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Magneto-Stark and Zeeman effect as origin of second harmonic generation of excitons in Cu2O
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We report on the experimental and theoretical investigation of magnetic-field-induced second harmonic
generation (SHG) and two-photon absorption of excited exciton states (n � 3) of the yellow series in the cuprous
oxide Cu2O. In this centrosymmetric material, SHG can occur due to constructive interplay of electric dipole
and electric quadrupole/magnetic dipole transitions for light propagating along the low-symmetry directions
[111] or [112]. By application of a magnetic field in Voigt configuration, SHG gets also allowed for excitation
along the [110] axis and even the high-symmetry cubic direction [001]. Combining a symmetry analysis and
a microscopic theory, we uncover the two key contributions to the magnetic-field-induced SHG: the Zeeman
effect and the magneto-Stark effect. We demonstrate systematic dependencies of the SHG intensity on the linear
polarization angles of the ingoing fundamental laser and the outgoing SHG beam, complementary to the paper
by Rommel et al. [Phys. Rev. B 101, 115202 (2020)]. In general, the resulting contour plots in combination
with a symmetry analysis allow one to determine uniquely the character of involved transitions. Moreover,
we can separate in magnetic field the Zeeman and the magneto-Stark effect through appropriate choice of the
experimental geometry and polarization configuration. We present a microscopic theory of the second harmonic
generation of excitons in a centrosymmetric cubic semiconductor taking into account the symmetry and the
band structure of cuprous oxide. Based on the developed microscopic theory, we identify the main contributions
to the second-order nonlinear susceptibility of S, P, and D excitons. We analyze the redistribution of SHG
intensities between the excitonic states both in the absence and presence of the magnetic field and show good
agreement with the experimental data. With increasing exciton principal quantum number, the magneto-Stark
effect overpowers the influence of the Zeeman effect.

DOI: 10.1103/PhysRevB.101.115201

I. INTRODUCTION

Nonlinear optical experiments, including multiphoton ab-
sorption, higher harmonics generation, multiple wave mix-
ing, etc., involve more than one photon in the elementary
excitation or emission process. These methods form a well-
established spectroscopic toolbox for the investigation of elec-
tronic properties, which in many cases are not accessible to
linear optical experiments such as one-photon absorption or
linear reflectivity [1–3]. Nonlinear optical spectroscopy has
turned out to be particularly valuable for studying semicon-
ductors [4–10] whose optical properties are largely controlled
by excitons, hydrogenlike bound states of electrons and holes
[11,12].

Importantly, in this respect, different excitonic states can
be active in linear and nonlinear optical processes, underlining
the complementarity of these techniques. This is particularly
prominent in the centrosymmetric semiconductor cuprous
oxide Cu2O, in which the Mott-Wannier excitons were dis-
covered [13]: odd-parity P-shell excitons are mainly active in
linear optical absorption, while even-parity S-shell excitons
provide the key contribution to two-photon absorption [14].
The combination of these specific selection rules with the high
quality of natural Cu2O crystals has enabled demonstration
of the Rydberg series of well-resolved P excitons up to
the principal quantum number n = 25 [15], and of S and
D excitons up to n = 5 [14]. The large, up to micrometer,

radii of highly excited Rydberg excitons make them quite
susceptible to external electric and magnetic fields [16,17] and
also enhance the optical nonlinearities, e.g., due to Rydberg
and plasma blockade effects [15,18], so far studied by linear
spectroscopy.

The nonlinear optical properties of Cu2O with its promi-
nent excitonic features have been attracting researchers’ at-
tention already early on [14,19,20]. The continuous develop-
ment of optical spectroscopy techniques has recently made
it possible to observe second harmonic generation (SHG) in
Cu2O crystals with high spectral resolution, despite of the
broadband excitation with short light pulses [9,10]. Being for-
bidden in the electric dipole approximation, SHG arises due to
suitable combinations of electric dipole, electric quadrupole,
and magnetic dipole transitions. In that way, it was possible to
extend the series of observed S excitons up to n = 9 and also
resolve D excitons up to n = 7 [9].

Although an external magnetic field does not break the
space inversion (P) symmetry, it results in a nontrivial state
mixing and, through the time-reversal (T ) symmetry break-
ing, quantum chaotic behavior may arise for Rydberg exci-
tons [16] (see also Refs. [21–23] for a review of the linear
magneto-optics in Cu2O). As was shown in Ref. [9], SHG
on the low-energy excitons in Cu2O emerges in a magnetic
field even along high-symmetry directions, resulting in rich
spectra consisting of multiple lines. Reference [10] reported
SHG on the 1S exciton in Cu2O at zero field in a symmetry-
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forbidden geometry (see also Ref. [19]) as a consequence of
sample-inherent strain, breaking the symmetry and activating
nominally forbidden excitons for SHG. Interestingly, SHG
was demonstrated to be an extremely sensitive strain sensor
on a level of parts in a million.

A systematic experimental and theoretical study of
magnetic-field-induced SHG of excited excitons of Cu2O is,
however, lacking. The aim of this paper is to close this gap.
In detail, we present a nonlinear magneto-optical study of
higher-lying excitons (n � 3) for different crystalline orien-
tations in magnetic fields up to 10 T. On the experimental
side, we mainly focus on the SHG forbidden directions (e.g.,
when the light propagates along a [110] crystalline axis),
where SHG is not allowed in the absence of a magnetic field.
Such measurements are of special interest since SHG becomes
allowed in the presence of the field by the Zeeman effect (ZE)
or the magneto-Stark effect (MSE). The latter effect originates
from the mixing of odd- and even-parity excitons due to the
equivalent electric field arising from a magnetic field normal
to the direction of exciton motion. The MSE demonstration
is particularly important since it directly evidences exciton
motion in the crystal [24–26]. The MSE was first observed
in one-photon absorption on the 1S resonance in Ref. [27] and
recently on the yellow exciton series of Cu2O in Ref. [23].
The MSE also controls SHG on the excitons in the noncen-
trosymmetric semiconductor ZnO [28]. Thus, it is interesting
to assess this effect in SHG also in centrosymmetric crystals.

The SHG effect in cubic noncentrosymmetric crystals has
been extensively studied in literature and the associated sym-
metry analysis is a textbook problem [1,2]. Cuprous oxide has
a centrosymmetric structure where SHG is forbidden if the
effects of the radiation wave vector (spatial dispersion) and
external fields are disregarded. The analysis of the interplay
of the wave-vector-related and the magnetic-field-induced
effects becomes already nontrivial on the phenomenological
level. Also, the identification of the microscopic pathways
of SHG and evaluation of the contributions of each relevant
mechanism to the second-order nonlinear susceptibility has,
to our best knowledge, not been addressed in the literature.
Thus, on the theoretical side we combine a symmetry-based
phenomenological analysis of two-photon absorption (TPA)
and SHG in Cu2O with a microscopic theory which demon-
strates the main underlying mechanisms both in absence and
presence of a magnetic field. Particularly, in the framework
of the symmetry-based approach we present full rotation
anisotropies of SHG for arbitrary polarizations for the incident
Eω and outgoing E2ω light fields relative to each other, going
beyond Refs. [9,10] where only two distinct geometries (Eω ‖
E2ω and Eω ⊥ E2ω) were investigated. This analysis allows
us to select the most appropriate experimental setting to
observe and distinguish different mechanisms of SHG. On the
microscopic level, we identify the main pathways for the SHG
process in the centrosymmetric crystal and present general
expressions for the second-order susceptibility. For particular
excitonic states, e.g., the S-shell, P-shell, and D-shell states
(using atomic nomenclature where S, P, D, . . . denote the
orbital angular momentum of the exciton envelope function)
we present simplified expressions for the susceptibility which
allows a direct comparison of the relative SHG contributions
of the different states. The Zeeman and the magneto-Stark

effects are analyzed in detail. We demonstrate that while in the
absence of a magnetic field the odd P-shell excitons provide
parametrically small contributions to the SHG as compared
to the S-shell excitons, the MSE can result in equally strong
SHG on the S- and P-shell states.

We study theoretically SHG also on the D-shell excitons
(with �+

1 and �+
3 symmetry in the notations of Ref. [29]) that

are not coupled to the S-shell states. The main predictions are
confirmed by the experimental data. In agreement with the
model we observe the strongest SHG on S/D mixed states (�+

5
symmetry according to Ref. [29]), while much weaker SHG
signals are found on the D excitons that are disjunct from the
S states. Nevertheless, also these states can be clearly iden-
tified in SHG through their distinct polarization dependence
allowing to separate them from the dominant processes. In
this work, we use a combination of symmetry analysis and
perturbation theory to study the effect of magnetic field on
the SHG and TPA processes. Microscopic calculations of the
excitonic states in a magnetic field for fulfilling the conditions
of SHG and TPA are presented in the counterpart paper [30].

The paper is organized as follows: Sec. II presents the phe-
nomenological analysis of SHG in Cu2O, based on the cou-
pling coefficients of Ref. [29] for the derivation of polariza-
tion dependencies in different crystalline and magnetic field
orientation configurations as well as different scenarios of
excitation (electric dipole and quadrupole as well as magnetic
dipole) and magnetic-field-induced effects (ZE and MSE).
This analysis allows us to identify the main SHG mecha-
nisms due to the symmetry of the perturbations. Further, in
Sec. III the microscopic theory is presented from which the
relative importance of the SHG processes in Cu2O is assessed.
Section IV describes the samples and the experimental tech-
nique, the experimental results are given in Sec. V where
they are also set in relation with the models in the preceding
sections. The paper is summarized by a brief conclusion and
an outlook.

II. SHG POLARIZATION DEPENDENCIES

A. Phenomenological analysis

The point symmetry of the system imposes restrictions on
the linear and nonlinear optical processes and allows us to
determine the basic geometry and polarization dependencies
of SHG without resorting to a microscopic model. Further-
more, the symmetry analysis makes it possible to establish
signatures of particular excitonic states in the SHG spectra,
from which the involved types of transitions can be derived. In
this section we perform a phenomenological analysis of SHG
in Cu2O, while the microscopic model of SHG is presented in
Sec. III.

We recall that Cu2O is described by the Oh point sym-
metry group which includes spatial inversion. Thus, SHG is
allowed only with taking into account the light wave vector
k or the magnetic field of the electromagnetic wave (this is
mathematically the same as the alternating magnetic field in
the wave B̃ ∝ [k × E]). Phenomenologically, in the absence
of an external magnetic field, SHG in Cu2O is described by
the following relation:

Pi = χi jlmk jEl Em, (1)
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where Pi is the induced polarization component at twice the
frequency of the incident light, χi jlm are the susceptibility
tensor components, and Ek are the components of the electric
field of the light at the fundamental frequency, i, j, l, m denote
the Cartesian components. The tensor χi jlm is symmetric with
respect to permutation of the two last subscripts; summation
over repeated subscripts is assumed. The process of SHG
can be understood as a two-photon excitation followed by
coherent single-photon emission at double frequency.

The number of independent components of the suscepti-
bility can be readily found from the symmetry analysis. Due
to the permutation symmetry of χi jlm only the symmetrized
products {EmEl}sym are relevant, they transform according to
the reducible representation

{ElEm}sym ∼ DEE = �+
1 + �+

3 + �+
5

of the Oh point group. The wave-vector components, on the
other hand, transform according to �−

4 . Since

�−
4 × DEE = �−

2 + �−
3 + 3�−

4 + 2�−
5 ,

there are three contributions to the crystallographic SHG.
However, two of those are P ∝ kE2 and P ∝ (k · E)E which
can be disregarded for transverse fields, since in the first
case the polarization is longitudinal and in the second case
the scalar product k · E vanishes. As a result, there is only
one independent constant χc and SHG is described by the
phenomenological relation

Pi = χcki
(
2E2

i − E2
i+1 − E2

i−1

)
, (2)

where i = x, y, z is the Cartesian index. We use the cyclic rule
in this notation, e.g., for i = z we have i + 1 = x and i − 1 =
y = i + 2. Here and in what follows we use the cubic axes
with x ‖ [100], y ‖ [010], and z ‖ [001].

Let us now turn to the magnetic-field-induced SHG. In the
linear field regime, one has the following phenomenological
relation:

Pi(2ω) = χi jlmnk jBlEmEn. (3)

The product k jBl can be recast into symmetrized and antisym-
metrized parts. The antisymmetrized part corresponds to the
vector product [k × B], it transforms as a vector, i.e., accord-
ing to the �−

4 irreducible representation. The contributions
containing such an asymmetric product can be attributed to
the magneto-Stark effect because [k × B] de facto acts as an
electric field which mixes active and inactive exciton states
(see details below). Accordingly, we find that the magneto-
Stark contribution is described by three independent constants
χMS

1...3 and

P = χMS
1 [k × B]E2, (4a)

P = χMS
2 E([k × B]E), (4b)

Pi = χMS
3 [k × B]i

(
2E2

i − E2
i+1 − E2

i−1

)
. (4c)

The remaining contributions arise from the symmetrized
products {k jBk}sym which transform according to the reducible
representation

{k jBl}sym ∼ DqB = �−
1 + �−

3 + �−
5 .

conduction
band

valence
band

}
}

FIG. 1. Schematic illustration of the band structure in Cu2O. The
lowest conduction band (�+

6 ) and topmost valence bands (�+
7 and

�+
8 ) are marked by solid lines. The odd-parity excited conduction

bands (�−
8 ) are shown by dotted lines. The bands are labeled by the

corresponding irreducible representations of the Oh point symmetry
group. The types of underlying orbital Bloch functions are also
indicated at the bands.

These contributions can be tentatively assigned to the Zeeman
effect of the magnetic field. The product

DqB × DEE = 3�−
4 + · · · ,

where the ellipsis denotes omitted contributions which trans-
form according to other irreducible representations. Thus,
there are three contributions, one of which, P ∝ (kE)[E × B],
vanishes for transversal fields. The remaining two contribu-
tions take the form

Pi = χZ
1 {ki+1Bi−1}sym

(
E2

i+1 − E2
i−1

)
, (5a)

Pi = χZ
2

∑
±

{ki∓1Bi}sym{Ei±1Ei}sym. (5b)

The phenomenological equations (4) and (5) describe the
magnetic-field-induced SHG in Cu2O. Our next step is to
identify the symmetries of the excitonic states in Cu2O and
analyze their contributions to SHG.

B. Band structure and symmetry of excitonic states

Figure 1 illustrates the band diagram of Cu2O. In the center
of the Brillouin zone, the top valence band states are formed
from the �+

5 orbital functions which transform as YZ , ZX ,
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and XY . The spin-orbit coupling splits the sixfold degenerate
valence band into the �+

7 (twofold degenerate, topmost) and
�+

8 (fourfold degenerate, bottom) branches. The conduction
band has �+

6 symmetry and the Bloch functions are formed
from the products of the invariant S-type orbitals (�+

1 sym-
metry) and the basic spinors (�+

6 ) [14]. The higher conduction
band is formed from odd-parity states transforming according
to �−

3 and, with account for the spin, its Bloch functions
form the basic functions of the �−

8 irreducible representation
[27]. Note that below the �+

8 bands there are a doublet and
a quadruplet of �−

7 and �−
8 bands arising from the orbital

functions X , Y , and Z (not shown) [31,32].
The parity of the conduction and valence bands is the

same, therefore, optical transitions take place with account
for the k · p mixing with the remote odd-parity bands (k is
the electron wave vector and p is the interband momentum
operator). Within the minimal model we can assume that the
transitions take place with admixture of the upper conduction
band of �−

8 symmetry since both direct products �+
7 × �−

8 and
�+

6 × �−
8 contain the irreducible representation �−

4 according
to which the components of a vector transform. The actual
situation is more difficult because in the absence of the spin-
orbit coupling dipole transitions between the �+

1 and �−
3

bands are forbidden. The bottom valence band �−
8 (involving

�−
4 orbital states) can play the role of the intermediate state in

multiphoton processes.
The symmetry of the excitonic state is described by the

product of the irreducible representations for the hole state in
the valence band �+

7 , the electron state in the conduction band
�+

6 , and that of the envelope function Denv. We will be mainly
interested in S-shell, D-shell, and also P-shell excitons. For
S excitons, Denv = �+

1 , so that they transform according to
either �+

2 (paraexciton) or the threefold degenerate �+
5 (or-

thoexciton). For D-shell excitons Denv = �+
3 or �+

5 , resulting
in �+

5 states (which are efficiently mixed with S excitons due
to the complex valence band structure), as well as in �+

1 , �+
3 ,

and �+
4 states which are not mixed with the S excitons. Finally,

the P excitons give rise to a variety of symmetries of states out
of which we will be interested in those transforming according
to �−

4 , i.e., those which are optically active in one-photon
processes in the dipole approximation.

Knowledge of the exciton state symmetry allows one to
determine the selection rules for the excitation and emission
processes and, finally, the polarization dependencies for the
TPA and SHG. Since in emission the S and D excitons
require an electric quadrupole (or magnetic dipole) process,
we mainly focus on the states which can be directly excited
by two photons, these are the states of �+

1 , �+
3 , and �+

5
symmetry.

In Ref. [9] we considered only the contributions of the
�+

5 excitons which get allowed by their admixtures to the
�+

5 S excitons. Since angular momentum is no longer a
good quantum number, the other D excitons can also lead
to a SHG signal, which might, however, be weaker. In the
following, we will first derive the polarization dependencies
for the processes expected to be dominant (�+

5 symmetry, see
Sec. II C) and then for the processes expected to be weaker
(�+

1 and �+
3 symmetry, see Sec. II D). Results on SHG for the

S paraexciton (�+
2 ) will be reported elsewhere. In Sec. V we

will also present SHG spectra for the weaker processes, which

nevertheless can be clearly distinguished by their polarization
dependence from the dominant processes.

C. Dominant processes

In this section we will derive polarization dependencies
for SHG-allowed as well as SHG-forbidden crystalline ori-
entations in a magnetic field. As was shown already in the
first derivation of two-photon selection rules [33] and later for
three-photon processes [34], one can separate the transition
probability of nonlinear processes into the product of a geo-
metrical part and a dynamical part. From the detailed polar-
ization dependencies, which allow us to distinguish different
physical mechanisms of excitation, we derive the geometrical
part simply by application of group theory, using the tables
of irreducible representations and coupling coefficients by
Koster, Dimmock, Wheeler, and Statz [29]. In the dynamical
part, however, one has to take into account the specific elec-
tronic transitions determined by the band structure, and exci-
tonic and polaritonic effects. Excitonic effects are discussed in
detail in Sec. III, while the polaritonic effects can be taken into
account following Ref. [8], but are negligible for the studied
system. The derivation presented below is an extension of
the results reported in Ref. [9] in two aspects: (i) Detailed
SHG polarization dependencies are derived for experiments
in a magnetic field. (ii) We demonstrate here two-dimensional
(2D) plots (intensity maps vs the linear polarization angles
ψ and ϕ of the ingoing and outgoing photons, respectively),
which offer an elegant way to extract polarization dependen-
cies in order to distinguish between different mechanisms of
SHG in allowed and forbidden crystalline orientations. By
contrast, in Ref. [9] SHG only for the two configurations of
parallel and perpendicular polarizations of the ingoing and
outgoing light was analyzed.

It was already demonstrated in Ref. [9] that SHG can be
observed in forbidden directions (e.g., k ‖ [001] and [110])
by applying a magnetic field. In this paper, we will show
that by use of group theory [29] we can derive polarization
dependencies for magnetic-field-induced SHG signals. Ex-
periments in Voigt configuration are of special interest since
there are two mechanisms, which lead to SHG signals: (i)
the Zeeman effect (ZE) [22], which is described by the even-
parity perturbation operator �+

4 (magnetic field B) and (ii) the
magneto-Stark effect (MSE) [23], which is taken into account
by the odd-parity perturbation operator �−

4 (effective electric
field EMSE ∼ k × B).

In Fig. 2 we sketch the different scenarios of SHG pro-
cesses. The excitation of even excitonic states of �+

5 sym-
metry is possible via two dipole processes (with intermediate
states in the remote bands, see Sec. III). The excitation of odd
states, e.g., P-shell excitons of �−

4 symmetry is possible by
a combination of a dipole and a quadrupole transition (see
Sec. III for details). The emission of the �+

5 excitons takes
place in the quadropole approximation, while the emission of
the �−

4 states is dipole allowed. Figures 2(a) and 2(b) describe
the resulting zero-field case for allowed SHG transitions [9].
For both scenarios as well as for the forbidden directions, the
ZE and MSE lead to magnetic-field-induced SHG as depicted
in Figs. 2(c) and 2(d) for even-parity excitons. The mixing
mechanism, however, is different. For the ZE the mixing takes
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FIG. 2. Schematics of the SHG process for (a) even- and (b) odd-
parity excitons at zero magnetic field and in finite field for (c) the
Zeeman effect (ZE) and (d) the magneto-Stark effect (MSE) involv-
ing the even-parity excitons.

place with the quadrupolar-allowed even exciton, while the
MSE effect results in the admixture of the dipole-allowed odd-
parity state to the even exciton. The magnetic-field-induced
effects on odd-parity excitons will be discussed in detail in
Sec. III.

As mentioned above, two-dimensional presentations are
very helpful to identify the underlying SHG mechanisms and

accordingly select the specific experimental configuration to
separate resonances of ZE or MSE origin. For an arbitrary
configuration, however, interference between both effects has
to be taken into account. It turns out that in the Faraday
configuration, magnetic-field-induced effects will not appear
along the forbidden directions. On the other hand, in the case
of allowed SHG transitions (e.g., along the [111] and [112]
direction) one expects field-induced effects in addition to SHG
in the zero-field case. Thus, in the general case, the three
contributions (zero-field SHG, ZE, and MSE) interfere in
Voigt configuration. It will be shown that by selecting proper
polarization configurations one can distinguish between
different terms.

Following the schematic representations in Fig. 2, the
SHG process can be separated into two steps: (i) two-
photon excitation via combined dipole-dipole or dipole-
quadrupole transitions and (ii) one-photon emission via dipole
or quadrupole emission processes. Dipole and quadrupole
processes for the �+

5 S/D excitons and �−
4 P excitons,

which are expected to be the dominant contributions, are
considered in the following. In Sec. II D weaker contributions
from D-envelope excitons of �+

1 and �+
3 symmetry will be

considered.
The selection rules for the TPA and SHG processes de-

picted in Fig. 2 can be easily presented in the cubic axes
(x, y, z). In order to describe the phenomenology of SHG
for arbitrary light propagation direction and light polariza-
tion we introduce the polarization rotation matrix given in
Eq. (6):

Mrot(k, ψ ) =
⎛⎝ k2

1 (1 − cos ψ ) + cos ψ k1k2(1 − cos ψ ) − k3 sin ψ k1k3(1 − cos ψ ) + k2 sin ψ

k2k1(1 − cos ψ ) + k3 sin ψ k2
2 (1 − cos ψ ) + cos ψ k2k3(1 − cos ψ ) − k1 sin ψ

k3k1(1 − cos ψ ) − k2 sin ψ k3k2(1 − cos ψ ) + k1 sin ψ k2
3 (1 − cos ψ ) + cos ψ

⎞⎠, (6)

where k = (k1, k2, k3)T is the normalized wave vector of
light. This matrix is convenient to define the polarization
vectors of the ingoing and outgoing electric fields relative to
the “initial” polarization vector x at the polarization angle
ψ = 0. x = (x1, x2, x3)T has to be chosen according to the
special crystal orientation considered, e.g., x = (0, 0, 1)T or
x = (1, 1, 0)T/

√
2 for k = (1,−1, 0)T/

√
2. For the general

case we now distinguish between the ingoing polarization
angle ψ and the outgoing polarization angle ϕ and thus get
two polarization vectors Eω(ψ ) and E2ω(ϕ), both of which
are gained from the rotation matrix Mrot(k, ψ ) and the same
x vector by

Eω(ψ ) = (u(ψ ), v(ψ ),w(ψ ))T = Mrot(k, ψ ) · x, (7)

E2ω(ϕ) = (m(ϕ), n(ϕ), o(ϕ))T = Mrot(k, ϕ) · x. (8)

Then, we proceed as in Ref. [9]. For the excitation of
even-parity excitons in Fig. 2(a) the combination of the dipole
operators for the ingoing photons is given by the symmetrized
combinations of coordinate products (eyez + ezey, ...)

ODD(ψ ) =
√

2

⎛⎝v(ψ )w(ψ )
u(ψ )w(ψ )
u(ψ )v(ψ )

⎞⎠. (9)

For the outgoing photon, the �+
5 quadrupole operator is given

by the symmetrized combinations of coordinate products
(kyez + kzey, ...)

OQ5(k, ϕ) = 1√
2

⎛⎝ k2o(ϕ) + k3n(ϕ)
k3m(ϕ) + k1o(ϕ)
k1n(ϕ) + k2m(ϕ)

⎞⎠ =
⎛⎝OQ5,1(k, ϕ)

OQ5,2(k, ϕ)
OQ5,3(k, ϕ)

⎞⎠.

(10)
For the SHG intensity of the even-parity excitons one thus gets

I2ω
even(k, ψ, ϕ) ∝ |ODD(ψ )OQ5(k, ϕ)|2. (11)

For the odd-parity exciton states (P excitons) in Fig. 2(b) the
operator for the ingoing photons is given by

ODQ5(k, ψ ) = 1√
2

⎛⎝OQ5,3(k, ψ )v(ψ ) + OQ5,2(k, ψ )w(ψ )
OQ5,1(k, ψ )w(ψ ) + OQ5,3(k, ψ )u(ψ )
OQ5,2(k, ψ )u(ψ ) + OQ5,1(k, ψ )v(ψ )

⎞⎠
(12)

and the operator for the outgoing photon has the
representation

OD(ϕ) =
⎛⎝m(ϕ)

n(ϕ)
o(ϕ)

⎞⎠. (13)

115201-5



A. FARENBRUCH et al. PHYSICAL REVIEW B 101, 115201 (2020)

FIG. 3. SHG intensity in dependence of the linear polarization
angles of the ingoing (ψ) and outgoing (ϕ) light for the crys-
tallographic contribution in the configuration k ‖ [111], x ‖ [11̄0],
calculated by Eq. (11). (a) 2D polarization dependence: dark blue
regions correspond to zero SHG intensity and red regions to maxi-
mum SHG intensity. The marked tuning lines represent the parallel
ψ = ϕ (black) and crossed ψ = ϕ + 90◦ (red) linear polarization
configurations. The SHG intensity along these tuning lines is plotted
in polar representation in (b), as it was used in Refs. [9,10]. We prefer
the Cartesian representation (c).

For the SHG intensity of the odd-parity excitons one thus gets

I2ω
odd(k, ψ, ϕ) ∝ |ODQ5(k, ψ )OD(ϕ)|2. (14)

Since the SHG intensities (11) and (14) depend on the
two angles ψ and ϕ, we plot the angular dependence of
I2ω
even, odd(ψ, ϕ) in 2D diagrams. In Ref. [9] the polarization

dependencies were applied to the SHG-allowed orientations
(k ‖ [111] and k ‖ [112̄]) but only for the special polarization
configurations Eω ‖ E2ω and Eω ⊥ E2ω. In Fig. 3 we show
the 2D plot for the even-parity excitons [Eq. (11)] in the k ‖
[111] configuration. The odd-parity excitons [Eq. (14)] show
exactly the same polarization dependence, as may be expected
because for both types of excitons the SHG involves in total
two electric dipole and one electric quadrupole transition,
albeit in different order, which, however, is not reflected by
the intensity. The formerly considered selected polarization
configurations are marked by the red and black, so-called
tuning lines. In addition, one-dimensional (1D) polar and
Cartesian plots as function of the angle ψ indicating the
polarization of the exciting laser are given for parallel (black)

and perpendicular (red) linear polarization of the fundamental
and the SHG light, which resemble the tuning lines.

Alternately, one can fix one of the polarization angles and
vary the other one. When taking corresponding cuts, one still
observes oscillatory behaviors but with varying period. For
example, when the polarization of the ingoing fundamental
light is fixed (ψ = const), the SHG intensity shows oscil-
lations as function of the SHG polarization angle φ with
a period of 180◦, while for fixed φ the oscillation period
in ψ is 90◦.

To visualize, how the polarization dependence changes,
when the k vector is rotated continuously, we present an
animated contour plot (first animation, see Ref. [35]). It starts
with the polarization dependence of even excitons without
external field application [Eq. (11)] for the orientation k ‖
[111] and x ‖ [11̄0] as shown in Fig. 3. In the animation the k
vector is rotated about the horizontal direction x by θ = 360◦.
The change of the incidence direction is accompanied by
strong changes and distortions of the contour plot, from which
vice versa the optical configuration can be assessed.

We now derive the SHG contributions for the ZE and
MSE, which are sketched in Figs. 2(c) and 2(d). The Zee-
man operator transforms as �+

4 [axial vector operator B =
(B1, B2, B3)T]. We thus couple the two-photon excited �+

5
exciton states (ODD operator of the �+

5 excitons) to the ZE
operator by use of Ref. [29] and further to the even-parity
operator

OBDD(ψ ) = 1√
2

⎛⎝ B2u(ψ )v(ψ ) − B3w(ψ )u(ψ )
−B1w(ψ )u(ψ ) + B3v(ψ )w(ψ )

B1u(ψ )v(ψ ) − B2v(ψ )w(ψ )

⎞⎠. (15)

With the quadrupole operator OQ5(k, ϕ) [Eq. (10)] for the
outgoing photon we thus get for the ZE-induced SHG signal

I2ω
ZE (k, ψ, ϕ) ∝ |OBDD(ψ )OQ5(k, ϕ)|2. (16)

Next, we turn to the phenomenological description of the
magneto-Stark effect. The MSE operator transforms as �−

4
[polar vector operator EMSE = (E1, E2, E3)T ∝ [k × B]]. We
first couple the ODD(ψ ) operator to the odd-parity operator

OEDD(ψ ) = 1√
2

⎛⎝E2u(ψ )v(ψ ) + E3w(ψ )u(ψ )
E1w(ψ )u(ψ ) + E3v(ψ )w(ψ )
E1u(ψ )v(ψ ) + E2v(ψ )w(ψ )

⎞⎠. (17)

With the dipole operator OD(ϕ) we get for the MSE-induced
SHG

I2ω
MSE(ψ, ϕ) ∝ |OEDD(ψ )OD(ϕ)|2. (18)

By proper choice of the polarization configuration, one can
distinguish between both mechanisms. For the general case,
however, one has to take into account interference effects and
thus add the amplitudes in Eqs. (16) and (18) before taking the
squared modulus. This leads to the total intensity (where the
crystallographic SHG is neglected which is always possible
for rather high-symmetry crystal orientations)

I2ω
ZE+MSE(k, ψ, ϕ) ∝ |(αOBDD(ψ )OQ5(k, ϕ)

+βOEDD(ψ )OD(ϕ))/
√

α2 + β2|2, (19)
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FIG. 4. 2D polarization dependence of the SHG intensity for
the configuration k ‖ [11̄0], B ‖ [110]; (a) magneto-Stark effect
[Eq. (18)] and (b) Zeeman effect [Eq. (16)].

where α and β are parameters, which have to be calculated
from the appropriate interaction matrix elements (see Sec. III).

For the SHG-forbidden orientation k ‖ [11̄0] we have cho-
sen the magnetic field in Voigt configuration B ‖ [110]. The
corresponding electric field of the magneto-Stark effect is
EMSE ∼ k × B ‖ [001]. In Fig. 4 we show for this configu-
ration the 2D plots for the isolated ZE [Eq. (16)] and the
isolated MSE [Eq. (18)]. We refer to these 2D plots for the
simulation of our experimental results in Sec. V, as they help
us to identify the configurations in which only one effect
contributes. As shown in Figs. 4(a) and 4(b), the black ψ-
tuning line for ϕ = 180◦ exhibits maximum SHG with a 90◦
period for the MSE but no SHG for the ZE, whereas the red
ϕ-tuning line for ψ = 180◦ exhibits maximum SHG with a
180◦ period for the ZE but no SHG for the MSE. The corre-
sponding experimental results are shown in Sec. V, Figs. 14
and 15.

Let us now address the selection rules for two-photon
absorption (TPA). From the detailed SHG polarization

FIG. 5. Schematics of the weaker SHG processes: (a) ZE of odd-
parity excitons, (b) zero-field two-photon excitation of the �+

1 and
�+

3 D-exciton states, (c) ZE- and (d) MSE-induced SHG transitions,
respectively, on the �+

1 and �+
3 D excitons.

dependencies for the different cases [Eqs. (11), (14), (16),
(18), and (19)] one can easily derive the equivalent polar-
ization dependencies for TPA, which only depend on the
polarization angle ψ of the ingoing photons, by merely
omitting in the equations the outgoing operator describing
either a quadruploe or a dipole transition [OQ5(k, ϕ), OD(ϕ)].
Experimentally, TPA is monitored by photoluminescence ex-
citation spectroscopy detecting the emission of a photon
from a state into the electron-hole pair has relaxed after
excitation by the two-photon transition (e.g., in our case
the spectrometer is set to detection at the energy of the 1S
exciton or its �−

3 phonon replica). During relaxation the co-
herence excited in the system by optical excitation is typically
destroyed.

We thus get for the TPA polarization dependence of the �+
5

excitons from Eq. (9)

I2ω
TPA(ψ ) ∝ |ODD(ψ )|2. (20)

The resulting polarization dependence of TPA will be dis-
cussed below in combination with corresponding experimen-
tal data, shown in Sec. V. Importantly, TPA is allowed along
the direction k ‖ [11̄0], where SHG is forbidden at zero
magnetic field as the coherent photon emission is blocked.

D. Weaker processes

In this section we consider the weaker SHG processes
as addressed at the end of Sec. II B. Namely, we address
the excitons where the two-photon excitation channel is
significantly suppressed as compared to the �+

5 S and D
excitons mixed by the exchange interaction. These are the
odd-parity P excitons (�−

4 representation) whose two-photon
excitation requires a quadrupolar process and the D excitons
of �+

1 and �+
3 symmetries which are decoupled from the S

excitons.
The various scenarios for the weaker processes are

sketched in Fig. 5, for the P excitons in (a) at nonzero
magnetic field, and for the D excitons in (b) in zero field as
well as in (c) and (d) for a finite field, activating the ZE and the
MSE. We start with Eq. (12) for the derivation of the ZE of the
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FIG. 6. 2D plot of the ZE-SHG from the odd-parity P excitons
[Eq. (22), Fig. 5(a)] for the forbidden configuration k ‖ [11̄0], B ‖
[110], the black line corresponds to tuning of the outgoing polariza-
tion ϕ for fixed ingoing polarization ψ = 90◦.

odd-parity P excitons. The operator ODQ5(k, ψ ) is coupled by
the Zeeman operator (�+

4 ) to a �−
4 operator for the outgoing

dipole transition, which leads to

OBDQ5(ψ ) = 1√
2

⎛⎜⎝ B2ODQ5,3(k, ψ ) − B3ODQ5,2(k, ψ )

−B1ODQ5,3(k, ψ ) + B3ODQ5,1(k, ψ )

B1ODQ5,2(k, ψ ) − B2ODQ5,1(k, ψ )

⎞⎟⎠.

(21)

The ODQ5,i (i = 1, 2, 3) are the components of the vector in
Eq. (12). With the dipole operator OD(ϕ) [Eq. (13)], one gets

I2ω
BDQ(k, ψ, ϕ) ∝ |OBDQ5(k, ψ ) · OD(ϕ)|2 (22)

for the ZE-induced SHG of the odd-parity excitons. In Fig. 6
we show the 2D plot for the ZE of the odd-parity excitons.
By proper choice of the tuning line one can selectively excite
the ZE of the P excitons and thus suppress the potentially
dominant excitation of the ZE and the MSE of even-parity
excitons (Fig. 4). For example, one can set the ingoing
linear polarization to ψ = 90◦ and vary the detection an-
gle ϕ of the second harmonic light. For this configuration
both the ZE- and the MSE-induced SHG of the �+

5 states
disappear.

We now turn to the analysis of the SHG effect on the
even-parity �+

1 and �+
3 D excitons in zero field as well as

in a magnetic field. In the zero-field case only a SHG signal
from the �+

3 excitons is expected by quadrupole emission. In
magnetic field, however, we expect for the ZE aside from the
electric quadrupole (�+

5 ) also a magnetic dipole contribution
of �+

4 symmetry. For the MSE we have to consider only
the odd-parity dipole operator of �−

4 symmetry. The relevant
excitation and emission operators are derived according to

Ref. [29]. For the �+
1 and �+

3 excitation operators ODD1 and
ODD3 we thus get

ODD1(ψ ) = 1√
3
, (23)

ODD3(ψ ) = 1√
6

(−u(ψ )2 − v(ψ )2 + 2w(ψ )2

−√
3u(ψ )2 − √

3v(ψ )2

)
=

(
ODD3,1

ODD3,2

)
. (24)

For the outgoing photons we now consider aside from
the �+

5 quadrupole operator, which is treated in the previous
section in Eq. (10), also the �+

4 magnetic dipole operator and
the �+

3 quadrupole operator

OMD(k, ϕ) = 1√
2

⎛⎝ k2o(ϕ) − k3n(ϕ)
−k1o(ϕ) + k3m(ϕ)
k1n(ϕ) − k2m(ϕ)

⎞⎠, (25)

OQ3(k, ϕ) = 1√
6

(−k1m(ϕ) − k2n(ϕ) + 2k3o(ϕ)

−√
3k1m(ϕ) − √

3k2n(ϕ)

)
. (26)

These operators are easily derived from Ref. [29] by consid-
ering the direct product of the k vector and the polarization
vector, both of which are of �−

4 symmetry:

�−
4 ⊗ �−

4 = �+
1 ⊕ �+

3 ⊕ �+
4 ⊕ �+

5 , (27)

where the �+
1 contribution vanishes because the k vector and

polarization vector are orthogonal to each other. For the SHG
intensity in zero field only the quadrupole operator leads to a
signal because there is no two-photon excitable �+

4 state for
two identical exciting photons:

I2ω
even Q3(k, ψ, ϕ) ∝ |ODD3(ψ ) · OQ3(k, ϕ)|2. (28)

We now proceed with the ZE and the MSE, as in the
previous section for the dominant processes. The relevant
processes are sketched in Figs. 5(c) and 5(d). We thus couple
the two-photon excited �+

1 and �+
3 exciton states to the ZE

operator �+
4 and further to the even-parity operator

OBDD1(ψ ) = 1√
3

⎛⎝B1

B2

B3

⎞⎠, (29)

OBDD3to5(ψ ) = 1

2
√

6

⎛⎜⎝−√
3B1ODD3,1 − B1ODD3,2√

3B2ODD3,1 − B2ODD3,2

2B3ODD3,2

⎞⎟⎠. (30)

OBDD3to4(ψ ) = 1

2
√

6

⎛⎜⎝−B1ODD3,1 + √
3B1ODD3,2

−B2ODD3,1 − √
3B2ODD3,2

2B3ODD3,1

⎞⎟⎠. (31)

With the magnetic dipole operator OMD(k, ϕ) [Eq. (25)] and
the electric quadrupole operator OQ5(k, ϕ) [Eq. (10)] for the
outgoing photon we obtain for the ZE-induced SHG:

I2ω
B1 (k, ψ, ϕ) ∝ |OBDD1(ψ )OMD(k, ϕ)|2, (32)

I2ω
B3to5(k, ψ, ϕ) ∝ |OBDD3to5(ψ )OQ5(k, ϕ)|2, (33)

I2ω
B3to4(k, ψ, ϕ) ∝ |OBDD3to4(ψ )OMD(k, ϕ)|2. (34)
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FIG. 7. 2D plots of weaker SHG processes for the forbidden
configurations k ‖ [11̄0], B ‖ [110]: (a) ZE- and MSE-induced SHG
of �+

1 excitons [Eqs. (32) and (37), Figs. 5(c) and 5(d)], (b) ZE-
and MSE-induced SHG of �+

3 excitons [Eqs. (33), (34), and (38),
Figs. 5(c) and 5(d)].

We couple the ODD(ψ ) operator to the odd-parity �−
4 MSE

operator and get

OEDD1(ψ ) = 1√
3

⎛⎝E1

E2

E3

⎞⎠, (35)

OEDD3(ψ ) = 1

2
√

6

⎛⎜⎝−E1ODD3,1 + √
3E1ODD3,2

−E2ODD3,1 − √
3E2ODD3,2

2E3ODD3,1

⎞⎟⎠. (36)

With the dipole operator OD(ϕ) we obtain for the MSE-
induced SHG intensity:

I2ω
E1 (ψ, ϕ) ∝ |OEDD1(ψ )OD(ϕ)|2, (37)

I2ω
E3 (ψ, ϕ) ∝ |OEDD3(ψ )OD(ϕ)|2. (38)

In Fig. 7 we show the associated 2D plots [Eqs. (32)–(34)
and Eqs. (37) and (38)], again for the configuration k ‖ [11̄0],

B ‖ [110], and thus EMSE ‖ [001]. Compared to the preceding
plots, some interesting features are seen: For varying the
detection angle ϕ at constant ψ polarization, one observes
an oscillatory behavior of the intensity with period of 180◦.
However, when varying ψ pronounced significant differences
show up. Namely, for a fixed ϕ the SHG induced by the
ZE does not depend at all on the linear polarization of the
fundamental light. On the other hand, for the MSE-induced
SHG one observes in that case pronounced changes which
do not correspond to a simple harmonic oscillation, but the
amplitude is strongly modulated leading to a periodicity in ψ

of 180◦ and not of 90◦.
Note that also here unique configurations can be found

which allow not only distinction of the ZE and the MSE
for the �+

1 and �+
3 excitons, but also distinction from the

processes related to the �+
5 excitons. This is obvious for the

ZE with its insensitivity to ψ , but also for the MSE with the
appearance of SHG for ψ = 90◦ and 180◦ with strongly dif-
ferent strengths. As in the previous section, one can derive the
equivalent polarization dependencies for TPA by merely omit-
ting in the SHG equations the outgoing operator [OMD(k, ϕ),
OQ3(ϕ), OD(ϕ)].

In Appendix B we present 2D polarization diagrams
for eight selected crystalline orientations in zero field and
for two magnetic field orientations (Voigt and Faraday
configuration).

III. MICROSCOPIC THEORY

In the presence of an external electromagnetic field the
electron momentum operator p̂ = −ih̄∇ is replaced by p̂ −
eA/c, where A is the vector potential of the field. Hereafter,
we use the gauge, where the scalar potential of the light wave
is zero. Thus, the light-matter interaction operator assumes
the form

V̂ = − e

cm0
p̂ · A, (39)

where m0 is the free-electron mass; note that the quadratic
in A term plays no role for interband transitions. For plane
monochromatic waves, the complex amplitudes of the vector
potential and the electric field A, E ∝ exp (ikr − iωt ) are
interrelated by E = iωA/c. Also, the induced dielectric po-
larization and electric current density at double fundamental
frequency are related as j = −2iωP, which makes it possible
to recast the second harmonic susceptibility χikl (k, B) in the
general phenomenological relation [cf. Eqs. (1) and (3)]

Pi = χikl (k, B)EkEl

as (cf. [7])

χikl (k, B) = �
∑
x,s

〈0| p̂i|x〉〈x| p̂k|s〉〈s| p̂l |0〉
(2h̄ω − Ex )(h̄ω − Es)

. (40)

Here, we introduce explicitly the dependence of the suscep-
tibility on the wavevectors of light and the static external
magnetic field � = e3/(2im3

0ω
3), s enumerates the interme-

diate states of the crystal, Es is the energy of the state s,
and x enumerates the exciton (final) states for the two-photon
absorption, Ex is the energy of the exciton state. It is note-
worthy that the Coulomb interaction between the electron and
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hole in the intermediate states can be disregarded provided
that the exciton binding energy is much smaller than h̄ω.
Equation (40) clearly shows that in a centrosymmetric crystal
at k = 0, SHG is forbidden because the states x and s have
definite parity, while to contribute to Eq. (40), the given ex-
citonic state x should be simultaneously active in two-photon
absorption (i.e., be even at space inversion) and in one-photon
emission (i.e., be odd at space inversion). This is possible only
if the wave vector of radiation is taken into account. In what
follows, we take into account only k-linear contributions in
Eq. (40).

A. SHG in the absence of a magnetic field

At B = 0, there is only one independent contribution to the
susceptibility, Eq. (2). It vanishes if light is propagating along
one of the cubic axes and also if the light is propagating along
one of the 〈110〉 axes [10]. SHG is most prominent for k ‖
[111]. In the set of axes with x′ ‖ [112̄], y′ ‖ [1̄10], and z′ ‖
[111] we can rewrite Eq. (2) as

Px′ = − χc√
2

kz′
(
E2

x′ − E2
y′
)
, (41a)

Py′ = 2χc√
2

kz′Ex′Ey′ . (41b)

Let us derive the contribution of the �+
5 S-shell excitons to

χc. These states are two-photon active. Their wave function
can be written as

ψnS;αβ (re, rh) = eiqrc.m.�nS (r)Uαβ (re, rh), (42)

where re and rh are the electron and hole position vectors,
r = re − rh is the relative motion coordinate, rc.m. = (mere +
mhrh)/M is the center-of-mass coordinate with me, mh, and
M = me + mh being the electron, hole, and exciton transla-
tional masses, respectively, �nS (r) is the hydrogenic envelope
with n = 1, 2, . . . being the principal quantum number, and
Uαβ is the two-particle Bloch function. Here, we enumerate
the basic functions of the �+

5 representation by the subscript
αβ (α �= β) running through yz, zx, and xy. The part of the
susceptibility responsible for the two-photon absorption takes
the form

M (2)
nS;αβ;kl =

∑
s

〈x| p̂k|s〉〈s| p̂l |0〉
h̄ω − Es

= �∗
nS (0)R[δα,kδβ,l + δα,lδβ,k], (43)

where R ≡ R(ω) is the parameter which includes the sum
over the intermediate states (particularly, the electron states
of the odd-parity �−

8 band) of the products of the momentum
operators and the energy denominators. Similarly, quadrupole
emission for the �+

5 states is described by the matrix element

M (1)
nS;αβ;i j = 〈0| p̂i|x〉 = k j�nS (0)Q[δα,iδβ, j + δα, jδβ,i]. (44)

Here, Q is another parameter which accounts for the k · p
mixing with the �−

8 bands. As a result,

χc ∝ �QR
∑

n

|�nS (0)|2
2h̄ω − Eg − EnS + i�nS

, (45)

where EnS < 0 is the energy of the nS-shell bound exciton
reckoned from the electron-hole continuum and Eg is the band

gap. Further, we introduced a phenomenological damping �nS

in Eq. (45). To shorten the notations, a numerical factor is
omitted in Eq. (45) (see Appendix A for details).

As a next step we evaluate SHG of the P-shell excitons
of �−

4 symmetry. In contrast to S-shell states, the P excitons
are dipole active, but require a quadrupolar transition for two-
photon excitation. The calculation shows that the contribution
of the P-shell excitons to the susceptibility can be recast as

χc ∝ �QR
∑

n

|a0�
′
nP(0)|2

2h̄ω − Eg − EnP + i�nP
, (46)

where a0 is the effective length being on the order of the lattice
constant (see Appendix A and Ref. [7] for details), �′

nP(0)
is the derivative of the P-shell radial envelope at coinciding
electron and hole coordinates, and �nP is the corresponding
damping. Let us now compare the peak values of the second-
order susceptibility at the S and P excitons in Cu2O. It follows
from Eqs. (45) and (46) that this ratio is given by∣∣∣∣χc(ωnS )

χc(ωnP )

∣∣∣∣ ∼
∣∣∣∣ �nS (0)

a0�
′
nP(0)

∣∣∣∣�nP

�nS
. (47)

Making use of the explicit form of the hydrogenic wave func-
tions and assuming similar dampings �nS ∼ �nP we arrive at

∣∣∣∣χc(ωnS )

χc(ωnP )

∣∣∣∣ ∼
(

aB

a0

)2 6n2

n2 − 1
∼

(
aB

a0

)2

. (48)

Thus, compared to the contribution of the S excitons, the
P-shell states at zero magnetic field provide a parametrically
smaller contribution to SHG, ∼(a0/aB)2, where aB is the
exciton Bohr radius (cf. Ref. [7]).

Let us now turn to SHG of the D-shell excitons. As already
discussed in Sec. II B, the D-shell excitonic states transform
according to the �+

1 , �+
3 , �+

4 , and �+
5 irreducible represen-

tations of the Oh point symmetry group. The states of �+
5

symmetry are efficiently mixed with the S-shell orthoexcitons
forming a series of S/D-shell states [14]. Their contribution to
the SHG susceptibility has the form

χc ∝ �QR
∑

n

∣∣a2
n�

′′
nD(0)

∣∣2

2h̄ω − Eg − EnD + i�nD
, (49)

where EnD is the energy of the �+
5 D-shell state, �′′

nD(0)
is the second derivative of the S-exciton radial envelope at
coinciding coordinates of electron and hole, an is the mixing
parameter. Strictly speaking, in Eqs. (45) and (49) the energies
of the S/D mixed states should be used. Similarly, the redis-
tribution of the oscillator strength from the S- to the D-shell
excitons should be taken into account in Eq. (45). This can
be done in the approach of Ref. [30]. The mixing parameter
has the dimension of a length, but unlike a0 in Eq. (46) it
is given by the combination of the Luttinger parameters and
the spin-orbit splitting constant, as this mixing comes from
the coupling between the close in energy �+

7 and �+
8 valence

bands (see Fig. 1 and Ref. [14]). Rough estimates show that
an ∼ aB, i.e., it is on the order of the exciton Bohr radius.
Thus, the �+

5 symmetry S and D states provide comparable
contributions to SHG.
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Out of the remaining D-shell excitons, only those with �+
1

and �+
3 symmetry are active in two-photon absorption. How-

ever, unlike the �+
5 states, for both the �+

1 [naturally, the �+
1

exciton does not contribute to χc in Eq. (2) since it generates
a polarization along k] and the �+

3 excitons, the coupling with
the S-shell states is absent. Thus, the two-photon excitation of
these D-shell excitons requires for transitions via intermediate
states an additional k · p mixing with remote bands. For
example, the �+

1 exciton can be excited with two photons, the
�+

1 S-shell exciton with the hole in the �+
7 valence band and

with the electron in the remote �+
7,c conduction band, taking

into account the second-order k · p mixing of the remote
�+

7,c and the bottom �+
6 conduction bands. Similarly, the �+

3
states can be activated by taking into account intermediate
states in the �+

8,c symmetry bands and the corresponding
second-order k · p mixing with the �+

6 conduction band. The
energy separation to these bands Eg,remote ∼ 10 eV [31]. As
a result, the susceptibility acquires the form of Eq. (49) but
with replacing an by a quantity ∼a0 � an. This results in a
significant suppression of the SHG of the �+

3 D-shell excitons
as compared to the contribution of the �+

5 S/D excitons.

B. SHG in presence of magnetic field

Although the magnetic field does not break the P symme-
try, it is expected to produce a significant effect on SHG [see
the phenomenological equations (4) and (5) and the discussion
in Secs. II C and II D]. In the B-linear regime, two key effects
occur: (i) the Zeeman effect resulting in a splitting/mixing
of different states of the same parity, e.g., mixing of a state
which is (in a given field and polarization configuration)
quadrupolar forbidden but active in two-photon absorption
with a state which is quadrupolar active but forbidden in two-
photon absorption, and (ii) the magneto-Stark effect which is a
result of the combined action of the magnetic field and exciton
propagation and leads to a mixing of excitons of different par-
ity via the equivalent electric field given by EMSE ∝ [k × B].
We will illustrate these particular microscopic mechanisms
considering the experimentally relevant geometry with the
light propagating along the z1 ‖ [11̄0] axis and the magnetic
field applied along the x1 ‖ [110] axis, with y1 ‖ [001] (see
Fig. 8). As discussed above, this is the so-called forbidden
geometry along which the crystalline SHG (at B = 0) is not
allowed.

1. �+
5 excitons

We start the analysis with the simplest case of the �+
5

excitonic states. In the studied geometry, the triplet of the
�+

5 S/D mixed states can be described by the wave functions
�̃1,2,3 which transform as

�̃1 ∝ x2
1 − z2

1

2
, �̃2 ∝ x1y1, �̃3 ∝ y1z1. (50)

Equation (50) clearly shows that SHG in this geometry is
forbidden at B = 0: The state �̃3 is quadrupole active (k ‖ z1,
P ‖ y1) but cannot be excited by two photons polarized in the
(x1, y1) plane, while the states �̃1,2 are quadrupole forbidden
(as they do not contain the products z1x1 or z1y1 which are
relevant for k ‖ z1).

FIG. 8. Experimental geometry in Voigt configuration with the
Cu2O crystal oriented such that z ‖ k ‖ [11̄0], x ‖ Eω,2ω(0◦) ‖ [110],
and y ‖ Eω,2ω(90◦) ‖ [001].

The magnetic field activates SHG. Due to the Zeeman ef-
fect, the field mixes �̃3 with a two-photon active exciton state.
Then, the second harmonic is generated via two-photon dipole
excitation and quadrupolar one-photon emission. Among the
three states in Eq. (50) the state �̃2 is unaffected to first order
by the Zeeman interaction for B ‖ x1 ‖ [110] (it is mixed with
the �+

3 exciton which is far away in energy), while the states
�̃1 and �̃3 are mixed into the linear combinations

�̃± = �̃1 ± i�3√
2

. (51)

Each of the superposition states is simultaneously active in
the two-photon excitation and in the quadrupolar emission.
Both states provide a contribution to the polarization at double
frequency of the same absolute value but of different signs:

Py1 ∝ E2
x1

[
M∗

QMTPA

2h̄ω − Eg − EnS − �B/2 + i�nS

− M∗
QMTPA

2h̄ω − Eg − EnS + �B/2 + i�nS

]
≈ E2

x1
�B

M∗
QMTPA

(2h̄ω − Eg − EnS + i�nS )2
. (52)

Here, we focus on the susceptibility in the vicinity of a given
nS-exciton resonance, 2h̄ω ≈ Eg + EnS , and, to shorten we
introduce the following notations: MQ ≡ MQ(n) ∝ kz1 is the
quadrupolar transition matrix element (44), MTPA ≡ MTPA(n)
is the two-photon matrix element (43) and �B = gX μBBy1

is the Zeeman splitting of the exciton with gX being the
exciton g factor and μB being the Bohr magneton. The sec-
ond approximate equality is valid for weak Zeeman splitting
|�B| � �nS . This mechanism contributes to the components
of the susceptibility χy1z1x1x1x1 . In weak fields, the polarization
at the double frequency grows linearly in B, while for larger
fields |�B| � � the lines corresponding to the �̃± states are
significantly split and the SHG enhancement with the field
becomes weaker, mainly, due to the diamagnetic effect [8].
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We turn now to the magneto-Stark mechanism where the
two-photon active S-shell exciton is mixed with the P-shell
exciton via the equivalent electric field EMSE ∝ [k × B]. In
our geometry, this electric field is directed along the y1 axis.
The state �̃1 remains unaffected by the MSE to first order in
B. The state �̃2 which is not active in the Zeeman mechanism
is mixed with the P-shell exciton and produces a double-
frequency polarization along the x1 axis:

Px1 ∝ Ex1 Ey1

�MSE

�SP

M∗
DMTPA

2h̄ω − Eg − EnS + i�nS
, (53)

contributing to the susceptibility χx1z1x1x1y1 = χx1z1x1y1x1 . Here,

�MSE = eh̄

Mc
kz1 By1〈�nS|x1|�nP〉 (54)

is the magneto-Stark mixing parameter, M is the exciton trans-
lational motion mass, �SP is the splitting between the nearest
S and P exciton states (in the quasiresonant approximation
we consider only the nearest states), and MD is the matrix
element of the dipole emission from the P-shell excitons. Note
that for the �+

5 D-shell excitons the result is similar. Also, as
mentioned before, generally the S-D mixing of the �+

5 states
should be taken into account.

It is instructive to estimate the relative efficiencies of the
Zeeman and magneto-Stark effects for the SHG activation.
We consider the weak magnetic field regime with |�B| �
� where the ratio of the corresponding contributions to the
susceptibilities can be approximated as∣∣∣∣ χZ

χMSE

∣∣∣∣ ∼
∣∣∣∣ �B

�MSE

MQ

MD

�SP

�nS

∣∣∣∣. (55)

For rough estimates we take gX = 2, disregard the difference
between the exciton translational mass, the reduced mass of
the electron-hole pair and the free-electron mass, and use
Eq. (A2) to evaluate the ratio

MQ

MD
∼ q�nS (0)

�′
nP(0)

. (56)

Finally, we obtain for the ratio of corresponding
susceptibilities∣∣∣∣ χZ

χMSE

∣∣∣∣ ∼
∣∣∣∣ 1

〈�nS|x1|�nP〉
�nS (0)

�′
nP(0)

�SP

�nS

∣∣∣∣. (57)

For small principal quantum numbers n = 1, 2, 3 the com-
bination of the wave functions gives a numerical factor on
the order of unity and �SP � � (the fine-structure splitting
between the different shells belonging to a particular multiplet
n is well resolved in the experiment). Thus, for low-energy
excitons the Zeeman effect should be dominant. For large
n � 5 one can use the scaling arguments [36], representing
�SP in the model of quantum defects as �SP = Rδ/n3, where
R is the exciton Rydberg energy. Further, one can evaluate the
matrix elements using hydrogenic wave functions and recast
the S-exciton linewidth as �nS = γ /n3 [15] so that one obtains
the following approximate scaling:∣∣∣∣ χZ

χMSE

∣∣∣∣ ∼ 1

n2
× Rδ

γ
, (58)

meaning that the MSE contributions become progressively
more important for Rydberg excitons. This can be expected

since for high-n excitons the dipole coupling between the S-
and P-shell states becomes progressively larger.

For the same reason, the magneto-Stark effect can activate
P-shell excitons which are weak in the absence of the mag-
netic field (see Sec. III A). The calculation shows that the MSE
contribution to SHG on the nP-exciton takes a form similar to
Eq. (53):

Pi ∝ EkEl
�MSE

�SP

M∗
DMTPA

2h̄ω − Eg − EnP + i�nP
. (59)

As a result, in contrast to the zero magnetic field case, the
second harmonic intensities on the S and P excitons due to
the MSE can be comparable.

2. �+
1 and �+

3 excitons

The wave function of the �+
1 D-shell exciton state trans-

forms ∝x2 + y2 + z2 = x2
1 + y2

1 + z2
1. As mentioned, this state

does not manifest itself at B = 0 because its polarization P ‖ k
and cannot contribute to the transversal wave. The Zeeman
effect mixes this state with the �+

4 state which is magne-
todipole active with an oscillating magnetic moment μ ‖ B.
As a result, in a magnetic field the �+

1 exciton becomes active
in the polarization P ‖ [k × μ] ‖ [k × B]. In our geometry
with B ‖ x1 and k ‖ z1 this corresponds to P ‖ y1. Hence, this
state contributes to the susceptibility component χy1z1x1x1x1 =
χy1z1x1y1y1 . The corresponding contribution to the polarization
can be readily evaluated as

Py1 ∝ |E |2 �′
B

�14

M∗
BM ′

TPA

2h̄ω − Eg − EnD1 + i�nD1
, (60)

where EnD1 and �nD1 denote the energy and damping of the
corresponding D-shell exciton, MB is the matrix element of
the magnetic-dipole transition, and M ′

TPA is the matrix element
of the two-photon excitation of the �+

1 state, �′
B is the Zeeman

splitting and �14 is the energy separation from the nearest
�+

4 D-shell state. In addition to the Zeeman effect, the �+
1

state is mixed by the magneto-Stark effect with the Py1 state
giving rise to

Py1 ∝ |E |2 �′
MSE

�DP

M∗
DM ′

TPA

2h̄ω − Eg − EnD1 + i�nD1
. (61)

Here, �DP is the splitting between the D- and P-shell states,
�′

MSE is the magneto-Stark parameter defined similarly to
Eq. (54), but for the D-shell states. The comparison of
Eqs. (60) and (61) shows that the MSE is likely to dominate
the second harmonic generation: Indeed, both �14 and �DP

are determined by the quantum defects and are, generally, of
the same order of magnitude, while the ratio of quantities in
the first fraction is∣∣∣∣ �′

BMB

�′
MSEMD

∣∣∣∣ ∼
∣∣∣∣ a2

0�
′′
nD(0)

〈�nD|x1|�nP〉�′
nP(0)

∣∣∣∣ � 1

(see the discussion at the end of Sec. III A).
Similar mechanisms can activate the �+

3 states. In the x1,
y1, and z1 system of axes the wave functions of the doublet
read as

�̃1 = 2y2
1 − x2

1 − z2
1, �̃2 =

√
3

2
x1z1. (62)
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FIG. 9. Setup for SHG spectroscopy: AL, alignment laser; CCD,
charge-coupled device camera; D, diaphragm; F, color filter; fxx, lens
with xx-cm focal length; GT, Glan Thompson linear polarizer; λ/2,
half-wave plate; OPA, optical parametric amplifier; T(×4), telescope
with a magnification factor of 4. The double side alignment laser
(AL) in front of the 1-m Spex spectrometer is useful for accurate
aligning the SHG beam into the Spex spectrometer.

For illustration we calculate the contribution via the magneto-
Stark effect to the SHG, taking into account mixing of these
states with the �−

4 P-shell excitons. The state �̃2 does not play
a role, while the state �̃1 provides the contribution

Py1 ∝ (
2E2

y1
− E2

x1

)�̃MSE

�̃DP

M∗
DMTPA

2ω − Eg − EnD3 + i�nD3
, (63)

where �̃MSE and �̃DP are the corresponding mixing parameter
and the separation from the nearest P state, respectively,
EnD3 and �nD3 are the energy and damping of the D-shell
�+

3 exciton.
To summarize the microscopic theory, we have identified

the main mechanisms and the intermediate states for SHG on
the odd and even excitons in Cu2O. We have demonstrated
that at B = 0 the S/D excitons of �+

5 symmetry provide the
dominant contribution to SHG, while the P excitons provide
a parametrically smaller contribution [see Eq. (48)]. The D
excitons of �+

3 symmetry provide contributions which are
smaller than that of the P excitons and of the S/D excitons due
to the necessity of involving transitions via very distant bands.
In the presence of a magnetic field, we have identified two
main SHG mechanisms, the Zeeman effect and the magneto-
Stark effect, and demonstrated that with increasing exciton
principal quantum number the MSE contribution dominates.
Also, the MSE can provide similar strengths of the P and S
excitons in the SHG effect.

IV. EXPERIMENT

Our experimental setup is similar to the setup described
in Ref. [9]. As shown in Fig. 9, we have now the choice
between two detection systems: (i) an 0.5-m Acton spec-
trometer (5 × 5 cm2-sized grating with 1800 grooves/mm in
first order) connected to a CCD camera (400 × 1340 pixel
of size 20 μm), leading to a spectral resolution of 80 μeV
around 2 eV photon energy; (ii) a 1-m Spex spectrometer
(10 × 10 cm2 sized grating with 1200 grooves/mm, used in

FIG. 10. Crystallographic SHG spectra of the 1S orthoexciton
(k ‖ [111], x ‖ Eω ‖ [11̄0], and y ‖ E2ω ‖ [112̄]) excited by fem-
tosecond pulses at a temperature of 1.4 K for demonstration of the
resolution of the two spectrometers.

first or second order), combined with a 4× amplification on
the detection CCD camera (512 × 2048 pixel of size 13.5 μm)
leading to a resolution of 20 μeV in first order and 10 μeV in
second order.

In Fig. 10 we present SHG spectra recorded in the spectral
range of the 1S orthoexciton at zero magnetic field. Light
propagation along the [111] direction is chosen, making SHG
possible also without application of a magnetic field. The
data allow us to compare the resolution for the two detection
systems (Acton spectrometer and Spex spectrometer used in
different orders). The Spex spectra confirm that the larger
focal length in combination with the implementation of the
4× magnification optics in front of the CCD camera helps to
improve the spectral resolution significantly, in particular in
second order.

The laser system (Light Conversion) provides femtosecond
or picosecond pulses with a repetition rate up to 30 kHz. For
the SHG experiments we use the femtosecond pulses with a
duration of 200 fs, corresponding to a spectral full width at
half-maximum (FWHM) of 10 meV. For the excitation of ex-
citons with n � 3 the laser is set to 1.08 eV, using an average
power of 20 mW. For measuring the two-photon absorption
using photoluminescence excitation (TP-PLE) experiments,
we tune the ps laser through the resonances and monitor the
TPA through the emission from the 1S exciton and/or its �−

3
phonon side band. The spectral resolution of the TPA spectra
is limited by the spectral width of the 3.3 ps pulses to 0.7 meV.
The laser beam was focused on the sample to a spot with a
diameter of 100 μm. At an average power of 20 mW the laser
intensity on the sample surface is 2.5 GW cm−2.

The samples are cut from a natural Cu2O crystal in dif-
ferent crystalline orientations and thicknesses. The samples
are mounted strain free in a split-coil superconducting magnet
allowing a magnetic field strength up to 10 T at a sample
temperature as low as 1.4 K. The polarization angles of the
ingoing laser beam (ψ) and the SHG light (ϕ) (see Fig. 8) can
be tuned independently by automatized polarizers controlled
with a LABVIEW program. It should be noted that the 180◦
periodicity of all results is expected since a phase shift by
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FIG. 11. (a) Zero-magnetic field PLE spectrum for TPA of the
the n = 3 and 4 excitons. (a) The spectrum is recorded by scanning
the laser in the ps configuration and detecting the luminescence from
the 1S exciton or its �−

3 phonon replica. The dashed line (2.167 eV)
marks the spectral position of the 3S exciton. (b) Measured (dots)
and simulated (solid line) [Eq. (20)] TPA polarization dependence of
the 3S exciton on the polarization angle ψ of the ingoing laser. The
sample is oriented as shown in Fig. 8 (k ‖ [11̄0], x ‖ B ‖ [110], and
y ‖ [001]).

180◦ in the amplitudes (experimentally setting the λ/2 plates)
has no influence on the 1D and 2D SHG intensity plots. For
convenience, the angular dependencies are mostly taken only
in the range from 0◦ to 180◦ and then the same data are
extended to the range 180◦ to 360◦. It was proved that tuning
the λ/2 plates through the whole range 0◦ to 360◦ did not
lead to any novel deviating information. For the 2D plots the
polarizer angle ψ is rotated in steps of 10◦ for the full rotation
starting at an analyzer angle ϕ of 0◦. This is repeated for the
analyzer angle ϕ in steps of 10◦ for the full rotation. It takes
four hours to measure the full polarization dependence. For
the 1D plots the polarization angles are varied in steps of 5◦.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we will present experimental data for non-
linear optical effects with the main emphasis on SHG from
the S and D excitons with n � 3 using the configuration
k ‖ [11̄0], B ‖ [110], and thus EMSE ‖ [001]. In the zero-field
case SHG is forbidden, but TPA is allowed. In Fig. 11(a) we

show the TPA spectrum of n = 3 and 4 exciton multiplets. For
each multiplet we observe two features of similar intensity
and linewidth (determined by the width of the laser pulses).
The energies of the lines and the splitting between them are
in good agreement with previous measurements [9,14], where
we have assigned them to excitons with dominant S and D
envelopes with the �+

5 symmetry of the total exciton wave
function. In accordance with the microscopic theory, the TPA
excitation of the D excitons becomes allowed mainly due to
mixing with the S excitons.

In Fig. 11(b) we present the TPA polarization dependence
of the 3S exciton (dots) as function of the linear polarization
ψ of the ingoing laser. The experimental data agree well with
the expected dependence (solid line)

ITPA(ψ ) ∝ 1
2 (cos4 ψ + sin2 2ψ ), (64)

derived from our symmetry analysis in Sec. II, Eq. (20) [see
also Eq. (50)].

Now, we turn to the analysis of the SHG process in a mag-
netic field. A basic result of the corresponding analysis (see
Sec. II C) is that the configuration k ‖ [11̄0] and B ‖ [110]
allows one to distinguish between SHG induced by the ZE and
the MSE and further allows identification of weaker processes
associated with the �+

1 and �+
3 exciton states (see Sec. II D).

Figure 12 shows SHG spectra for increasing magnetic field
from 0 up to 10 T, where we have chosen the polarization
configurations that are supposed to allow distinction between
MSE-induced SHG (a) and ZE-induced SHG (b) as indicated
in Fig. 4(a) (MSE) and Fig. 4(b) (ZE). The spectra show the
energy range starting from n = 3. Aside from n = 3 lines, also
features associated with n = 4 and 5 are seen. As expected,
the SHG is only magnetic-field induced for the chosen config-
uration, and one also sees a strong overall enhancement of the
SHG intensity with increasing magnetic field. Simultaneously,
there are striking differences in the appearance of the spectra
for the two configurations: different spectral lines and strong
intensity variations show up. For example, for the ZE-related
SHG most intensity occurs on the low-energy flank of the
n = 3 multiplet, while for the MSE-related SHG the intensity
is shifted toward the high-energy flank.

For the analysis of the data in more detail, we show in
Fig. 13 SHG spectra at 4 T and the laser spectrum. Aside
from the two configurations separating the ZE and the MSE,
also another configuration, in which the �+

1 and �+
3 states are

expected to contribute exclusively to the SHG with, however,
comparatively weak intensity, is shown. From the ZE and
MSE spectra one indeed sees the complementarity of the SHG
lines in the two configurations and therefore of the underlying
mechanisms for the n = 3 multiplet: while ZE-induced SHG
appears mostly on the 3S exciton, the MSE-induced SHG
is concentrated on the 3D exciton. For the multiplets with
high principal quantum number, the SHG spectrum becomes
increasingly complex due to the multitude of involved states.
For a detailed analysis of the magnetic field dependence, we
refer to Ref. [30].

Before proceeding with a detailed symmetry analysis, let
us briefly compare the results with the microscopic theory
developed in Sec. III in terms of the states providing stronger
and weaker contributions to the ZE-induced and MSE-
induced SHG. It follows from Fig. 12(b) that for the ZE the
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FIG. 12. Magnetic-field-dependent SHG spectra induced by the
magneto-Stark effect (a) or the Zeeman effect (b) in the energy range
starting from the n = 3 excitons, where features related to the n = 4
and 5 multiplets are observed. The central photon energy of the fs-
pulsed fundamental laser is set to 1.082 eV (see also the spectrum
in Fig. 13). The sample is oriented as shown in Fig. 8 (k ‖ [11̄0],
x ‖ B ‖ [110], and y ‖ [001]). The polarizations ψ and ϕ are chosen
according to Fig. 4, which allows a distinction between MSE (ψ =
45◦, ϕ = 0◦) and ZE (ψ = 0◦, ϕ = 90◦).

intensities of the P excitons in moderate fields (2 . . . 4 T) are
considerably smaller than those for the S and even D states.
This is in line with the microscopic analysis showing that
at B = 0 the SHG-allowed P states provide much weaker
contributions to the SHG as compared to the S excitons
[Eq. (48)]. Note that the Zeeman mechanism does not mix
states of different parity, it makes the otherwise forbidden
P excitons allowed only by rotating the microscopic dipole
moment or by breaking the destructive interference of the
states that are degenerate at B = 0 [cf. Eq. (52)]. In contrast,
the MSE efficiently mixes S and P excitons and can result
in comparable contributions of the S and P states to SHG
[see Eq. (59)]. Thus, already at moderate fields the S and
P excitons provide similar contributions to the MSE-induced
SHG [see Fig. 12(a)].

As described above, conclusive information about the un-
derlying SHG mechanisms may be obtained by contour plots

FIG. 13. SHG at 4 T for selected polarization configurations.
(a) MSE spectrum and (b) ZE spectrum correspond to the spectra
for 4 T in Fig. 12. In (c) a SHG spectrum of the weaker processes
(Sec. II D), which are due to �+

1 and �+
3 D states, is shown, which

are distinguished from the strong resonances (about a factor 250) of
(a) and (b) by the choice of the polarization configuration (ψ = 90◦

and ϕ = 90◦). In (d) we show SHG of the laser set to 1.082 eV as
measured with BBO (beta barium borate). The sample is oriented as
shown in Fig. 8 (k ‖ [11̄0], x ‖ B ‖ [110], and y ‖ [001]).

showing the SHG intensity as function of the linear polariza-
tion angles ψ and ϕ of the ingoing laser and the outgoing SHG
light. Let us consider first the MSE-related SHG. Figure 14(a)
shows the dependencies calculated according to Eq. (18),
which reveal a fourfold symmetry pattern corresponding to
a period of 90◦, when ψ is varied from 0◦ to 360◦, and ϕ is
fixed. On the other hand, variation of ϕ gives a twofold pattern
with a period of 180◦ when keeping ψ constant. This unique
footprint of MSE-induced SHG is nicely confirmed by the
experimental data in Fig. 14(b) as further detailed in Fig. 14(c)
showing the SHG intensity as function of ψ along the black
tuning lines in Figs. 14(a) and 14(b). Here, we singled out
the 3D resonance at 2.1633 eV marked by the left dashed
line in Fig. 13, following the results of our theory. Slight
deviations between theory and experiment might be caused by
tiny misalignments of the chosen configuration or strain in the
sample, which may lead in particular to the slight distortion
of the signal relative to lines with ψ = const as discussed for
the 1S exciton in Ref. [10]. Further, an intensity drift of the
exciting fs laser during the rather long angle scanning time of
4 h may occur.

Next, we turn to the demonstration of the ZE-induced
SHG for which we selected the 3S resonance at 2.1603 eV,
again motivated by the symmetry analysis. The resonance is
marked in Fig. 13 by the middle dashed line. The theoretical
expectations according to the symmetry analysis are shown
in Fig. 15(a), visualizing Eq. (16). Here, twofold symmetry
patterns with a period of 180◦ are expected for varying
one of the two basic polarizations while keeping the other
constant. Also, these predictions are in perfect agreement
with the experimental data [see Fig. 15(b)], confirming, e.g.,
the expected behaviors along the ϕ and the ψ axes, as de-
tailed further in Fig. 15(c). Possible reasons for the slight
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FIG. 14. Theory (a) and experiment (b) of the 2D polarization
dependence of magneto-Stark effect induced SHG intensity at the
3D exciton resonance (2.1633 eV) at B = 4 T. The theoretical results
are calculated according to Eq. (18). (c) Cut through the two contour
plots in (a) and (b) for varying the ingoing polarization angle ψ

at fixed outgoing SHG polarization angle ϕ = 180◦. The measured
results are given by the dots and the simulations by the solid lines.
The sample is oriented as shown in Fig. 8 (k ‖ [11̄0], x ‖ B ‖ [110],
and y ‖ [001]).

FIG. 15. Theory (a) and experiment (b) of the 2D polarization
dependence of Zeeman effect induced SHG intensity at the 3S
exciton resonance (2.1603 eV) at B = 4 T. The theoretical results are
calculated according to Eq. (16). (c) Cut through the two contour
plots in (a) and (b) for varying the ingoing polarization angle ψ

at fixed outgoing SHG polarization angle ψ = 180◦. The measured
results are given by the dots and the simulations by the solid lines.
The sample is oriented as shown in Fig. 8 (k ‖ [11̄0], x ‖ B ‖ [110],
and y ‖ [001]).
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differences between theory and experiment are the same as
discussed above.

Since we understand now in detail the two basic origins of
MSE and ZE for the magnetic-field-induced SHG signals by
separating them through proper polarization configurations,
we can now also assess in more detail the influence of interfer-
ence effects when both of them contribute and the interference
effects should be taken into consideration. According to our
symmetry analysis in Sec. II, the SHG intensity is given by
Eq. (19), which is plotted as function of the two polarization
angles in Fig. 16(a). One immediately sees that the SHG
pattern becomes distorted compared to the previous cases (2D
plots for MSE [Fig. 4(a)] and ZE [Fig. 4(b)]). The mixing
parameters α = 4

3 and β = 1 are gained from a fit of the
experimental 2D plot shown in Fig. 16(b). It shows the results
of corresponding measurements, where we chose as energy
setting 2.1664 eV in a magnetic field of 4 T. At this energy
within the n = 4 multiplet we expect interference of the MSE
[Fig. 13(a)] and the ZE [Fig. 13(b)] contributions to SHG. The
1D plot in Fig. 16(c) [ψ tuning line for ϕ = 200◦ as marked
in Figs. 16(a) and 16(b)] shows again the good agreement
between experiment (symbols) and theory (solid line).

To visualize the interference of both effects, we present a
contour plot (second animation, see Ref. [35]), in which the
relative weight of the Zeeman effect and the magneto-Stark ef-
fect interfering in the SHG generation is varied [see Eq. (19)].
In detail, the weight of the Zeeman effect is increased from
zero to unity, corresponding to its exclusive contribution. The
weight of the MSE is reduced accordingly. This situation may
be obtained by adjusting the wave vector and the magnetic
field properly. One clearly sees the smooth transition between
these two limiting cases shown in Fig. 4, by continuous
distortion of the contour plots so that they transform into
each other.

For the detection of weaker SHG processes related to
the two-photon excitation of the �+

1 and �+
3 D states (see

Secs. II D and III B 2), we chose the configuration ψ = 90◦ =
ϕ according to Fig. 7, where no contributions from the
stronger �+

5 states to the SHG signal are expected. Doing so,
we indeed observe signals [Fig. 13(c)], in particular at the
energies where the �+

5 excitons are absent (see, for example,
the energy range between 2.160 and 2.163 eV. The intensity
of these signals is, however, weaker by a factor of about 250
compared to the SHG intensity level at the �+

5 states (as
also indicated by the increased noise level). The signal shows
the expected polarization dependence (see Fig. 7), where we
have chosen a particular polarization setting as indicated by
the tuning line in Fig. 7 (ϕ tuning for ψ = 90◦). The results
along with the simulation are shown in Fig. 17 revealing a
characteristic twofold symmetry pattern. Both the ZE and the
MSE contribute to the SHG signal.

Having now established full agreement between the sym-
metry analysis and the experiment and having identified the
symmetries of the excitonic states participating in the SHG as
well as the particular underlying mechanisms, we turn again to
the comparison of the experimental data with the microscopic
theory. Namely, we address the relative intensity of the ZE and
the MSE to the SHG for different principal quantum numbers.
This comparison is possible by selecting two configurations in

FIG. 16. Theory (a) and experiment (b) of the polarization-
dependent SHG intensity for the case of an interference of the
magneto-Stark effect and the Zeeman effect. In the experiments we
chose as detection energy 2.1664 eV at B = 4 T, located in the energy
range of the n = 4 multiplet. The interference of ZE and MSE can be
well described by Eq. (19) using the parameters α = 4

3 and β = 1.
The tuning lines in (a) and (b) indicate the 1D plot shown in (c). The
sample is oriented as shown in Fig. 8 (k ‖ [11̄0], x ‖ B ‖ [110], and
y ‖ [001]).
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FIG. 17. Measured SHG intensity (dots) at 2.1604 eV and sim-
ulated (solid line) SHG intensity from the �+

1 and �+
3 D states

for a configuration, in which according to our symmetry analysis
contributions of the �+

5 excitons are suppressed (see also Fig. 7), as
function of the outgoing polarization ϕ for fixed ingoing polarization
ψ = 90◦. The sample is oriented as shown in Fig. 8 (k ‖ [11̄0],
x ‖ B ‖ [110], and y ‖ [001]).

which SHG is solely induced by either the ZE and the MSE.
However, developing a systematic dependence on principal
quantum number is complicated by the fact that the spectral
lines from different multiplets are rather well separated only
for n = 3 and 4, while for higher n the spectral lines of
different multiplets overlap at finite magnetic fields that are,
on the other hand, strong enough to obtain a reasonable SHG
intensity well above the noise level. The spectral overlap
of exciton features also leads to complex state mixings and
anticrossings. Nevertheless, we made such an analysis up to
n = 6, where determination of the intensities is still possible
with the mentioned restrictions.

The two upper panels in Fig. 18 show spectra exclusively
induced by MSE (a) and ZE (b) covering the spectral range
from n = 3 up to n = 6 at a magnetic field of 1 T, chosen to
be low so that the field-induced splitting of the state multiplets
belonging to different n does not exceed the splittings between
them. As before, the sample is oriented in such a way that
k ‖ [11̄0], x ‖ B ‖ [110], and y ‖ [001] as shown in Fig. 8.
The different multiplet ranges are marked by the differently
colored boxes. One immediately sees that for the low-lying
excitons, the SHG intensities show similar strength in both
cases while for the n = 5 and 6 multiplets the MSE-induced
SHG becomes dominant compared to the ZE-induced SHG.
Moreover, for the low-lying states, the SHG spectrum is dom-
inated by one line with weak contributions from others, while
for higher ones the SHG intensity is distributed over several
lines, as might be expected from the larger state mixing
due to the smaller energy separations between states within
a multiplet corresponding to a certain principal quantum
number n.

FIG. 18. Comparison of MSE- (a) and ZE- (b) induced SHG
spectra for the different multiplets n = 3, 4, 5, 6 in a magnetic field
of B = 1 T. The low-field regime is chosen to minimize the spectral
overlap of lines belonging to different multiplets as marked by the
colored lines. The intensity within a multiplet is then determined
by integration over all the lines within a multiplet. The ratio of
the integrated SHG intensities induced by MSE relative to the one
induced by ZE is plotted in (c) as function of the principal quantum
number n (full dots). The data are fitted by a power-law function
R(n) = R0 + nc with fit parameters R0 = 1.0 ± 0.1 and c = 6.4 ± 1.
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FIG. 19. 2D polarization diagrams of SHG processes in Voigt configuration (k ‖ z, EMSE ‖ y, and B ‖ x) for selected crystalline orientations
according to equations in Secs. II C and II D. Experimental results are taken in the configuration (z ‖ [11̄0], y ‖ [001], and x ‖ [110]) as marked
by bold numbers. SHG processes correspond to the schematics of Figs. 2 and 5 with the following abbreviations: D, electric dipole transition;
Q, electric quadrupole transition; MD, magnetic dipole transition; S, P, and D, orbital quantum numbers; B, magnetic field; E, effective
electric field.

For a somewhat more quantitative analysis, we have in-
tegrated the SHG intensity recorded over the corresponding
boxed energy range of a given n and calculated the ratio of
the SHG intensities of MSE relative to the one induced by
the ZE. The result is shown by the circles in Fig. 18(c) as
a function of the principal quantum number n. One clearly
sees an increase of the ratio with increasing n, starting from
unity for n = 3 and 4, corresponding to equal MSE and ZE
intensities. This behavior confirms the expectation from the
microscopic theory that with increasing n the MSE dominates
over the ZE [see Eq. (58)]. By fitting the data with a power-law
function, we obtain a scaling with power 6.4 ± 1, while the
microscopic theory predicts a dependence scaling as n4 for
n exceeding ≈5. The trend of a dominance of the MSE over
the ZE is therefore consistent in experiment and theory, the
deviation in the exponents may have different reasons, one of
which one is that the SHG spectra for n � 4 overlap already,
so that state mixing becomes an important factor here.

VI. CONCLUSIONS

In this paper we present a comprehensive theoretical and
experimental study of the nonlinear properties of excitons in
Cu2O in an external magnetic field. Two-photon absorption
and second harmonic generation are considered. The focus is
set on the forbidden crystalline directions, along which SHG
is forbidden in the absence of magnetic field, so that only the
magnetic-field-induced contributions arise. A detailed sym-
metry analysis gives us SHG polarization maps as functions
of the linear polarization directions of the ingoing and out-
going waves. The polarization dependencies in the form of
two-dimensional plots are very instructive to single out the
different SHG microscopic mechanisms: (i) the Zeeman effect
related to the magnetic-field-induced mixing and splitting of
the exciton states of the same parity and (ii) the magneto-
Stark effect resulting in the mixing of even- and odd-parity
excitons by the combined action of the exciton motion and
the magnetic field. Contributions of the various exciton states
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FIG. 20. 2D polarization diagrams of zero-field SHG processes (k ‖ z) for selected crystalline orientations according to equations in
Secs. II C and II D. SHG processes correspond to the schematics of Figs. 2 and 5 with the following abbreviations: D, electric dipole transition;
Q and Q3, electric quadrupole transitions; S, P, and D, orbital quantum numbers.

are identified by the symmetry analysis. The experimentally
obtained SHG polarization dependencies are in full agreement
with the developed symmetry analysis, underlining its power
in disclosing the nature of the optical transitions involved
in SHG and TPA. We summarize in Appendix B calculated
contour plots of the SHG intensity for different crystalline
orientations and field configurations.

We have elaborated a microscopic theory of the nonlinear
response on the excitons in Cu2O and identified the path-
ways for the two-photon absorption and second harmonic
generation. The microscopic theory explains why the S-mixed
excitons of �+

5 symmetry dominate the SHG induced by the
Zeeman effect, while the P excitons and the D excitons of
�+

1 and �+
3 symmetries provide much weaker contributions.

The comparable contributions of S and P excitons to the
SHG induced by the magneto-Stark effect are also explained.
To simplify the analysis, we have considered the mixing
between different exciton states on the perturbative level, full
nonperturbative calculations can be found in Ref. [30].

The developed theory and the experimental approaches
can be readily extended for other materials with prominent
exciton states. They can be also extended for searching other
mechanisms, e.g., induced by external electric field or strain.

The outstanding quality of the used Cu2O crystals that is
reflected by the extended series [15,37] of spectrally narrow
exciton resonances (indicating high coherence) allows one to
study the mechanisms of light-matter interaction in solids on
an unprecedented level, as in most cases one can restrict to
electric dipole transitions. Here, we have shown combinations
of two dipole and a quadrupole transitions to explain the
observed SHG. The coherence also allows identification of
pronounced interference effects of interactions like demon-
strated for the Zeeman and the magneto-Stark effect, leading
to subtle state mixing effects between states of the same and
different parity. This tunable mixing could allow, for example,
excitation of particular exciton superposition states that can
be uniquely identified through the two-dimensional plots of

the SHG intensity as function of the linear polarizations of the
fundamental wave and the SHG emission.

Our experimental setup allows pump-probe experiments
with picosecond resolution. As an outlook we propose non-
linear optical experiments, where by time-resolved two-
photon difference-frequency generation dynamical processes
such as exciton-plasma or exciton-exciton interaction (see
Refs. [15,18]) can be investigated. Further, second har-
monic generation on paraexcitons, and in particular on the
1S paraexciton with an exceptionally narrow spectral line
[37], is certainly another challenging spectroscopic task of
interest.
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APPENDIX A: THREE-BAND MODEL
FOR QUADRUPOLAR SHG

The results for the calculation of χc in Eq. (41) [see also
Eq. (46)] are extremely cumbersome. That is why in this
Appendix for illustrative purposes we consider a three-band
model for SHG in a centrosymmetric crystal. We disregard
the complex band structure and spin-orbit interaction and
consider for simplicity conduction and valence bands of S
type (�+

1 with Bloch amplitudes Sc and Sv , respectively).
We take into account intermediate states in the odd-parity
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FIG. 21. 2D polarization diagrams of Zeeman-effect-induced SHG processes in Faraday configuration (k ‖ B ‖ z) for selected crystalline
orientations according to equations in Secs. II C and II D. SHG processes correspond to the schematics of Figs. 2 and 5 with the following
abbreviations: D, electric dipole transition; Q, electric quadrupole transition; MD, magnetic dipole transition; S, P, and D, orbital quantum
numbers; B, magnetic field.

�−
4 band composed of X , Y , Z Bloch states. We consider

the incident radiation to be polarized along the x axis which
makes it possible to take into account as the intermediate state
s only the X state. Let E ′

g be the energy gap between the
valence band and the �−

4 remote band for which we assume
that E ′

g � Eg. We introduce the effective momentum matrix
elements as

Pc,v = h̄

m0
〈X | p̂x|Sc,v〉,

and assume that Pc and Pv are real due to the choice of phases
of basic functions. Taking into account the k · p mixing of
the bands in the lowest order we have for the two-photon
transition matrix element

M (2)(kc, kv ) = δkc,kv+2q
PcPv

E ′
g

(
1 + 9P2

c + 11P2
v

(E ′
g)2

k2
v

+ 10P2
c + 8P2

v

(E ′
g)2

kvq

)
. (A1)

Here, kv and kc are the x components of the electron wave
vector in the initial (valence band) and final (conduction band)
states, respectively. Similarly, the transition matrix element
for a single-photon emission from the conduction to the
valence band state reads as

M (1)(kv, kc) = δkv ,kc−2q
PcPv

E ′
g

(2q − 2kc). (A2)

In order to calculate the susceptibility, the matrix elements
M (2)(kc, kv ) and M (1)(kv, kc) should be averaged over the

exciton wave functions [7,8,38]. For S-shell excitons the
contribution to the susceptibility in leading order in 1/E ′

g reads
as, in agreement with Eq. (45) of the main text,

χ ∝
(

PcPv

E ′
g

)2 |�nS (0)|2
2h̄ω − Eg − EnS + i�nS

. (A3)

In this case, the two-photon excitation of the nS state is
possible via dipole transitions and a quadrupolar process is
needed for the exciton emission. In contrast, for nP excitons
the excitation is quadrupolar and requires and interference
term kvq in Eq. (A1). As a result [cf. Eq. (46) of the
main text],

χ ∝
(

PcPv

E ′
g

)2 |a0�
′
nP(0)|2

2h̄ω − Eg − EnP + i�nP
, (A4)

where

a2
0 = AcP2

c + AvP2
v

(E ′
g)2

.

Here, Ac and Av are the numerical coefficients determined by
the electron and hole effective masses. Note that a0 has the
dimension of length and is a combination of atomic scale
parameters. That is why it is typically on the order of the
lattice constant.
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APPENDIX B: SHG POLARIZATION DIAGRAMS
FOR DIFFERENT CRYSTAL ORIENTATIONS

In the paper we have presented theoretical and experi-
mental 2D polarization diagrams for selected crystalline and
magnetic field orientations. We have distinguished dominant
processes (Sec. II C, Fig. 2) and weaker processes (Sec. II D,
Fig. 5). Our theoretical derivation of polarization dependen-
cies, however, applies for any crystalline and magnetic field
orientation. In the following, we extend the derivation for
both processes to other crystalline orientations and present for
each crystalline orientation 2D polarization diagrams for two
selected magnetic field orientations (for Faraday and Voigt

configuration). As discussed in the main part of the paper
(Secs. II C and II D), the 2D polarization diagrams (Fig. 19)
allow to choose the appropriate crystalline and polarization
configuration for the separation of different processes as, e.g.,
Zeeman and magneto-Stark effect as well as dominant and
weaker processes. As discussed in Ref. [9] there is in the
field-free case SHG only expected for k ‖ [111] and [112̄]
(Fig. 20). It turns out that this applies also for SHG in Faraday
configuration (Fig. 21). It has to be noted that SHG experi-
ments with linearly polarized light in Faraday configuration
have to take Faraday rotation in the sample as well as in
cryostat windows into account.
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