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Majorana bound state in the continuum: Coupling between a Majorana bound state and a quantum
dot mediated by a continuum energy spectrum
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A quantum dot (QD) coupled to topological quantum wires is fertile ground to explore the physical properties
of Majorana bound states (MBSs). We consider a single-level QD and a MBS, both coupled to an electron
reservoir with a continuum energy spectrum. By increasing the coupling between the MBS and the metallic
contact, the MBS leaks into the continuum, modifying the local spectral properties of the QD either in the
noninteracting or the Coulomb blockade regimes. Surprisingly, regardless of the strength of the coupling between
the MBS and the continuum, the Majorana states always appear as a bound state, as long as the QD level is
resonant with the Fermi level. By applying a gate voltage in the system, we can control the QD level position
while leaving the MBS pinned to the Fermi level. This provide an interesting way to explore the physical
properties of this peculiar bound state in the continuum.
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I. INTRODUCTION

The progress of theoretical formulations and experimen-
tal techniques in condensed matter physics provides an in-
teresting playground for scientists to investigate intriguing
phenomena at low energy, commonly associated with ele-
mentary particles that would be possible solely in high en-
ergy physics [1]. An example is the possibility to observe
Majorana bound states (MBSs) that have similarities with
the original Majorana fermion, an exotic elementary particles
predicted many years ago [2]. In condensed matter, MBSs
are predicted to emerge as collective excitations in p-wave
topological superconductors (TSC) [3–5]. MBSs satisfy non-
Abelian statistics which have produced a great deal of ex-
citement because of its potential applications in quantum
computation [6–9]. After the theoretical proposal performed
by Kitaev [10], in which MBSs would emerge bound to edges
of a one-dimensional (1D) TSC [11], several experiments
have carried out the physical realization of the Kitaev model,
finding signatures of their presence through anomalies in
physical quantities measurement [12–18]. Nowadays, interest
in MBSs can be classified from two distinct (nonexclusive)
perspectives: (1) The search for an ultimate scheme to detect
MBSs, which despite the number of recent experiments re-
mains under debate, and (2) the design of reliable platforms
for manipulation of MBSs, envisioning future technological
applications as in non-Abelian quantum computation [19].
Indeed, from these early physical realizations to practical use,
a long road still has to be paved. In this context, the behavior
of MBSs in nanoscopic systems such as hybrid topological
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wires-quantum dot (QD) structures has recently gained con-
siderable attention [20].

Owing to the great flexibility to control their electronic
properties, QDs have proven to be a convenient platform to
study MBSs in condensed matter [21–26]. A first system to
detect MBS composed of a QD coupled to topological wire
was suggested by Liu and Baranger [27]. Two normal metallic
contacts also coupled to the QD served as a source and
drain used to calculate the conductance across the QD-MBS
structure. A striking half-integer conductance was obtained
across the junction when a single MBS was coupled to the
QD. Later on, it was shown that this feature is obtained
regardless of the QD energy level, resulting in a leaking of
a MBS [28] into the QD. In fact this leaking phenomena was
later observed experimentally [17].

In the setup discussed above, the MBS leaked into the QD
because they were directly coupled to each other. The reader
may ask what would happen if the Majorana mode were
not directly coupled to the dot. Furthermore, what features
will appear if the mediation is perform through a typical
experimental feature, such as a continuum of states. Our
results show that regardless of the MBS-continuum coupling
strength, the bound state character of the latter remains un-
changed [29]. As such, as far as the MBS plus the contacts
is concerned, this problem can be viewed as a bound state in
the continuum (BIC) akin to the prediction by von Neumann
and Wigner in a generic framework of engineered potential
[30] and later studied in many fermion systems (see Ref. [31]
and references therein). However, this bound state does not
represent a full fermion, as in the traditional case, it rather
corresponds to a MBS or “half fermion,” as it is commonly
referred. Hence, we refer to this state as Majorana bound
state in the continuum (MBIC). Recently, BICs have gained
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FIG. 1. Schematic representation of the model: A single level
QD (gray) and a TSW, hosting MBSs (orange) γ1 and γ2 at its
ends, coupled to a common metallic lead (green) with a continuum
spectrum. The black curve above the topological wire represents the
wave function associated to the Majorana bound states (note the
peaks at the ends).

considerable attention as they have been observed in photonic
systems. Also, motivated by the interference phenomena tak-
ing place in electronic systems in analogy with the photonic
counterpart, the presence of BICs promoted by MBS has been
studied [32,33]. Similarly, interplay between MBSs and BICs
has been proposed as a useful tool to perform applications
in quantum computing, allowing, for instance, to read/write
information through veiling/unveiling these states [34–36].
Indeed, MBSs provide a quite attractive way to produce BICs
as they are topologically protected against local perturbations
[37,38]. As a result, manipulating electronic properties of QDs
becomes much more suitable, given that the rest of the system
turns out to be almost insensitive to applied electric fields.

In this work, we propose to study the electronic properties
of a system composed of a QD and a topological supercon-
ducting wire (TSW), both connected to a common metallic
contact. The TSW is assumed to be in its topological phase,
holding MBSs at its ends, as the system is schematically
depicted in Fig. 1. Alternatively, this system can be viewed as
a QD coupled to an effective continuum exhibiting an MBSs.
By employing the Green’s function method and the equation
of motion techniques, we study the spectral and transport
properties of the system. While in the noninteracting regime
of the QD, we can access the physical properties exactly; in
its interacting regime, they are available only under certain
approximation. Here, we employ the so-called Hubbard I
approximation that is known to capture qualitatively well the
many-body physics in the Coulomb blockade regime [39].
Our results show that no matter how strong the MBS is
coupled to the continuum, the QD spectral function always
shows it as a bound state. This behavior remains unchanged
in the strong Coulomb interaction regime of the QD.

This paper is organized as follows: Section II presents
the system Hamiltonian and method used to obtain quantities
of interest; Sec. III shows the corresponding results and the
related discussion. Finally, our concluding remarks are pre-
sented in Sec. IV.

II. HAMILTONIAN MODEL AND METHOD

For the sake of completeness, the system under study
consists of a QD and an MBS located at the end of a TSW,
both connected with a common normal metallic lead, as
schematically shown in Fig. 1. The Hamiltonian of the system

can be written as

H = Hc + Hdot + Hc-dot + Hc-MBS , (1)

where the first three terms of Eq. (1) correspond to the
traditional Anderson Hamiltonian describing the QD plus the
normal metallic lead and are given by

Hc =
∑
k,σ

εkc†
k,σ ck,σ , (2)

Hdot =
∑

σ

εd d†
σ dσ + Un↑n↓ , (3)

Hc-dot =
∑
k,σ

(Vkc†
k,σ dσ + V ∗

k d†
σ ck,σ ) , (4)

where c†
k,σ

(ck,σ ) creates (annihilates) a continuum electron
with momentum k and spin σ ; d†

σ (dσ ) does it in the QD
with energy level εd , U is the electron-electron interaction,
nσ = d†

σ dσ is the number operator, and Vk represents the
tunneling matrix element between the continuum states and
the QD orbitals. The last term in Eq. (1) describes the coupling
between the MBS and the lead and is given by [27]

Hc-MBS =
∑

k

λ(ck,↓ − c†
k,↓)γ1 , (5)

in which λ represents the real coupling parameter and γ1

the MBS operator, which satisfy both γ
†
1 = γ1 and γ 2

1 = 1.
We have assumed that the Majorana mode is provided by
a long TSW that are fully polarized with spin down by an
effective magnetic field along the z direction. Hence only
electrons with spin down couple to the MBS. Moreover, it is
worth mentioning that we consider a TSW in the long-wire
limit, then the MBS placed at the opposite end, γ2, is strictly
equivalent to γ1.

We are interested in studying the influence of the MBS on
the physical properties of the QD, mediated by the continuum.
To access the relevant physical quantities we employ the
Green’s function formalism, which allows us to obtain, for
instance, the spin-resolved local density of states (LDOS)
at the QD, ρd,σ (ε) and transport properties. In terms of the
Green’s function (GF), the spin dependent LDOS is given by

ρd,σ (ε) = − 1

π
Im[〈〈dσ ; d†

σ 〉〉ε] , (6)

where 〈〈dσ ; d†
σ 〉〉ε denotes the spin-resolved retarded GF of

the QD in energy domain. In the following, we will address
the model either in the noninteracting (U = 0) or interacting
(U > 0) cases. For U > 0, it is known that one cannot obtain
an exact expression for the GF. However, approximations can
still be obtained. For instance, the so-called Hubbard I ap-
proximation is known to provide a fairly good description of
Coulomb blockade phenomena above the Kondo temperature.
Such an expression can be derived by using the equation-
of-motion technique, as discussed in Appendix. Within this
approximation, the GF acquires the form

〈〈dσ ; d†
σ 〉〉ε (7)

= ε − εd − U (1 − 〈nσ̄ 〉)

(ε − εd )(ε − εd −U ) − (ε − εd −U (1 − 〈nσ̄ 〉))�σ (ε)
,
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in which

�↑(ε) = −i	 , (8a)

�↓(ε) = −i
	

1 − M(ε)
(8b)

are the spin-resolved self-energies of the QD. In the above,
〈nσ 〉 is the occupation of the QD for a given spin σ and

	 = (πV 2/2D)
(D − |ω|) (with D being the bandwidth of
the metallic contact) represents the energy-independent hy-
bridization parameter between the continuum and QD, which
is derived in the wide-band limit (D much larger than any
other energy parameter of the system). Note that �↓(ε) is
modified by the presence of the MBSs accounted by the
function M(ε), which is given by (see Appendix)

M(ε) = −2i�

[
ε + 2i�(ε + εd )(ε + εd + U )

(ε + εd )(ε + εd + U ) + i	(ε + εd + U (1 − 〈n↑〉))

]−1

, (9)

where � = πλ2/2D is the hybridization strength between the
MBS and the continuum. Since the GF in Eq. (7) depends on
the occupation, it must be determined self-consistently.

III. NUMERICAL RESULTS

To show our numerical results, let us set the hybridization
	 as the energy unit. In the following, we will analyze the
LDOS as a function of the energy for different values of the
relevant parameters of the system, �, εd and U . We will first
discuss the result in the noninteracting case, U = 0, and next
we will address the case of U �= 0.

A. Noninteracting quantum dot (U = 0)

For U = 0, the expression for the GF [Eq. (7)] becomes
exact and acquires the form

〈〈dσ ; d†
σ 〉〉ε = 1

ε − εd − �σ (ε)
. (10)

The effect of the MBS in the QD is accounted for by the self-
energy �↓, via

M(ε,U = 0) = −2i�

[
ε + 2i�

ε + εd

ε + εd + i	

]−1

. (11)

Note that since the electron’s spins are decoupled from each
other, the spin ↑ component is not affected by the MBS.
Therefore, we focus only on the electrons with spin ↓ in the
QD. As usual, the self-energy encompasses the information
from the rest of the system by shifting the energy level of the
QD by an amount Re[�↓(ε)] and broadening the bare level
by a quantity −Im[�↓(ε)] ≡ 	eff(ε). The latter represents the
effective hybridization between the QD and continuum, mod-
ified by the MBS. For λ → 0, 	eff → 	, that is independent
of ε.

In Fig. 2 we show Re[�↓(ε)] and 	eff(ε) as a function
of ε, using εd = 0 and different values of �. First of all, it
is interesting noting in Fig. 2(a) that 	eff(ε = 0) = 0 for any
value of � �= 0. This is somewhat surprising because it results
from a destructive quantum interference—involving a “half”
fermion—and is very much similar to the case of a conven-
tional fermion in the continuum. This complete antiresonance
at ε = 0 decouples the electrons with spin ↓ of the QD from
the continuum. For |ε| 
 	 we note that 	eff tends to saturate
at different values depending on how big � is. This can be
understand analytically. In the limit �/	 
 1 and εd = 0,

Eq. (11) leads to

	eff(ε, εd = 0) = 	

2

ε2

ε2 + (	/2)2
, (12)

which is independent of �. From this equation it is easy to see
that for energies |ε| 
 	 we obtain 	eff = 	/2.

In Fig. 2(b) we show the real part of the self energy. Note
that, by virtue of the wide-band limit, Re[�↓(ε)] = 0 for
� = 0. Moreover, Re[�↓(ε = εd = 0)] = 0 for any value of
� and becomes finite for ε �= 0, but restricted to the condition
|Re[�↓(ε)]| < 	/2.

In Fig. 3 we show �↓(ε) for fixed � and different εd > 0.
In Fig. 3(a) we see that 	eff vanishes only for εd = 0. More-
over, we note that 	eff(ε = 0) → 	/2 for large εd . This is
a remarkable signature of the presence of the Majorana zero
mode in the continuum. In the limit εd 
 	, the contribution
given by the MBS to 	eff is M(ε;U = 0) = 2i�[ε + 2i�]−1.
With this we obtain

	eff(ε, εd 
 	) = 	

(
ε2

ε2 + 16�2
+ 8�2

ε2 + 16�2

)
. (13)

This clearly shows that 	eff = 	/2 as ε → 0 regardless the
value of �. Interestingly, similar to what was observed
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FIG. 2. (a) 	eff and (b) Re[�↓(ε)] as a function of the energy for
different MBS-lead couplings �. Here, the QD energy level is fixed
at εd = 0. The flat solid black curve for � = 0 reflects the wide band
limit assumed in the calculations.
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FIG. 3. (a) 	eff and (b) Re[�↓(ε)] as a function of the energy for
different QD energy levels εd . Here, the MBS-continuum coupling is
fixed at �/	 = 0.5. Note that in (a) 	eff vanishes only for εd = 0.

in Fig. 2(b), in Fig. 3(b) Re[�↓(ε)] is also limited as
|Re[�↓(ε)]| < 	/2.

The behavior of the self-energy discussed above has impor-
tant consequences in the QD LDOS, ρd (ε), calculated from
Eq. (6). This quantity is the one that is actually accessible
in experiments via transport spectroscopy. Figure 4(a) shows
LDOS as a function of ε and � for εd = 0. For � = 0 (un-
coupled MBS), we observe a broad peak placed around ε =
εd = 0. Once the coupling of the MBS is turned on (� �= 0),
the amplitude of the LDOS decreases as � increases, but the
height of the peak does not go below 1/2π	. Besides, at
ε = 0 a sharp peak is observed. This sharp peak is a direct
consequence of the vanishing effective hybridization function
due to the presence of the MBIC. It is better appreciated in
Fig. 4(b) where we show ρd along the horizontal orange lines
of Fig. 4(a). Indeed, this behavior can be understood analyt-
ically; from Eq. (10), in the limit of strong MBS coupling
(� 
 	), we can write

πρd (ε, εd = 0) = 	

2

(
1

ε2 + 	2

)
+ π

2
δ(ε). (14)

Clearly, at εd = 0 a bound state in the continuum is ob-
tained at zero energy whenever � �= 0. In Fig. 4(c) ρd is
displayed for fixed � 
 	 and different values of εd �= 0.
Note that the observed MBIC feature evolves to a situation
with an antiresonance at ε = εd for εd �= 0. Analytically, for
small values of εd , as in Fig. 4(c), we can approximate the
LDOS as

πρd (ε) ∼ 	

2

(ε + εd )2

(ε − εd )4 + ε2	2
. (15)

From this, we note that indeed there is an antiresonance at
ε = εd . We see, therefore, that tuning εd is relevant to achieve
a MBIC. At this point, we should emphasize that in this
noninteracting scenario, MBIC seen in the QD LDOS results
solely from the leaking of the MBS into the continuum. In the
following, we will see that this feature is still present in the
interacting regime of the QD.
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FIG. 4. (a) Color map of LDOS in the QD, ρd , as function of
the energy and �. The vertical solid yellow line represents the δ-
Dirac function δ(ε). ρd as a function of energy (b) for different �

values using εd = 0, and (c) for different εd values using � 
 	. In
panel (b), the curves with � �= 0 correspond to the horizontal dashed
orange lines in panel (a).

B. Interacting regime

In this subsection we study the interacting regime of the
QD, U �= 0. We focus on the Coulomb blockade regime,
to which the Hubbard approximation is reasonably good. In
contrast to the previous subsection, now the LDOS depends
on the temperature T , and we use T larger than the Kondo
temperature TK so that Kondo correlations are thermally
suppressed. According to the parameters in our model, the
Kondo temperature is estimated using Haldane expression
[40], such as kBTK ∼ 0.018	. Here we should emphasize that,
as a consequence of the Coulomb interaction, the GF for spin
σ [Eq. (7)] depends on QD occupation 〈nσ̄ 〉 given by

〈nσ 〉 = − 1

π

∫ ∞

−∞
dε Im[〈〈dσ ; d†

σ 〉〉ε] f (ε) , (16)

where f (ε) is the Fermi’s function. Therefore, it forces us to
perform a self-consistent calculation numerically. To show our
numerical result, we set U = 10 	 and carry on the numerical
calculations at kBT = 6 × 10−2	 which happens to be above
kBTK for most of the parameters used throughout this paper.
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FIG. 5. (a) 	eff and (b) LDOS for spin σ = ↓ as a function of the
energy for different �. The inset in panel (b) is the LDOS for spin
σ = ↑.

In Fig. 5 we show the effect of the MBS in the effective
hybridization function [Fig. 5(a)] and the LDOS [Fig. 5(b)]
for a fixed εd = 0 and various values of �. Figure 5(a) is
similar to what is displayed in Fig. 2(a), but now for finite U .
We observe that 	eff = 	 for � = 0 and 	eff = 0 for ε =
εd = 0, whenever � �= 0. This behavior is very similar to the
noninteracting case shown in Fig. 2(a). Again, this is a direct
consequence of the MBS leaking into the continuum, reaching
the physics quantities in the QD. The behavior of the curves
of Fig. 5(a) can be obtained analytically from Eq. (9) for large
values of �. In fact, for � 
 	, M(ε) it is independent of �.

In this limit, setting εd = 0, we can write the effective hy-
bridization as

	eff(ε) = 2	ε2(ε + U )2

4ε2(ε + U )2 + [ε + (1 − 〈n↑〉)U ]2	2
. (17)

This result clearly shows that 	eff = 0 vanishes at both ε =
0 and ε = −U . Nevertheless, no important consequence in the
ρd,σ is observed for εd = −U , since that energy is far away
from the εd = 0. Similarly to the noninteracting case, we note
also that 	eff → 	/2 for all the energies regions such as |ε| 

	,U .

The features observed for 	eff are directly related to the
LDOS of the QD, which is shown in Fig. 5(b). For the case
with unconnected MBSs, � = 0, two peaks are observed, of
the same amplitude, localized at energies ε = 0 and ε = U
due to the Coulomb blockade regime in our system. On the
other hand, for the cases with � �= 0, different modifications
are achieved in each of the mentioned peaks. The amplitude
of the peak located around ε = 0 decreases as � increases,
while at exactly ε = 0 a very narrow peak, a MBIC, arises
from the QD effective disconnection (	eff(ε = εd = 0) = 0),
which is similar to the one discussed in Sec. III A. At this
point, it is interesting to note that the peak located at ε =
U becomes narrower and increases its amplitude, although
it remains finite since 	eff does not vanish. Thus, whenever
the QD is in the Coulomb regime, the leaked MBS into the
continuum affects the LDOS substantially, in a similar fashion
as in the noninteracting case.

Taking into account the discussion above, the LDOS for
the QD for spin down can be written as

πρd,↓(ε) = 	

2

(ε + U )2(ε − (1 − 〈n↑〉)U )2

ε6 + (1 − 〈n↑〉)2U 4	2 + ε4(	2 − 2U 2) + ε2U 2(U 2 − 2(1 − 〈n↑〉)	2)
+ π

3
δ(ε) . (18)

Despite the complexity of the equation above, for the corre-
sponding occupancy, we can extract that the wide peak placed
around ε = 0 asymptotically reaches πρd,↓ → 1/2	, while
the one located at ε = U increases up to πρd,↓ → 2/	, both
in the limit � 
 	.

Before closing this section, we show how the presence of
the MBIC affects the occupation of the QD. In Fig. 6, we show
the spin-resolved occupation number in the QD as a function
of εd . From this figure, for � = 0 (solid black lines) there
is spin degeneration in the occupancy, as we expected since
the Hamiltonian is spin symmetric for this case. Allowing
coupling between the MBS and the continuum, � �= 0, the
spin symmetry brakes, and deviations are observed. As a
consequence, in Fig. 6(a) we observe a subtle oscillation of
n↑ around εd = 0 and εd = −U , better seen in the inset for
energies near εd = 0. In Fig. 6(b) we show the corresponding
curves for n↓. Here, a more interesting consequence of the
MBS is visible. Note that, while for � = 0 the occupancy
always increases as we decrease εd (same happening to 〈n↑〉),
for finite � 〈n↓〉 decreases with εd within the interval −U <

εd < 0. By noting that for a given εd in this interval, 〈n↓〉
decreases while 〈n↑〉 increases as � increases, we conclude

that there is a spin polarization in the QD. It can be interpreted
as an effective magnetic field due to the presence of the MBS
that breaks the time-reversal symmetry of the system.

IV. CONCLUSIONS

We studied a system formed by a QD coupled to the
continuum, which is connected to an MBS localized at the
end of a TSW. Considering that continuum electrons with a
particular spin down couple to the MBS, we found that the
leakage of the MBS into the continuum affects the physical
properties of the QD greatly. As a consequence of this leak-
ing, the QD becomes effectively decoupled from the rest of
the system at energies ε = εd = 0, for both interacting and
noninteracting regimes. In the interacting case, the second
peak due to Coulomb blockade, placed at ε = εd + U , is also
affected by the MBIC. It becomes narrower and increases
its amplitude as the coupling strength between MBS and
continuum increases. Besides, we have performed an analytic
treatment of the effective coupling and LDOS in the limit of
strong MBS-continuum coupling. Owing to the robustness of
the MBS against the applied electric field, MBICs provide
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function of εd , for different � values. The inset of panel (a) shows a
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an exciting way to control the QDs electronic properties
without changing the energy position of the bound state in the
continuum.
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APPENDIX: QD GREEN’S FUNCTION

In this Appendix, we show the procedure used to reach an
analytic expression for the QD retarded Green’s function in
our system. We considered the equation of motion method up
to the equations hierarchy that allows describing the Coulomb

blockade phenomena in the QD. The system Hamiltonian is
given by Eq. (1). Note that it is not symmetrical in spin degree
of freedom, since only continuum electrons with spin σ =↓
are coupled to the MBS [Eq. (5)]. The general expression for
the retarded Green’s function equation of motion in the energy
domain is given by

(ε + i0+)〈〈A; B〉〉r
ε = 〈{A; B}〉 + 〈〈[A; H]; B〉〉r

ε , (A1)

where A and B are two arbitrary operators, and 0+ an in-
finitesimal (positive) number. Throughout this section, as in
the main text, we display the energy as ε + i0+ → ε for
simplicity.

Using Eq. (A1), for spin σ =↓ electrons, calculating the
corresponding commutators/anticommutators, the first hier-
archy of equations are

(ε − εd )〈〈d↓; d†
↓〉〉ε = 1+

∑
k

V 〈〈ck,↓; d†
↓〉〉ε+U 〈〈n↑d↓; d†

↓〉〉ε,

(A2)

(ε − εk )〈〈ck,↓; d†
↓〉〉ε = V 〈〈d↓; d†

↓〉〉ε − λ〈〈γ1; d†
↓〉〉ε , (A3)

ε〈〈γ1; d†
↓〉〉ε = −2λ

∑
k′

(〈〈ck′,↓; d†
↓〉〉ε − 〈〈c†

k′,↓; d†
↓〉〉ε ) ,

(A4)

(ε + εk )〈〈c†
k,↓; d†

↓〉〉ε = −V 〈〈d†
↓; d†

↓〉〉ε + λ〈〈γ1; d†
↓〉〉ε ,

(A5)

(ε + εd )〈〈d†
↓; d†

↓〉〉ε = −
∑

k

V 〈〈c†
k,↓; d†

↓〉〉ε−U 〈〈n↑d†
↓; d†

↓〉〉ε,

(A6)

where we have suppressed the superscript r for simplicity.
As a consequence of MBS presence, an anomalous Green’s
function must be calculated. The next hierarchy of equations
is extracted from the last terms in Eqs. (A2) and (A6). They
lead to

(ε − εd − U )〈〈n↑d↓; d†
↓〉〉ε = 〈n↑〉 +

∑
k

V 〈〈n↑ck,↓; d†
↓〉〉ε +

∑
k

V 〈〈d†
↑ck,↑d↓; d†

↓〉〉ε −
∑

k

V 〈〈c†
k,↑d↑d↓; d†

↓〉〉ε , (A7)

(ε + εd + U )〈〈n↑d†
↓; d†

↓〉〉ε = −
∑

k

V 〈〈n↑c†
k,↓; d†

↓〉〉ε +
∑

k

V 〈〈d†
↑ck,↑d†

↓; d†
↓〉〉ε −

∑
k

V 〈〈c†
k,↑d↑d†

↓; d†
↓〉〉ε . (A8)

Up to this point, it is possible to reach the Coulomb blockade regime. Employing the Hubbard approximation, Eqs. (A7) and
(A8) can be seen as follows

(ε − εd − U )〈〈n↑d↓; d†
↓〉〉ε = 〈n↑〉 +

∑
k

V 〈n↑〉〈〈ck,↓; d†
↓〉〉ε , (A9)

(ε + εd + U )〈〈n↑d†
↓; d†

↓〉〉ε = −
∑

k

V 〈n↑〉〈〈c†
k,↓; d†

↓〉〉ε , (A10)

where we have considered
∑

k〈d†
σ ck,σ 〉 = ∑

k〈c†
k,σ dσ 〉. Replacing Eq. (A10) into Eq. (A6), we have

(ε + εd )〈〈d†
↓; d†

↓〉〉ε = −
(

1 − U 〈n↑〉
ε + εd + U

) ∑
k

V 〈〈c†
k,↓; d†

↓〉〉ε , (A11)
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thus, including this result into Eq. (A5), we obtain[
1 − V 2g̃(ε)

ε + εd

(
1 − U 〈n↑〉

ε + εd + U

)] ∑
k

〈〈c†
k,↓; d†

↓〉〉ε = λg̃(ε)〈〈γ1; d†
↓〉〉ε , (A12)

where we have defined g̃(ε) = ∑
k(ε + εk )−1. Then, the Eq. (A4) is rewritten as(

ε − 2λ2g̃(ε)

[
1 − V 2g̃(ε)

ε + εd

(
1 − U 〈n↑〉

ε + εd + U

)]−1
)

〈〈γ1; d†
↓〉〉ε = −2λ

∑
k

〈〈ck,↓; d†
↓〉〉ε . (A13)

Consequently, Eq. (A3) is expressed as⎛
⎜⎜⎝1 − 2λ2g(ε)

⎡
⎢⎢⎣ε − 2λ2g̃(ε)

1 − V 2g̃(ε)

ε + εd

(
1 − U 〈n↑〉

ε + εd + U

)
⎤
⎥⎥⎦

−1⎞
⎟⎟⎠∑

k

〈〈ck,↓; d†
↓〉〉ε = V g(ε)〈〈d↓; d†

↓〉〉ε , (A14)

defining g(ε) = ∑
k(ε − εk )−1. On the other hand, after replacing Eq. (A9) into Eq. (A2) we obtain

(ε − εd )〈〈d↓; d†
↓〉〉ε = 1 + U 〈n↑〉

ε − εd − U
+

(
1 + U 〈n↑〉

ε − εd − U

)∑
k

V 〈〈ck,↓; d↓〉〉ε , (A15)

which allows a closed solution for the set of equations. Finally, performing algebraic manipulations we have

〈〈d↓; d†
↓〉〉ε = ε − εd − U (1 − 〈n↑〉)

(ε − εd )(ε − εd − U ) − (ε − εd − U (1 − 〈n↑〉))V 2g(ε)

1 − M(ε)

, (A16)

where

M(ε) = 2λ2g(ε)

[
ε − 2λ2g̃(ε)(ε + εd )(ε + εd + U )

(ε + εd )(ε + εd + U ) − V 2g̃(ε)(ε + εd + U (1 − 〈n↑〉))

]−1

. (A17)

At this point, it is interesting to note that the quantities V 2g(ε) and λ2g(ε) can be treated within the wide-band approximation.
In this limit, they are energy independent and fulfill electron-hole symmetry, such as

V 2g(ε) = V 2g̃(ε) = −i	 , (A18)

λ2g(ε) = λ2g̃(ε) = −i� . (A19)

Then, the QD Green’s function for σ =↓ is given by

〈〈d↓; d†
↓〉〉ε = ε − εd − U (1 − 〈n↑〉)

(ε − εd )(ε − εd − U ) − (ε − εd − U (1 − 〈n↑〉))�↓(ε)
, (A20)

where �↓(ε) = −i	/[1 − M(ε)] and the whole MBS contribution is embedded in the function

M(ε) = −2i�

[
ε + 2i�(ε + εd )(ε + εd + U )

(ε + εd )(ε + εd + U ) + i	(ε + εd + U (1 − 〈n↑〉))

]−1

. (A21)

For the component σ =↑, we note that up to the hierarchy considered in this paper, there is no MBS explicit contribution in the
corresponding Green’s function. Therefore, it can be obtained from Eq. (A20) by fixing λ = � = M(ε) = 0, then �↑(ε) = −i	
and

〈〈d↑; d†
↑〉〉ε = ε − εd − U (1 − 〈n↓〉)

(ε − εd )(ε − εd − U ) − (ε − εd − U (1 − 〈n↓〉))�↑(ε)
. (A22)
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