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Understanding (and controlling) hyperfine interactions in semiconductor nanostructures is important for
fundamental studies of material properties as well as for quantum information processing with electron, hole,
and nuclear-spin states. Through a combination of first-principles density-functional theory (DFT) and k · p
theory, we have calculated hyperfine tensors for electrons and holes in GaAs and crystalline silicon. Accounting
for relativistic effects near the nuclear core, we find contact hyperfine interactions for electrons in GaAs that
are consistent with Knight-shift measurements performed on GaAs quantum wells and are roughly consistent
with prior estimates extrapolated from measurements on InSb. We find that a combination of DFT and k · p
theory (DFT+k · p) is necessary to accurately determine the contact hyperfine interaction for electrons at a
conduction-band minimum in silicon that is consistent with bulk Knight-shift measurements. For hole spins in
GaAs, the overall magnitude of the hyperfine couplings we find from DFT is consistent with previous theory
based on free-atom properties, and with heavy-hole Overhauser shifts measured in GaAs (and InGaAs) quantum
dots. In addition, we theoretically predict that the heavy-hole hyperfine coupling to the As nuclear spins is
stronger and almost purely Ising, while the (weaker) coupling to the Ga nuclear spins has significant non-Ising
corrections. In the case of hole spins in silicon, we find (surprisingly) that the strength of the hyperfine interaction
in the valence band is comparable to that in the conduction band and that the hyperfine tensors are highly
anisotropic (Ising) in the heavy-hole subspace. These results suggest that the hyperfine coupling cannot be ruled
out as a limiting mechanism for coherence (T ∗

2 ) times recently measured for heavy holes in silicon quantum
dots.

DOI: 10.1103/PhysRevB.101.115302

I. INTRODUCTION

Semiconductor nanostructures are essential to confine spin
qubits in quantum dots [1,2] and to implement other spintronic
devices [3]. From the perspective of quantum transport and
low electronic noise, a near-ideal platform for these devices
is provided by high-mobility heterostructures based on GaAs
[4,5]. However, every stable isotope of Ga and As has a
finite nuclear spin, resulting in a coupling of the electron (or
hole) spins to a large reservoir of nuclear spins through the
hyperfine interaction [6–8]. If the hyperfine interaction is not
fully understood and controlled, this interaction may lead to a
randomization of the spins in spintronic or spin-qubit devices.
To avoid the effects of the strong hyperfine interactions for
electrons in GaAs, there have been many recent studies of
alternative devices based on electron spins in silicon, for
which the majority isotope has no nuclear spin or based on
hole spins in either GaAs or silicon, for which the hyperfine
couplings are weak.

A key advantage of hole spins over electron spins in
GaAs is that holes have a weaker hyperfine coupling [9–13].
Because the hole hyperfine interaction is anisotropic, it may
be possible to further reduce or eliminate the effects of the
hole hyperfine coupling through motional averaging [9,14–
16]. An additional benefit of hole spins over electrons is
a stronger spin-orbit coupling, leading to robust all-electric

hole-spin manipulation [17–21]. This advantage afforded by
a stronger spin-orbit coupling does not necessarily come at
the cost of significantly shorter spin-relaxation (T1) times in
confined nanostructures [22,23]. Despite these advantages, the
electrical instability of p-doped GaAs nanostructures [24–26]
has made experimental investigations of these systems diffi-
cult. Recent advances in fabricating few-hole quantum dots
from undoped samples [27] have now opened up a greater
range of possibilities for hole-spin devices. Undoped devices
have shown Pauli spin blockade [28–30], and measurements
have been performed revealing hole-spin-relaxation times (T1)
[30], g factors [29], and spin-orbit couplings [31]. Despite
these advances, many details of the hyperfine couplings for
holes in GaAs and silicon remain largely unknown.

Electron spins in silicon quantum dots have now reached
a level of control and coherence that makes them serious
contenders for elements of near-future quantum processors
[32–35]. Because of the small abundance (∼4.7%) of spinful
29Si nuclei in natural silicon, electron (and hole) spins in
silicon nanostructures interact more weakly with the nuclear-
spin bath. Coherence times for electron spins in natural silicon
quantum dots are nevertheless often limited by the hyperfine
interaction [36]. Isotopically purified 28Si has been used as
an alternative nuclear-spin-free host [37–42], but even in
these systems, the hyperfine coupling to the few remaining
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(residual) 29Si nuclear spins can have a measurable effect on
a quantum-dot-bound electron spin [43,44].

Removing the nuclear spins from the host material sup-
presses decoherence, but it also precludes the potential ben-
efits of a finite hyperfine interaction. These benefits include
addressing the nuclear spins and using them as additional
qubits for a quantum register [45,46] or a quantum memory
[46–48], and using the nuclear spins to apply local effective
magnetic fields on the electron or hole spins to locally ma-
nipulate them [49,50]. It is therefore important to understand
the strength and properties of the hyperfine Hamiltonian for
electron and hole spins in semiconductor nanostructures. This
knowledge could allow negative effects to be suppressed
while maintaining potential advantages of the coupling with
the nuclear spins.

Knowing material-specific hyperfine parameters is also
important or required to interpret measurements of physical
quantities. These quantities include the degree of nuclear
polarization from Overhauser shift measurements [51–54],
and the nuclear spin polarization in the quantum Hall regime
[55–59].

The goal of this work is to accurately calculate the hyper-
fine parameters for electrons and holes in GaAs and silicon.
Earlier attempts at calculating hyperfine constants have relied
on estimates of the electronic density (or wave function)
based on nonrelativistic free-atom properties such as the
free-atom orbital radius [9,60–62]. Instead, here we calculate
the hyperfine parameters using all-electron density-functional
theory (DFT) accompanied by k · p theory (DFT+k · p),
accounting for relativistic effects, and fully including the
anisotropic crystalline environment in our analysis. Typically,
DFT procedures are used to calculate electronic densities. If
the electronic states under consideration can be approximated
as uncorrelated product states of spin and orbital degrees
of freedom, the density alone is sufficient to calculate the
hyperfine parameters [63]. This approach has been used to
calculate hyperfine parameters for electrons in silicon [64].
However, this procedure cannot generally be applied to states
(such as the valence-band states of GaAs and silicon) where
the spin-orbit coupling is relevant and the states are therefore
not necessarily product states. Moreover, the density alone
provides no information about the phase of the wave function.
Thus, e.g., matrix elements of the angular momentum operator
cannot generally be calculated from the density alone and
the nuclear-orbital interaction [∼L · I, see Eq. (5) below] is
often neglected [63,65–68]. In contrast, here we apply DFT
to evaluate the Kohn-Sham orbitals, which approximate the
single-particle wave functions. This provides a description of
the full quantum state (accounting for the spin-orbit coupling
and phase), so we are able to account for all terms in the
hyperfine Hamiltonian.

The hyperfine parameters for the conduction bands of
GaAs and silicon have been established experimentally
through measurements of the Knight shift. The results found
here from DFT for the conduction band of GaAs are consistent
with Knight-shift measurements in the fractional quantum
Hall regime [57,69]. For silicon, the Knight shift has been
measured in n-doped bulk samples [70]. Density functional
theory (without k · p) has been used to calculate the hyperfine
constants [64], however, the results are inconsistent with the

Knight-shift measurements of Ref. [70]. In contrast, we find
here that a combined DFT + k · p procedure yields hyperfine
constants for electrons in silicon that are consistent with the
experiments of Ref. [70]. We further apply this procedure
to the valence-band (hole-spin) states of GaAs and silicon
where we expect similarly accurate results. There have been
fewer experiments focused on the hole hyperfine interaction.
Experiments thus far have relied on extracting hole hyperfine
couplings in GaAs (and InGaAs) quantum dots through the
ratio of the Overhauser shifts for electrons and holes [10–13].
Our theoretical results are roughly consistent with these ratios.
Moreover, in silicon, we find hyperfine constants for holes
that are consistent with recent T ∗

2 times measured in silicon
quantum dots [19], suggesting those dephasing times may be
limited by hyperfine interactions.

The remainder of this paper is organized as follows: In
Sec. II we derive the hyperfine Hamiltonian in the envelope-
function approximation accounting for relativistic effects (a
finite Thomson radius) and write a projected effective hyper-
fine Hamiltonian for a nanostructure. In Sec. III we define
the hyperfine parameters for the states at the conduction-
band minima and valence-band maxima of GaAs and silicon.
In Sec. IV we describe the procedure used to evaluate the
hyperfine parameters, with the conclusions given in Sec. V.
Technical details are provided in Appendices A–F.

II. HYPERFINE INTERACTIONS IN NANOSTRUCTURES

The goal of this section is to parametrize the hyperfine
interactions for a nanostructure in terms of parameters ob-
tained from a bulk calculation. This parametrization can be
achieved within the envelope-function approximation where
the nanostructure confinement potential varies on a length
scale that is large compared to the lattice constant of the
host material. In nanostructures where the confinement has
quickly varying features on the scale of the lattice constant
(e.g., donors or acceptors in silicon with 1/r confining poten-
tials) [71], the formalism developed here cannot be applied
and other methods for calculating the hyperfine interactions
become necessary [72].

The hyperfine interaction for a many-electron sys-
tem in contact with nuclear spins Il at sites l in a
nanostructure/molecule/etc. can generally be written (setting
h̄ = 1) as

Hhf =
∑

l

γil hl · Il . (1)

Here, γil is the gyromagnetic ratio of nuclear isotope il at site
l and hl is the hyperfine field operator acting on the many-
electron spin/orbital space.

We consider only nonmagnetic semiconductors where spin
polarization of the core electrons can be neglected. In this
case, finite contributions to the hyperfine field arise only from
single-particle valence states associated with Bloch waves
close to band extrema (valleys). We further assume a nanos-
tructure defined by a slowly varying potential that modulates
a perfectly periodic crystal. This is the regime of validity for
the usual envelope-function approximation. In this regime,
we rewrite the hyperfine field in terms of a matrix h j and a
multicomponent field operator �(R). The matrix h j depends
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only on the properties of the bulk crystal and atom j (e.g.,
j = Ga, As in GaAs) within the primitive cell, and �(R)
accounts for the slowly varying electronic spin/orbital/valley
degrees of freedom, with R a lattice vector. Further restricting
to only short-range1 contributions to the hyperfine coupling
leads to a local (contactlike) form

hl � v0�
†(Rl )h jl �(Rl ), (2)

where v0 is the volume per atom [e.g., v0 = �/2 for a
primitive-cell volume � containing two atoms, as is the
case for diamond (silicon) and zinc-blende (III-V) lattices
considered below]. The matrix h jl depends only on the atomic
species jl at site l (and not the isotope il ) provided we
neglect the isotope mass effect [73], consistent with a Born-
Oppenheimer approximation. The vector Rl is the lattice
vector that locates the primitive cell containing site l (e.g.,
if l and l ′ are in the same primitive cell, then Rl = Rl ′ ). The
multicomponent field operator �(R) has elements

�ν (R) = 1√
V

eikν ·R
∑

q

eiq·Rcqν, (3)

with crystal volume V and where cqν annihilates an electron in
an envelope state with band/valley index ν, valley wave vector
kν , and |q| is small compared to any reciprocal lattice vector.
The matrix h j describes the short-range contributions to the
hyperfine field for atom j at position δ j within the primitive
cell. The associated matrix elements are

h j
νν ′ =

∫
�

d3r ψ†
ν (r)h(r − δ j )ψν ′ (r), (4)

h(r) = μ0

4π
(2μB)

(
σ

2
· ←→

T (r) + σ0
1

r3
fT(r)L

)
, (5)

fT(r) = r

r + rT/2
, (6)

where ψν (r) = eikν ·ruν (r). Here, the spinor uν (r) =
[u↑

ν (r), u↓
ν (r)]

T
describes the lattice-periodic Bloch amplitude

for the Bloch wave at wave vector k = kν . We have chosen to
normalize the Bloch amplitudes according to the convention∫

�

d3r u†
ν (r)uν ′ (r) = �

v0
δνν ′ . (7)

In Eq. (5), μ0 is the vacuum permeability, μB is the Bohr
magneton, we have taken the bare electron g factor to be
g � 2, σ is the vector of Pauli matrices, and σ0 is the 2 × 2
identity matrix. The second term in Eq. (5) describes cou-
pling of the nuclear magnetic moment to the charge current
generated by the electron angular momentum L = r × (−i∇ ).

1In general, the hyperfine field at a nuclear site includes a contri-
bution from electron density within typical atomic dimensions of the
nuclear spin (short-range contribution) and a contribution from elec-
tron density localized at distant sites (long-range contribution). The
long-range contribution is suppressed by a factor ∼(a0/a)3, where
a0 is the Bohr radius and a is a typical interatomic distance. The
long-range contribution is thus typically negligible (see Appendix C
of Ref. [9]). However, in certain cases with large orbital currents or
in materials with large g factors, the long-range contributions can be
significant (see Ref. [99]).

FIG. 1. Electron density near the As site in GaAs. The density
is found from the lowest unoccupied Kohn-Sham orbital in the con-
duction band at k = 0, ψσ

CB(r) (blue solid line, left axis). The weight
function f ′

T(r) = 4πr2δT(r) = (rT/2)/(r + rT/2)2 (gray dashed line,
right axis) is used to evaluate the contact hyperfine coupling. For As
(Z = 33), the Thomson radius is rT = Zα2a0 = 1.76 × 10−3 a0.

The factor fT(r) accounts for a cutoff at short distances on
the order of the Thomson radius for a nucleus of charge
Z|e|, rT = Zα2a0 [where α = (1/4πε0)e2/h̄c � 1/137 is the
fine-structure constant and a0 = h̄/(mecα) is the Bohr radius].
The tensor

←→
T (r) accounts for both the Fermi contact and

magnetic dipole-dipole interactions, with tensor elements

T αβ (r) = 8π

3
δT(r)δαβ + 3rαrβ − r2δαβ

r5
fT(r), (8)

δT(r) = 1

4πr2

dfT(r)

dr
, (9)

where α, β ∈ {x, y, z}. Equation (5), with (8), includes rel-
ativistic effects due to a finite Thomson radius rT 
= 0.
These relativistic effects can be significant for large-Z atoms
[74–77], so they are included here.

Relativistic effects due to rT 
= 0 have been neglected in
other approaches [63,64], but we find that these corrections
are essential for the present analysis. In particular, our cal-
culations make use of a basis of optimized single-particle
states based on the scalar relativistic equation [77,78]. The
s-like (l = 0) solutions to the scalar relativistic equation show
a weak (integrable) divergence close to a pointlike nucleus,
necessitating the cutoff in Eq. (9) (see also Fig. 1).

An additional common simplification is to neglect the
angular-momentum term in Eq. (5) (see, e.g., Refs. [63,64]).
In this approach, the hyperfine couplings are expressed purely
in terms of the electron spin density, without direct refer-
ence to the single-particle states and their associated phase
information. This procedure can be justified when calculating
the isotropic Fermi contact term due to s-like states, but for
states having a partial-wave expansion with l 
= 0 (as we
consider below for the valence bands of silicon and GaAs), the
angular-momentum term can give a significant contribution
to the hyperfine coupling. For example, for a p-like heavy-
hole state |J = 3/2, l = 1, mJ = 3/2〉 (where J represents
the total angular momentum, l gives the orbital angular mo-
mentum, and mJ is the angular momentum projected onto
the relevant quantization axis), |〈L〉|

|〈σ/2〉| = 2, indicating that the
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nuclear orbital interaction represents a significant portion of
the anisotropic hyperfine interaction [see Eq. (5)] in this case.

A. Effective Hamiltonian

We take the hyperfine interaction to be weak compared to
other electronic energy scales in a nanostructure, allowing us
to consider a projected effective Hamiltonian. When the elec-
tronic system can be well described by a finite-dimensional
quasidegenerate subspace of low-energy states {|n〉},2 we
consider the effective Hamiltonian

Hhf = PHhf P, (10)

where P = ∑
n |n〉〈n| is a projector onto the finite-

dimensional subspace {|n〉}. The effect of the hyperfine inter-
action is then determined by the matrix elements 〈n|hl |n′〉.

Equation (10) applies to an arbitrary high-dimensional
quasidegenerate space, but a common case is when the ground
space is only twofold degenerate. For such a doubly degener-
ate ground space {|n〉} = {|+〉, |−〉}, Eq. (10) gives

Hhf =
∑

l

[S · ←→
A l · Il + γil Bl · Il ], (11)

where the hyperfine tensor
←→
A l and field Bl are given by

Aαβ

l = 2γil Tr
{
Sαhβ

l

}
, (12)

Bβ

l = 1
2 Tr

{
Phβ

l

}
, (13)

and S is the vector of (pseudo)spin- 1
2 operators:

Sx = 1

2
(|+〉〈−| + |−〉〈+|), (14)

Sy = 1

2i
(|+〉〈−| − |−〉〈+|), (15)

Sz = 1

2
(|+〉〈+| − |−〉〈−|). (16)

In the specific case where {|+〉, |−〉} form a Kramers doublet,
related by time reversal 
: 
|+〉 = eiφ0 |−〉 (where φ0 is a
global phase), then we have the further simplification Bl =
(〈+|hl |+〉 + 〈−|hl |−〉)/2 = 0. This follows directly from the
fact that hl is odd under time reversal: 
hl


−1 = −hl . In
this (common) scenario (as in the examples given below), the
influence of the hyperfine interactions will be well described
by the hyperfine tensor matrix elements Aαβ

l alone.

B. Summary of key results

For a conduction-band electron confined to a nanostructure
with a spin-independent envelope function, and for a fixed

2Within the envelope-function approximation, a general state |n〉
can be written as 〈r|n〉 = ∑

ν F n
ν (r)ψν (r), where the sum

∑
ν is over

all spin/orbital/valley states and the F n
ν (r) are the slowly varying (on

the scale of the lattice constant) envelope functions. In practice, the
sum

∑
ν is restricted to some reasonable set of orbitals and valleys.

For example, |n〉 can be taken to be an eigenstate of the Luttinger
Hamiltonian, in which case the sum is restricted to the heavy-hole
and light-hole states.

TABLE I. Hyperfine parameters calculated for GaAs and crys-
talline silicon. All parameters have been found from k = 0 Bloch
amplitudes approximated by Kohn-Sham orbitals established in DFT
using ELK, an all-electron DFT code [78] (see Sec. IV for details).
The silicon conduction-band parameter (A

29Si) is evaluated using
DFT+k · p which accounts for the off-zone-center conduction-band
minima in silicon. The valence-band parameters (Ai

‖ and Ai
⊥) are

given for a system where the isotope i is located at an “A” site, with
a neighboring (“B” site) atom at ( 1

4 , 1
4 , 1

4 ) (see Sec. III C and Fig. 3).
Numerical convergence has been verified for all parameters to within
2% of the reported values.

(Electrons) (Holes)

Isotope (i) Ai (μeV) Ai
‖ (μeV) Ai

⊥ (μeV)

69Ga in GaAs 74 1.4 0.35
71Ga in GaAs 94 1.7 0.45
75As in GaAs 78 11 0.02
29Si in silicon −2.4 −2.5 −0.01

valley �σ (r) = Fe(r)cσ , we can identify a two-level system
|±〉 = c†

±|0〉. This allows us to apply Eq. (12) with the spin
operators given in Eqs. (14)–(16). If the electronic state is well
described by an s-like band, the isotropic contact interaction
dominates, giving the well-known result for an electron spin
in a quantum dot [6,7],

Aαβ

l = Ail v0|Fe(Rl )|2δαβ, (17)

where Ail is the (bulk) contact hyperfine coupling for isotope
il at site l (see Table I).

Alternatively, for the valence band of a zinc-blende III-V
semiconductor (GaAs, InAs, InSb, etc.), or for the diamond-
lattice form of a group IV element (Si, Ge, etc.), the states at
k = 0 transform according to the �8 irreducible representa-
tion of the Td double group. For these states, we can project,
for example, onto the two states that transform like states
of angular momentum Jz = mJ = ± 3

2 : |±〉 = |mJ = ± 3
2 〉 (the

pure heavy-hole states). These are separated in energy from
the light-hole states (|mJ = ± 1

2 〉) under confinement or strain.
For these states, the s-wave component vanishes identi-
cally, and the dominant hyperfine coupling arises from the
dipole-dipole and angular-momentum terms. Assuming a
pseudospin-independent envelope function for the heavy hole
�mJ (r) = Fh(r)cmJ , Eq. (12) gives

Axx
l = −Ayy

l = Ail
⊥v0|Fh(Rl )|2, (18)

Azz
l = Ail

‖v0|Fh(Rl )|2, (19)

where Ai
‖ and Ai

⊥ are valence-band hyperfine parameters (see
Table I), and all other hyperfine-tensor elements vanish. Here,
the relation Axx

l 
= Ayy
l is a consequence of the fact that the

diamond and zinc-blende lattices do not have a strict fourfold
symmetry axis. Equations (18) and (19) apply in a coordinate
system where the site l is located at (0,0,0) with a nearest-
neighbor atom at ( 1

4 , 1
4 , 1

4 ) in units of the cubic-cell lattice
constant (see Sec. III C). More generally, the influence of
the hyperfine coupling can be fully described in the four-
dimensional subspace of heavy holes and light holes in terms
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FIG. 2. Calculated density ρ = |φ3/2(r)|2 of the mJ = 3
2 heavy-

hole state in GaAs, resulting from the Kohn-Sham orbital φ3/2(r).
ρ1/5 (instead of ρ) is plotted using a color scale (in units of a−3/5

0 ,
with a0 the Bohr radius) so that the features of the density can
be visible. The density is shown along a cut in the (21̄1̄) plane.
The spheres S j define regions where the Kohn-Sham orbital φ3/2(r)
has been evaluated to extract the hyperfine tensor for atom j =
Ga, As. Regions outside of the spheres S j are shown in white. The
p symmetry can be seen around the As sites (labeled), while the Ga
site has a combination of p and d symmetry.

of the same two coupling constants Ai
⊥ and Ai

‖, given in Table I
(see Sec. III B).

The parameters Ai, Ai
⊥, and Ai

‖ fully characterize the bulk
short-range hyperfine coupling for electrons in an s-like con-
duction band and for holes in a valence band that transforms
according to the �8 representation of the Td double group.
These parameters depend only on the isotope i, through the
gyromagnetic ratio γi, and on the material-dependent micro-
scopic Bloch functions ψν (r) through the matrix elements
given in Eq. (4). To approximately determine the relevant
Bloch functions in GaAs and silicon, we have performed
first-principles DFT calculations. The k = 0 Bloch functions
are then approximated directly with optimized Kohn-Sham
orbitals (rather than the density alone), providing an accurate
representation of the electron/hole states in the vicinity of
atoms in the crystal (see Figs. 1 and 2 for examples in the
conduction and valence bands of GaAs, respectively). To find
accurate Bloch functions at an off-zone-center band extremum
k = kν 
= 0 (as is the case in the conduction band of sili-
con), we find it is necessary to determine the correct linear
combination of k = 0 Kohn-Sham orbitals by diagonalizing
an appropriate k · p Hamiltonian at k = kν . In each case, the
integral in Eq. (4) is then evaluated numerically giving the
hyperfine parameters. The results are shown in Table I for
GaAs and silicon.

For the conduction bands of GaAs and silicon (electrons),
we find contact hyperfine couplings Ai that are consistent
with known experimental values (see Table II). There have
been fewer experimental studies related to the hyperfine cou-
pling for holes. Moreover, in some cases, experiments on
hole spins have led to conflicting interpretations. On one
hand, it has been argued that the hyperfine interaction in
the heavy-hole subspace is predominantly Ising (Ai

⊥ � 0)
because heavy-hole spin relaxation times have been mea-
sured to be consistent with a negligible transverse hyper-
fine coupling in self-assembled InGaAs quantum dots [79].
In addition, the heavy-hole transverse Overhauser shift has

TABLE II. The parameter η j characterizing the degree of local-
ization of an electron around atom j [see Eq. (23)]. This parameter,
together with the gyromagnetic ratio γi, determines the contact
hyperfine coupling for isotope i, Ai [see Eq. (25)]. (i) Theoretical
results from this work. (ii) Experimental Knight shifts measured for
spin-polarized electronic states in GaAs quantum wells have been
used to extract η j using the procedure described in Appendix B1. (iii)
Theoretical estimates reported in Paget et al. (Ref. [60]), extrapolated
from measurements in InSb. (iv) Experimental value of η j extracted
from Knight-shift measurements in bulk silicon (Ref. [70]). The
error bar describes the standard deviation of the results of different
measurements. (v) Theoretical value calculated by Assali et al. [64].
The error bar is based on a statistical error from different runs (with
different supercell sizes).

GaAs Silicon

ηGa ηAs ηSi

(i) DFT at k = 0 (+k · p) 2500 3800 88
(ii) Knight shifts (Refs. [57,69]) 2200 3500
(iii) Estimates (Ref. [60]) 2600 4400
(iv) Knight shift (Ref. [70]) 100 ± 10
(v) DFT at k = kν (Ref. [64]) 159.4 ± 4.5

been observed to be small (again, in self-assembled InGaAs
quantum dots) [13]. Measurements of tunneling between spin-
resolved Landau levels in a two-dimensional hole gas in
GaAs are also consistent with a negligible transverse hyper-
fine coupling [80]. On the other hand, separate experiments
measuring the longitudinal Overhauser shift in GaAs/AlGaAs
and InGaAs/GaAs quantum dots have been interpreted to
indicate a substantial p-d hybridization of the valence-band
states near the Ga sites, leading to non-negligible transverse
hyperfine coupling to the Ga isotopes (Ai

⊥ ∼ Ai
‖) [11]. The

results of this experiment, combined with the interpretation
of Ref. [11], also suggest substantial in-plane components
of the total heavy-hole Overhauser field. Because the DFT
procedure used here gives direct access to the wave function,
both the hyperfine couplings and the p-d hybridization can be
calculated (see Appendix A). Here, we find an intriguing mix
of the two descriptions: For heavy holes, the coupling to the
As site is stronger and almost purely Ising (small transverse
coupling), while the transverse coupling to the Ga site is a
significant fraction of its longitudinal coupling (see Table I
and Appendix A for a possible explanation). However, due to
the larger (Ising) hyperfine coupling to the As nuclear spins,
the total Overhauser field experienced by a heavy hole in a
GaAs quantum dot will be oriented predominantly along the
growth direction of the quantum dot, even for a randomly
polarized nuclear-spin ensemble. The different behavior at
Ga and As sites can be understood as follows: Because As
is more electronegative than Ga, the hole is more highly
localized around the As site in GaAs (see Fig. 2). The potential
experienced by the hole in the vicinity of the As site can
thus be taken to be more spherically symmetric. Therefore,
close to the As site the hole wave function will approximate
a pure angular-momentum eigenstate, a p state (see Table III
in Appendix A, below). In contrast, the hole is not sufficiently
tightly bound to the Ga atom to fully mask the potential due to
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TABLE III. Weights w
j
λ of the p and d contributions for valence-

band states for each atom in GaAs and silicon. In Ref. [92] silicon is
not studied. The weight w

j
d ′ = 0 within the accuracy of the present

procedure, which is consistent with the results reported in Ref. [92].

This work Ref. [92]

Atom ( j) w j
p w

j
d w j

p w
j
d

Ga 0.13 0.07 0.15 0.20
As 0.79 0.01 0.62 0.03
Si 0.43 0.07

neighboring As atoms. In the vicinity of the Ga atom, the hole
adapts to the reduced tetrahedral symmetry of the crystal and
is therefore not in an angular-momentum eigenstate. Instead,
the hole wave function describes a p-d hybridized state (see
Fig. 2 and Table III). This p-d hybridization leads to non-
Ising corrections to the heavy-hole hyperfine Hamiltonian.
At the same time, the more delocalized nature of the hole
wave function at the Ga sites leads to a significantly smaller
hyperfine coupling (due to the larger average distance from
the nucleus).

For holes in silicon, we find an Ising hyperfine coupling
(A

29Si
⊥ � 0, see Table I). The strength of the coupling is com-

parable to the contact interaction (A
29Si) for the conduction

band of silicon. Typically, the anisotropic hyperfine coupling
for (p-type valence-band) holes is assumed to be weaker (by
a factor of ∼5–10) than the contact hyperfine coupling for
(s-type conduction-band) electrons [9]. However, in silicon
the states at the conduction-band minima are s-p hybridized,
reducing the effect of the contact interaction for conduction-
band states. We find that this reduction leads to a value that
is comparable to the (normally smaller) anisotropic hyperfine
coupling in the valence band.

III. BULK HYPERFINE PARAMETERS

Any Bloch wave ψσ
ν (r) can be described near an atomic

site j using the partial-wave expansion

ψσ
ν (r + δ j ) =

∑
lm

R jν
lmσ

(r)Ylm(θ, φ), (20)

where R jν
lmσ

(r) are radial functions and Ylm(θ, φ) are the spher-
ical harmonics. States that have a contribution entirely from
the l = 0 term to the sum in Eq. (20), namely s-like states,
are isotropic. Therefore, they have a vanishing dipolar and
angular-momentum contribution to the hyperfine interaction
and contribute only via the contact part of the hyperfine
interaction ∝δT(r) [see Eq. (8)].

A. Conduction bands with s-like Bloch functions

We consider states coming from different equivalent val-
leys of an s-like band, such as the conduction-band states
of GaAs (one valley) and silicon (six valleys). In the limit
of weak spin-orbit coupling, these states can be written as
product states of spin and orbit, which means that the index
ν = (v, χ ), where v labels the orbital (valley) and χ labels
the spin so that the Bloch amplitudes can be written as

ψσ
v,χ (r) = ψσ

v,σ (r)δσχ . We further assume that the valleys are
related by space-group transformations of the crystal so that

R jvσ

00σ (r) = R j
s (r) ∀ v, σ, (21)

i.e., the radial function associated with the s part of the Bloch
function is identical for all valleys. For these s states, the
matrix elements of h j are given by

h j
vχv′χ ′ = 2μ0

3
μB

η j

v0
σχχ ′ , (22)

where the dimensionless parameter [70,81]

η j = v0
〈∣∣R j

s (r)
∣∣2〉

δT
(23)

characterizes the degree of localization of the electron at the
atom j and is independent of the valley index v because we
have assumed that all valleys are equivalent (see Table II). In
Eq. (23), we have introduced the notation

〈 f (r)〉g =
∫ ∞

0
f (r)g(r)r2dr (24)

to indicate a weighted average of the function f with respect
to the weighting function g. The contact part of the hyperfine
Hamiltonian can also be characterized by the parameter

Ai = 4μ0

3
μBγi

η ji

v0
, (25)

where ji labels the atom associated with isotope i (see Table I).

B. Valence-band holes

We consider here a subspace spanned by states that trans-
form according to the �8 representation of the Td double
group. Examples include the states at the valence-band max-
ima of silicon and III-V semiconductors such as GaAs.

A simple basis for the �8 representation of the Td double
group is composed of the four states with total angular mo-
mentum J = 3

2 and orbital angular momentum l = 1. Without
loss of generality, we take the [001] direction (the z axis) to be
a relevant quantization axis. Under this convention, the states
that transform like the states with mJ = ± 3

2 units of angular
momentum about ẑ are the heavy-hole states and those that
transform like the mJ = ± 1

2 states are light-hole states. In this
four-dimensional subspace, we can therefore label the states
with the allowed mJ values, so that ν ∈ {− 3

2 ,− 1
2 , 1

2 , 3
2 }. If

the expansion from Eq. (20) is performed up to l = 2 for
each state (see Appendix C2), the four Bloch amplitudes
at the valence-band maximum can be parametrized by three
different real radial functions

R j
p(r) = R j,3/2

1,1,↑(r), (26)

R j
d (r) = iR j,3/2

2,−1,↑(r), (27)

R j
d ′ (r) = iR j,3/2

2,0,↓(r). (28)

The remaining radial functions R j,mJ

l,m,σ
(r) either vanish or are

linear combinations of these three (see Appendix C2). Even
though the d ′ orbital is allowed by symmetry, it is often
neglected, even in works where d-orbital hybridization for the
hole states is taken into account [11]. Because this orbital

115302-6



FIRST-PRINCIPLES HYPERFINE TENSORS FOR … PHYSICAL REVIEW B 101, 115302 (2020)

corresponds to a state with opposite spin [↓, in this case,
Eq. (28)] relative to the p and d orbitals in the wave function
[↑, Eqs. (26) and (27)], we expect the weight of the d ′ orbital,
or equivalently the magnitude of the R j

d ′ (r) radial function, to
be more significant in materials with large spin-orbit coupling.

In the subspace of heavy holes and light holes, the matrix
h j , given by Eqs. (4), (5), and (6), can be expressed as a linear
combination of the angular-momentum matrices for a spin- 3

2
particle, Jβ , and J3

β , β ∈ {x, y, z} [12,82]

h j =
(

1

3
h j

‖ − 3

2
h j

⊥

)
J + 2

3
h j

⊥J , (29)

where J = (J3
x , J3

y , J3
z ), and where h j

⊥ and h j
‖ are two hyperfine

parameters. These two parameters can be written in terms of
the matrix elements of 1/r3 as

h j
‖ = μ0

2π
μB

[
8

5
M j

p,p − 12

7
M j

d,d − 4

7
M j

d ′,d ′

+4

7

√
3

2
Re

(
M j

d,d ′
)]

, (30)

h j
⊥ = μ0

2π
μB

[
6

7
M j

d,d + 2

7
M j

d ′,d ′ − 30

7

√
3

2
Re

(
M j

d,d ′
)]

, (31)

where

M j
λλ′ =

〈
R j

λ(r)R j
λ′ (r)

r3

〉
fT

(32)

for λ, λ′ ∈ {p, d, d ′}, the numerical factors arise from angular
integrals, and fT is the weighting function given by Eq. (6).
These two parameters can also be expressed in units of energy
(see Table I) as

Ai
⊥/‖ = γih

ji
⊥/‖. (33)

C. Choice of coordinate system

Crystals break pure rotational symmetry, therefore, their
electronic eigenstates cannot in general be written as pure
angular-momentum eigenstates. For example, in the valence
bands of GaAs and silicon, the eigensates can be approx-
imated by a linear combination of p and d orbitals (see
Sec. III B). The presence of the d orbitals reflects the tetrahe-
dral symmetry of the crystal and introduces the term propor-
tional to J in the matrix h j [Eq. (29)] which has consequences
on the symmetries of the hyperfine tensor.

In both GaAs and silicon, the coordinate system can be
set up so that the cubic unit cell has one nucleus at 000, and
another nucleus at 1

4
1
4

1
4 (Fig. 3). Given this specific coordinate

system, we can label as A all the sites related to 000 by a
lattice vector and all sites related to 1

4
1
4

1
4 by a lattice vector

are labeled by B, with the understanding that all A sites are
equivalent and all B sites are equivalent.

Equations (1) and (2) for the hyperfine Hamiltonian within
the envelope-function approximation can be combined to
define a Hamiltonian matrix associated with site l , Hl :

Hhf =
∑

l

v0�
†(Rl )H

l�(Rl ), (34)

FIG. 3. Cubic unit cell for a zinc-blende or diamond lattice. The
blue and red spheres represent the two inequivalent sites in the zinc-
blende lattice. We have chosen the blue atom to be at the origin 000
(A site, see main text), and a red atom to be located at 1

4
1
4

1
4 (B site).

An A site can be related to a B site by performing a translation of
the coordinate system by ( 1

4 , 1
4 , 1

4 ), represented by the blue arrow,
followed by a rotation of the coordinate system by π/2 about the z
axis. The red arrow represents the vector ( 1

4 , 1
4 , 1

4 ) in the coordinate
system with the B site at the origin 000 and an A site at 1

4
1
4

1
4 .

with

Hl = γil h
jl · Il . (35)

Here, we recall that il indicates the isotope situated at site
l and jl indicates the atom situated at site l . The hyperfine
matrix Hl is simply the hyperfine Hamiltonian matrix ex-
pressed in the basis of Bloch states ψν (r) [see Eq. (4)]. In
the subspace of valence-band states, this matrix is given by
inserting h j from Eq. (29) into Eq. (34). Restricting further to
the heavy-hole subspace, and for an isotope il located at an A
site labeled by l , the matrix is

Hl,A
HH = 1

2

[
Ail

‖σzI
l,A
z + Ail

⊥
(
σxI l,A

x − σyI l,A
y

)]
, (36)

where I l,A
α are the nuclear spin operators for the nuclear spin

at the A site labeled by l and σα are Pauli matrices. As can be
seen in Fig. 3, an A site can be related to a B site by performing
a translation of the coordinate system by ( 1

4 , 1
4 , 1

4 ) followed
by a rotation of the coordinate system by π/2 about the z
axis. The result of this rotation is that x → y and y → −x.
Under this rotation, Axx → Ayy and Ayy → Axx. Therefore,
in the same coordinates used to describe Hl,A

HH, the hyperfine
coupling for an isotope il ′ located at a B site (l ′) is

Hl ′,B
HH = 1

2

[
Ail′

‖ σzI
l ′,B
z − Ail′

⊥
(
σxI l ′,B

x − σyI l ′,B
y

)]
, (37)

which has the opposite sign for the term with coefficient
A⊥ relative to the Hamiltonian for the A sites, Hl,A

HH [see
Eq. (35)]. This sign difference for A sites and B sites may
lead to nontrivial interference effects in the dynamics of hole
spins confined to III-V and group IV nanostructures. We give
the valence-band hyperfine couplings for GaAs and silicon
in Table I. In each case, the couplings are given assuming a
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coordinate system where the isotope in question is at an A site.
We also present the light-hole hyperfine Hamiltonian matrix
in Appendix D.

IV. FIRST-PRINCIPLES ELECTRONIC STRUCTURE

In Eq. (2), the multicomponent field operator �(R) acts on
the envelope functions, while h j accounts for the short-range
electronic structure, determined by the Bloch waves ψν (r).
The matrix h j can thus be found from a bulk calculation
for the translationally invariant crystal. Here, we calculate h j

using DFT.
Hyperfine parameters are often evaluated through the den-

sity alone [63–68]. Because the matrix elements of orbital
angular momentum L = r × (−i∇) depend on the phase of
the wave function, the contribution from the nuclear-orbital
interaction (∼L · I) to the hyperfine parameters h j

‖ and h j
⊥

cannot generally be calculated using the density alone. This
contribution is therefore often neglected [63,64,68]. Here, we
assume the Kohn-Sham orbitals φν (r) can approximate the
Bloch waves ψν (r) (as has been done, e.g., in Ref. [83]). This
approximation is valid at least when correlations are weak, so
that the many-body ground state is well described by a single
Slater determinant (Hartree-Fock limit).

All of the DFT calculations presented here are done using
the ELK code [78] with the exchange-correlation functional
of Perdew, Burke, and Ernzerhof (GGA-PBE) [84]. ELK is
an all-electron code that avoids potential pitfalls associated
with extracting the short-range electronic structure from a
pseudopotential [64]. Within ELK, the Kohn-Sham orbitals
for the valence electrons are calculated by solving the Dirac
equation under the scalar relativistic approximation [85], so
it is essential to use the relativistic form of the hyperfine
interaction to find accurate results.

To compute the hyperfine parameters we run ELK [with
input file set for “very high quality” (vhq parameter) con-
vergence] [78], to compute the Kohn-Sham orbitals at the
conduction-band minima and valence-band maxima of GaAs
and silicon. We then treat these Kohn-Sham orbitals as ap-
proximations for the Bloch waves ψν (r) ≈ φν (r).

A. Conduction band of GaAs

The Kohn-Sham orbital at the conduction-band minimum
of GaAs (k = 0) is found to be almost completely s like
(see Appendix E). As explained in Sec. III A, this symmetry
property of the wave function implies that the hyperfine
interaction will be dominated by the contact term. The integral
for the contact hyperfine interaction has a weighting function
δT(r) that weights the points within a distance r j

T from the
nuclei strongly, where r j

T is the Thomson radius for atom j.
It is therefore important to find an accurate description of the
Kohn-Sham orbital at short length scales (r � r j

T). We sample
the wave function on an equally spaced one-dimensional (ra-
dial) grid of points starting from each atom j (Ga or As) within
the unit cell out to a distance of 100r j

T. These values represent
a numerical description of the conduction-band wave function
ψ (r + δ j ). Because the s component of the wave function
is spherically symmmetric, the radial functions are easily
determined using ψ (r + δ j ) = Y 0

0 (θ, φ)R j
s (r) = R j

s (r)/
√

4π .

Once the radial functions have been obtained, we numerically
evaluate the integral from Eq. (23) (see Appendix E).

Once the integral 〈|R j
s (r)|2〉δT

has been evaluated, it can be
used with Eqs. (23) and (25) to evaluate η j and the contact
hyperfine parameter Ai for the isotopes of Ga and As in
GaAs. We have verified that η j has converged with respect
to certain parameters (e.g., the number of basis states and the
density of k points for which the calculation is performed; see
Appendix F for the full list) to within 1% of its asymptotic
value (see Appendix F for details). The resulting hyperfine
constants (given in Table I) are consistent with the accepted
values estimated by Paget et al. (Ref. [60]). The accuracy
of this estimate may be in question since it is based on
measurements in an analogous material (InSb), rather than
direct measurements in GaAs. However, the hyperfine con-
stants calculated here are also consistent with Knight-shift
measurements made on (fractional and integer) quantum-Hall
states in GaAs quantum wells [57,69] (see Table II, and
Appendix B1 for details).

B. Conduction band of silicon

In contrast to GaAs, the conduction band of silicon has six
minima (valleys). Each minimum is situated at roughly 84%
of the way to any of the six equivalent X points from the �

point. The states at the conduction-band minima of silicon
are s-p hybridized. Even though an anisotropic hyperfine
interaction is not forbidden by symmetry (due to the s-p
hybridization), previous theoretical studies indicate that the
contact part of the hyperfine Hamiltonian dominates over the
anisotropic piece in bulk silicon [64]. We therefore neglect
the anisotropic hyperfine interaction when investigating the
hyperfine coupling in the conduction band of silicon. Because
only s states have a nonvanishing contact hyperfine inter-
action, we project onto the s-like component of the states
at the conduction-band minima and use the same method
described in Sec. IV A to evaluate the hyperfine constants
for these states. The result ηSi = 160 is consistent with the
theoretical result of Ref. [64], ηSi = 159.4 ± 4.5, which was
obtained using the WIEN2K [86] all-electron DFT code with
the nonrelativistic formula for the contact-hyperfine constant
[taking the limit as r j

T → 0 in Eq. (8)]. Both of these calcula-
tions for the density directly at the conduction-band minima
are, however, inconsistent with the measured value ηSi =
100 ± 10, reported in Ref. [70], obtained from Knight-shift
and Korringa-relaxation measurements.3 This has led us to a
different approach, described below.

In GaAs, where the conduction-band minimum is at the �

point, we find accurate values of the hyperfine parameters (see
Sec. IV A). In contrast, in silicon, where the conduction-band
minima are off zone center, we find hyperfine parameters
that do not agree with experimental results. Therefore, we

3The authors of Ref. [64] compared their result ηSi = 159.4 ± 4.5,
with the result reported in Ref. [81], ηSi = 186 ± 18, which was
derived from 29Si nuclear-spin relaxation measurements. Although
these results seem roughly consistent with each other, there was an
error found in the analysis of Ref. [81] which, when accounted for,
leads to ηSi = 132 ± 13 (see Chap. IX, Sec. III-A of Ref. [95]).
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have evidence that the DFT procedure used here is more
accurate for the �-point (k = 0) Bloch functions than for
Bloch functions at other points in the Brillouin zone. Because
the point-group symmetry at the � point is the same as that
of the full crystal (as opposed to a subgroup of the crystal
point group when k 
= 0), the states at the � point have higher
symmetry than the states at finite k. Since the basis set used
in the ELK code consists of atomic states, which transform
according to representations of the full rotation group, it is
plausible to expect that the �-point states are more accurate
than the states at finite k. In contrast to the direct DFT
calculations at the band extrema described above, here we
now use k · p theory to calculate the wave functions at any
finite k, starting from the wave functions calculated with DFT
at the � point (“DFT + k · p”).

To implement DFT+k · p, we use the experimentally de-
termined values for the k · p matrix elements and energy
gaps presented first by Cardona and Pollak [87] and then
extended by Richard et al. [88] and diagonalize the k · p
matrix to determine the correct linear combination of k = 0
Bloch amplitudes to describe the states at the conduction-band
minima. We then extract the Kohn-Sham orbitals at the �

point (k = 0) and take the appropriate linear combination and
(after projecting onto the s component) follow the procedure
outlined in Sec. IV A for the conduction-band states of GaAs.
Although k · p theory is perturbative, and improves as k → 0,
in Refs. [87] and [88] the entire band structure is shown to be
accurately reproduced using these k · p matrix elements and
energy gaps. Therefore, using the matrix elements provided
in these references should be sufficient for calculations at the
conduction-band minima of silicon.

The DFT+k · p procedure yields ηSi = 88, which is a
factor of ∼2 different from the result (ηSi = 160) found
above for a calculation of the Bloch functions directly at the
conduction-band minima. Furthermore, this DFT+k · p result
is approximately consistent with the Korringa-relaxation-rate
and Knight-shift measurements of Ref. [70], ηSi = 100 ± 10
(see Appendix B1 for a discussion of the Knight shift). This
level of consistency suggests that DFT+k · p can be useful
to perform accurate calculations in materials where the band
extrema are not situated at the � point. The agreement with
experimental observations is also consistent with the assump-
tion of small anisotropic corrections to the Fermi contact
interaction. However, since the reduction of ηSi is due to a
significant s-p hybridization, it would still be interesting to
assess the role of anisotropy. A proper account of these effects
would require applying the methods discussed here to the full
bulk states (instead of their s component), but should also take
into account the specific nanostructure, e.g., the predominant
valley states.4

4We note that in silicon nanostructures (e.g., quantum dots) the
relevant eigenstates are formed by taking linear combinations of the
different bulk valley states (and potentially spin states, if spin-orbit
coupling is relevant). In these systems, the anisotropic hyperfine
coupling may be significant in comparison to the contact piece. If
the specific linear combinations making up the eigenstates of a given
nanostructure are well understood, the theory presented here can

C. Valence bands of GaAs and silicon

Because the top of the valence band is fourfold degenerate
for GaAs and silicon, a general valence-band Kohn-Sham
orbital will be a linear combination of all four states. To cal-
culate the anisotropic hyperfine parameters for these valence-
band states, we extract the values of a Kohn-Sham orbital at
the top of the valence band on a uniform grid of positions,
and use group-theoretic arguments to reconstruct φ3/2(r), the
Kohn-Sham orbital that transforms like the state with total
angular momentum J = 3

2 , orbital angular momentum l = 1,
and mJ = 3

2 (see Appendix C). We then use the spherical
harmonic expansion [Eq. (20)] to obtain the radial functions
listed in Eqs. (26), (27), and (28). We find that only the radial
functions for quantum number l up to l = 2 have significant
weight (see Appendix F).

The radial functions are inserted into Eq. (31) and the
appropriate integrals M j

λλ′ are computed numerically. The
integrals from Eq. (31) are estimated by setting a cutoff for the
upper bound of integration at Rmax = √

3a/8, where a is the
cubic lattice constant of the material under consideration and
Rmax is the radius of the largest nonoverlapping spheres S j ,
centered at each nuclear site j (see Fig. 2). Setting the cutoff
to Rmax is equivalent to neglecting long-range contributions to
the hyperfine interaction. We make a further approximation,
in the case of the anisotropic hyperfine parameters, and set
fT(r) → 1 (or equivalently rT → 0) when evaluating the ma-
trix elements M j

λλ′ from Eq. (31). This is justified because the
relativistic radial functions vanish at the origin for all states
except s states and p states with total angular momentum
J = 1

2 [75,77]. The valence-band states can be written as a
linear combination of p states with J = 3

2 and d states [see
Eq. (C7)]. Because the relativistic form is important for r � rT

and the valence-band states vanish at the origin and vary on
the scale of a Bohr radius aB, corrections to the relativistic
form are suppressed by rT/aB � 10−3. Finally, we verify that
the computed values of M j

λλ′ have converged with respect to
the parameters listed in Appendix F to within 2% of their
asymptotic values (see Appendix F for details).

In Refs. [10–13], the ratio of the Overhauser shifts of elec-
trons and holes in GaAs quantum dots is measured. From the
results of these measurements, the authors conclude A‖/A ∼
10% in GaAs, roughly consistent with the results presented
here (see Table I). In Ref. [19], T ∗

2 times have been measured
for a hole-spin qubit defined in a silicon complementary
metal-oxide-semiconductor (CMOS) quantum dot. It is not
clear which mechanism limits T ∗

2 in these experiments. How-
ever, if the coherence times were limited by the hyperfine in-
teraction, the measured T ∗

2 times would be consistent with the
silicon hyperfine constants presented here (see Appendix B2
for details).

be applied to calculate the appropriate hyperfine tensor. Instead of
projecting the bulk states onto the s component, the full bulk states
could be used, appropriate linear combinations taken, and hyperfine
tensor elements computed using Eq. (12).
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V. CONCLUSIONS

We have calculated the hyperfine parameters for the con-
duction and valence bands of GaAs and silicon using the
Kohn-Sham orbitals from an all-electron DFT code (ELK),
fully accounting for the relativistic form of the hyperfine
coupling, and in the case of silicon, we have introduced and
employed an expanded DFT+k · p procedure.

For the conduction band of GaAs, our results for η j

are consistent with the accepted values from Paget et al.
(Ref. [60]) and with measurements of the Knight shifts in
GaAs quantum wells [57,69]. In silicon, our results are
roughly consistent with measurements of the Korringa relax-
ation times and measurements of the Knight shift [70] when
we use the DFT+k · p procedure (see Table II).

In the procedure used here, we have accounted for d-orbital
hybridization in the valence-band states of GaAs. Similar
to the analysis presented in Ref. [11], we find that this
d-orbital hybridization leads to the Ga nuclear spins (and not
the As nuclear spins) in GaAs having a substantial transverse
hyperfine coupling (Ai

⊥ ∼ Ai
‖). However, while the results

of Ref. [11] (combined with their interpretation) suggest
that heavy holes in a GaAs quantum dot may experience a
significant in-plane Overhauser field, we find that the total
Overhauser field experienced by a heavy hole in a GaAs
quantum dot will point predominantly along the dot growth
direction, even for an unpolarized nuclear-spin system. This
anisotropy is a consequence of the stronger hyperfine coupling
to the As nuclear spins relative to the Ga nuclear spins:

A
75As
‖ � A

69Ga / 71Ga
⊥ . This finding is consistent with measured

heavy-hole spin relaxation times [79], transverse Overhauser-
field measurements [13], and measurements of tunneling
between spin-resolved Landau levels in a two-dimensional
hole gas [80]. Moreover, we find hyperfine constants that
are roughly consistent in magnitude with conclusions drawn
in Refs. [10–13] from measurements of the ratio of the
heavy-hole to electron Overhauser fields. Additionally, if Ai

⊥
has a significant magnitude only for the Ga nuclear spins,
then in nanostructures (quantum dots or quantum wells) with
confined heavy holes and a magnetic field along the growth
direction, only the Ga nuclear spins can be dynamically polar-
ized (along the growth direction). Alternatively, if light holes
are confined to similar nanostructures, all nuclear spins can be
dynamically spin polarized (see Appendix D). Therefore, an
additional consequence of the hyperfine constants calculated
here is that a larger Overhauser field can be generated if light
holes are used to dynamically spin polarize the nuclear spins
in GaAs instead of heavy holes. For silicon, our results are
consistent with T ∗

2 measurements made in CMOS hole-spin
quantum dots [19]. Moreover, in contrast to GaAs, where
the hyperfine coupling strength for holes is roughly an order
of magnitude smaller than that of electrons (A‖/A ∼ 0.1), in
silicon, we find that the hyperfine coupling strengths for holes
and electrons are comparable (A‖ ∼ A).

For holes, experiments (including Overhauser-shift and T ∗
2

measurements) often only provide indirect measurements of
the hyperfine interaction. For example, extracting the hyper-
fine parameters from Overhauser-shift measurements requires
knowledge of the hole envelope functions, the degree of
spin polarization of the nuclear spins, and isotopic alloying
disorder. Measuring the hole hyperfine coupling directly [e.g.,

through hole-spin echo envelope modulations (HSEEM) [72]]
could instead provide a direct and unambiguous measurement
of the hyperfine tensor matrix elements, allowing a direct
comparison to the theoretical results presented here.

The method explored here combines DFT, k · p theory, and
group theory to arrive at an approximate description of the
crystal Bloch functions and not only the electronic density. As
demonstrated for the conduction band of silicon, k · p theory
can be crucial in accurately calculating the Bloch functions
away from k = 0. The DFT + k · p procedure introduced
here can therefore be important to understand properties of
other materials that have band extrema at finite k. These
materials include graphene, nanotubes, Weyl semimetals, and
transition metal dichalcogenides. Furthermore, the wave func-
tion (including the phase) at all points in the Brillouin zone
is required, for example, to evaluate topological invariants
(such as Chern numbers). Therefore, DFT + k · p might be
important in determining topological invariants and catalogu-
ing different topological phases of materials [89,90]. More
generally, this method can be applied to obtain an approximate
description of the electronic wave functions for semiconduc-
tor systems. These systems include quantum wells, quantum
dots, and defect centers in diamond. The electronic wave
function can be used to calculate relevant quantities in these
systems, including, but not limited to, hyperfine interactions,
spin-orbit interactions, and transition dipole matrix elements.
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APPENDIX A: p-d HYBRIDIZATION OF
THE VALENCE-BAND STATES

In the past, calculations of the hole hyperfine constants
have been performed by approximating the Bloch amplitudes
with atomic p functions [9,61]. Although they are the sim-
plest states that respect the crystal symmetries, p states are
not general enough to completely describe the valence-band
Bloch functions (see, for example, the discussion in Sec. III B
or Refs. [11,62,91–93]). The procedure described in this work
allows us to calculate the weight of higher angular momentum
states, namely d states, in the valence-band Bloch functions.
We can quantify the contribution of the p and d states to the
valence-band state around each atom as

w
j
λ =

∫ Rmax

0

∣∣R j
λ(r)

∣∣2
r2dr∑

λ′, j

∫ Rmax

0

∣∣R j
λ′ (r)

∣∣2
r2dr

(A1)

for λ ∈ {p, d, d ′}. The results are displayed in Table III. The
weight of the p-orbital increases with the electronegativity of
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the nucleus (see Table III). A basic estimate of the electroneg-
ativity of the nuclei is given from the effective nuclear charge
experienced by the valence electrons of the free atoms calcu-
lated from Hartree-Fock theory [94]. In GaAs, the As atom
Zeff = 7.4492 [94] has almost pure p symmetry, while the Ga
atom Zeff = 6.2216 [94] has an admixture of p and d symme-
tries. As explained in Sec. II B, the higher electronegativity of
the As atom suggests a more spherically symmetric potential
and, consequently, a weaker p-d hybridization (see Fig. 2 and
Table III). In the case of GaAs, this p-d hybridization leads
to non-Ising corrections to the heavy-hole hyperfine coupling
for the Ga nuclear spins.

Additional evidence for this explanation can be found in
Ref. [91]. In this reference, the Bloch functions for various
zinc-blende compounds are calculated (using empirical pseu-
dopotentials). From these calculations, the author concludes
that, for the studied materials, as the crystals become more
ionic, the d orbitals on the cationic site become more impor-
tant, and the wave function in the vicinity of the anionic site
becomes more p like, consistent with the reasoning provided
above. We also note that, although the d ′ orbital is allowed by
symmetry (see Appendix C), its contribution to the valence-
band states vanishes within the accuracy of this procedure.

Bogusławski and Gorczyca [92] have also projected the
GaAs valence-band wave functions onto the spherical har-
monics. They used the empirical pseudopotential method to
obtain the wave functions. These wave functions are then
expanded in terms of p and d spherical harmonics centered
at each atom j. They report results for the p and d contri-
butions to the states from each site. The results of Ref. [92]
are roughly consistent with our own. They also suggest that
the contribution of the d ′ orbitals is relatively small when
compared to the p and d orbitals (see Table III).

Other works using empirical pseudopotentials [91] and
tight-binding theory [93] have also found significant p-d
hybridization of the Bloch amplitudes near the Ga sites in
GaAs. These works have produced results in rough agreement
with the results of Ref. [92] presented in Table III.

APPENDIX B: COMPARISON WITH
EXPERIMENTAL RESULTS

1. Knight shift

The Knight shift Kl is the shift in magnetic resonance
frequency of an isotope at site l due to the average field
〈hl〉 [95]. Measurements of the Knight shift can be used to
characterize the hyperfine interaction for electrons confined
to a given nanostructure.

Measurements of the Knight shift have been made in quan-
tum Hall states of GaAs [57,69]. For noninteracting s-like
electrons (such as those in the conduction bands of GaAs and
silicon) in a quantum well with fully spin-polarized electrons,
the Knight shift

Kl = v0Ail

2h
|F (zl )|2n (B1)

is proportional to the hyperfine constant Ail . In Eq. (B1),
h is Planck’s constant, F (z) is the quantum-well envelope
function, and n is the sheet density of electrons in the quan-
tum well. In Ref. [57], the Knight shift for nuclei at the

center of a GaAs quantum well was measured using opti-
cally pumped nuclear magnetic resonance in three different
samples in the ν = 1

3 fractional quantum Hall state (having a
fully spin-polarized ground state). For a symmetric quantum
well with infinite barriers, the largest Knight shift occurs
directly in the center of the well, and is proportional to
|F (z = L/2)|2 = 2/L, where L is the well width. Using this
value for the envelope function, the hyperfine coupling was
extracted from the Knight-shift measurement and a value
of A

71Ga
c = v0A

71Ga/h = (4.5 ± 0.2) × 10−13 cm3/s was re-
ported. This value can be converted into a value for η jl (for
atom jl at site l) using Eq. (25), and is presented in Table II.
More recently, Knight-shift measurements have been made in
GaAs in the quantum Hall regime, close to a filling factor
ν = 1 [69]. The results for the Knight shifts for 69Ga and
75As relative to that of 71Ga (plotted in Fig. 1 of Ref. [69]) can
be combined with the Knight-shift measurement of Ref. [57]
and Eq. (B1) to obtain values for the hyperfine constants
for 69Ga and 75As. The values of η jl obtained from these
measurements are consistent with our calculated values (see
Table II).

The Knight shift has also been measured in n-doped bulk
silicon samples [70]. The extracted hyperfine parameter is
ηSi = 100 ± 10, approximately consistent with our calculated
value of ηSi = 88 ± 1 (see Table II).

2. Hole-spin coherence times

The hyperfine field can limit coherence times for electrons
or holes [19] trapped in nanostructures. Recently, Maurand
et al. [19] measured the coherence time T ∗

2 = (59 ± 1) ns of
a hole-spin qubit confined to a CMOS silicon quantum dot.
Under the assumption that there are enough nuclear spins
interacting with the hole spin that the hyperfine-field value
will be Gaussian distributed, we can estimate the coherence
time for the heavy-hole spin using [9]

1

2(T ∗
2 )2

≈ 1

4N

∑
i

giIi(Ii + 1)(Ai
‖)2, (B2)

where gi is the abundance of isotope i having nuclear spin Ii,
and N is the number of nuclear spins in the nanostructure.
From the quantum-dot level spacing from Maurand et al.
[19], we estimate N ∼ 103, assuming a spherical quantum dot.
Calculating T ∗

2 from Eq. (B2) using our result for ASi
‖ , Ii = 1

2 ,
and the natural abundance of 29Si (g 29Si = 4.7%), we find T ∗

2
to be on the order of 100 ns. Our estimate of T ∗

2 is therefore
of the same order as the measured value.

APPENDIX C: GROUP THEORY AND
PROJECTION OPERATORS

To reconstruct the heavy-hole and light-hole states from an
arbitrary linear combination of these four states, we use the
projection operator technique [96] from group theory.

The states at the top of the valence band of group IV and
III-V semiconductors transform according to the �8 repre-
sentation of the tetrahedral double group Td (or equivalently
the �+

8 representation of the Oh double group) [96]. We start
by constructing the �8 representation and then show how it
can be used along with the projection operators to determine
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states that will contribute to the partial-wave expansion of the
heavy-hole and light-hole states.

1. Construction of the �8 representation

A known basis for the �8 representation of the tetrahedral
double group Td is the set of four J = 3

2 angular momentum
eigenstates with l = 1 (see Table D.1., p. 522 in Ref. [96]). In
the |J, l, mJ〉 basis, where J represents the total angular mo-
mentum, l gives the orbital angular momentum, and mJ is the
angular momentum projected onto the relevant quantization
axis (the z axis, e.g., [001]), these states are | 3

2 , 1,± 3
2 〉, which

transform like the heavy-hole states, and | 3
2 , 1,± 1

2 〉, which
transform like the light-hole states. According to the definition
of basis vectors [96]

Oi|3/2, 1, mJ〉 =
3/2∑

m′
J=−3/2

[D(�8 )(Oi )]mJ m′
J
|3/2, 1, m′

J〉, (C1)

where Oi ∈ Td is a symmetry operation and D(�8 )(Oi) is the
�8 representation of the Oi symmetry.

Using the orthonormality of the basis states, we can con-
struct the �8 representation matrices as

[D(�8 )(Oi )]mJ m′
J
= 〈3/2, 1, m′

J |Oi|3/2, 1, mJ〉 (C2)

for all symmetry operations Oi ∈ Td . Furthermore, we have

〈3/2, 1, m′
J |Oi|3/2, 1, mJ〉 = σ (Oi )W

3/2
mJ m′

J
(ai, bi, ci ), (C3)

where σ (Oi ) = 1 if the operation is a pure rotation, σ (Oi ) =
(−1)l if the operation involves an inversion, and W J (a, b, c)
is the Jth Wigner D matrix. The angles ai, bi, and ci are
the symmetry-dependent Euler angles, where ai is an initial
rotation around the z axis, bi a subsequent rotation around
a perpendicular axis, labeled y ([010]), and ci is the final
rotation around the z axis (these angles can be found for
the different symmetry operations Oi ∈ Td in Table I of
Ref. [97]). Inserting Eq. (C3) into Eq. (C2), we can construct
the �8 representation of the Td double group {D(�8 )(Oi )}.

2. Projection operators

Since each valence-band state transforms like one of the
four | 3

2 , 1, mJ〉 states, we label each state by mJ . This labeling
is consistent with the notation developed above. We now
define the projection operators and show how to use them
to construct the heavy-hole and light-hole states. For the �8

basis states, the projection operators P̂mJ m′
J

are defined by the
equation

P̂mJ m′
J
|m′

J〉 = |mJ〉, (C4)

where mJ and m′
J run over the four basis states of the �8

representation. Under the �8 representation, the projection
operators are written as [96]

P̂mJ m′
J
= 1

12

∑
i

{[D(�8 )(Oi )]
−1}∗mJ m′

J
Oi, (C5)

where the numerical prefactor comes from the ratio of the
order of the �8 representation to the order of the double group
Td .

Because the projection operators are linear, P̂3/2,3/2 can
retrieve the component of any state that transforms like
| 3

2 〉 under the symmetry operations of the double group Td .
Therefore, by systematically applying the P̂3/2,3/2 projection
operator to the 6 p states (l = 1) and the 10 d states (l = 2),
we can calculate the d-orbital hybridized heavy-hole state | 3

2 〉.
The result is

〈r|3/2〉 = Rp(r)|1, 1〉|+〉 − iRd (r)|2,−1〉|+〉
− iRd ′ (r)|2, 0〉|−〉, (C6)

where r is a radial coordinate, Rλ(r) are real radial functions,
and we have used the basis of states |l, m〉|σ 〉. The basis
vectors |l, m〉|σ 〉 are related to |J, l, mJ〉 basis vectors by
the Clebsch-Gordon coefficients. We then construct the other
three states by applying the projection operators P̂mJ ,3/2 to the
state from Eq. (C6):

〈r| − 3/2〉 = Rp(r)|1,−1〉|−〉 + iRd (r)|2, 1〉|−〉
+ iRd ′ (r)|2, 0〉|+〉,

〈r| + 1/2〉 = Rp(r)

(√
2

3
|1, 0〉|+〉 +

√
1

3
|1, 1〉|−〉

)

− iR̃1(r)|2, 2〉|+〉 − iR̃2(r)|2,−2〉|+〉

− i
Rd (r)√

3
|2,−1〉|−〉,

〈r| − 1/2〉 = Rp(r)

(√
2

3
|1, 0〉|−〉 +

√
1

3
|1,−1〉|+〉

)

+ iR̃1(r)|2,−2〉|−〉 + iR̃2(r)|2, 2〉|−〉

+ i
Rd (r)√

3
|2, 1〉|+〉,

(C7)

where R̃1(r) = √
1/3Rd (r) + √

1/2Rd ′ (r) and R̃2(r) =√
1/2Rd ′ (r) − √

1/3Rd (r).
Finally, we note that we also enforce


〈r|3/2〉 = eiφ0〈r| − 3/2〉, (C8)

where 
 is the time-reversal operator and φ0 is a global phase.
This equation restricts the relative phases of the p and d parts
of the wave functions to be as shown in Eqs. (C6) and (C7).
We also note that we have omitted the kν quantum number for
the valence-band states since the valence-band maximum for
group IV and III-V semiconductors is situated at the � point,
where k = 0.

The advantage of applying the projection operators to
atomic orbitals is that the symmetry of the states can be easily
identified. For example, in the case of the valence-band states
of GaAs and silicon, the deviation from pure p symmetry
(and the d-orbital hybridization) can be easily understood by
using the projection operators (as described above) to write
the states as in Eqs. (C6) and (C7). We note that the group
theory projection operators can also be applied directly to
wave functions defined numerically on a grid of points by
applying the symmetry operators Oi [see Eq. (C5)] directly
to the coordinates (for an implementation, see Ref. [98]).
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APPENDIX D: LIGHT-HOLE HYPERFINE HAMILTONIAN

Projecting the hyperfine matrix [Eq. (34)] onto the light-
hole subspace results in

Hl,A
LH = 1

2

[(
1

3
Ail

‖ − 4Ail
⊥

)
σzI

l,A
z (D1)

+
(

2

3
Ail

‖ + Ail
⊥

)(
σxI l,A

x + σyI l,A
y

)]
, (D2)

where the Pauli matrices σα act in the light-hole subspace.
This hyperfine matrix is given for an isotope il located at
an A site labeled by l (see Sec. III C). In contrast to the
heavy-hole hyperfine matrix, the light-hole hyperfine matrix
is invariant under Axx → Ayy and Ayy → Axx. Therefore, the
hyperfine matrix for A sites is equivalent to the hyperfine
matrix for B sites. In addition, the longitudinal and transverse
light-hole hyperfine couplings depend on both A‖ and A⊥
[see Eqs. (D1) and (D2)]. Therefore, in contrast to heavy
holes, even when A⊥ � A‖ (e.g., for the As site in GaAs),
the transverse light-hole hyperfine coupling is of the same
order as the longitudinal hyperfine coupling [see Eqs. (D1)
and (D2)].

APPENDIX E: s-LIKE KOHN-SHAM ORBITALS

The s-like states that contribute to the conduction-band
minimum of GaAs are “almost purely s like,” which we take
to mean

∑
l>0 Nν

l

Nν
0

< 10−3, (E1)

where

Nν
l =

l∑
m=−l

∑
σ, j

∫ Rmax

0

∣∣R jν
lmσ

∣∣2
r2dr. (E2)

In Eq. (E2), Rmax = √
3a/8, where a is the lattice constant.

Rmax is half the distance between nearest-neighbor atoms in
the crystal.

For s-like orbitals the contact hyperfine interaction dom-
inates. Since the contact hyperfine constants are determined

by the integral 〈|R j
s (r)|2〉δT

, we present here the procedure
used to evaluate this integral. Since the relativistic s-like radial
function has a power-law divergence at the origin [75,77], we
fit the points that are within a distance of 10r j

T from each atom
with a power law and evaluate the integral

〈∣∣R j
s (r)

∣∣2〉in
δT

=
∫ 10r j

T

0

∣∣R j
fit,s(r)

∣∣2
δT(r)r2dr, (E3)

where R j
fit,s(r) = �r−ξ is the best-fit function to the radial part

of the Kohn-Sham orbital, with � and ξ being fit parameters.
We then use a Riemann sum to evaluate the integral for all

points 10r j
T < rn < 100r j

T,

〈∣∣R j
s (r)

∣∣2〉out
δT

=
100r j

T∑
rn=10r j

T

∣∣R j
n

∣∣2
δT(rn)r2

n�, (E4)

where rn is the set of points where the radial function R j
s (r) is

sampled, R j
n = R j

s (rn), and � = rn+1 − rn. We then approxi-
mate 〈∣∣R j

s (r)
∣∣2〉

δT
≈ 〈∣∣R j

s (r)
∣∣2〉in

δT
+ 〈∣∣R j

s (r)
∣∣2〉out

δT
. (E5)

In Eq. (E5) we have taken contributions to the integral
[Eq. (24)] to be negligible for r > 100rT. This approximation
is justified because the scale at which the weighting function
in the integral [δT(r)] decays is given by rT [see Eq. (9)].

APPENDIX F: CONVERGENCE CRITERIA

For each parameter p (e.g., p can be the density of k states
at which the DFT calculation is performed), we construct
α j (p), α ∈ {η, h⊥, h‖}. In other words, we evaluate α j for
a range of values of the parameter p. Once α j has been
evaluated for multiple values of p, we fit α j (p) to a power
law of the form

α j (p) = �p−ξ + α
j
0, (F1)

where �, ξ , and α
j
0 are fit parameters and, in particular, α

j
0 is

the asymptotic value of α j as a function of p. In all cases, we
find that ∣∣α j (pvhq ) − α

j
0

∣∣
α

j
0

< e, (F2)

where pvhq is the “very high quality” value of the parameter
p, determined by ELK [78], and e = 0.01 for α = η and e =
0.02 for α ∈ {h⊥, h‖}. This procedure was carried out for the
parameters gmaxvr, lmaxvr, nempty, rgkmax, chgexs, swidth
[78], as well as the number of k points in the first Brillouin
zone at which the Kohn-Sham orbitals were found, and the
number of points in the unit cell at which the wave functions
were extracted.

In addition, we have verified the smallness of the error
made in expanding the valence-band states only up to l = 2 in
the spherical harmonic expansion [see Eq. (20)]. Specifically,
if we define

M j (lmax)

=
∑

σ

∫
S j

dr d�

∣∣ ∑l=lmax
l=0

∑l
m=0 R jν

lmσ
(r)Ylm(θ, φ)

∣∣2

r
, (F3)

where the integral is over the sphere S j surrounding atom j
(see Fig. 2), we have verified that

M j (3) − M j (2)

M j (3)
< 0.001 (F4)

for all atoms j in GaAs and silicon. Since the hyperfine
parameters are calculated from matrix elements of h(r) ∼
1/r3 [see Eq. (5)] and M j (lmax) is a (diagonal) matrix element
of 1/r3, Eq. (F4) should be a good measure of the error made
in neglecting terms with l > 2 when calculating hyperfine
constants.

115302-13



PHILIPPOPOULOS, CHESI, AND COISH PHYSICAL REVIEW B 101, 115302 (2020)

[1] C. Kloeffel and D. Loss, Annu. Rev. Condens. Matter Phys. 4,
51 (2013).

[2] M. A. Eriksson, M. Friesen, S. N. Coppersmith, R. Joynt, L. J.
Klein, K. Slinker, C. Tahan, P. M. Mooney, J. O. Chu, and S. J.
Koester, Quantum Inf. Process. 3, 133 (2004).

[3] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and
J. R. Petta, Science 339, 1174 (2013).

[4] B. Kane, L. Pfeiffer, and K. West, Appl. Phys. Lett. 67, 1262
(1995).

[5] J. A. Seamons, D. R. Tibbetts, J. L. Reno, and M. P. Lilly, Appl.
Phys. Lett. 90, 052103 (2007).

[6] I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B 65,
205309 (2002).

[7] A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88,
186802 (2002).

[8] R. J. Warburton, Nat. Mater. 12, 483 (2013).
[9] J. Fischer, W. A. Coish, D. V. Bulaev, and D. Loss, Phys. Rev.

B 78, 155329 (2008).
[10] P. Fallahi, S. T. Yılmaz, and A. Imamoğlu, Phys. Rev. Lett. 105,

257402 (2010).
[11] E. A. Chekhovich, M. M. Glazov, A. B. Krysa, M. Hopkinson,

P. Senellart, A. Lemaitre, M. S. Skolnick, and A. I. Tartakovskii,
Nat. Phys. 9, 74 (2013).

[12] M. Vidal, M. V. Durnev, L. Bouet, T. Amand, M. M. Glazov,
E. L. Ivchenko, P. Zhou, G. Wang, T. Mano, T. Kuroda,
X. Marie, K. Sakoda, and B. Urbaszek, Phys. Rev. B 94,
121302(R) (2016).

[13] J. H. Prechtel, A. V. Kuhlmann, J. Houel, A. Ludwig, S. R.
Valentin, A. D. Wieck, and R. J. Warburton, Nat. Mater. 15,
981 (2016).

[14] X. J. Wang, S. Chesi, and W. A. Coish, Phys. Rev. Lett. 109,
237601 (2012).

[15] S. Chesi, X. J. Wang, and W. A. Coish, Eur. Phys. J. Plus 129,
86 (2014).

[16] X. J. Wang, S. Chesi, and W. A. Coish, Phys. Rev. B 92, 115424
(2015).

[17] D. V. Bulaev and D. Loss, Phys. Rev. Lett. 98, 097202 (2007).
[18] V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. Van Den

Berg, I. Van Weperen, S. R. Plissard, E. P. A. M. Bakkers, and
L. P. Kouwenhoven, Nat. Nanotechnol. 8, 170 (2013).

[19] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H.
Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M.
Sanquer, and S. De Franceschi, Nat. Commun. 7, 13575 (2016).

[20] A. Bogan, S. Studenikin, M. Korkusinski, L. Gaudreau, P.
Zawadzki, A. S. Sachrajda, L. Tracy, J. Reno, and T. Hargett,
Phys. Rev. Lett. 120, 207701 (2018).

[21] S. Studenikin, M. Korkusinski, M. Takahashi, J. Ducatel, A.
Padawer-Blatt, A. Bogan, D. G. Austing, L. Gaudreau, P.
Zawadzki, A. Sachrajda et al., Commun. Phys. 2, 1 (2019).

[22] D. V. Bulaev and D. Loss, Phys. Rev. Lett. 95, 076805 (2005).
[23] D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J.

Finley, D. V. Bulaev, and D. Loss, Phys. Rev. B 76, 241306(R)
(2007).

[24] I. Zailer, J. E. F. Frost, C. J. B. Ford, M. Pepper, M. Y. Simmons,
D. A. Ritchie, J. T. Nicholls, and G. A. C. Jones, Phys. Rev. B
49, 5101 (1994).
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