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Recently, second harmonic generation (SHG) for the yellow exciton series in cuprous oxide was demonstrated
[Phys. Rev. B 98, 085203 (2018)]. Assuming perfect Oh symmetry, SHG is forbidden along certain high-
symmetry axes. Perturbations can break this symmetry and forbidden transitions may become allowed. We
investigate theoretically the effect of external magnetic fields on the yellow exciton lines of cuprous oxide. We
identify two mechanisms by which an applied magnetic field can induce a second harmonic signal in a forbidden
direction. First of all, a magnetic field by itself generally lifts the selection rules. In the Voigt configuration, an
additional magneto-Stark electric field appears. This also induces certain SHG processes differing from those
induced by the magnetic field alone. Complementary to the paper by Farenbruch et al. [Phys. Rev. B 101,
115201 (2020)], we perform a full numerical diagonalization of the exciton Hamiltonian including the complex
valence-band structure. Numerical results are compared with experimental data.

DOI: 10.1103/PhysRevB.101.115202

I. INTRODUCTION

Yellow excitons in cuprous oxide show a hydrogen-like
series of peaks that has been followed up to a principal quan-
tum number of n = 25 by Kazimierczuk et al. [1]. Due to the
influence of the crystal symmetry and complex valence-band
structure, the exciton spectrum shows typical deviations from
a hydrogen spectrum. As the spherical symmetry is broken,
angular momentum is not a good quantum number anymore
and, for example, splitting and mixing between P and different
F states are observable [2]. Additionally, the symmetry of the
bands also significantly affects the selection rules for different
optical processes [1,3,4] such as one-photon and two-photon
excitation.

After the first theoretical treatment of two-photon pro-
cesses in 1931 [5], and their first experimental demonstration
in the optical range in 1963 [6], nonlinear optical techniques
have established themselves as useful methods for the study
of the electronic properties of solids [7,8]. They complement
linear tools due to different selection rules [9]. For example, in
one-photon absorption spectroscopy in cuprous oxide the odd
exciton states are excited whereas, in two-photon excitation,
it is the even-parity states.

One example of a nonlinear optical process is second
harmonic generation (SHG). In SHG, two incoming photons
are combined into one outgoing photon of double the energy.
Recently, Mund et al. demonstrated SHG for the yellow exci-
ton series in cuprous oxide [10]. Here, the spectrum consists
mainly of the even-parity excitons.

The symmetry-induced selection rules determine which
exciton states can participate in SHG processes. Additional
limitations concerning the polarization and direction of the

incoming and outgoing light exist. One important limitation
is the existence of forbidden directions in the crystal, where
SHG is not allowed due to symmetry reasons. There is a
number of ways in which a SHG signal can nevertheless be
induced along such a direction [11–15]. In general, a pertur-
bation can break the crystal symmetry and lift this selection
rule. One possibility of such a perturbation is strain in the
crystal. Even without the application of an external strain,
SHG has been observed for the yellow 1S orthoexciton in
forbidden directions due to residual strain in the sample [16].
The excitons with higher principal quantum numbers remain
forbidden, since the energetic splitting due to the strain does
not exceed their linewidths and the selection rule thus is not
lifted for them [16].

To observe the higher exciton states, a different method is
required. In this work, we investigate the application of an
external magnetic field. For a discussion of the resulting SHG
spectra, we have to differentiate between two experimental
geometries. In the Faraday configuration, the magnetic field
is applied parallel to the wave vector of the incident light
whereas, in the Voigt configuration, the two are perpendicular
to each other. In the latter case, an additional term behaving
like an effective electric field orthogonal to both the wave
vector and the magnetic field appears, breaking the inversion
symmetry of the crystal. This leads to a mixing of odd- and
even-parity excitons [17] and thus to additional features in
the SHG spectra. In the Faraday configuration this effective
electric field is absent.

The induced SHG spectra depend significantly on the
choice of polarization of the incoming and outgoing
light. In particular, these dependencies differ among the
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mechanisms inducing SHG and can therefore be used for their
differentiation.

We focus on the diagonalization of the complete exciton
Hamiltonian including the valence-band structure and on the
detailed comparison of numerical and experimental data for
certain fixed choices of polarization in this paper. The po-
larization dependencies of the SHG spectra in general are
investigated more thoroughly in the paper by Farenbruch et al.
[18], where SHG intensities are treated as a function of the
linear polarization angles of incoming and outgoing light for
certain fixed peaks. Additional mechanisms for the production
of SHG light beyond those in the present paper are considered
as well.

In this paper, we first introduce the Hamiltonian of the
exciton problem including the valence-band structure of Cu2O
in Sec. II. In Sec. III, we explain our numerical approach
for obtaining the associated eigenvalues and eigenvectors.
Following this, in Sec. IV we show how these eigenvalues
and eigenvectors can be used to simulate second harmonic
generation spectra and derive the selection rules in Sec. V.
We describe the experimental setup for SHG in Sec. VI. In
Sec. VII, the numerical results are shown and compared with
experimental spectra. We conclude in Sec. VIII and give a
brief outlook.

II. THEORETICAL FOUNDATIONS

Excitons are bound states formed by an electron and a hole
interacting via the Coulomb interaction. The Hamiltonian thus
is generally given by [3,4]

H = Eg + He(pe ) + Hh(ph) − e2

4πε0ε|re − rh| , (1)

with the band gap energy Eg, the dielectric constant ε, and
the positions of the electron and hole re and rh. The terms
He and Hh denote the kinetic energy of the electron and hole,
respectively. Their form is determined by the symmetry of the
bands and thus by the crystal structure. For Cu2O, the lowest
�+

6 conduction band involved in the yellow and green series
is parabolic and the kinetic energy of the electron is therefore
given by

He(pe ) = p2
e

2me
, (2)

with the electron mass me. The uppermost valence bands,
on the other hand, are nonparabolic and involve correction
terms of cubic symmetry. The Hamiltonian for the hole kinetic
energy is [3,19]

Hh(ph) = Hso + (1/2h̄2m0)
[
h̄2(γ1 + 4γ2)p2

h

+2(η1 + 2η2)p2
h(I · Sh)

−6γ2
(
p2

h1I2
1 + c.p.

) − 12η2
(
p2

h1I1Sh1 + c.p.
)

−12γ3({ph1, ph2}{I1, I2} + c.p.)

−12η3({ph1, ph2}(I1Sh2 + I2Sh1) + c.p.)
]
. (3)

Here, {A, B} = (AB + BA)/2 is the symmetrized product and
c.p. denotes cyclic permutation. The quasi-spin I describes

TABLE I. Material parameters of Cu2O used in Eqs. (1)–(6).

Band gap energy Eg = 2.17208 eV [1]
Electron mass me = 0.99 m0 [22]
Hole mass mh = 0.58 m0 [22]
Dielectric constant ε = 7.5 [23]
Spin-orbit coupling � = 0.131 eV [24]
Valence-band parameters γ1 = 1.76 [24]

γ2 = 0.7532 [24]
γ3 = −0.3668 [24]
η1 = −0.020 [24]
η2 = −0.0037 [24]
η3 = −0.0337 [24]

Fourth Luttinger parameter κ = −0.5 [4]
g factor of cond. band gc = 2.1 [25]

the degeneracy of the �+
5 valence-band Bloch functions. The

spin-orbit coupling term

Hso = 2

3
�

(
1 + 1

h̄2 I · Sh

)
(4)

couples the hole spin Sh and the quasi-spin to the effective
hole spin J = I + Sh. This splits the valence band into the
upper �+

7 band with J = 1/2 and lower �+
8 band with J = 3/2

by the spin-orbit splitting �.
For a more comprehensive discussion we refer to

Refs. [4,19–21]. The values of the material parameters for
Cu2O used in Eqs. (1)–(6) are listed in Table I.

A. Treatment of magnetic field

We are interested in calculating SHG spectra in an external
magnetic field. We thus have to perform the minimal cou-
pling pe → pe + eA(re ) and ph → ph − eA(rh) with the vec-
tor potential for a homogeneous field A(re,h) = (B × re,h )/2.
Additionally, we include the interaction of the spins and the
magnetic field [4,19]:

HB = μB[gcSe + (3κ + gs/2)I − gsSh] · B/h̄, (5)

with the Bohr magneton μB, the g factor of the electron gc and
the hole gs ≈ 2, and the fourth Luttinger parameter κ .

B. Center-of-mass coordinates and magneto-Stark effect

We perform our calculations in the center-of-mass refer-
ence frame given by the following transformation [26,27]:

r = re − rh,

R = me

me + mh
re + mh

me + mh
rh,

p = h̄k − e

2
B × R = mh

me + mh
pe − me

me + mh
ph,

P = h̄K + e

2
B × r = pe + ph, (6)

with the hole mass mh. In the center-of-mass reference frame,
r denotes the relative coordinate and R is the position of the
center of mass. The corresponding momenta are given by
p and P. The pseudomomentum K is a constant of motion
related to the center-of-mass momentum [27]. In general, the
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exciting laser will transfer a small but finite pseudomomentum
h̄K to the exciton. Here, we make an approximation and only
consider the leading term describing the combined effect of
the magnetic field and nonvanishing total momentum,

Hmse = h̄e

M
(K × B) · r, (7)

which is the magneto-Stark effect (MSE) [13], with the total
mass M = me + mh. This term acts analogously to an addi-
tional effective electric field [17]

Fmse = h̄

M
(K × B), (8)

perpendicular to both the direction of the incident light and
the external magnetic field. The influence of this term will
thus depend on the relative orientations of the exciting laser
and the magnetic field. In the Faraday configuration, where K
and B are parallel, it vanishes. However, when K and B are
chosen to be orthogonal to each other, this term is nonzero.

C. Central-cell corrections

Second harmonic generation principally involves the even-
parity states such as the S and D excitons. For a correct
theoretical description, additional effects such as the exchange
interaction and the Haken potential have to be included. The
treatment for our numerical calculations will be as described
in Ref. [21] by using the Haken potential.

III. NUMERICAL DIAGONALIZATION OF
THE EXCITON HAMILTONIAN

To numerically calculate the eigenvalues and eigenstates
of the exciton problem, we first express the stationary
Schrödinger equation in a complete basis. For the orbital
angular part, we utilize the spherical harmonics with quantum
numbers L and M. Additional quantum numbers have to be
introduced to treat the quasi-spin I as well as the electron and
hole spins Se and Sh. For our basis, we first couple the hole
spin and the quasi-spin to the effective hole spin J = I + Sh.
Next we introduce the angular momentum F = J + L and
finally add the electron spin Se to get the total angular mo-
mentum Ft = F + Se. Note that the basis functions belonging
to the quasi-spin I transform according to the irreducible
representation �+

5 in Cu2O instead of the usual �+
4 for a spin

of unity. However, since �+
5 = �+

4 ⊗ �+
2 , we can perform

the standard coupling of angular momenta and, to obtain the
appropriate symmetry of the total state, multiply by �+

2 at
the end. For the radial part we use the Coulomb-Sturmian
functions [3,28,29]

UN,L = NN,L

(
2r

b

)L

e− r
b L2L+1

N

(
2r

b

)
, (9)

with the associated Laguerre polynomials Lm
n (x) and a nor-

malization factor NN,L. Here, N is the radial instead of the
principal quantum number. The parameter b can in principle
be freely chosen but influences the convergence of the matrix
diagonalization. In total we thus get the basis states

|	〉 = ∣∣N, L; (I, Sh), J; F, Se; Ft , MFt

〉
, (10)

|g

|i

|f

ω

ω

2ω

FIG. 1. Scheme of a second harmonic generation process. The
ground state of the crystal is denoted by |g〉, the resonantly stimulated
exciton state by | f 〉, and the virtual intermediate state by |i〉.

where we use 	 = {N, L; (I, Sh ), J; F, Se; Ft , MFt } as an
abbreviation for the set of quantum numbers used. This basis
has the advantage of being complete without the inclusion of
the hydrogen continuum, but it is not orthogonal with respect
to the standard scalar product.

Following Ref. [4], we express the Hamiltonian in spher-
ical tensor notation. We investigate spectra with B ‖ [001],
[110], and [111]. In each case, we choose the quantization
axis to be along the magnetic field and perform an according
rotation on the Hamiltonian. The expressions obtained for the
Hamilton operator are found in the Appendix of Ref. [4].
Using the ansatz

|
〉 =
∑
	

c	|	〉 (11)

for the exciton wave function |
〉, the Schrödinger equation
takes the form of a generalized eigenvalue problem,

Hc = EMc, (12)

with the Hamiltonian matrix H and the overlap matrix M. We
cut off our basis for appropriately large values of N and F
to obtain finite matrices. The solution is obtained by using a
suitable LAPACK routine [30] and we thus get the eigenvalues
E and the vector of coefficients c in the basis expression (11).

IV. SECOND HARMONIC GENERATION

Second harmonic generation is a process where two in-
coming photons are coherently transformed into one outgoing
photon of doubled frequency, as illustrated in Fig. 1. A given
exciton state can only contribute to the SHG spectrum if it
is both two-photon and one-photon allowed. In the field-free
case, only even exciton states can be excited in two-photon
transition processes. Since these are dipole forbidden, SHG
can only be obtained by the addition of a quadrupole-emission
process. There are two conditions that determine the selection
rules for these processes: For the dominant contribution, the
envelope wave function has to be nonvanishing at the origin
[9,31], which requires an L = 0 component, and the exciton
state has to have an admixture of vanishing total spin S =
Se + Sh = 0, since a spin flip is forbidden here. Only the
�+

5 excitons of even parity fulfill both conditions. This can
be seen by considering the resulting set of angular momenta.
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With L = 0, S = 0, and I = 1, the rotational behavior for the
exciton states is determined by the quasi-spin I, which, as
stated above, transforms according to �+

5 . We see that in the
tensor product [32]

�−
4 ⊗ �−

4 = �+
1 ⊕ �+

3 ⊕ �+
4 ⊕ �+

5 (13)

belonging to both the two-photon (�−
4 for each incoming

photon) and quadrupole operator (�−
4 for both the outgoing

photon and the K vector), only the �+
5 term contributes in

leading order.

A. Calculation of second harmonic generation intensities

To simulate the SHG intensity spectra for a given polariza-
tion of the outgoing light Eout,

I (2ω) =
∣∣∣∣∣
∑

i

Ei(2ω)Eout
i

∣∣∣∣∣
2

, (14)

with

Ei(2ω) ∼
∑

j,k

χ
(2)
i jk E j (ω)Ek (ω), (15)

we need to calculate the corresponding nonlinear
susceptibilities

χ
(2)
f ,lmn ∼

∑
i

〈g|V Q
l | f 〉〈 f

∣∣V D
m

∣∣i〉〈i∣∣V D
n

∣∣g〉
(E f − 2h̄ω − i� f )(Ei − h̄ω)

. (16)

Here, D and Q mark terms belonging to the excitation by two
dipole steps and to the quadrupole-emission process, respec-
tively. The states involved are denoted by |g〉 for the ground
state of the crystal, | f 〉 for the resonantly excited exciton state,
and |i〉 for the virtual intermediate states. The conditions of
vanishing total spin (admixture of S = 0) and nonvanishing
wave function at the origin (admixture of L = 0) imply that
the strength of both processes is given by the overlaps with
the following states with irreducible representation �+

5 [31]:

∣∣πQ
yz

〉 = 1√
2

(|1,−1〉Q − |1, 1〉Q),

∣∣πQ
xz

〉 = i√
2

(|1,−1〉Q + |1, 1〉Q),

∣∣πQ
xy

〉 = |1, 0〉Q, (17)

with ∣∣Ft , MFt

〉
Q = ∣∣S, I; I + S, L; Ft , MFt

〉
= ∣∣0, 1; 1, 0; 1, MFt

〉
. (18)

In Eq. (17), the quantization axis is chosen to be along the
[001] direction. If [110] is chosen to be the z and quantization
axis, we instead have

∣∣πQ
yz

〉 = i

2
|1,−1〉[110]

Q + i

2
|1, 1〉[110]

Q + 1√
2
|1, 0〉[110]

Q ,

∣∣πQ
xz

〉 = − i

2
|1,−1〉[110]

Q − i

2
|1, 1〉[110]

Q + 1√
2
|1, 0〉[110]

Q ,

∣∣πQ
xy

〉 = 1√
2
|1,−1〉[110]

Q − 1√
2
|1, 1〉[110]

Q . (19)

For the case of the quantization axis being parallel to the [111]
direction, we obtain

∣∣πQ
yz

〉 =
(

1

2
√

3
− i

2

)
|1,−1〉[111]

Q +
(

1

2
√

3
+ i

2

)
|1, 1〉[111]

Q

+ 1√
3
|1, 0〉[111]

Q ,

∣∣πQ
xz

〉 =
(

1

2
√

3
+ i

2

)
|1,−1〉[111]

Q −
(

1

2
√

3
− i

2

)
|1, 1〉[111]

Q

+ 1√
3
|1, 0〉[111]

Q ,

∣∣πQ
xy

〉 = − 1√
3
|1,−1〉[111]

Q + 1√
3
|1, 1〉[111]

Q . (20)

For the two-photon excitation, we have to consider the cou-
pling of �−

4 ⊗ �−
4 → �+

5 for the two polarization vectors of
the incoming light. In this work, we only consider the case
of two identical incoming photons with polarization E in =
(E in

1 , E in
2 , E in

3 ). The coupling coefficients as given in Ref. [32]
imply that the transition amplitudes for two-photon absorption
with two dipole steps OTPDD can then by calculated using the
symmetrical cross product

OTPDD ∼ E in ⊗ E in = 1√
2

⎛
⎜⎝

E in
2 E in

3 + E in
3 E in

2

E in
3 E in

1 + E in
1 E in

3

E in
1 E in

2 + E in
2 E in

1

⎞
⎟⎠, (21)

where the components give the amplitude for the excitation of
a state transforming as yz for e1, as xz for e2, and as xy for
e3. We see that, for example, light polarized along the [110]
direction will produce exciton states transforming according
to the basis vector xy of �+

5 .
For the quadrupole-emission process, we similarly have to

consider the coupling of the polarization vector Eout of the
outgoing light, determined by the analyzer in the experiment,
and the wave vector K,

OQ ∼ K ⊗ Eout = 1√
2

⎛
⎜⎝

K2Eout
3 + Eout

3 K2

K3Eout
1 + Eout

1 K3

K1Eout
2 + Eout

2 K1

⎞
⎟⎠. (22)

Analogously to the case of two-photon excitation, we can,
for example, conclude that light polarized along the [001]
direction with a wave vector parallel to [100] can only be
emitted by exciton states transforming as xz.

B. Dipole-emission process

In the Voigt configuration, considered in some of the
spectra here, an effective electric field arises. This electric
field breaks the inversion symmetry of the crystal and mixes
states of different parity. This will also make certain SHG pro-
cesses involving a dipole-emission step allowed. Similar to the
case of the two-photon excitation and quadrupole-emission
processes, the strength of these dipole-emission processes are
given by the overlaps with the three states of symmetry �−

4 , as
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derived in Refs. [3,4,31]:

∣∣πD
x

〉 = i√
2

(|2,−1〉D + |2, 1〉D),

∣∣πD
y

〉 = 1√
2

(|2,−1〉D − |2, 1〉D),

∣∣πD
z

〉 = i√
2

(|2,−2〉D − |2, 2〉D), (23)

with ∣∣Ft , MFt

〉
D

= ∣∣S, I; I + S, L; Ft , MFt

〉
= ∣∣0, 1; 1, 1; Ft , MFt

〉
. (24)

Again, Eq. (23) gives the result with the quantization axis
along [001]. For [110], we get

∣∣πD
x

〉 = − i

2
|2,−2〉[110]

D + 1

2
|2,−1〉[110]

D

− 1

2
|2, 1〉[110]

D + i

2
|2, 2〉[110]

D ,

∣∣πD
y

〉 = i

2
|2,−2〉[110]

D + 1

2
|2,−1〉[110]

D

− 1

2
|2, 1〉[110]

D − i

2
|2, 2〉[110]

D ,

∣∣πD
z

〉 = − 1√
8
|2,−2〉[110]

D +
√

3

2
|2, 0〉[110]

D

+ 1√
8
|2, 2〉[110]

D , (25)

and for the [111] direction

∣∣πD
x

〉 =
(

1√
18

− i

6

)
|2,−2〉[111]

D +
(

1

6
+ i√

12

)
|2,−1〉[111]

D

−
(

1

6
+ i√

12

)
|2, 1〉[111]

D +
(

1√
18

+ i

6

)
|2, 2〉[111]

D

+ 1

3
|2, 0〉[111]

D ,

∣∣πD
y

〉 =
(

1

6
− i√

12

)
|2, 1〉[111]

D +
(

1√
18

− i

6

)
|2, 2〉[111]

D

+
(

1

6
− i√

12

)
|2,−1〉[111]

D +
(

1√
18

+ i

6

)
|2,−2〉[111]

D

+ 1

3
|2, 0〉[111]

D ,

∣∣πD
z

〉 = 1√
3
|2, 0〉[111]

D + 1

3
|2, 1〉[111]

D − 2√
18

|2, 2〉[111]
D

− 2√
18

|2,−2〉[111]
D − 1

3
|2,−1〉[111]

D . (26)

C. Linewidths

In addition to the transition matrix elements discussed
above, the nonlinear susceptibilities (16) also depend on the
linewidths of the involved exciton states � f . The homoge-
neous linewidths of the involved states are for the most part
unknown. Additionally, the strong mixing of states makes
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FIG. 2. Comparison of experimental (black) and numerical
(color palette) SHG spectra in arbitrary units with E in,2 ‖ [110],
Eout,2 ‖ [001] for different values of A as defined in Eq. (31). The
wave vector points along the [110] axis and the magnetic field is
applied in the Voigt geometry in the [110] direction and has a strength
of B = 6 T. The main features shown belong to principal quantum
numbers n = 3 and n = 4. The color encodes the value of A, which
parametrizes the relative strength of dipole-emission processes to
quadrupole-emission processes. We show the comparison for (a) neg-
ative and (b) positive values of A.

accurate assignments of states difficult. Various attempts to
incorporate the linewidths in a more detailed way did not
lead to results in better agreement with experiment than the
simple assumption of a constant linewidth of � = 150 μeV
for all states. This linewidth also approximately reproduces
the widths of the dominant S and D states, as visible in Figs. 2
and 3. We thus use this simple approach for our numerical
calculations.

D. Relative strength of dipole- and
quadrupole-emission processes

In spectra where both quadrupole- and dipole-emission
processes play a role, their relative oscillator strengths have to
be considered. According to Ref. [31], the combined transition
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FIG. 3. Same as Fig. 2 but with a fixed value of A = 0.4. With
this value, the numerical spectrum matches the experimental spec-
trum reasonably well. Choosing a higher value for A leads to the
3S peak being excessively high, whereas a lower value results in a
too-weak n = 4 manifold. For further discussion, see the text.

matrix elements for both processes is given by

M ∼ lim
r→0

[
−i(M̃∗

v + M̃∗
c )

∂

∂r

〈
T D

out

∣∣
〉

+ (−(1 − α)M̃∗
v + αM̃∗

c )
K√

6

〈
T Q

out

∣∣
〉]
, (27)

with the exciton wave function |
〉. The parameter α relates to
the chosen center-of-mass transformation by α = me/(me +
mh )= 0.63. The states |T D

out〉 and |T Q
out〉 are related to the states

in Eqs. (17) and (23) via∣∣T D
out

〉 =
∑

i∈{x,y,z}
Eout

i

∣∣πD
i

〉
, (28)

∣∣T Q
out

〉 =
∑

v∈{yz,xz,xy}

√
2(Eout ⊗ K̂ )v

∣∣πQ
v

〉
, (29)

with the normalized wave vector K̂. We see that the correct
calculation of the SHG intensities requires the values for
the constants M̃∗

v and M̃∗
c . These are independent of the

exciton state and the magnetic field. We rescale and rewrite
Eq. (27) as

M ∼ lim
r→0

[
−iA

∂

∂r

〈
T D

out

∣∣
〉 + K√
6

〈
T Q

out

∣∣
〉]
, (30)

where

A = M̃∗
v + M̃∗

c

−(1 − α)M̃∗
v + αM̃∗

c

. (31)

A now parametrizes the relative contribution of dipole- and
quadrupole-emission processes, i.e., for |A| → ∞ the spec-
trum is only determined by dipole processes, whereas for
A → 0, they play no role. In Fig. 2 we show a comparison of

experimental and numerical spectra for a particular strength
of the magnetic field B = 6 T. Since the SHG spectrum is
sensitive to the relative contributions of the quadrupole- and
dipole-emission processes, we can use this comparison to
estimate the value of A. Reasonable agreement is achieved for
A = 0.4, see Fig. 3, and we choose this value for A for our
further calculations. This allows us to estimate the ratio of M̃∗

c
to M̃∗

v . By using Eq. (31), we find

M̃∗
c

M̃∗
v

= − (1 − α)A + 1

1 − αA
≈ −1.5. (32)

Note that this result can only be taken as a rough estimate.
We chose the value of A mainly on the basis of the agreement
with the 3S and 3D states and the n = 4 manifold. Still, the
accordance between experiment and theory is not perfect,
especially for the lines between the 3S and 3D states, which
are not reproduced very well in the simulations. Presumably,
this is due to the simplified treatment of the linewidths. We
also see that the feature around the 3S states comes out
too strong. This is also observed in some of the following
spectra. Two remarks are important here. First of all, the
linewidth of the 3P state is around 500 μeV [1] and thus
considerably larger than the value used here. Broader lines
generally have weaker SHG intensities, although exceptions
may be caused by interference between different states. The
second remark concerns the line positions of the even exciton
states being influenced by the central-cell corrections. Since
the central-cell corrections are only an approximation, the
positions of the even excitons are not reproduced as faithfully
as the positions of the odd states. Instead, the numerical S and
D excitons are shifted to slightly higher energies as compared
with experiment, an effect also observed in Refs. [17,21].
The reduced energetic distance between the S and P states
probably leads to a stronger mixing and thus, for SHG with
a dipole-emission step, to an overestimated intensity. The
reverse will hold for the D states.

V. DISCUSSION OF SELECTION RULES

Second harmonic generation is principally forbidden in
inversion symmetric crystals such as Cu2O. To see this, we
consider the SHG amplitude Ei(2ω) given in Eq. (15). The
application of the inversion operation switches the signs of
the amplitudes E , but leaves the susceptibility χ invariant due
to the symmetry of the crystal. It follows that the amplitudes
Ei(2ω) vanish unless the inversion symmetry is broken.

A. Quadrupole and electric-field-induced dipole emission

A two-photon absorption process can only excite even-
parity states. For two incoming photons with identical
polarization E in, the corresponding two-photon absorption
amplitudes are given by the symmetrical cross product (21),

OTPDD ∼ E in ⊗ E in. (33)

The stimulated excitons transform according to �+
5 . Due to

their parity, they cannot emit photons in a dipole process. For
SHG to become possible, a perturbation has to break the in-
version symmetry. In the field-free case, this is accomplished
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by the wave vector K, allowing for quadrupole-emission pro-
cesses. For a given polarization of outgoing SHG light Eout,
the associated quadrupole transition amplitudes transform like
the symmetrical cross product (22),

OQ ∼ K ⊗ Eout. (34)

Combining both steps, the wave-vector-induced SHG ampli-
tude MK is proportional to

MK (E in, Eout, K ) ∼ (E in ⊗ E in ) · (K ⊗ Eout ). (35)

A different way to break the inversion symmetry is to
apply an external electric field. This causes the �+

5 excitons
to gain an admixture of dipole-allowed �−

4 states. This makes
a dipole-emission step possible. The first-order transition
amplitude for a dipole-emission process from the �+

5 exciton
state ψ5+

i to the ground state |g〉 of the crystal is then given by

OF
D,i ∼

∑
j,k,l

Eout
l F j

〈
ψ5+

i

∣∣V F
j

∣∣ψ4−
k

〉〈
ψ4−

k

∣∣V D
l

∣∣g〉
Ek − h̄ωout

. (36)

Here, V D
l is the term of the dipole operator belonging to

the component of the polarization of the outgoing light Eout
l

and transforms according to �−
4 , as does the perturbation

V F
j belonging to the component F j of the electric field. The

projection operator

P4− =
∑

k

∣∣ψ4−
k

〉〈
ψ4−

k

∣∣
Ek − h̄ωout

(37)

transforms according to the irreducible representation �+
1 .

For a nonvanishing contribution, the total matrix element for
a given term in the sum over j and l has to transform as
�+

1 . Since the ground state |g〉 belongs to �+
1 , this can only

happen if the complete operator between bra 〈ψ5+
i | and ket

|g〉 transforms as �+
5 . The matrix element is thus proportional

to the group-theoretical coupling coefficients belonging to the
product �−

4 ⊗ �−
4 → �+

5 , which give the symmetrical cross
product of the outgoing polarization Eout with the electric
field F ,

OF
D ∼ F ⊗ Eout. (38)

Taking the two-photon absorption step into account, the
electric-field-induced SHG amplitude MF is given by

MF (E in, Eout,F ) ∼ (E in ⊗ E in ) · (F ⊗ Eout ). (39)

Comparing formulas (35) and (39), we see the close analogy
between the wave vector K and the electric field F in inducing
a SHG signal.

B. Separating magneto-Stark effect and Zeeman
effect in forbidden directions

Second harmonic generation induced by the finite wave
vector K is not always possible. If K is directed along an axis
with a C2 symmetry, an argument analogous to the one for
the inversion symmetry above shows that the SHG signal van-
ishes. Group-theoretically, the two-photon absorption process
can only excite longitudinal states belonging to the irreducible
representation �1 in C2. Only transversal states of symmetry

�2 can emit a photon. The crystal has a C2 symmetry for ro-
tations around the [001] and [110] axes and their equivalents.
SHG is thus forbidden along these directions.

The direction investigated in this paper is given by K ‖
[110]. To produce a SHG signal, the C2 symmetry has to be
broken and states belonging to �1 and �2 have to be coupled
to each other. To this end, we consider the application of
an external magnetic field. In Faraday configuration, the C2

symmetry remains. It is therefore necessary to apply the field
in Voigt configuration. We choose B ‖ [110]. In this case, in
addition to the magnetic field the magneto-Stark electric field
has to be treated as well. According to Eq. (8) it is directed
along F ‖ [001]. Both the magnetic field and the electric
field each induce a contribution to the SHG signal. The
magnetic field breaks the C2 symmetry and produces exciton
eigenstates containing �1 and �2 admixtures as necessary. The
emission step still results from a quadrupole process and can
therefore be described using Eq. (34). For the electric field,
the description given in Sec. V A is valid and Eq. (39) can be
used if the Zeeman splitting is weak.

Evaluating these formulas in the given configuration re-
veals that the quadrupole emission induced by the Zeeman
effect and the dipole emission induced by the magneto-Stark
effect have orthogonal polarizations to each other. Orient-
ing the analyzer according to Eout,1 ‖ [110], only electric-
field-induced dipole processes are possible. By contrast, for
Eout,2 ‖ [001] only quadrupole emission is observable. This
allows for the possibility of separating Zeeman-induced SHG
from magneto-Stark-induced SHG. Combining Eout,1 with
E in,1 ‖ [11

√
2], a SHG signal caused only by the electric

field can be observed. To accomplish the same for the Zeeman
effect, we need to understand the effect of the magnetic field
in greater detail.

C. Symmetry reduction by the magnetic field

A magnetic field reduces the symmetry of the system
and leads to a mixing of previously uncoupled states. The
principal effect relevant for SHG production is the coupling
of states in the degenerate spaces belonging to the irreducible
representation �+

5 and the consequent lifting of their degen-
eracy. As the magnetic field is of even parity, SHG is only
produced by the combination of a two-photon excitation with
a quadrupole-emission process involving these states. Using
Eqs. (21) and (22), a sum of basis vectors transforming like
the �+

5 states ψ5+
yz , ψ5+

xz , and ψ5+
xy can be assigned to the

two-photon and quadrupole amplitudes for a given pair of
polarizations of the incoming and outgoing light. An exciton
state can generally be excited in a two-photon absorption
process if it has a nonzero overlap with the resulting vector
for the two-photon amplitudes. It can emit in a quadrupole
step if it has a nonzero overlap with the resulting vector for the
quadrupole amplitudes. SHG is thus possible if the admixture
by the magnetic field produces exciton states fulfilling both
conditions.

To apply these rules in specific cases, we first need to
understand the effect of the magnetic field on the exciton
states. To this end we will use a perturbation theoretical
approach, considering the mixture of the �+

5 states to leading
order in B. We have to consider the lifting of the degeneracy
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through the magnetic field, leading to mixtures of zeroth order
when the splitting is larger than the linewidths of the states.
Using the coupling coefficients in Ref. [32], we see that we
have to diagonalize the following matrix with the identifica-
tion e1 = ψ5+

yz , e2 = ψ5+
xz , e3 = ψ5+

xy , B = (B, B, 0),

HB ∼ 1√
2

⎛
⎝ 0 −Bz By

Bz 0 −Bx

−By Bx 0

⎞
⎠ = 1√

2

⎛
⎝ 0 0 B

0 0 −B
−B B 0

⎞
⎠.

(40)
The eigenvectors are

ψ5+
0 = 1√

2

⎛
⎝1

1
0

⎞
⎠, ψ5+

±1 = 1

2

⎛
⎝ −1

1
∓i

√
2

⎞
⎠, (41)

where the states can be classified according to a magnetic
quantum number as given in the subscript of ψ with the
quantization axis along the [110] direction. Note that the
resulting eigenstates couple longitudinal and transversal po-
larizations. They therefore allow for a SHG signal for arbitrary
nonvanishing magnetic-field strength if the polarizations are
chosen correctly. In fact, these states can of course already
be used in the degenerate case without a magnetic field. The
reason why a significant SHG signal is only visible for suffi-
ciently high fields lies in the linewidths of the states. To the
degree that the different lines overlap, destructive interference
prevents the production of SHG light. Physical intuition for
this behavior can be gained by understanding the behavior of
the �+

5 excitons as damped oscillations in the crystal,

ξi(t ) = ξie
−γ t eiωit , (42)

with i = 0,±1 denoting the oscillation modes belonging to
the states ψ5+

i with frequencies ωi = Ei/h̄ and

ξ0 = 1√
2

⎛
⎝1

1
0

⎞
⎠, ξ±1 = 1

2

⎛
⎝ −1

1
∓i

√
2

⎞
⎠. (43)

The damping γ is proportional to the linewidths of the states.
The femtosecond pulse stimulates an initial amplitude accord-
ing to

ξ(t = 0) ∼ E in ⊗ E in. (44)

After the stimulation, the oscillatory modes evolve as given in
Eq. (42). At every time t , the excitonic oscillation is connected
to a macroscopic polarization P via

P(t ) ∼ K ⊗ ξ(t ), (45)

which will finally produce the observed SHG light at the
boundary of the crystal according to I (t ) ∼ |Eout · P(t )|2.
In the configuration considered here, the mode ξ0 does not
produce a macroscopic polarization in the crystal, since K ⊗
ξ0 = 0. The other two modes are associated with a circular
polarization,

P±1(t ) ∼ K ⊗ ξ±1(t ) = ± i

2
e−γ t eiω±1t

⎛
⎝ 1

−1
∓i

√
2

⎞
⎠. (46)

Because both modes can only be stimulated through their xy
parts, they are excited with the same amplitude but differing

sign. The total polarization Ptotal(t ) is therefore linear with a
polarization plane normal to the [110] direction. The polar-
ization vector rotates in this plane with the beat frequency
ωB = (ω+1 − ω−1)/2 determined by the difference of the
individual frequencies belonging to the oscillatory modes,

Ptotal(t ) ∼ e−γ t ei
ω+1−ω−1

2 t

⎛
⎝ cos (ωBt )

− cos (ωBt )√
2 sin (ωBt )

⎞
⎠. (47)

Directly after the stimulation by the femtosecond pulse, the
polarization points along the longitudinal direction [110] and
no SHG is possible. A SHG signal is produced to the degree
that the polarization vector is rotated into the transversal
[001] or [001] direction and the emitted photons are therefore
polarized along the z axis. This process is determined by the
competition between the Zeeman-induced beat frequency ωB

and the damping γ . The integrated intensity and therefore the
total number of detected photons is proportional to

∫
I (t )dt ∼

∫ ∞

0

∣∣Eout
z e−γ t sin (ωBt )

∣∣2
dt ∼ |Eout

z |2ω2
B

γ
(
ω2

B + γ 2
) .

(48)

Since ωB ∼ B for small field strengths, the number of photons
detected is quadratic in B to leading order.

The preceding discussion reveals that only an incoming
polarization exciting �+

5 states transforming according to xy
can produce SHG light. Returning to our goal of separating the
Zeeman and magneto-Stark effects, we can combine Eout,2 ‖
[001] with E in,2 ‖ [110] to generate a SHG signal induced by
the Zeeman effect alone.

D. Additional consideration of the �−
4 states

The preceding discussion only took the �+
5 states into

account. We now want to consider the role of the dipole-active
�−

4 excitons. To become SHG-allowed, they have to be mixed
with the �+

5 states. This can only happen if the inversion
symmetry is broken. The magnetic field alone can therefore
not induce a SHG signal mediated by odd-parity states. For
this, we have to turn our attention to the magneto-Stark effect.
Since the �−

4 states can emit photons in a dipole process, the
two-photon absorption has to be modified here to make SHG
allowed. The two-photon absorption transition amplitude for
a �−

4 state ψ4−
j due to the presence of the electric field is

given by

O
F,�−

4
TPDD, j ∼

∑
i,k,l

(E in ⊗ E in )iFl

×
〈
g
∣∣V DD

i

∣∣ψ5+
k

〉〈
ψ5+

k

∣∣V F
l

∣∣ψ4−
j

〉
Ek − 2h̄ωin

. (49)

The relevant components of the two-photon operator V DD
i

transforming as �+
5 are given by

V DD
i =

∑
j,k

|εi jk|√
2

∑
l

V D
j |l〉〈l|V D

k

El − h̄ωin
, (50)

with the Levi-Civita symbol εi jk , the dipole operators V D
j,k for

the individual steps, and the virtual intermediate states |l〉. The
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components of the perturbation belonging to the electric field
V F

l behave as �−
4 . The projection operator

P5+ =
∑

k

∣∣ψ4−
k

〉〈
ψ4−

k

∣∣
Ek − h̄ωout

(51)

again transforms according to �+
1 . The matrix elements are

thus also proportional to the same coupling coefficients as
in the discussion of the �+

5 states. The modified two-photon
absorption amplitude is therefore given by

OF,�−
4

TPDD = F̂ ⊗ (E in ⊗ E in ). (52)

The �−
4 states emit SHG radiation by a dipole step. The SHG

transition amplitude is thus proportional to

M
�−

4
F (E in, Eout,F ) ∼ OTPDD,F · OD

= (F̂ ⊗ (E in ⊗ E in )) · Eout

= (E in ⊗ E in ) · (F̂ ⊗ Eout ), (53)

and we get the same formula as for the �+
5 states. Our conclu-

sions regarding the polarization dependencies of the Zeeman-
induced and magneto-Stark-induced SHG amplitudes thus
remain unchanged by the additional consideration of the
�−

4 excitons. In particular, it remains the case that with the
combination of polarizations given by E in,1 ‖ [11

√
2] and

Eout,1 ‖ [110] only SHG induced by the magneto-Stark effect
is visible and with the combination of polarizations given by
E in,2 ‖ [110] and Eout,2 ‖ [001] only SHG induced by the
Zeeman effect is visible.

These combinations of polarizations for the incoming and
outgoing light allow for the separation of the Zeeman and
magneto-Stark effect to the degree that the approximations
made in the preceding discussion are valid. In the first
configuration with E in,1 and Eout,1, quadrupole emission is
forbidden entirely. Restricting our treatment to the dominant
contributions, only the electric-field-induced mixture of �−

4
and �+

5 excitons can produce any SHG signal at all, even
for strong fields. For the second configuration with E in,2

and Eout,2, only weaker statements are possible. The electric-
field-induced SHG vanishes only if the Zeeman splitting
between the states is small. Still, if the energetic distance of
a SHG-active �+

5 multiplet to the dipole-active �−
4 states is

large, the contribution of dipole-emission processes remains
minor. This effect can be seen in Fig. 2, where the second
combination of polarizations is used. The high-energy 3D line
shows an especially small influence of the electric field, its
intensity being almost unaffected by variations in the strength
of dipole-emission processes. This is probably explained by
its high energetic distance to the 3P lines and other odd-parity
states as stated above.

Apart from allowing for the separation of the Zeeman and
magneto-Stark effect, the formulas for the SHG amplitudes
derived in this section can be used for the detailed discussion
of the polarization dependencies of the SHG signal. Since
MF (E in, Eout,F ) and the amplitude induced by the magnetic
field are different functions of the polarizations, the effects
can be distinguished experimentally. Complementary to the
discussion here, this is done in the paper by Farenbruch et al.

[18], where the polarization dependencies for SHG processes
other than those considered here are studied as well.

VI. EXPERIMENT

Details of the experimental setup are reported in Ref. [10].
By replacing the 0.5 m monochromator by a 1 m monochro-
mator we improved the spectral resolution from 100 μeV
to 16 μeV. Details of the new setup are shown in the com-
plementary publication by Farenbruch et al. [18]. The Cu2O
samples are cut from a natural crystal in different crystalline
orientations and thicknesses. They are mounted strain-free in
a split-coil superconducting magnet allowing a magnetic-field
strength of up to 10 T in the Faraday and Voigt configurations.
With the use of half-wave plates the linear polarization of
the incoming (laser) light and outgoing (SHG) light can be
varied continuously and independently. The measurements
were taken in superfluid helium at about 1.4 K. For excitation
we used a tunable femtosecond laser (200 fs, spectral width of
10 meV). The frequency-doubled intensity profile is centered
at 2.164 eV with a full width at half maximum (FWHM)
of 14 meV, cf. Ref. [10]. To take its influence into account
for the numerical calculations, we weight the numerically ob-
tained spectrum with a Gaussian function with the appropriate
parameters.

VII. RESULTS AND COMPARISON WITH EXPERIMENT

In Fig. 4, both experimental and numerical spectra with the
polarizations discussed in Sec. V are shown. A general agree-
ment between experiment and numerical spectra is observed.
Some discrepancies remain: For both spectra, the numerical
features in the region of the3S states are too strong. This is
probably due to the central-cell corrections, as explained at
the end of Sec. IV D.

In general, the SHG spectrum is determined by a com-
bination of the Zeeman and magneto-Stark effect. In Fig. 5,
we show additional examples of magnetic-field-induced SHG
spectra in a forbidden direction. The combination of polarizer
and analyzer used in Fig. 5(a) produces a spectrum that is
a product of both the Zeeman and magneto-Stark effect in
full generality, whereas Fig. 5(b) shows another spectrum
entirely produced through the MSE, since K ⊗ Eout = 0 in
this case. Here too, in both cases reasonable agreement be-
tween experiment and numerical simulation is achieved. In
the numerical data in Fig. 5(a), a strong feature appears for
E ≈ 2.162 eV, B ≈ 8–10 T that is not seen in the experiment.
The two remarks from the end of Sec. IV D apply here: The
inaccuracies in the central-cell corrections and the linewidths
lead to an overestimated SHG intensity. Figure 5(b) on the
other hand shows generally good agreement.

In Fig. 6, we show pictures of SHG along the allowed
direction [111]. Some agreement is observed, but there are
also significant differences. Most evidently, the D excitons
are stronger than the S excitons in the numerical data, but in
the experiment the reverse is the case. A possible explanation
is to be found in the treatment of the center-of-mass motion.
Due to the inversion symmetry of cuprous oxide, the SHG
signal in the field-free case can be thought of as being induced
by the finite wave vector K. For B �= 0, this will give an

115202-9



PATRIC ROMMEL et al. PHYSICAL REVIEW B 101, 115202 (2020)

(a)

Magneto-Stark configuration

2.160 2.164 2.168 2.172

SHG Energy [eV]

 0

 2

 4

 6

 8

 10

M
ag

ne
ti

c 
F

ie
ld

 [
T

]

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

3S 3D 4S 4D

Ein || [11√⎯2]
Eout || [110]

(b)

Zeeman configuration

2.160 2.164 2.168 2.172

SHG Energy [eV]

 0

 2

 4

 6

 8

 10

M
ag

ne
ti

c 
F

ie
ld

 [
T

]

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

3S 3D 4S 4D

Ein || [110]
Eout || [001]

(c)

2.160 2.164 2.168 2.172

SHG Energy [eV]

 0

 2

 4

 6

 8

 10

M
ag

ne
ti

c 
F

ie
ld

 [
T

]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3S 3D 4S 4D I

(d)

2.160 2.164 2.168 2.172

SHG Energy [eV]

 0

 2

 4

 6

 8

 10

M
ag

ne
ti

c 
F

ie
ld

 [
T

]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

3S 3D 4S 4D I

FIG. 4. Experimental SHG spectra in arbitrary units with (a) E in,1 ‖ [11
√

2], Eout,1 ‖ [110] and (b) E in,2 ‖ [110], Eout,2 ‖ [001]. The wave
vector points along the [110] axis and the magnetic field is applied in the [110] direction. The spectra on the left-hand side are mediated through
the magneto-Stark effect and the spectra on the right are mediated by the Zeeman effect. The main features visible belong to excitons with
principal quantum numbers n = 3 and n = 4. The corresponding numerically calculated spectra [see Eq. (14)] are shown in panels (c) and (d).

additional contribution to the spectrum that requires a more
careful consideration of the center-of-mass motion than the
one used here. For SHG in forbidden directions, the center-
of-mass motion by itself does not induce a SHG signal, and
thus our treatment is sufficient in that case. As expected, the
Voigt configuration as seen in Fig. 6(b) shows more features
compared with the Faraday configuration in Fig. 6(a) due to
the additional mixing caused by the electric field.

VIII. CONCLUSION

We extended the method developed by Schweiner et al.
for the calculation of absorption spectra of excitons in Cu2O
[3,4,21] to the simulation of second harmonic generation
intensities.

In Cu2O, SHG is forbidden along axes with a C2 symmetry.
The application of an external magnetic field makes SHG
along those directions allowed. In this paper, we mainly
consider the case of SHG along forbidden axes. We identify
two separate mechanisms by which a magnetic field can
induce a SHG signal. First of all, the magnetic field itself
reduces the symmetry and mixes the exciton states in an

appropriate way to produce a nonvanishing SHG intensity.
In this case, parity remains a good quantum number and
the emitted photon can only be produced by a quadrupole
process. In the Voigt configuration, the magnetic field induces
an additional effective electric field. This breaks the inversion
symmetry and also makes SHG with dipole-emission pro-
cesses possible.

We study spectra where both quadrupole- and dipole-
emission processes play a role. To this end, we estimate the
relative strength of these by comparing suitable numerical and
experimental spectra.

We compare numerically calculated and experimental data
for various choices of polarizations of the incoming and out-
going light, direction of the wave vector, and direction of the
magnetic field. We find that, for certain configurations, spectra
are to leading order entirely induced by the magnetic field or
by the electric field. Good agreement between experiment and
theory is observed for the most part, but some weaknesses of
the numerical method remain.

First of all, the treatment of SHG in allowed directions
will require a more careful approach toward the center-of-
mass motion since, in this case, the nonvanishing K vector
will by itself induce a SHG signal. To include this properly,
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FIG. 5. Experimental SHG spectra (blue lines) with B || [001],
K || [110] and (a) E in || [11

√
2], Eout || [11

√
2] and (b) E in || [110],

Eout || [110]. The corresponding numerically simulated spectra
(grayscale) have been shifted by −0.5 meV to allow for a better com-
parison. The main visible features belong to excitons with principal
quantum numbers n = 3 and 4. The feature visible at E ≈ 2.162 eV,
B ≈ 8–10 T in the numerical spectrum in panel (a) has an intensity
exceeding the color palette scale and is most likely due to some
numerical artifact.

the Hamiltonian will have to be complemented by additional
K-dependent terms.

The SHG intensities associated with specific exciton lines
depend on their linewidths. The inclusion of this effect in
our model is only rudimentary. A better treatment is difficult,
since it would require detailed knowledge of the lifetimes of
the exciton states even in the regime of strong mixing.

An additional weakness of the numerical method used
here are the central-cell corrections. Due to their inaccuracy,
the positions of the even exciton states are slightly too high
energetically. This leads to a too-strong mixing of the S and
P states and thus to too-strong intensities of these lines. An
improved treatment of the central-cell corrections could solve
this problem.

Differences between theory and experiment may arise also
from imperfections in experiment: there might be slight mis-
alignment of the crystal relative to the targeted geometry,
which is, however, not expected to exceed a few degrees.
Also the polarization selection might not be perfect with an
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FIG. 6. Experimental spectra (blue lines) with K ‖ [111], E in ‖
Eout ‖ [112] in (a) Faraday configuration with B ‖ [111] and
(b) Voigt configuration with B ‖ [110]. The corresponding nu-
merically simulated spectra (shifted by −0.5 meV) are shown in
grayscale. The main features visible belong to excitons with principal
quantum numbers n = 3 and 4. Note that the 3D line in panel
(a) exceeds the upper limit of the gray scale.

accuracy of about one degree. In Ref. [16] it was shown that
SHG is sensitive to strain down to levels of ppm. Therefore,
strain may also influence the appearance of the spectra.

Still, for the main application considered in this work; that
is, for the investigation of magnetic-field-induced SHG spec-
tra in forbidden directions, we achieve satisfactory results.
Improved treatments of the central-cell corrections and center-
of-mass motion in allowed configurations are necessary in
future work.
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