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Quantum control of nonlinear thermoelectricity at the nanoscale
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We theoretically study how one can control and enhance nonlinear thermoelectricity by regulating quantum
coherence in nanostructures such as a quantum dot system or a single-molecule junction. In nanostructures, the
typical temperature scale is much smaller than the resonance width, which largely suppresses thermoelectric
effects. Yet we demonstrate one can achieve a reasonably good thermoelectric performance by regulating
quantum coherence. Engaging a quantum-dot interferometer (a quantum dot embedded in the ring geometry)
as a heat engine, we explore the idea of thermoelectric enhancement induced by the Fano resonance. We develop
an analytical treatment of fully nonlinear responses for a dot with or without strong interaction. Based on the
microscopic model with the nonequilibrium Green function technique, we show how to enhance efficiency
and/or output power as well as where to locate an optimal gate voltage. We also argue how to assess nonlinear
thermoelectricity by linear-response quantities.
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I. INTRODUCTION

Thermoelectricity is a phenomenon that can directly con-
vert between heat and electric power [1–5] to make heat
engines or refrigerators possible. Though the effect has long
been known, it has recently been attracting wider interest
by its capacity to realize thermoelectric generators or energy
harvesters that convert waste environmental heat into electric
energy. Despite a few decades of extensive studies, materials
suitable for these applications are still scarce, and the de-
mand for new materials with better thermoelectricity is ever-
increasing. Thermoelectric ability is commonly characterized
by the figure of merit

ZT = S2 GT/K, (1)

where T is the temperature, S is the thermopower (or Seebeck
coefficient), G is electric conductance, and K is thermal
conductance. The index ZT is a linear-response quantity that
comes in handy for quantifying thermoelectricity. The larger
value anticipates the better thermoelectric performance. The
linear-response estimate of the achievable maximal efficiency
ηmax

L regarding the Carnot efficiency ηC is given by

ηmax
L

ηC
=

√
ZT + 1 − 1√
ZT + 1 + 1

. (2)

In addition to electrons, phonons (or photons) may also con-
tribute to the thermal conductance K without causing any
charge conduction. Because of it, heat conduction due to
phonons or photons is always harmful to high efficiency. Most
thermoelectric materials available today exhibit ZT ≈ 1–2.
Yet a larger value of ZT is preferable for viable thermoelectric
applications [6–8].

Since the ratio GT/K empirically remains almost constant
as stated by the Wiedemann-Franz law, a common strategy to
enhance ZT is to find a material with a large S, and nanoscale
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or low-dimensional materials have been seen as a promising
candidate [9]. Typically, one places a nanostructure (a quan-
tum dot or a single-molecule junction) between two thermal
reservoirs with different temperatures and electrochemical po-
tentials. The sharp resonance by their discrete levels provides
energy filtering effects, which makes nanostructures work as
either a heat engine or a refrigerator by exchanging particles
between the reservoirs [10]. Without any moving parts, one
could easily scale down such solid-state machines. They are
suitable for applications where “cost and energy efficiency
were not as important as energy availability, reliability, pre-
dictability and the quiet operation of equipment” [9]. With
biocompatible quantum dots [11], they could possibly act as
an on-chip micropower supply for medical applications in the
future. Moreover, it has been theoretically suggested that if the
DOS has an extremely sharp peak width like the δ function,
the figure of merit ZT may get huge almost unlimitedly
[12–14]. One may argue, however, that such a situation is
rather unrealistic and unphysical because the peak width of
nanostructures usually exceeds the temperature scale, largely
suppressing ZT much smaller than unity. Nevertheless, by
taking advantage of great freedom in fabrication, we expect
that wisely and effectively designed nanoscale devices may
overcome those difficulties to realize much improved thermo-
electric performance.

The purpose of the paper is to examine and demonstrate
how one can control thermoelectric transport through a nanos-
tructure by regulating quantum coherence. Unlike intrinsic
properties in bulk materials, properties of coherent transport
at the nanoscale are largely determined by the type of a
junction, which one can engineer. In this paper, taking a
quantum dot interferometer [Fig. 1(a)], we explore the idea of
thermoelectric enhancement by the Fano resonance, focusing
on the nonlinear transport regime. The idea has been pushed
forward within the linear-response theory both theoretically
[15–21] and experimentally (see Ref. [22] and references
therein), as well as regulating quantum coherence [23,24]
or the effect caused by the transmission node [25–28]. In
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FIG. 1. (a) A schematic of a quantum-dot interferometer. The
hopping along the direct conducting channel between the two reser-
voirs (the gray region) can be adjusted. (b) The setting of electrical
and thermal voltages for a heat engine: TL > TR and μL < μR.

nanostructures, however, thermoelectric phenomena usually
occur in the nonlinear regime, where the reliability of linear-
response estimates such as Eq. (2) remains uncertain [29,30].
To examine and demonstrate the viability of enhanced thermo-
electricity, we need to investigate nonlinear transport. Based
on the microscopic model of a quantum-dot interferometer,
we analyze nonlinear flows using nonequilibrium Green func-
tions, by ignoring phonon or photon contributions to the heat
conduction. Unlike the scattering theory approach, the method
allows us to incorporate strong correlation effect on the dot.
By developing analytical treatments, we will demonstrate
how one can control both linear and nonlinear transport for
better thermoelectricity. To our knowledge, this is the first of
showing such effect in nonlinear transport. Furthermore, by
comparing linear and nonlinear results, we will argue what
kind of criteria is appropriate to adjust optimal parameters, for
achieving better efficiency or power in the nonlinear regime.

The Fano resonance has been revealed in many nanos-
tructure systems (see Ref. [31] and references therein). Ex-
perimental realizations of tunable Fano resonances include
semiconductor quantum dots [32–35] or molecular junctions
[36] as well as engineered graphenes or nanoribbons [37–42].
It is noteworthy that quantum coherence in some single-
molecule junctions remains not only at low temperatures but
also at room temperature [43–49]. Our microscopic model of
the quantum-dot interferometer [Fig. 1(a)] can serve as an
effective description for those systems with asymmetric res-
onances. Many aspects of how the Fano resonances enhance
linear-response thermoelectricity have been theoretically in-
vestigated in the literature [15–21,50]. We develop an ana-
lytical treatment in both linear and nonlinear thermoelectric
responses, to provide a simple picture of how to improve
thermoelectric performance.

It is possible to manipulate quantum coherence to achieve
a better performance by amplifying either positive or negative
thermopower, but we need a different discipline of optimiza-
tion. As a concrete illustration, we focus on a setup for a
heat engine where temperature gradient drives the current flow
against the bias voltage [Fig. 1(b)]. For this case, we improve
thermoelectricity by amplifying negative thermopower by
tuning the bias voltage up to the stopping bias voltage.

In addition, we are particularly concerned with the situ-
ation where the temperature scale is much smaller than the
resonant peak width of the dot. Although this is a typical
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FIG. 2. The figure of merit ZT at kBT = 0.2γ , as a function of
μ − εd by changing (a) x = 0 (q = ∞), (b) x = 0.01 (q = 4.95),
(c) x = 0.1 (q = 1.42) and (d) x = 0.3 (q = 0.64). Red and blue
indicate corresponding thermopower is positive or negative. Green
lines show ZT at the zero-temperature limit. Dotted lines correspond
to the normalized conductance.

situation for semiconductor quantum dots, it makes the sys-
tem nonthermoelectric with ZT ∼ 0.1 if it is simply coupled
with the reservoirs, disconnecting the gray line in Fig. 1(a)
[see Fig. 2(a) below]. We demonstrate that with a small
tweaking in designing a nanostructure, one can turn such a
nonthermoelectric system into being thermoelectric, i.e., by
making and adjusting a direct conducting channel between
the reservoirs. This thermoelectric enhancement occurs in
both efficiency and output power and remains effective in the
nonlinear regime.

The paper is organized as follows. We start in Sec. II
by giving a phenomenological discussion of how the Fano
resonance can enhance the figure of merit. Section III intro-
duces the microscopic model of a quantum-dot interferometer
in nonequilibrium. The correspondence between phenomeno-
logical parameters introduced in Sec. II and microscopic
parameters is presented. In Sec. IV we review how to obtain
exactly Landauer-type formulas of nonlinear flows using the
nonequilibrium Green function approach, as well as how
to incorporate strong Coulomb interaction on the dot in a
simple, analytical way. Sections V and VI constitute our main
results: Sec. V summarizes analytical expressions of nonlinear
flows of particle, energy, and heat; Sec. VI demonstrates
and discusses how the efficiency and the power output get
enhanced by the Fano resonance in both linear and nonlinear
transport for a quantum dot with or without strong correlation.
We discuss further in Sec. VII the criteria on where in the
parameters we should look for better efficiency and output
power. Finally we conclude in Sec. VIII. In Appendices A
and B we present one integral formula and summarize linear-
response quantities for convenience.

II. PHENOMENOLOGY OF THERMOELECTRIC
ENHANCEMENT

We start by making a pedagogical exposition of how
transport affects and possibly enhances thermoelectric
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performance, especially the figure of merit ZT . One can
gain an invaluable insight into the Fano effect by examining
the linear response theory at low temperature [18], ignoring
phonon contribution and Coulomb interaction. In that case,
the scattering matrix theory can connect various transport
quantities with the transmission spectrum T (ε) at the electro-
chemical potential μ (see also Appendix B). Among them, the
Cutler-Mott formula [51] gives an estimate of thermopower
via the temperature-dependent conductance G(μ, T ) by S ≈
−(π2k2

BT/3e)d log G(μ, T )/dμ. Therefore, in the low tem-
perature, we can directly connect the figure of merit ZT with
the transmission spectrum as

ZT ≈ π2

3

[
kBT

d ln T (μ)

dμ

]2

. (3)

The formula shows that to enhance ZT , one needs to find
materials with the transmission spectrum T (ε) whose loga-
rithmic slope is sufficiently large—with strongly and asym-
metrically energy-dependent resonances around μ.

When a single level Ed of the dot coupling with reservoirs
acquires finite resonance width �, the transmission spectrum
usually takes a Breit-Wigner form,

TBW(ε) = α �2

|ε − Ed + i�|2 , (4)

where α is the asymmetric factor [see Eq. (10)]. Then,
putting it into Eq. (3), we find ZT bound from above by
(π2/3)(kBT/�)2, which occurs at μ = Ed ± �. Since a typ-
ical resonant width � in nanostructure is larger than the
temperature scale, it is quite hard to achieve ZT of the order
of unity, except for a system with an extremely sharp peak like
the Kondo resonance.

One finds the situation drastically different if T (ε) has a
node such as T (ε) ∝ (ε − εnode)k (for k > 0) [25,26]. Then
Eq. (3) suggests the figure of merit diverges at low temper-
ature when the electrochemical potential crosses the node
energy εnode as ZT ∝ (kBT )2/(μ − εnode)2. Such divergence
turns out to be cut off by finite temperature effect so that this
leads to a universal mechanism of providing an order of unity
ZT , even if � is much larger than kBT .

A great advantage of nanoscale systems is that one can
make such a transmission node or nodify the spectrum T (ε) of
any materials by manipulating how a nanostructure connects
with the surroundings, i.e., by the Fano effect [15,18,19,21].
One can control the effect by changing gate voltages along
the direct conducting channel of a quantum-dot interferometer
or rotating the side group of a single-molecule junction. This
contrasts with bulk materials whose T (ε) is seen as intrinsic,
being always proportional to the local DOS. The transmission
spectrum subject to the Fano effect is expressed by the so-
called Fano formula [52] (see also Ref. [31] and references
therein),

TFano(ε) = T0

∣∣ε − Ed + q�

ε − Ed + i�

∣∣2
, (5)

where constant T0 describes the transmission of conducting
channel and the Fano parameter q, which may be either com-
plex or real, accounts for the asymmetry of the transmission
profile. The Fano effect is an outcome of the quantum inter-
ference between the two transport channels via discrete and

continuum levels. The node of T (ε) is located at Ed − � Re q,
so that we expect an order-of-unity ZT when we set μ around
this Fano resonance dip even for kBT � �.

Although the above phenomenological argument is quite
useful to draw a rough picture of how we may expect the Fano
effect to improve thermoelectric performance, we should bear
in mind that the above is based on the linear response theory,
not to mention on the low-temperature expansion. To gauge
thermoelectric performance in nanostructures, we need to take
account of two additional factors: nonlinear transport and
interaction [30,53–56]. In the next section, we will work out
the microscopic model of a quantum-dot interferometer and
show how these phenomenological parameters constituting
TFano(ε) can be controlled in practice.

III. MICROSCOPIC MODEL

A. Microscopic Hamiltonian

As a concrete microscopic realization of a system with
the Fano resonance effect, we consider a quantum-dot inter-
ferometer [see Fig. 1(a)], a quantum dot embedded in the
ring geometry and coupling with two reservoirs (the left
and right reservoirs a = L, R) with different electrochemi-
cal potentials μa and temperatures Ta. To operate it as a
heat engine, we arrange TL > TR and μL < μR to make the
temperature voltage drive the heat flow against the potential
bias [Fig. 1(b)]. We assume a single spin-degenerate discrete
level of the dot predominantly contributes to transport. With
interaction on the dot, the model is essentially the single-
impurity Anderson model augmented by the direct hopping
between the reservoirs [53,57]. A similar model has also
been studied in examining the Rashba spin-orbit interaction
effect [58–60].

The total Hamiltonian is H = HD + HT + HA +∑
a=L,R Ha, where HD represents the dot Hamiltonian;

HT , the hopping between the dot and the leads; and HA, the
direct hopping between the left and right leads. They are
given by

HD =
∑

σ

εd n̂σ + Un̂↑n̂↓, (6)

HT =
∑

a=L,R

∑
k,σ

(Vdσa d†
σ cakσ + Vadσ c†

akσ
dσ ), (7)

HA =
∑
k,σ

(VLR c†
Lkσ

cRkσ + VRL c†
Rkσ

cLkσ ), (8)

where n̂σ = d†
σ dσ is the dot electron number operator. The

Hamiltonian Ha describes noninteracting electrons on the
lead a = L, R, which can be characterized by the DOS ρa

in the wide-band approximation. One may incorporate the
Aharonov-Bohm effect by introducing the phase factor φ of
VRdσVdσLVLR = |VRdVdLVLR| eiφ . We will present all of our
analytical results including this effect, but we will choose
φ = 0 for numerical presentation.

B. Connection with the Fano formula

To effectively regulate quantum coherence via the Fano
resonance effect, we need to identify phenomenological
parameters introduced in Sec. II in terms of microscopic
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parameters of the Hamiltonian [60]. We here summarize those
connections without waiting for details that we will present in
the next section.

Our convention of the relaxation rates γa due to the leads
a = L, R is

γ = γL + γR, γ = π |Vda|2ρa, (9)

α = 4γLγR/γ 2, (10)

where α is the asymmetric factor regarding the dot-lead
couplings. The most important parameter we utilize to con-
trol quantum coherence is the dimensionless parameter x,
defined by

x = 4π2ρLρR|VRL|2. (11)

The parameter x describes how much the direct conducting
channel contribute to transport. In the absence of the electron
correlation on the dot, we can exactly evaluate transmission
spectra T (ε) (see Sec. IV C 1 below), which confirms the
Fano formula (5). This enables us to identify phenomenologi-
cal parameters in Eq. (5) as

q =
√

α

4x
(eiφ − xe−iφ ), (12)

Ed = εd − �
√

αx cos φ, (13)

� = γ /(1 + x), (14)

T0 = 4x/(1 + x)2. (15)

The limit x → 0 corresponds to a Breit-Wigner resonance
where Ed → εd and � → γ . Another interesting limit is when
the dot-lead couplings are extremely asymmetric. In this case,
transmission T (ε) becomes an antiresonance, which means
the dot is side-coupled to the conducting channel.

In the presence of strong interaction on the dot, the role
of the Fano parameter as characterizing the asymmetric trans-
mission profile become obscure, because T (ε) gets deformed
also by the interaction. Accordingly, we make a point of using
Eqs. (12)–(15) as the definitions of our controlling parameters
(see also the argument in Sec. IV C).

IV. NONLINEAR FLOWS OF PARTICLE,
ENERGY, AND HEAT

A. Current formulas

One can evaluate nonlinear flows of the particle, the energy,
and the heat (denoted by I , JE , and JQ), using nonequilib-
rium Green functions techniques along the standard line of
treatment [53,57,61,62]. Expressions of these flows usually
involve the lesser Green function of the dot as well as the
retarded one. However, in the case where the dot-reservoir
couplings are proportional to each other, one can safely
eliminate the lesser Green function by using the conservation
laws of particle and energy [61]. Accordingly, we can express
those flows only by using the retarded Green function even
if the strong interaction is present on the dot. Choosing the
left reservoir as the reference, we can write those nonlinear

inflows (per spin) to the dot as

IL =
∫

dε

h
T (ε)[ fL(ε) − fR(ε)], (16)

JE
L =

∫
dε

2h
T (ε)ε[ fL(ε) − fR(ε)], (17)

JQ
L =

∫
dε

h
T (ε)(ε − μL )[ fL(ε) − fR(ε)], (18)

where h is the Planck constant and fa(ε) =
[e(ε−μa )/kBTa + 1]

−1
is the Fermi distribution on the lead

a with Ta and μa. They take exactly the same forms as
the Landauer-Büttiker formulas by using the effective
transmission function T (ε), which is defined in terms of the
exact retarded Green function GR(ε). For the present case of
a quantum-dot interferometer, we find T (ε) as [60]

T (ε) = T0 − Im[Tq GR(ε)�], (19)

Tq = T0 (q − i)(q∗ − i). (20)

We emphasize that while one usually derives the Landauer-
Büttiker formula assuming the one-particle scattering theory
[63–66], the above Landauer-like description of nonlinear
flows is exact, whether with or without the interaction on
the dot. All the correlation effect is encoded in T (ε), and its
validity goes beyond the one-particle approximation.

B. Efficiency and output power

To assess the nonlinear thermoelectric performance as a
heat engine, we mainly use two benchmarks: the output power
P and the thermal efficiency η. Because of our configura-
tion �μ = μR − μL > 0 and �T = TL − TR > 0, the output
power P and the efficiency η are defined by

P =
∑

a

JQ
a = (μR − μL )IL, (21)

η = P
JQ

L

= (μR − μL )IL

JQ
L

. (22)

The system works as a heat engine for a positive out-
put power P > 0 with a positive heat inflow from the left
reservoir JQ

L > 0.
Since the nonlinear flows are expressed by the Landauer-

like formulas (16)–(18), its nonlinear transport is fully con-
sistent with thermodynamics, namely, the positive entropy
flow (the second law of thermodynamics). This means
the efficiency η is bound from above by the Carnot ef-
ficiency ηC = �T/TL. Moreover, quantum mechanics also
bounds the power output P from above [56]: P should
be smaller than A0(πkB�T )2/h (with A0 ≈ 0.0321) for the
two-terminal single-level dot. Later, in Sec. VI, we make a
point of normalizing the output power P by P�T = k2

B(TL −
TR)2/4h. In this unit, this quantum upper bound corresponds
to 4π2A0 ≈ 1.267.

C. Evaluating the retarded Green function

To find nonlinear flows of a quantum-dot interferometer
according to Eqs. (16)–(18), we need the dot’s retarded Green
function GR(ε) out of equilibrium, connecting with the leads
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with different temperatures and electrochemical potentials.
While we can obtain it exactly for a noninteracting dot, we
can no longer do so if the dot involves strong interaction. For
the latter case, we will make a simple yet effective analytical
approximation suitable to describe charge-blocking physics
that the strong correlation induces.

1. Noninteracting dot

For a noninteracting dot, one finds exactly the retarded
Green function [57] to be

GR(ε) = 1

ε − Ed + i�
, (23)

where Ed and � were given in Eqs. (13) and (14) (see also
derivations by the diagram approach [53], the equation of
motion [59], or the Kelshy path integral [60]). Indeed, such
connections were established by using the above into Eq. (19).
The effective transmission T (ε) becomes the Fano formula,

T (ε) = TFano(ε), (24)

with parameters given in Eqs. (12)–(15).

2. Strong correlation on the dot and Coulomb blockade

It has been known that the strong correlation out of equi-
librium is quite hard to treat systematically. One-particle
approximations such as the Hartree-Fock theory are valid
only for weak interaction, failing to explain strong correlation
effects. Moreover, it is somewhat embarrassing to find that a
nonequilibrium perturbation calculation regarding the interac-
tion sometimes gives results that disrespect fundamental laws
such as the current conservation [67,68]. To make a sensible
assessment of the efficiency, it is crucial to abide by the
conservation laws. Below, we will use a simple yet effective
analytical approximation that conforms to the conservation of
the particle and the energy as well as the spectral sum rule of
the dot spectral function −π−1 Im

∫
dε GR

σ (ε) = 1.
We focus on the strongly correlated case where the in-

teraction U is much larger than the resonant peak width
or temperature. This is a typical situation of a quantum
dot where charge blocking physics (the Coulomb blockade
effect) dominates. Due to the strong Coulomb repulsion on
the dot, the dot energy increases by the presence of another
electron and depends on its occupation. Therefore, we may
well view its energy as εd + Un̂σ̄ (with σ̄ = −σ ). When we
ignore dynamical fluctuations of the dot number operator, this
leads to the following approximation of the retarded Green
function [69]:

GR
σ (ε) ≈

〈
1

ε − Ed − Un̂σ̄ + i�

〉
(25)

= 1 − 〈n̂σ̄ 〉
ε − Ed + i�

+ 〈n̂σ̄ 〉
ε − Ed − U + i�

. (26)

The treatment corresponds to the Hubbard I approximation,
which one can also derive within the equation-of-motion
method by decoupling higher-order correlators [70,71]. Un-
like the treatment of Ref. [72], it ignores the correlation effect
on the resonant width and the Kondo correlation that become
prominent at extremely low temperature (below the Kondo
temperature). The approximation has been shown to capture

quite well the essence of correlation effects in nonlinear
responses above the Kondo temperature, and it was recently
used to successfully explain strongly nonlinear thermal volt-
age observed in interacting quantum dots [55].

To complete the approximation, we still have to deter-
mine the average occupation 〈n̂σ̄ 〉. This is done by requiring
self-consistently the particle conservation out of equilibrium,
which we can solve analytically. For a quantum-dot interfer-
ometer, one can write the particle conservation as [60,68]

〈n̂σ 〉 = − 1

π

∫
dε f̄ (ε) Im GR

σ (ε), (27)

where f̄ is the weighted Fermi distribution defined by

f̄ (ε) =
∑

a=L,R

�′
a

�
fa(ε), (28)

�′
a = γa + xγā + 2

√
xγaγā sin φa

(1 + x)2
, (29)

with the convention φR = −φL = φ and L̄ = R, etc. Since
our problem is spin-independent, by putting Eq. (26), we can
readily find the solution nd = 〈n̂↑ + n̂↓〉 of the self-consistent
Eq. (27). (One can easily extend the treatment to the spin-
dependent case as well.) We prefer organizing the solution as

nd = 2n0(Ed )

1 + n0(Ed ) − n0(Ed + U )
, (30)

where n0(Ed ) is the average occupation of a noninteracting dot
per spin as a function of Ed . Using Eq. (A1), we can obtain its
explicit form as

n0(Ed ) =
∑

a

�′
a

�

[
1

2
− 1

π
Im ψ

(
1

2
+ za

)]
, (31)

where ψ ( 1
2 + za) is the digamma function with the argument

za = z(βa, μa − Ed ) defined by

z(β, ζ ) = β

2π i
(ζ + i�); ζ = μ − Ed . (32)

Combining all the above enables us to obtain a closed ana-
lytical approximation for a quantum-dot interferometer with
strong interaction.

Let us briefly discuss the immediate consequence of this
approximation. Using nd of Eq. (30) in Eq. (19), we find
that the effective transmission T (ε) in the Coulomb blockade
regime becomes essentially a superposition of the two Fano
resonances TFano of Eq. (5), around Ed (with weight 1 − nd/2)
and Ed + U (with weight nd/2):

T (ε) =
(

1 − nd

2

)
TFano(ε) + nd

2
TFano(ε − U ). (33)

One needs to choose phenomenological parameters according
to Eqs. (9)–(12). The form indicates that the effective trans-
mission T (ε) depends on temperatures and electrochemical
potentials of the leads through nd . Numerically speaking,
however, the dependence of nd on the thermal and electrical
bias, kB�T and �μ, is often negligible when the system is
set up for a heat engine. This is because to make it work
as a heat engine, the bias �μ must be of the same order of
kB�T and usually much smaller than �. The major role of
strong interaction in a quantum-dot interferometer is to make
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the effective transmission split into two Fano resonances with
reduced weights.

V. ANALYTICAL EXPRESSIONS OF NONLINEAR FLOWS

Having obtained the effective transmission T (ε) for either
a noninteracting or interacting dot [as in Eq. (24) or Eq. (33)],
we are now in a position to write down nonlinear flows
defined by Eqs. (16)–(18). We can reach their explicit forms
by completing the energy integrals by using the formula (A1)
in Appendix A.

A. Noninteracting quantum dot

By applying Eq. (A1) to Eqs. (16)–(18), it is straightfor-
ward to obtain analytical formulas for IL, JE

L , and JQ
L . With

ζa = μa − Ed , we organize the results as

IL = I (βL, ζL ) − I (βR, ζR), (34)

JE
L = Ed IL + J (βL, ζL ) − J (βR, ζR), (35)

and heat flow is JQ
L = JE

L − μLIL. Functions I (β,μ) and
J (β,μ) describe contributions from each leads and involve
Euler’s digamma function:

h I (β, ζ ) = T0ζ − � Im
{
Tqψ

(
1
2 + z

) − log β�
]}

, (36)

hJ (β, ζ ) = T0

(
ζ 2

2
+ π2

6β2

)
− � Im

{
Tqζ

− i�Tq

[
ψ

(
1

2
+ z

)
− log β�

]}
, (37)

with z = z(β, ζ ) in Eq. (32). When one disconnect the direct
hopping between the reservoirs (x → 0), they reduce (with
Ed → εd and � → γ ) to

h I (β, ζ ) = −α� Im
[
ψ

(
1
2 + z

)]
, (38)

hJ (β, ζ ) = α�2
[

Re ψ
(

1
2 + z

) − ln βγ
]
. (39)

B. Quantum dot with interaction

In the presence of strong correlation on the dot, Eq. (33)
tells us that the effective transmission T (ε) becomes a super-
position of the two Fano resonances, around Ed and Ed + U .
Hence nonlinear flows are also expressed by a superposition
of these two contributions:

IL =
(

1 − nd

2

)
[I (βL, ζL ) − I (βR, ζR)]

+ nd

2
[I (βL, ζL − U ) − I (βR, ζR − U )], (40)

JE
L = Ed IL +

(
1 − nd

2

)
[J (βL, ζL ) − J (βR, ζR)]

+ nd

2
[J (βL, ζL − U ) − J (βR, ζR − U )]. (41)

Using these IL and JE
L , the heat current becomes

JQ
L = JE

L − μLIL.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results to support
how one can greatly improve nonlinear thermoelectric per-
formance by regulating quantum coherence via the Fano
resonance effect. Based on the analytical results in Sec. III,
we now make a fully nonlinear analysis, focusing on the
thermal efficiency and the output power as benchmarks. For
a better heat engine, we will intend to amplify a nega-
tive thermopower, which makes us choose q > 0 and φ = 0
[see Eq. (12)]. If we aim to enhance a positive thermopower,
we have to choose q < 0 instead.

We choose to fix the temperature and electrochemical po-
tential of the left reservoir as a reference while changing those
of the right reservoir, assuming the symmetric dot-reservoir
couplings α = 1. In addition, for most calculations, we take
the temperature much smaller than the resonant width (setting
kBTL = 0.2γ ). Such a situation common in nanostructures
is certainly unfavorable to achieve high thermoelectricity
[ZT ∼ 0.1 without the Fano effect as in Fig. 2(a) below].
Nevertheless, we will demonstrate that we can improve the
thermoelectric performance 10 times as much, by adjusting
the Fano resonance effect.

We deliberately present all the results in a way that one
can easily compare between linear and nonlinear responses.
For convenience, we summarize the explicit forms of linear-
response quantities as well as the Onsager coefficients in
Appendix B.

A. Noninteracting quantum dot

1. Linear responses

We start by examining linear-response quantities, focusing
the figure of merit ZT of Eq. (B8). Figure 2 shows the
figure of merit ZT at kBT = 0.2γ as a function of μ − εd

by changing the parameter x (or the Fano parameter q). Red
(blue) shade corresponds to a negative (positive) thermopower
region. The zero-temperature limit of ZT (green lines) as well
as the normalized conductance (dotted lines) is also shown
in the same figure. Because kBT is much smaller than the peak
width γ , ZT is small (≈0.11) at x = 0, but it quickly reaches
more than unity by introducing a small amount of x (ZT =
1.07 for x = 0.01, 1.64 for x = 0.1, and 0.94 for x = 0.3).
Figures 3(a) and 3(b) show the density plot of ZT as a function
of μ − Ed and x. We see, if we choose a larger value of kBT ,
ZT can get even larger. We find the value of ZT exceeds
5 at kBT = γ (not shown), though such a situation may be
hard to realize in nanostructure systems except for extremely
low-temperature Kondo regime. As argued in Sec. II, we
anticipate such enhancement around the Fano resonant node
μ − Ed ≈ −q�, which we depict by the green dashed lines
in Fig. 3. The optimal x that achieves the largest ZT (hence
the efficiency) is around x = 0.1 for kBT = 0.2γ and around
x = 0.01 for kBT = γ . The optimal value of x depends on
kBT/γ and decreases with increasing kBT/γ .

Figures 3(c) and 3(d) show the density plot of the linear-
response estimate of the maximal output power Pmax in
the unit of P�T = (kB�T )2/4h. The quantity is nothing but
hGS2/k2

B = K2
1/K0, discussed in Appendix B [see Eq. (B11)].

We find the maximal achievable power Pmax is less sensitive
to the value of kBT/γ . Comparing Figs. 3(a) and 3(c) or
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(a) (b)

(c) (d)

FIG. 3. Density plots of the figure of merit ZT and the linear-
response estimate of the maximal power Pmax, as a function of μ −
εd and x. (a) ZT at kBT = 0.2γ , (b) ZT at kBT = γ , (c) Pmax at
kBT = 0.2γ , (d) Pmax at kBT = γ . Green dashed lines specify the
location of the Fano node.

3(b) and 3(d), we see that the optimal sets of parameters
(x, εd − μ) to maximize (ZT ) or Pmax differs, but they are
not so far apart when x is finite. We can recapitulate the
linear-response performance by drawing the power-efficiency
diagram in Fig. 4. We see that introducing x helps drastically
enhance it in both cases kBT = 0.2γ and kBT = γ .

2. Nonlinear responses

We now examine how nonlinear thermoelectric perfor-
mance can be possibly improved by utilizing the Fano effect
or the parameter x. The analysis of linear-response quantities
tells us what parameter range we should look at to improve
it. Seeing Figs. 3(a) and 3(c), we choose to examine mainly
the setting kBTL = 2kBTR = 0.2γ with x = 0.01 and x =
0.1, where the corresponding Carnot efficiency is ηC = 0.5.
Figures 5 shows density plots of nonlinear efficiencies η

(a) (b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.05

0.10

0.15

0.20

0.25

Power
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

Power

FIG. 4. Linear-response estimate of the power-efficiency dia-
gram at (a) kBT = 0.2γ and (b) kBT = γ , by changing x: x = 0.0
(red), x = 0.01 (green), x = 0.1 (blue), and x = 0.3 (orange).

(a) (b)

(c) (d)

FIG. 5. Evolution of nonlinear efficiencies η/ηC and the output
powers P by changing gate and bias voltages. The setting is kBTL =
2kBTR = 0.2γ (with ηC = 0.5). We normalize P by P�T . (a) η/ηC at
x = 0.01; (b) η/ηC at x = 0.1; (c) P at x = 0.01; (d) P at x = 0.1.

(modulo ηC) and output powers P (modulo P�T ) for x = 0.01
(a, c) and x = 0.1 (b, d). We find the maximal values of the
efficiencies reaches 0.20ηC (for x = 0.01) or 0.25ηC (for x =
0.1), exceeding their linear-response estimates. For the case of
x = 0.01, one sees that the settings of gate and bias voltages
for maximizing either the efficiency or the output power are
irreconcilable. For instance, at the gate voltage achieving the
highest efficiency, its output power almost vanishes, as was
argued in Ref. [73]. For the case of x = 0.1, however, the
two conditions are more compatible, and both a higher η

and a larger P are achieved in comparing with x = 0.01.
The power-efficiency diagrams in Fig. 6 clearly show this
difference in their behaviors. We see that for the case of
x = 0.1, the efficiency and the output power are well balanced
for a finite range of the gate voltage μL.

(a) (b)

0.00 0.05 0.10 0.15
0.00

0.05

0.10

0.15

0.20

Power
0.0 0.1 0.2 0.3 0.4

0.00

0.05

0.10

0.15

0.20

0.25

Power

FIG. 6. Power-efficiency diagrams of Fig. 5. Color lines corre-
spond to the evolution by changing bias voltage with a fixed gate
voltage, and dashed lines correspond to the one by changing the gate
voltage with a fixed bias voltage. (a) x = 0.01; (b) x = 0.1.
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(a) (b)
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FIG. 7. Comparison of the power-efficiency diagrams at different
kBTR. Other parameters are the same with Figs. 5 and 6. The power
output is normalized by P�T for both cases. (a) TR = 0.5TL (ηC =
0.50); (b) TR = 0.05TL (ηC = 0.95).

To attain even higher efficiency and output power, one
may place a system subject to a larger temperature difference,
because the linear-response theory predicts the efficiency pro-
portional to ηC and the power output, to η2

C , though nonlinear
effects may well suppress such behavior. We expect, however,
the present thermoelectric enhancement is likely to survive
for a large temperature difference because it is a universal
mechanism due to the Fano resonance effect (see Sec. II).
Figures 7(a) and 7(b) compare the power-efficiency diagrams
between the two settings: (a) kBTL = 2kBTR = 0.2γ (with
ηC = 0.5), and (b) kBTL = 20kBTR = 0.2γ (with ηC = 0.95).
By normalizing the efficiency η by ηC , and the output power
P by P�T , we can directly compare those diagrams with
Fig. 4(a). We first notice that the linear-response estimate
reasonably captures the overall tendency for each x in this
fully nonlinear regime. There is a noticeable saturation in
the highest efficiency and a severe reduction of the output
power though. We can attribute those to nonlinear thermal
effects, which we will discuss further in Sec. VII. Comparing
with the thermoelectric performance at x = 0, the enhance-
ment effect due to finite x is significant. For the case of
ηC = 0.5, the power efficiency improves from (Pmax, ηmax) =
(0.11P�T , 0.02ηC ) at x = 0 to (0.40P�T , 0.25ηC ) at x =
0.1 or (0.54P�T , 0.20ηC ) at x = 0.3; for the case of ηC =
0.95, from (Pmax, ηmax) = (0.06P�T , 0.015ηC ) at x = 0 to
(0.21P�T , 0.20ηC ) at x = 0.1 or (0.31P�T , 0.18ηC ) at x =
0.3. The efficiency improves more than 10 times, while the
output power gets amplified nearly five times.

B. Quantum dot with interaction

As argued in Sec. IV C 2, we incorporate the strong
interaction on the dot in the effective transmission by Eq. (33).
Figure 8 illustrates how T (ε) describes the Coulomb block-
ade peaks around μ − εd = Ed and Ed + U [Fig. 8(a)] and
its deformations by the Fano resonances [Fig. 8(b)]. Since
nonlinear flows become a superposition of two Fano-type
contributions, as in Eqs. (40) and (41), we can still apply
much of the previous argument given for a noninteracting
dot to an interacting dot. That means we expect enhanced
thermoelectricity by the Fano resonance in an interacting dot
as well.

Figures 9 show the density plots of the efficiency and
the output power as a function of gate and bias voltages by
changing U/γ = 2, 4. For a better comparison, we use the

�4 �2 0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(a)

�4 �2 0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(b)

FIG. 8. Effective transmission T (μ) for an interacting dot as a
function of μ − εd by changing U : U/γ = 0 (dashed gray lines), 2
(red lines), and 4 (blue line). The results are shown for (a) x = 0 and
(b) x = 0.1.

same color scheme for different values of U . As one sees in
Fig. 9, the Fano resonance dominantly affects only one of the
two Coulomb blockade peaks to enhance both the efficiency
and the output power there (see also Fig. 10). Simultaneously,
we notice that the highest efficiency decreases with increasing
U , suggesting strong interaction is rather detrimental to
efficiency. The power-efficiency diagrams (Fig. 10) clarify
this point. For a fixed U , we see both the efficiency and the
output power greatly enhanced by introducing finite x, as in
a noninteracting dot. With U = 2γ , we have (Pmax, ηmax) =
(0.08P�T , 0.02ηC ) to (0.24P�T , 0.12ηC ) at x = 0.1
[Fig. 10(a)]. However, the efficiency at x = 0.1, which is
most enhanced, gets suppressed by increasing U . One may
understand it from the form of the effective transmission
(33). Since the transmission peak is split into two and and
the average occupation around the Fano resonance gets

(a) (b)

(c) (d)

FIG. 9. The evolution of the efficiency η/ηC and the power
output P at x = 0.1 by changing U at kBTL = 2kBTR = 0.2γ with
ηC = 0.5. The power P is normalized by P�T . (a) η/ηC at U = 2γ ;
(b) η/ηC at U = 4γ ; (c) P at U = 2γ ; (d) P at U = 2γ .
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(a) (b) (c)

FIG. 10. Power-efficiency diagram by changing U/γ = 2, 4, 8.
Other parameters are the same as in Fig. 9. Shaded regions corre-
spond to the evolution for x = 0 (red), x = 0.01 (green), x = 0.1
(blue), and x = 0.3 (orange). (a) U = 2γ ; (b) U = 4γ ; (c) U = 8γ .

smaller by increasing U , the Fano enhancement plays a less
prominent role with a larger U . Such interaction-induced
suppression is also seen in the output power, but its reduction
is much more gradual.

VII. ASSESSING NONLINEAR THERMOELECTRICITY

In taking advantage of quantum control to achieve better
thermoelectricity, it is important to find an optimal set of
relevant parameters. With a fixed x, we find it crucial to
adjust the gate voltage for attaining a full enhancement due
to the Fano effect. To assess its performance in the nonlinear
transport regime, we would be better off with a quantity
that can characterize nonlinear thermoelectric performance
without delving into a detailed analysis of nonlinear flows.
The figure of merit ZT loses its authenticity beyond the
linear transport [29,30]. We here address this issue with some
speculations, based on our results.

To be concrete, we take the results of a noninteracting dot
with x = 0.01 and 0.1 (Fig. 5), where we evaluated nonlinear
flows exactly. Figure 11 shows the corresponding bias voltage
characteristic of the particle and heat flows at x = 0.1. One
finds that the particle flow depends almost linearly while
the heat flow, highly nonlinearly. We intend to exploit the
former characteristic of the particle flow in asses nonlinear
thermoelectricity.

A. Output power

Since the particle flow is almost linear regarding the bias
voltage, we can use much of the linear response theory to
investigate the output power P . For instance, we imme-
diately see that P takes its maximum regarding the bias

�0.2 �0.1 0.0 0.1 0.2
�0.04

�0.02

0.00

0.02

0.04

eV

pa
rti

cl
e

flo
w

(a)

�0.2 �0.1 0.0 0.1 0.2
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(b)

FIG. 11. Nonlinear flows of the particle and the heat at x = 0.1
as a function of bias voltage. Parameters are the same as in Fig. 5.
Different colored lines correspond to different values of the gate
voltage from μL − εd = −2.0γ to +0.5γ . (a) Particle flow IL; (b)
Heat flow JQ

L .

(a) (b)

FIG. 12. Comparison of the linear thermopower at Top with
(a) nonlinear efficiency of Fig. 5(b) and (b) the case where the
dot-reservoir couplings are highly asymmetric. (a) γL = γR = 0.5γ ;
(b) γL = 0.05γ , γR = 0.95γ .

voltage around half the stopping potential, �μ ≡ μR − μL =
�μstop/2 as in the linear response theory. What is more
important in applications is the location of the optimal gate
voltage to maximize the power. With other parameters fixed,
we can roughly estimate it by the low-temperature expansion:
P ∝ [T ′(μ̄)]2/T (μ̄) (with μL < μ̄ < μR). For a real q, we
can find an analytical solution to maximize P at

μ̄ = Ed − q̃ �; q̃ =
√

9+8q2−3
4q . (42)

By choosing μ̄ = μL, this provides an estimate of the optimal
gate voltage μL − εd ≈ −0.66γ in Fig. 5(c), or μL − εd ≈
−0.61γ in Fig. 5(d). We see that these estimates give a
reasonable agreement in both cases.

B. Nonlinear efficiency

We now consider how we find the optimal gate voltage
to achieve the highest nonlinear efficiency. As was discussed
in Sec. II, we expect the enhancement for the efficiency to
occur near the Fano node Ed − � Re q (the green dashed
line in Fig. 3), which gives −5.0γ for x = 0.01 [Fig. 5(a)]
or μ − εd ≈ −1.58γ for x = 0.1 [Fig. 5(b)]. Since one can
deduce the value of q from the observed transmission profile,
this helps us locate the optimal gate voltage.

We can make a more quantitative argument and speculate
about how it connects with a linear response quantity by
using the almost linear characteristic of IL. As one notices
immediately in Figs. 5(a) and 5(b), the gate voltage optimal
for efficiency almost coincides with what maximizes the
boundary line. The latter boundary line defines the stopping
potential �μstop when the particle flow vanishes. This implies
that the (dimensionless) nonlinear thermopower �μstop/k�T
may well characterize the nonlinear efficiency. Furthermore,
as was demonstrated numerically for the single-impurity
Anderson model [30], one can somehow predict nonlinear
thermopower well by using the linear-response estimate at the
“operating temperature” Top = (TL + TR)/2. Therefore, we
may conjecture that we can use the linear-response estimate
of the thermopower at Top to assess the nonlinear efficiency.
Figure 12(a) supports this speculation: the linear-response
estimate of �μstop at Top (red line) is compared with the
nonlinear efficiency of Fig. 5(b). We see that the maximum
of the red line detects well the location of the gate voltage
optimal for efficiency.
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FIG. 13. Linear-response estimate of the power-efficiency dia-
gram using Top, for (a) ηC = 0.50 and (b) ηC = 0.95. Parameters are
chosen to correspond with Fig. 7. (a) ηC = 0.50; (b) ηC = 0.95.

One way to understand this unexpected role of Top is due
to a low-temperature expansion of IL. The lowest order of the
temperature correction takes a form of [π2T ′(μ̄)k2

B/6](T 2
L −

T 2
R ) ∝ Top�T (with μL � μ̄ � μR). The argument suggests

that the using Top may not be limited for the symmetric
dot-bath couplings case considered in Ref. [30]. In Fig. 12(b)
we support the view by taking a look at a dot with highly
asymmetric couplings, γL = 0.05γ and γR = 0.95γ with α =
0.19. In spite of high asymmetry, we see the linear-response
estimate at Top can tell reasonably well the location of the gate
voltage optimal for nonlinear efficiency.

C. Power-efficiency diagram

Figure 13 illustrates how using the operating temperature
Top = TL(1 − ηC/2) helps improve a linear-response estimate
of the power-efficiency diagram for the parameters chosen in
Fig. 7: (a) kBTL = 2kBTR = 0.2γ (with ηC = 0.5) and kBTL =
20kBTR = 0.2γ (with ηC = 0.95). Comparing with Fig. 4(a)
(with ηC = 0), we see the linear-response estimate with using
Top (Fig. 13) much improved in predicting the behavior of
Fig. 7, especially regarding the output power. We find this
way of the linear-response estimate of nonlinear thermoelec-
tricity useful for finding an optimal setting of nonlinear ther-
moelectric performance, even in the fully nonlinear regime
ηC = 0.95.

VIII. SUMMARY

We have developed a theory for enhancing the thermoelec-
tric performance (efficiency and power) when a nanostructure
acts as a heat engine. We have demonstrated that even if the
temperature is much smaller than the resonant width, which is
unfavorable for good thermoelectricity, one can still achieve
a reasonably good thermoelectric performance by regulating
quantum coherence via the Fano effect. Such thermoelectric
enhancement stays effective in fully nonlinear regimes. We
have shown that such thermoelectric enhancement is viable
in fully nonlinear responses. With appropriate parameters, the
efficiency improves up to 10 times and the power nearly 5
times (Figs. 7 and 10). We have also estimated the optimal
gate voltage that maximizes nonlinear efficiency or power.
Furthermore, we argued the significance of the linear ther-
mopower at Top along assessing nonlinear efficiency (Fig. 13).
We believe quantum control by the Fano effect is a promising,
universal approach that helps thermoelectric materials exhibit

an even better thermoelectric performance, as well as turn
mediocre materials into thermoelectric.
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APPENDIX A: INTEGRAL FORMULA

We use the following integral formula to evaluate the
energy integrals that appear in nonlinear flows:

∫ ∞

−∞

dε

(ε − Ed + i�)[eβ(ε−μ) + 1]

=
∫ μ

−∞

dε

ε − Ed + i�
+ ψ

(
1

2
+ z

)
− log z, (A1)

where ψ ( 1
2 + z) is Euler’s digamma function and the parame-

ter z is defined in Eq. (32). One can derive Eq. (A1) in various
ways, e.g., by summing up the Sommerfeld expansion up to
infinite order (see also Ref. [74], Appendix D). The first term
on the right-hand side corresponds to the zero-temperature
contribution. It diverges logarithmically but will be canceled
out in evaluating flows.

APPENDIX B: LINEAR RESPONSE QUANTITIES

In this Appendix, we collect the results of the linear-
response theory and connect them with the Onsager coef-
ficients. They can be obtained by expanding our nonlinear
results regarding small bias and thermal gradient. Let us
introduce the dimensionless Onsager coefficients Kn (for n =
0, 1, 2), which are defined by

Kn = βn
∫

dε T (ε)(ε − μ)n [− f ′(ε)]. (B1)

Within the linear response theory, one can express flows of
particle and heat as

h

(
IL

βJQ
L

)
=

(
K0 K1

K1 K2

)(
μLR

kBTLR

)
, (B2)

if μLR = μL − μR and TLR = TL − TR are small. We can read-
ily evaluate Kn as

K0 = T0 + β�

2π
Re

[
Tq ψ ′

(
1

2
+ z

)]
, (B3)

K1 = −β� Im

{
Tq

[
1 − zψ ′

(
1

2
+ z

)]}
, (B4)

K2 = π2

3
T0 + 2πβ� Re

{
Tq

[
z − z2ψ ′

(
1

2
+ z

)]}
. (B5)

We note that we straightforwardly restore the results of
the Sommerfeld expansion by seeing K0 ≈ T (μ), K1 ≈
π2

3 (kBT )T ′(μ), and K2 ≈ π2

3 T (μ) at low temperatures.
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In terms of these dimensionless Onsager coefficients Kn,
standard linear-response quantities are given by

G = e2

2π h̄
K0, K = k2

BT

2π h̄

(
K2 − K2

1

K0

)
, (B6)

S = −kB

e

K1

K0
, � = −kBT

e

K1

K0
. (B7)

Therefore the figure of merit ZT becomes

ZT = GT

K
S2 = K2

1

K0K2 − K2
1

. (B8)

When one uses the above linear response theory with
choosing �μ = μRL > 0 and �T = TLR > 0, one finds the
stopping bias potential (or the open circuit potential) that
makes the particle flow vanish is given by

�μstop = −e S�T = K1

K0
kB�T . (B9)

According to Eq. (21), the output power P becomes

P = I�μ = (−K0�μ + K1kB�T )
�μ

h
, (B10)

which we can maximize at �μ = �μstop/2 as

Pmax = GS2

4
(�T )2 = (kB�T )2

4h

K2
1

K0
. (B11)

By introducing v = �μ/�μstop, one can simply write the
ratio as P/Pmax = 4v(1 − v).

The linear-response efficiency ηL is also defined by
Eq. (22). After some manipulation, we can write it as

ηL

ηC
= v(1 − v)

1 + (ZT )−1 − v
. (B12)

Accordingly, the efficiency at the maximal power (v = 1/2)
is equal to

ηL(Pmax) = ηC

2

ZT

ZT + 2
. (B13)

We can maximize ηL by changing 0 < v < 1. The maxi-
mal value ηmax

L is given by Eq. (2), when one chooses v =
(1 + ηmax

L /ηC )/2.
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