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In this work we provide a direct and non-numerical technique to obtain the surface Green’s functions for
three-dimensional systems. This technique is based on the ideas presented by V. Kaladzhyan and C. Bena [Phys.
Rev. B 100, 081106(R) (2019)], in which we start with an infinite system and model the boundary using a
planelike infinite-amplitude potential. Such a configuration can be solved exactly using the T -matrix formalism.
We apply our method to calculate the surface Green’s function and the corresponding Fermi-arc states for Weyl
semimetals. We also apply the technique to systems of lower dimensions, such as Kane-Mele and Chern insulator
models, to provide a more efficient and non-numerical method to describe the formation of edge states.
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I. INTRODUCTION

Boundaries of certain condensed-matter systems host
unique phenomena. For instance, graphene exhibits zero-
energy zigzag-edge modes [1], and topological insulators
exhibit conducting edge or surface states [2–4]. In order to
describe boundary effects, several techniques were developed,
including the exact diagonalization of tight-binding Hamilto-
nians [5–10], iterative methods to compute boundary Green’s
functions [11–15], solving the Schrödinger equation [16–19],
and the bulk-boundary correspondence [20–23].

A method describing the formation of boundary modes was
recently introduced [24]. This method can be generalized to
any dimensions, and in certain situations it can yield fully
analytical results, providing a deeper physical insight than
numerical techniques. The general idea is as follows: instead
of considering a finite system with a sharp boundary, we
consider an infinite system with a strong δ-potential impurity
emulating the shape of the boundary. For example, in order to
recover end, edge, or surface boundaries, the impurity poten-
tial should be chosen to be pointlike, linelike, and planelike,
respectively. In the limit of an infinite impurity potential such
impurities divide a given system into two independent semi-
infinite regions. Subsequently, we use the T -matrix formalism
[25,26] to study the impurity-induced states which transform
into boundary states when the impurity strength is larger than
any energy scale in the system.
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Along the same lines, we present here a direct and non-
numerical technique to calculate the surface Green’s functions
of an arbitrary three-dimensional system. The boundary can
once more be modeled as a plane impurity potential with an
amplitude going to infinity. The corresponding full Green’s
functions can be calculated exactly using the T -matrix for-
malism. The resulting Green’s function evaluated on the plane
neighboring and parallel to the impurity plane becomes the
surface Green’s function (see Fig. 1). We apply this technique
to calculate the surface Green’s functions for Weyl semimetals
described by two different models [27,28]. We recover in each
case the corresponding Fermi-arc states.

Moreover, in this work we apply the technique from
Ref. [24] to a new class of systems: topological insulators.
In particular we consider a two-dimensional (2D) honeycomb
lattice described by the Kane-Mele model [2], as well as a
2D Chern insulator [3]. We show that impurity-induced states
in these two models transform into helical and chiral edge
modes, respectively, when the impurity potential is taken to

FIG. 1. Schematics of the 3D systems and surface GFs. The
black parallelogram is the impurity plane, while the red ones show
the two created surfaces on the neighboring planes at x = ±1, one
lattice constant away from the impurity plane.
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infinity. While the Kane-Mele model requires performing a
numerical integration, the 2D Chern insulator allows an exact
closed-form solution and thus demonstrates the analytical
power of the method.

This paper is organized as follows: in Sec. II we introduce
the formalism and the notations. In Sec. III we present the cal-
culation of the surface Green’s functions for a Weyl semimetal
described by two different models and the formation of the
corresponding Fermi-arc states. In Secs. IV and V we focus
on two-dimensional topological insulators described by the
Kane-Mele and Chern-insulator models, respectively, and we
obtain the corresponding edge modes. We conclude in Sec. VI.

II. T -MATRIX FORMALISM FOR SURFACE GREEN’S
FUNCTIONS AND EDGE STATES

Below we consider an infinite system described by a
momentum-space Hamiltonian Hk. The unperturbed Matsub-
ara Green’s function (GF) can be written as G0(k, iωn) =
[iωn − Hk]−1, where ωn denote the Matsubara frequencies. In
the presence of an impurity, the Green’s function is modified
to

G(k1, k2, iωn) = G0(k1, iωn)δk1,k2

+ G0(k1, iωn)T (k1, k2, iωn)G0(k2, iωn),
(1)

where the T matrix T (k1, k2, iωn) embodies all-order
impurity-scattering processes [26,29]. Note that due to the
impurity-induced breaking of translational symmetry and,
consequently, of the momentum conservation, the generalized
Green’s function depends no longer on one but on two values
of momentum. For a δ-function impurity Vimp(r) ≡ V δ(x),
the form of the T matrix in one dimension is momentum
independent and is given by [26,30–32]

T (iωn) =
[
I − V

∫
dkx

Lk
G0(kx, iωn)

]−1

V, (2)

while in two and three dimensions, for a line and plane
impurity, localized at x = 0 and perpendicular to the x axis,
we have

T (k1y, k2y, iωn) (3)

= δk1y,k2y

[
I − V

∫
dkx

Lk
G0(kx, k1y, iωn)

]−1

V

and

T (k1y, k1z, k2y, k2z, iωn)

= δk1y,k2yδk1z,k2z

[
I − V

∫
dkx

Lk
G0(kx, k1y, k1z, iωn)

]−1

V, (4)

respectively, with Lk being a normalization factor. The limits
of integration are given by the boundaries of the first Bril-
louin zone; that is, for a one-dimensional system and for
a 2D square lattice or three-dimensional (3D) cubic lattice
we integrate from −π to π (with Lk = 2π ), while for a
honeycomb lattice with an impurity along y we integrate
from −2π/3 to 2π/3 (Lk = 4π/3) (for a full justification see
Appendix A). Note that Eqs. (3) and (4) are independent of
k1x and k2x due to the fact that the impurity potential is a δ

function centered at x = 0. Reversely, note that the T matrix
contains the terms δk1y,k2y (2D) and δk1y,k2yδk1z,k2z (3D) since
the impurity is independent of y in two dimensions and of
y and z in three dimensions, and therefore, the momenta in
the corresponding directions are conserved in all scattering
processes.

The exact same formalism can be applied for impurities
perpendicular to the other axes of the systems.

In what follows we employ this formalism at zero tempera-
ture to calculate the retarded GF G(k1, k2, E ) obtained by the
analytical continuation of the Matsubara GF G(k1, k2, iωn)
(i.e., by setting iωn → E + iδ, with δ → 0+).

For a three-dimensional system the surface Green’s func-
tion can be extracted from the perturbed generalized Green’s
function in Eq. (1). This can be related to the mixed Green’s
function in which we keep the momentum coordinates in the
two directions parallel to the impurity plane (ky and kz), but
we perform a Fourier transform to write down the Green’s
function in real-space coordinates in the x direction. Note that
for a plane impurity the generalized Green’s function depends
on two different values of momentum only for the direction
perpendicular to the impurity; in the other two directions we
recover a simple dependence on momentum due to unbroken
translational invariance. Thus, we have

Gs(ky, kz ) ≡ G(x = x′ = ±1; ky, ky; kz, kz )

=
∫

dk1x

Lk

∫
dk2x

Lk
G(k1x, k2x; ky, ky; kz, kz )

× eik1xxe−ik2xx′
. (5)

We fix x = x′ = ±1 since we are interested in describing the
lattice planes one lattice constant away from the impurity
(see Fig. 1). The boundaries of the two resulting semi-infinite
systems correspond to the two planes at x = ±1, and the
Green’s functions taken at these two positions are effectively
the surface Green’s functions for the semi-infinite systems.
The physics at x = 0 (impurity position) is relatively trivial
since the infinite-amplitude impurity potential pushes away
all the wave function weight off the impurity plane. For
simplicity we have omitted writing down explicitly the en-
ergy dependence of the Green’s functions. Note again that
translational invariance holds within the planes parallel to the
impurity plane; thus, the surface Green’s functions depend
only on one momentum in each of the in-plane directions.
Furthermore, in order to obtain the surface physics the value
of the impurity potential in Eq. (4) needs to be set to a value
much larger than all the energy scales in the problem.

The surface Green’s function allows us to recover the
formation of the surface states such as the Fermi-arc states.
Thus, we can study the surface spectral function

A(ky, kz, E ) = − 1

π
Im{tr[Gs(ky, kz, E )]}. (6)

The same analysis can be performed for a two-dimensional
system with a line-impurity to find the line Green’s functions

Gl (ky) = G(x = x′ = ±1; ky, ky)

=
∫

dk1x

Lk

∫
dk2x

Lk
G(k1x, k2x; ky, ky)eik1xxe−ik2xx′

(7)
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and the corresponding edge states given by

A(ky, E ) = − 1

π
Im{tr[Gl (ky, E )]}. (8)

Alternatively, in order to visualize the impurity-induced
states, as described in Appendix B, we may focus on the
average correction to the spectral function:

δN (ky, E ) =
∫

dkx

Lk
δA(kx, ky, E ), (9)

where

δA(k, E ) = − 1

π
Im{tr[G0(k)T (k, k)G0(k)]}. (10)

Above G0(k) stands for G0(k, E ), and T (k, k) stands for
T (k, k, E ). The integral over kx is performed along the same
interval as the one defined in Eq. (3). This quantity corre-
sponds to the average number of available electronic states
with wave vector (ky, kz ), where the average is performed
along the direction perpendicular to the impurity. A more
detailed description of the significance of this quantity is
provided in Appendix B.

III. WEYL SEMIMETALS

In what follows we consider a Weyl semimetal: a large
number of models of various degrees of complexity describe
such a system. Here we focus only on the tight-binding models
described in Refs. [27,28], which we denote by H1 and H2,
respectively. The Bloch Hamiltonians for these two systems
are given by

H1,2 =
∑

k

ψ†(k)H1,2(k)ψ (k), (11)

where ψ (k) = (ckA↑, ckA↓, ckB↑, ckB↓) is a spinor with index
A or B denoting a generic unspecified orbital component and
↑ and ↓ denote the physical spin.

For the model in Ref. [27] written in the basis above we
have

H1(k) = g1(k)τ1σ3 + g2(k)τ2σ0 + g3(k)τ3σ0

+ g0(k)τ0σ0 + βτ2σ2 + α sin kyτ1σ2, (12)

where

g0(k) = 2d (2 − cos kx − cos ky),

g1(k) = a sin kx,

g2(k) = a sin ky,

g3(k) = m + t cos kz + 2b(2 − cos kx − cos ky), (13)

and α, β are real parameters. The 2 × 2 identity matrices σ0

and τ0 and the Pauli matrices σi and τi, i = 1, 2, 3, act in the
spin and the orbital spaces, respectively, and the multiplication
of the σ and τ matrices indicates a tensor product.

We consider the same values of parameters as those in
Ref. [27]; thus, we take (a) a = b = 1, t = −1, m = 0.5,
d = 0.8, α = β = 0 and (b) a = b = 1, t = −1.5, d = m =
0, β = 0.9, and α = 0.3. The former is characterized by two
Weyl points, while the latter is characterized by four Weyl
points, and thus, we expect to have one and two Fermi arcs,
respectively.

(a)

kz

kx (b)

kz

kx

FIG. 2. The surface spectral function at E = 0 for the H1 model
with parameters (a) a = b = 1, t = −1, m = 0.5, d = 0.8, α = β =
0 and (b) a = b = 1, t = −1.5, d = m = 0, β = 0.9. To make an
exact correspondence with the spinless results in Ref. [27], in (a) the
trace is taken only over the spin-up (first and third) components of
the Green’s function. We clearly see that there is a single Fermi arc
emerging in (a), whereas there are two Fermi arcs in (b). We set
U = 100.

In order to obtain the Fermi-arc surface states we need to
introduce a surface into the system in such a way that the
vector connecting the Weyl nodes has a nonzero projection
onto it. For example, for the above model we choose to have
a planelike impurity at y = 0 and hence perpendicular to
the y direction. The resulting surface Green’s functions are
described by the formalism in Sec. II, where we consider
an impurity V = Uδ(y)I4, with U → ∞ (i.e., much larger
than all energy scales in the problem). Note that for Weyl
particles with a purely linear dispersion at all energies the
description of a boundary via a simple scalar potential is not
appropriate, as such a potential cannot confine ultrarelativistic
particles. However, the Weyl particles in a solid-state lattice
model have a linear dispersion only at small energies; due
to the finite bandwidth, at finite energies their dispersion is
no longer linear. This can be translated into the existence
of a very small but finite mass, and when the height of
the scalar potential is much larger than the bandwidth, the
particles are indeed confined. Note also that in Sec. II we
describe an impurity at x = 0 and not y = 0; however, the
y = 0 formalism is obtained by simply interchanging x and
y in the corresponding formulas. The spectral function for
the surface states A(kx, kz, E ) = − 1

π
Im{tr[Gs(kx, kz, E )]} is

depicted in Fig. 2 for two chosen configurations of parameters.
We note that the Fermi-arc states calculated using our

method agree exactly with those predicted in Ref. [27]. More-
over, the full surface Green’s function that we have obtained
contains all the information required to describe these states,
such as their spin and orbital distribution, the full energy
dispersion, etc. For instance, we have for the different spin
and orbital components

Sx
A(kx, kz ) = − 1

π
Im

[
Gs

12(kx, kz ) + Gs
21(kx, kz )

]
,

Sx
B(kx, kz ) = − 1

π
Im

[
Gs

34(kx, kz ) + Gs
43(kx, kz )

]
,
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FIG. 3. The x and z spin components on the A and B orbitals
(left and right columns, respectively) at E = 0 for the H1 model with
parameters a = b = 1, t = 1.5, d = m = 0, α = 0.3, and β = 0.9.

Sy
A(kx, kz ) = − 1

π
Re

[
Gs

12(kx, kz ) − Gs
21(kx, kz )

]
,

Sy
B(kx, kz ) = − 1

π
Re

[
Gs

34(kx, kz ) − Gs
43(kx, kz )

]
,

Sz
A(kx, kz ) = − 1

π
Im

[
Gs

11(kx, kz ) − Gs
22(kx, kz )

]
,

Sz
B(kx, kz ) = − 1

π
Im

[
Gs

33(kx, kz ) − Gs
44(kx, kz )

]
, (14)

where we omit the energy dependence for the sake of brevity.
In Fig. 3 we plot the x and z spin components of the Fermi-arc
states at zero energy, separately calculated for the A and B
orbitals. The parameters chosen correspond to Fig. 2(b). We
do not plot the y component since it is zero for both orbitals.

The spins of opposite arcs are of opposite signs, as ex-
pected [27].

We perform a similar analysis on a different Weyl
semimetal model, introduced in Ref. [28]:

H2(k) = g1(k)τ1σ3 + g2(k)τ2σ0 + g3(k)τ3σ0 + dτ2σ3

+βτ2σ2 + α sin kyτ1σ2 + λ sin kzτ0σ1. (15)

We consider the same values of parameters as those in
Ref. [28]; thus, we take (a) a = b = 1, t = −1.5, λ = 0.5,
d = 0.1, α = 0.3, and β = 0.7 and (b) a = b = 1, t = −1.5,
λ = 0.5, d = 0.1, α = 0.3, and β = 0.4. These configurations
are characterized by four Weyl points, and thus, one expects
two Fermi arcs on the surface; however, Ref. [28] indicated
the possible existence of an electron pocket coming from the

FIG. 4. The surface spectral function at E = 0 for the H2 model
with parameters (a) a = b = 1, t = −1.5, λ = 0.5, d = 0.1, α =
0.3, and β = 0.7 and (b) a = b = 1, t = −1.5, λ = 0.5, d = 0.1,
α = 0.3, and β = 0.4. We note the emergence of the two Fermi arcs,
as well as of the bulk electron pocket in the second configuration.

bulk bands. We apply the same techniques as above, and we
show in Fig. 4 the resulting spectral function A(kx, kz, E )
for the surface states for the two chosen configurations of
parameters.

Our results agree exactly with those in Ref. [28]. Further-
more, we compute the spin and orbital properties for this
model (see Fig. 5).

We have also checked that for the first set of parameters in
Fig. 4 the spins of the two Fermi arcs are opposite, the same
as for the H1 model. The H1 and H2 models differ in this case
mainly by a nonzero y component in the H2 model and the
asymmetry of the two Fermi arcs in kz.

IV. KANE-MELE MODEL

We start with the Kane-Mele model of a topological insu-
lator on a honeycomb lattice [2]. Therefore, we employ the
following tight-binding model:

HTB =
∑
〈i j〉, α

tc†
i,αc j,α +

∑
〈〈i j〉〉, α, β

it2νi j s
z
αβc†

i,αc j,β , (16)

where c†
i,α creates an electron on lattice site i, with spin

α =↑,↓. The first term in Eq. (16) is the standard nearest-
neighbor hopping term corresponding to the tight-binding
Hamiltonian of graphene, which yields a spectrum with bands
touching at the Dirac points situated at the Brillouin zone
corners (±4π/3

√
3, 0), (±2π/3

√
3,±2π/3). In order to turn

graphene into an insulator we add a next-nearest-neighbor
term with a spin-dependent amplitude νi j = −ν ji = ±1, de-
fined by the orientation of the hopping direction (see Fig. 6).
The second term opens a bulk gap in the energy spectrum at
the Dirac points.

First, we obtain the boundary modes numerically by diag-
onalizing the tight-binding Hamiltonian in Eq. (16) and con-
sidering periodic boundary conditions in the y direction and
open boundary conditions in the x direction. This corresponds
to a ribbon with zigzag edges. For convenience we set the
lattice spacing a to unity. The corresponding energy spectrum
is shown in Fig. 7. Note the formation of two subgap states
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FIG. 5. The spin components at E = 0 computed on the A and B
orbitals (left and right columns, respectively) for the H2 model with
parameters a = b = 1, t = 1.5, d = m = 0, α = 0.3, and β = 0.9.

(we have verified that these are actually edge states). The
momentum-space dispersions for the two edge states cross at
zero energy for ky = π/

√
3.

In what follows we reproduce the formation of these edge
states by considering a line impurity in an infinite system
and subsequently taking the impurity potential to infinity.
We can rewrite the tight-binding Hamiltonian in Eq. (16)
in momentum space. Thus, in the basis (cA↑, cA↓, cB↑, cB↓),
where ciσ is an electron operator with spin σ =↑ (↓) on
sublattice i = A (B), the Kane-Mele Hamiltonian is expressed
as

Hk =

⎛
⎜⎜⎜⎜⎝

hNNN 0 hNN 0

0 −hNNN 0 hNN

h∗
NN 0 −hNNN 0

0 h∗
NN 0 hNNN

⎞
⎟⎟⎟⎟⎠, (17)

FIG. 6. Honeycomb lattice with the νi j convention.

with

hNN = t
[
1 + ei

√
3ky + ei

√
3

2 ky e−i 3
2 kx

]
,

hNNN = 2t2

[
2 cos

(
3

2
kx

)
sin

(√
3

2
ky

)
− sin(

√
3ky)

]

being the nearest-neighbor and the next-nearest-neighbor
terms with amplitudes t and t2, respectively. Here an asterisk
(*) simply denotes the complex conjugation.

To reproduce the zigzag edge states, we choose an impurity
potential localized on two adjacent rows of atoms correspond-
ing to two different sublattices:

V = U

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ (18)

(see Appendix D for more details).

0 π√
3

2π√
3

ky

−1

0

1

E

FIG. 7. Energy spectrum obtained by an exact diagonalization of
the Hamiltonian in Eq. (16) defined on a strip with zigzag edges.
We set t = 1 and t2 = 0.03. Note the formation of dispersing topo-
logical edge states in the same interval in which regular zero-energy
nondispersing edge states form for a regular zigzag edge graphene
nanoribbon.

115405-5



PINON, KALADZHYAN, AND BENA PHYSICAL REVIEW B 101, 115405 (2020)

FIG. 8. The average correction to the spectral function due to the
line impurity for the same energy range and momentum values as
in Fig. 7. Hopping amplitudes are taken to be t = 1, t2 = 0.03, and
we consider U = 1 in the left panel and U = 100 in the right panel.
Note the formation of impurity states becoming edges states at large
values of the impurity potential.

In order to visualize the impurity-induced states, in Fig. 8
we plot the average correction to the spectral function due to
the impurity, as defined in Eq. (9),

δN (ky, E ) =
∫

dkx

Lk
δA(kx, ky, E ), (19)

for the same range of ky as the one considered in Fig. 7.
For a weak impurity, i.e., U = t = 1, the impurity states

appear as a distinct band at energies concentrated mostly
outside of the gap. We expect that the impurity bound states
will evolve into edge states and acquire the same properties
(i.e., the same momentum dispersion) as the edge states de-
rived previously using numerical methods, when the impurity
strength U goes to infinity. Indeed, for a stronger impurity
potential U = 100, the impurity-induced spectral function
exhibits subgap states with the same dispersion as the ones
derived via exact diagonalization and depicted in Fig. 7. The
agreement between the two methods is remarkable, confirm-
ing the validity of our analytical approach towards finding the
edge states of a simple topological insulator system.

While here we consider only zigzag edges, in Appendix D
we have also considered the case of an impurity localized
only on one row of atoms, which splits the systems into two
subsystems with different edges, one with a zigzag edge and
one with a bearded edge. We expect that we will recover two
distinct sets of edge states, and in Appendix D we show that
this is indeed the case.

V. CHERN INSULATOR

Below we consider the simplest lattice model defining a
Chern insulator

Hk = t sin kxσx + t sin kyσy

+ B(2 − M − cos kx − cos ky)σz, (20)

where we set the lattice constant to unity and t = 1. Here
k ≡ (kx, ky), and σ = (σx, σy, σz ) are the Pauli matrices.
The subspace in which they act may be very general and
depends on the given model; for example, in a lattice
model with two orbitals per site, s and p, the σ matri-
ces act in the orbital subspace. The above model yields
topologically nontrivial phases for M ∈ (0, 2) ∪ (2, 4) (see
Ref. [3]).

In what follows we introduce a linelike impurity at x =
0 described by the potential Vimp(x) = V δ(x)I, with V → ∞
and I being the 2 × 2 identity matrix. In this limit the T matrix
can be written as

T (ky, iωn) = lim
V →∞

[
I − V

∫ π

−π

dkx

2π
G0(kx, ky, iωn)

]−1

V

= −
[∫ π

−π

dkx

2π
G0(kx, ky, iωn)

]−1

. (21)

We compute the integral in Eq. (21), setting B = M = 1
for the sake of simplicity. We note that the calculation can
be performed for arbitrary values of B and M. Thus, we
have

∫ π

−π

dkx

2π
G0(kx, ky, iωn) = 1

4 sin2 ky

2

1√
(iωn)2 − 1

√
(iωn)2 − 5 + 4 cos ky

×
{

[(iωn)2 − 2 cos ky + cos 2ky −
√

(iωn)2 − 1
√

(iωn)2 − 5 + 4 cos ky]σz

+ 4 sin2 ky

2
(iωnσ0 + sin kyσy)

}
. (22)

Plugging Eq. (22) into Eq. (21), we obtain the T matrix,
which in turn defines the perturbed GF given by Eq. (1).
Note that the poles of the T matrix obtained by taking
iωn → E + iδ, with δ → +0, are given by E = ± sin ky for
ky ∈ [−π/2, π/2], corresponding to two chiral edge modes
(cf. Ref. [33]). For the sake of brevity, we leave the derivation
of the poles of the T matrix to Appendix C.

To verify our findings, in Fig. 9 we plot the average
correction to the spectral function defined in Eq. (9) as a
function of E and ky. As expected, we can see the bulk states
E = ±1, originating from the poles of the bare Green’s func-
tion and corresponding to the eigenvalues of the Hamiltonian
in Eq. (20) computed for B = M = t = 1, kx = 0. More im-
portantly, we can identify also the two counterpropagating
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FIG. 9. The average correction to the spectral function of the
Chern insulator with a linelike impurity potential. The bulk bands are
visible at E = ±1, whereas the edge modes disperse as E = ± sin ky,
when ky ∈ [−π/2, π/2]. We set B = M = t = 1 and V = 100.

chiral edge modes of the Chern insulator crossing at ky = 0,
whose dependence on ky is consistent with the fully analytical
form above. This demonstrates the strength of our approach
to recover fully analytical results for the edge states of certain
models for which the unperturbed Green’s function in real
space can be obtained in an analytical closed form.

VI. CONCLUSIONS

We have generalized the technique to obtain boundary
modes, introduced in Ref. [24], to calculate the surface
Green’s functions of an arbitrary three-dimensional system,
and we have applied it to calculate the surface Green’s func-
tions for Weyl semimetals and recovered the corresponding
Fermi-arc states. We have also shown that the technique in
Ref. [24] can be applied to other topological systems, such
as topological insulators. Furthermore, we have demonstrated
that it functions also for systems with more than one sublattice
and that this method can be easily employed to study bound-
ary modes in lower dimensions. In particular, using linelike
impurities, we have applied the formalism to derive the helical
edge states of the Kane-Mele model and the chiral edge states
of a Chern insulator. For the latter we have shown that using
this formalism a full analytical form can be obtained for the T
matrix, and analytical expressions for the energies of the edge
states can be recovered.
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APPENDIX A: DERIVATION OF THE T -MATRIX
MOMENTUM LIMITS OF INTEGRATION FOR A

HONEYCOMB LATTICE

While for a square or cubic lattice there is no subtlety
concerning the integration limits, for the honeycomb lattice
this is much subtler. We will start with writing down the

form of the contribution of the impurity potential to the
Hamiltonian, such as it has to be written in the continuum.
We will start with a row of impurities localized on A atoms,
but the conclusions do not depend on the type of impurity we
consider:

δHimp =
∫

dr V (r), (A1)

where the integral is performed over the entire space, with

V (r) = Uρ(r), ρ(r) =
∑

j

δ
(
r − RA

j

)
a†

j a j, (A2)

where the sum is performed over a row of lattice unit cells,
each unit cell is denoted by the index j (see Eq. (24) in
Ref. [34]), and Rj = ja

√
3 (see Fig. 9), with the lattice

constant a having been set to 1. The a†
j and a j operators

describe the formation and annihilation of electrons at site j;
they no longer live in the continuum but on the lattice, and as
such they are defined as (see Eq. (21) in Ref. [34])

a j =
∫

k∈BZ
dk e−ik·RA

j ak, (A3)

where
∫

k∈BZ ≡ ∫
BZ

d2k
SBZ

, with SBZ = 8π2

3
√

3
. In order to use the

momentum-space T -matrix formalism we need to write δHimp

in momentum space:

δHimp = U
∫

dr
∑

j

δ
(
r − RA

j

) ∫
k∈BZ

∫
k′∈BZ

× dkdk′ ei(k−k′ )·RA
j a†

kak′

= U
∑

j

∫
k∈BZ

∫
k′∈BZ

dkdk′ ei(k−k′ )·RA
j a†

kak′

= U
∑

j

∫
k∈BZ

dkxdky

∫
k′∈BZ

dk′
xdk′

y ei(ky−k′
y )(

√
3 j)a†

kak′

= U
2π√

3

∑
n

∫
k∈BZ

dkxdky

∫
k′∈BZ

dk′
xdk′

y

× δ

(
ky − k′

y + n
2π√

3

)
a†

kak′ . (A4)

Since both k and k′ are in the first Brillouin zone (BZ),
the only possibilities for n are 0,1, and −1. It appears that
implementing this constraint is quite subtle; however, things
get much simpler if we deform the first BZ and instead we
consider a rectangle with − 2π

3
√

3
< ky < 4π

3
√

3
and −2π/3 <

kx < 2π/3. This is allowed since ak+Qμν
= ak , where Qμν are

all the reciprocal basis vectors (see Ref. [35]; in the tight-
binding basis considered here the same relation is valid also
for the B atoms [34]). Under this construction it is clear that
the only possible solution for n is n = 0, and thus, we have

δHimp = U
∫ 4π

3
√

3

− 2π

3
√

3

dky

2π/
√

3

∫ 2π/3

−2π/3

dkx

Lk

∫ 2π/3

−2π/3

dk′
x

Lk
a†

kx,ky
ak′

x,ky ,

(A5)
where Lk = 4π/3.
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APPENDIX B: SIGNIFICANCE OF A
POSITION-AVERAGED SPECTRAL FUNCTION

In two dimensions, in the presence of a line impurity
proportional to δ(x), the correction to the number of available
electronic states at position x and having momentum ky is

given by

δρ(x, ky, E ) = − 1

π
Im tr δG(x, x; ky; E ). (B1)

Note that since the spatial translational invariance along y is
not broken, ky is still a good quantum number.

Averaging this over the direction perpendicular to the impurity, we obtain

δN (ky, E ) ≡
∫

dx δρ(x, ky, E ) = − 1

π
Im tr

∫
dx δG(x, x; ky; E ) = − 1

π
Im tr

∫
dx G0(x, ky, E )T (ky, E )G0(−x, ky, E )

= − 1

π
Im tr

∫
dx

∫
dkx

Lk

dk′
x

Lk
eikxxe−ik′

xx G0(kx, ky, E )T (ky, E )G0(k′
x, ky, E )

= − 1

π
Im tr

∫
dkx

Lk
G0(kx, ky, E )T (ky, E )G0(kx, ky, E ) ≡

∫
dkx

Lk
δA(kx, ky, E ), (B2)

where Lk and the limits of integration are −π to π with Lk = 2π for a square lattice and −2π/3 to 2π/3 with Lk = 4π/3 for a
honeycomb one. Also,

δA(kx, ky, E ) ≡ − 1

π
Im tr δG(kx, ky; kx, ky; E ) = − 1

π
Im tr G0(kx, ky, E )T (ky, E )G0(kx, ky, E ) (B3)

is the correction to the perturbed spectral function in momentum space.

APPENDIX C: T -MATRIX POLES FOR THE CHERN INSULATOR

In order to calculate the energies of the bound states, here we calculate analytically the poles of the T matrix defined by
Eqs. (21) and (22). The latter can be found from the trace of the T matrix given by

tr T (ky, E + iδ) = − (E + iδ)[(E + iδ)2 − 2 cos ky + cos 2ky +
√

(E + iδ)2 − 1
√

(E + iδ)2 − 5 + 4 cos ky]

(E + iδ)2 − sin2 ky
, (C1)

where we replaced iωn → E + iδ, with δ → +0. We obtain
straightforwardly the zeros of the denominator, namely, E =
± sin ky. However, to make sure that the latter are poles, we
need to verify that they are not zeros of the numerator. The
trivial zero of the numerator is E = 0; we discard it below.
Thus, we need to analyze the zeros of the expression in the
square brackets:

(E + iδ)2 − 2 cos ky + cos 2ky

+
√

(E + iδ)2 − 1
√

(E + iδ)2 − 5 + 4 cos ky = 0. (C2)

We represent the complex numbers under the square roots in
the trigonometric form, and applying the limit δ → +0, we
get

E2 − 2 cos ky + cos 2ky +
√∣∣E2 − 1

∣∣ eiφ1(E )

×
√∣∣E2 − 5 + 4 cos ky

∣∣ eiφ2(ky,E ) = 0, (C3)

where we defined φ1(E ) = π
2 sgn E �(1 − E2), φ2(ky, E ) =

π
2 sgn E �(5 − 4 cos ky − E2). Since we are searching for
subgap solutions, i.e., |E | < 1, then E2 < 5 − 4 cos ky ∀ ky ∈

FIG. 10. Three different vertical impurity lines on a honeycomb lattice. From left to right: the impurity is localized on sublattice A,
sublattice B or on entire unit cells (A + B). In each case, the impurity creates a “wall” in the system (dashed lines or shaded area) along with
two boundaries. If the impurity is localized on a single sublattice (A or B), it creates one zigzag edge and one bearded edge. If it is localized
on entire unit cells it will create two zigzag edges. The matrix representation in the insets is given in the basis (cA↑, cA↓, cB↑, cB↓).
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FIG. 11. Left: energy spectrum obtained by an exact diagonaliza-
tion of the Hamiltonian in Eq. (16) defined on a strip with one zigzag
edge and one bearded edge. Right: the correction to the averaged
spectral function due to the line impurity localized on either of
the two sublattices. We consider U = 100. For both plots, hopping
amplitudes are taken to be t = 1, t2 = 0.03.

[−π, π ]. Thus, we have φ1(E ) + φ2(ky, E ) = π sgn E , and
therefore, ei[φ1(E )+φ2(ky,E )] = eiπ sgn E = −1. Equation (C3)
then becomes

E2 − 2 cos ky + cos 2ky −
√

1 − E2
√

5 − 4 cos ky − E2 = 0.

(C4)

The equation above is equivalent to solving the system

(E2 − sin2 ky) sin4 ky

2
= 0, (C5)

E2 − 2 cos ky + cos 2ky > 0. (C6)

When ky = 0, we get E = ±1 at the edge of the gap; therefore,
E = ± sin ky from the first equation. The second equation then
yields

sin2 ky − cos ky + cos 2ky > 0 ⇒ |ky| ∈
(π

2
, π

]
. (C7)

Thus, the numerator of Eq. (C1) has zeros at E = 0, and E =
± sin ky when |ky| ∈ (π/2, π ], and therefore, we conclude
that the trace of the T matrix has poles at E = ± sin ky only
when |ky| � π/2. This means that the edge modes exist only
for ky lying in the interval |ky| � π/2, and their dispersion is
given by E = ± sin ky.

APPENDIX D: IMPURITY POTENTIALS FOR THE
KANE-MELE MODEL

While working with the Kane-Mele model, we considered
three different δ-function impurities, which we illustrate in
Fig. 10 with the associated matrix representation. We see that
in order to reproduce the zigzag edge states of the Kane-Mele
model we must introduce an impurity on both A and B sites
(right panel of Fig. 10). If the impurity is localized only on
the A or B sites, it will create both a zigzag edge state and a
bearded edge state.

The formation of both zigzag and bearded edges can be
recovered using our method by applying either of the poten-
tials given in the left and middle panels of Fig. 10. Figure 11
shows the energy spectrum obtained by exact diagonalization
of the Hamiltonian on a strip with one zigzag edge and
one bearded edge, along with the correction to the averaged
spectral function due to a line impurity localized on either one
of the two sublattices. Here we have enlarged the horizontal
axis to ky ∈ [−2π/

√
3; 2π/

√
3] to see the edge states more

clearly. We recover the same dispersion as in the main text
for the zigzag edge states and obtain in addition other subgap
states which are localized on the bearded edge. We need,
however, to keep in mind the fact that in this case the two
semi-infinite systems are not fully decoupled since the bulk
Hamiltonian of the Kane-Mele model contains spin-flip NNN
terms: this leakage effect needs to be taken into account
carefully, especially when we consider the spin-properties of
the systems, but will not affect the spectrum below.
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