

(16)

The coupling between ĖS and θ2 is of the linear order in �,
whereas the coupling between Ic and θ2, the rf power, and the
magnetic dissipation are of the quadratic order in �. Thus, for
� � T the induced temperature difference and voltage are

V � Pα

GT
δT, δT � α

2
(
Gth − (Pα)2

GT

)�θ2. (17)

The denominator G̃th = Gth − (Pα)2

GT is always positive [21].
For � � T , F is refrigerated when α > 0, which corresponds
to h · ẑ < 0. Restoring the SI units, the magnitude of the
coefficient between δT and �θ2 is |h̄α/(G̃the)| � h̄/kB .

At higher frequencies the magnetic dissipation, nonlinear-
ities of α̃ and G̃, and the coupling between charge and preces-
sion start to play a role and limit the attainable temperature
difference. For SA0/GT = 0.1, the magnitude of the effect
is illustrated in Fig. 3. The maximum value of A0 for which
refrigeration is possible is shown in Fig. 4 as a function of
T and �. If λ = 1, the parameter regime is similar to that
where the spin-torque driven oscillations occur (see Sec. IV B
below). However, if the intrinsic damping dissipates the en-
ergy to systems different from the F conduction electrons

(a) (b)

FIG. 3. Electromagnetically driven FMR induced refrigeration
for h = −0.3�0 ẑ, P = 1, and A0 = 0.1h̄GT /(e2S ). (a) For λ = 0
and (b) for λ = 1. Dynes broadening � = 10−3�0 was assumed [43].

FIG. 4. Maximum intrinsic damping, expressed as
� × λe2SA0/(GT �0), for which the system can be refrigerated,
with h = −0.3�0 ẑ, P = 1, and Dynes broadening � = 10−5�0.
The maximum intrinsic damping is determined by solving A0 from
Eq. (16) with δT = 0.

(λ < 1), refrigeration is easier to obtain than auto-oscillations.
Therefore, measuring the temperature difference δT via the
thermoelectrically induced voltage V allows for a direct study
of the energy dissipation mechanism of the intrinsic Gilbert
damping. Note that also in the absence of the spin splitting in
S (and therefore α = 0), it is possible to induce a nonzero volt-
age via FMR driving [29]. However, that generally requires
higher frequencies � � � than the case analyzed above.

If the thermoelectric coefficient is zero, F always heats up.
In the normal state we have

δTnormal = −GT + 8λSA0

8Gth
�2θ2 < 0, (18)

which shows the combined heating effect from the different
sources of dissipation. However, in that case the induced
voltage V = 0, and the temperature difference would have to
be measured via some other mechanism.

B. Spin torques

The junction also exhibits a voltage-driven spin torque.
With an exchange field such that h · ẑ < 0 and � � 2h,
the torque due to tunneling becomes antidamping at large
voltages. When it exceeds the intrinsic damping, the θ = 0
equilibrium configuration is destabilized, and a new stable
steady-state configuration τz,tot (θ∗) = 0 is established. An ex-
ample of the signs of the torque and the resulting configuration
is shown in Fig. 5(a): The stable angle is θ∗ = 0 at small
voltages, after which there is a voltage range for which
0 < θ∗ < π . There, the system realizes a voltage-driven spin
oscillator [46,47]. At large voltages the stable angle is θ∗ = π ,
corresponding to a torque-driven magnetization flip.

Similarly, the thermal torque is shown in Fig. 5(b). Due
to the nonzero linear-response coupling, it is antisymmetric
in small δT , in contrast to the voltage-driven torque. Conse-
quently, antidamping regions occur for both signs of �. In
linear response [Eq. (6)], for temperature differences satis-
fying sgn(α)δT < δTo = [1 + e2SA0/(h̄G)]Ph̄�/(2e|s|), the
spin torque drives θ → 0, damping the precession. Here,
s = −Pα/(GT ) is the junction thermopower, which can be
|s| � kB/e. [21] Above the critical temperature difference δTo,
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(a)

(c) (d)

(b)

FIG. 5. (a) Torque vs angle θ and voltage V at � = 0.3�/h̄
for TS = TF = 0.5TC , h = −0.3�0 ẑ, and P = 1. The arrows indicate
where the torque drives the angle. The solid black line indicates
the stable precession angle θ∗, and the dashed line the unstable
one. At V = 0, θ∗ = 0. (b) Torque vs angle and temperature dif-
ference at � = 0.5�/h̄ for TS = 0.5TC , h = 0.3�0 ẑ, P = 1, and
V = 0. Moreover, SA0 = 0. The dashed green line indicates δTo.
(c) Magnetization distribution normalized by its maximum value,
for a thermally driven spin oscillator with S = 100, TS = 0.5TC ,
h = 0.3�0 ẑ, P = 1, V = 0, and � = 0.5�/h̄. When TF ≈ 0.31TC

(dashed line), the distribution is significantly bimodal. (d) Full width
at half maximum (FWHM) of the dipole spectrum Sxx (ω) (black
line) and the average magnetization (red line) with GT = e2/h̄. The
dashed line indicates θ∗ and the dots correspond to (c).

the thermal spin torque drives the system away from θ∗ = 0
(or θ∗ = π for � < 0). The stable precession angle is shown
in Fig. 5(b): There is a range of δT in which θ∗ �= 0, π and the
system exhibits thermally driven [35] spin oscillations.

In Fig. 5, we neglect the effect of the intrinsic damping
A0 on the magnetization oscillations. However, it is the main
obstacle in reaching auto-oscillations in FMR devices, and
we estimate its effect here. For the superconducting systems,
generally the effective bias |s|δT can be at most �. Consider-
ing the value δTo given above, this results to a requirement
for the resistance-area product of the S/F junction: RA �
(RA)0 = h̄γ�

e2A0MsdF |�| ≈ 10−4 �μm2 × 1 T nm �
μ0MsdF A0|h̄�| , where dF

is the ferromagnet thickness. Meeting the requirement is likely
challenging. Values RA ∼ 0.1 �μm2 have been achieved in
∼(100 nm)2 lateral size magnetic junctions [46,48]. With
such RA and μ0MsdF = 5 T nm (e.g., Co layer [46]) and
A0 = 0.01 [28], the condition is satisfied for f = |�|/(2π ) <

0.02�/h ≈ 1 GHz (for Al as superconductor). The FMR re-
frigeration has a similar requirement but with � �→ �/λ, and
hence may be easier to achieve, if the microscopic mechanism
is such that λ < 1.

V. KELDYSH ACTION

To properly describe the metastable states in the mag-
netization precession, we need to extend the formalism.
The dynamics beyond average values can be described by
an effective action S = S0 + ST for the spin including the
tunneling, derived [32,34–36,39,45,49,50] by retaining the
Keldysh structure [51] for the orientation of the magnetization

mean field. The action S describes the generating function of
the joint probability distribution Pt0 (δn, δES, δEF , δmz ) [see
Eq. (7)], with a source field χ , ξS , ξF , ζ associated with each
of the arguments. The free part reads

S0 = 2S
∫ ∞

−∞
dt

[(
ζ

2
+ φq

)
∂t (cos θ )c − (cos θ )q(φ̇c − �)

]
,

(19)

where c and q denote the symmetric/antisymmetric com-
binations xc/q = x+±x−

2 of quantities on the two Keldysh
branches (+/−), for example, (cos θ )c/q = 1

2 [cos(θ c + θq) ±
cos(θ c − θq)]. Concentrating on slow perturbations around
the semiclassical (S 
 1) precession trajectory φc(t ) = �t ,
the tunneling action can be expressed as ST � − i

∫ ∞
−∞ dtsT

with [39]

sT = GT

2

∫ ∞

−∞
dε

∑
σσ ′=±

NF,σ ′NS,σ

{
cos θq + σσ ′ cos θ c

2

× [eiησσ ′ fF (1 − fS ) + e−iησσ ′ fS (1 − fF )]

− 1 + σσ ′(cos θ )c

2
[ fF (1 − fS ) + fS (1 − fF )]

}
, (20)

where ησσ ′ = χ + εξS − (ε − V − �σσ ′ )ξF − 2φq �σσ ′
�

. Here,
we have neglected terms that renormalize �. For computing
time averages, the source fields are taken nonzero between t =
0 and t = t0, e.g., χ (t ) = χθ (|t0| − |t |)θ (t sgn t0). The results
(3)–(5) can be found as Ic = −i∂χ sT |0, ĖS = −i∂ξS sT |0, and
τz = 1

2i ∂φq sT |0, where |0 indicates φq = θq = χ = ξS/F = 0.
Expansion around the saddle point gives Eq. (8), and
the correlator characterizing the spin torque noise is D =
− 1

8∂2
φq sT |0 csc2 θ = − 1

8∂2
θq sT |0.

A. Intrinsic damping

We can include the phenomenological Gilbert damping
term A0m × ṁ of the LLG equation into a corresponding term
in the action, iSG = ∫ ∞

−∞ dtsG(t ). With the weak-damping as-
sumptions φ̇c � �, |θ̇ c| � |φ̇|, the leading term in the torque
is produced by sG � −2iSA0� sin2(θ c)φq.

Further reasoning is required for thermodynamic consis-
tency. Let us first assume that the Gilbert damping is caused
by a coupling that ultimately dissipates energy into the bath
of conduction electrons in F (λ = 1). We can express the
conservation of energy in conversion of magnetic energy
to energy of conduction electrons as the symmetry sG[ξF +
x, φq + �x/2] = sG[ξF , φq] for all x. In addition, to pre-
serve the thermodynamic fluctuation relations and the second
law at equilibrium, the fluctuation symmetry sG[ξF , φq] =
sG[iT −1

F − ξF ,−φq] should be fulfilled [39]. The above fixes
the series expansion in ξF , φq, T −1

F to have the form,

sG[ξF , φq] � −2A0S sin2(θ c)

[
i�

(
φq − �

2
ξF

)

+ 2TF

(
φq − �

2
ξF

)2]
+ · · · . (21)

If the Gilbert damping dissipates energy directly to multiple
baths (e.g., magnons, phonons), more terms of this form
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appear, where ξF and TF should be replaced by the cor-
responding bath variables, and only a fraction 0 � λ � 1
of the total A0 comes from conduction electrons. Including
Eq. (21) in the total action S = S0 + ST + SG then produces,
e.g., the correlation function of the Langevin noise terms in
Eq. (8), and the additional term in the heat balance equation
Eq. (9). These are of course possible to find also directly, by
assuming the fluctuation-dissipation theorem, and reasoning
about magnetic work done by the damping.

For the external rf drive, we similarly have a term srf =
2iSmq · γ hrf � 2iγ hrfS sin(θ c)φq, at resonance. It does not
obey the above energy conservation symmetry, as power is
externally provided and the mechanism generating hrf is not
included in the model. As a consequence, as noted in Eq. (12)
ĖS,tot + ĖF,tot �= 0, and the fluctuation relation (7) is modified.

B. Spin oscillator

The probability distribution of the magnetization angle θ

can be obtained from Eqs. (19) and (20) [39,44], within a
semiclassical method applied to s̃T = sT |θq=χ=ξ j=0 [39,51].
In this approach, at equilibrium, the fluctuation symmetry
s̃T (φq = −i�/2T ) = 0 results to the Boltzmann distribution
P(cos θ ) = NeS cos(θ )�/T . In the nonequilibrium driven state
(V �= 0, δT �= 0), the distribution deviates from this.

The probability distribution is shown in Fig. 5(c) for the
thermally driven oscillator. The figure shows the spin torque-
driven transition from the magnetization pointing in the
direction of the magnetic field (cos θ = 1) for high TF , to
the opposite direction of the field (cos θ = −1) at low TF .
In the intermediate range TF ≈ 0.25–0.3Tc, the probability
distribution becomes bimodal, reflecting the two locally stable
configurations in Fig. 5(b): One of these corresponds to the
oscillating state.

C. Emission spectrum

A driven spin oscillator produces electromagnetic emission
which can be detected. [46,47] This can be characterized
with the classical correlator of the magnetic dipole, whose
spectrum is approximately a Lorentzian centered at frequency
�. The classical spectrum of the magnetic dipole correlator
can be written as

Sxx(ω) = S2
∫ ∞

−∞
dt0eiωt0〈mx(t0)mx(0)〉, (22)

where mx = cos φ sin θ , and the average is over the driven
steady state of the system. To evaluate it, the average over
φ can be taken first, noting that 〈cos φ(t0) cos φ(0)〉φ =
1
2 Re〈eiφ(t0 )−iφ(0)〉φ = 1

2 Re
∫

D[φc, θq] eiSeiφc (t0 )−iφc (0) =
1
2 Re

∫
D[φc, θq] eiS′

, where the exponential factor is
removed by a shift (cos θ )q �→ (cos θ )q + sgn(t0)θ (|t0| −
|t |)θ (t sgn t0)/(2S ). For S 
 1, this results to S′ − S �
�t0 + i|t0|S−2D csc2 θ c =: ψ (t0) so that 〈mx(t0)mx(0)〉φ �
1
2 sin2 θ Re eiψ (t0 ). Evaluating the Fourier transform, we get

Sxx(ω) � 1

2

∑
±

〈D/[(ω ± �)2 + (S−2D csc2 θ c)2]〉θ . (23)

A similar calculation is done in Ref. [44], via Langevin and
Fokker-Planck approaches. The remaining average is over the
steady-state distribution P(cos θ ).

The linewidth of the spectrum [black line in Fig. 5(d)]
in this nonequilibrium system is a nontrivial function of
the system parameters. For TF ≈ 0.31TC precession at θ∗
becomes possible, and as a result the linewidth (∝ csc2 θ )
narrows rapidly, becoming significantly smaller than the near-
equilibrium fluctuations at θ ∼ 0, π .

VI. DISCUSSION

In this work, we explain how the thermomagnetoelec-
tric effect of a spin-split superconductor couples the mag-
netization in a magnetic tunnel junction to the temperature
difference across it. The thermoelectric coefficient in the
superconducting state is generally large, and enables a mag-
netic Peltier effect and thermal spin torque, with prospects
for generating thermally driven oscillations detectable via
spectroscopy. Superconductivity also offers possibilities to
characterize and control the thermal physics via both the
electric and magnetic responses or external field coupling of
the magnetization.
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APPENDIX A: TUNNELING CURRENTS

Calculation of the tunneling currents from the model (1) in
the main text can be done with standard Green function ap-
proaches [33]. Assuming a spin and momentum-independent
matrix element (Wj j′ = W ), the k-spin component of the spin
current to S reads

Ik
s = GT

32

∫ ∞

−∞
dε tr

σk

2
[(RǧF R†)+ǧS − ǧS (RǧF R†)−]K ,

(A1)

where the superscript K refers to the Keldysh component
and GT = πνF νS|W |2 is the normal state tunneling conduc-
tance. The charge and energy currents can be obtained by
replacing σk/2 �→ τ̂3 and σk/2 �→ ε in Eq. (A1), respectively.
Here, σ j and τ̂ j are Pauli matrices in the spin and Nambu
spaces, with the basis (ψ↑, ψ↓,−ψ

†
↓, ψ

†
↑ ), and X+(ε, t ) =∫

dt ′eiε(t−t ′ )X (t, t ′), X−(ε, t ) = ∫
dt ′eiε(t ′−t )X (t ′, t ). More-

over, ǧF/S (ε) = 2i
πνF/S

τ̂3
∑

j ǦF/S (ε, p j ) are state-summed
Keldysh Green’s functions, normalized by the total density of
states (DOS) νF/S at the Fermi level of the ferromagnet and
the spin-split superconductor. The rotation matrix,

R = e−iφσz/2e−iθσy/2eiφσz/2

× e−i
∫ t dt φ̇(1−cos θ )σz/2e−iV τ̂3t , (A2)

contains the Euler angles of the time-dependent magnetization
direction vector (m · σ = RσzR†), a Berry phase factor, and
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voltage bias V . The Berry phase appears from the Green
function [31,32] of the conduction electrons in F follow-
ing adiabatically the changing magnetization. For a metallic
ferromagnet, ĝR

F − ĝA
F � 2

∑
±(τ̂3 ± σz ) νF,±

νF
and ĝK = [ĝR −

ĝA](1 − 2 f0(ε)), where νF,↑/↓ := νF,± are the densities of
states of majority/minority spins at the Fermi level and
f0(ε) = (1 + eε/T )−1 is the Fermi distribution function.

Evaluating Eq. (A1) for the different currents pro-
duces Eqs. (3)–(5) in the main text, with NS/F,σ=± =
1
2 tr[ 1+τ̂3

2
1+σσz

2 (ĝR
S/F − ĝA

S/F )].
Beyond linear response (6), we find the second-order con-

tributions to the current and torque:

δ(2)Ic = −α−
2,0

2

[
sin2(θ )

(
V � − P cos θ

4
�2

)
+ P cos(θ )V 2

]
− P cos(θ )

A

2

(
δT

T

)2

− B
δT

T
V, (A3)

δ(2)τz

sin2(θ )
= α−

2,0

4

[
V 2 − P cos(θ )V � + 3 + cos(θ )

8
�2

]
+ A

4

(
δT

T

)2

+ B

4

δT

T
�, (A4)

where α∓
i, j = −(GT /2)

∫ ∞
−∞ dεε j[NS,+(ε) ∓ NS,−(ε)] f (i)

0 (ε),
and A = 2α−

1,1+α−
2,2, B = α+

1,0+α+
2,1.

For � � �, the onset of the voltage-driven spin oscilla-
tions [Fig. 5(a)] can be determined from Eqs. (6) and (A4) to

occur at Vo = ±4
√

e2SAeff�/α−
2,0.

In addition to the spin transfer torque (STT) discussed in
the main text, the electron transfer between F and the spin-
split S generates also other torque components acting on F .
This effect can be found from Eq. (A1), and appears in
the torque components τx/y perpendicular to the equilibrium
magnetization ẑ.

In the main text, we neglect these torques, because any
equilibrium torques can be absorbed to a renormalization of
the effective magnetic field, and moreover, in the limit of weak
damping and torques the components perpendicular to ẑ such
that τx/y � S� have little effect on the dynamics. In contrast,
the component in the main text has a significant effect already
at τz ∼ A0S� � S�.

For completeness, we write here the expressions for all
torques, as obtained from Eq. (A1). Equation (5) in the main
text gives the dissipative contribution to τz. Similar contribu-
tions can be found for τx/y:

τx/y = −GT

8

∫ ∞

−∞
dε

∑
σσ ′

(1 + σσ ′ cos θ )2

2
NS,x/y

× [ fF (ε − �σσ ′ − V ) − fS (ε)], (A5)

where NS,0/x/y/z = 1
2 tr 1+τ3

2
σ0/x/y/z

2 (ĝR
S − ĝA

S ).
In addition, there are two remaining contributions, the

equilibrium spin torque, and a Kramers-Kronig counterpart to
the density of state term. Terms of the latter type commonly
appear in calculations of time-dependent response. To find
it, we need ĝR+A = ĝR + ĝA. We can evaluate them, e.g.,
in a model with a parabolic spectrum in three dimensions,
ξk = k2/(2m) − μ. In the superconductor, h,� � μS and in

the magnet, � = 0. Evaluating the momentum sum yields

ĝR+A
S

μS→∞� ĝR
S,qcl + ĝA

S,qcl + ĝR+A
F |hF �→h,μF �→μS ,

ĝR+A
F = 2ia Re

√
−[(ε − hF σz )τ̂3 + μF ]/|μF | + C. (A6)

Here ĝR/A
S,qcl are quasiclassical low-energy Green functions [52],

1/a = ∑
±

√
1 ± hF /μF , and hF = ν2

F↓−ν2
F↑

ν2
F↓+ν2

F↑
μF the internal

exchange field in F in the model. Moreover, C are scalars
independent of ε, h, and �, and drop out from expressions
for the observables here.

Neglecting terms of order �/μ, T/μ,�/μ, we find the
remaining terms in the spin current,

I′′
S = I′′

S,eq + δI′′
S, (A7)

δI′′
S = −GT

64

∫ ∞

−∞
dε

∑
σσ ′

tanh
ε − �σσ ′ − V

2TF

× (σ ẑ + σ ′m(t )) × P(ε)NF,σ ′ , (A8)

where P(ε) = 1
2i tr 1+τ3

2 σ[ĝR
S,qcl(ε) + ĝA

S,qcl(ε)]. It has the sym-
metry P(−ε) = P(ε). For a BCS superconductor, the inte-
grand is nonzero only inside the gap, |ε ± h| < �.

The equilibrium spin current I′′
S,eq is related to the exchange

coupling between F and FI mediated by the electrons in the
superconductor. It can be absorbed to a small renormalization
of the effective magnetic field acting on F. While its value
can be calculated in the above tunneling model, the model
is not sufficient for describing this non-Fermi surface term
in the realistic situation. The superconducting correction δI′′

S
vanishes at equilibrium, but may contribute to nonequilibrium
response. This torque, however, has τ ′′

z = 0 and can be ne-
glected similarly as in Eq. (A5).

APPENDIX B: ADIABATIC GREEN FUNCTION

In the tunneling calculation of Eq. (A1), an expression for
the adiabatic Green function of the electrons on the ferromag-
net with dynamic magnetization appears. For completeness,
we discuss its meaning here. The nonequilibrium Green
function for free electrons in a time-dependent exchange
field, H (t ) = ∑

nσσ ′ c†
nσ [Hn(t )]σσ ′cnσ ′ , Hn(t ) = εn + h(t ) · σ,

with a thermal initial state at t = 0 is G>
n (t, t ′) =

−iUn(t, 0)(1 − ρn)Un(0, t ′)†, where i∂tUn(t, t ′) = [εn −
h(t ) · σ]Un(t, t ′), U (t, t ) = 1, and ρn = [1 + eHn (0)/T ]−1.
In an adiabatic approximation for |ḣ| � h2, Un(t, t ′) �
e−i(t−t ′ )εn R(t )eiϕn (t,t ′ )σz/2R(t ′)†, where R(t )σzR(t )† = h(t ) · σ

and ϕn(t, t ′) = i
∫ t

t ′ dt ′′ tr σzR(t ′′)†∂t ′′R(t ′′). In terms of
Euler angles h = (cos φ sin θ, sin φ sin θ, cos θ ) we write
R = e−iφσz/2e−iθσy/2eiφσz/2e−iχσz/2. The function χ (t ) is
arbitrary, but Un does not depend on it. For simplicity, we
choose χ = ∫ t dt ′φ̇(1 − cos θ ), which gives ϕn = 0. With
this choice, the adiabatic Green function becomes

G>
n (t, t ′) = R(t )G>

n,0(t − t ′)R(t ′)†, (B1)

and the electron Berry phase appears only in the rotation
matrix. This is equivalent to the “rotating frame” picture used
in the main text and other works [28,30].
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