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Topological states of matter are, generally, quantum liquids of conserved topological defects. We establish this
by constructing and analyzing topological field theories which introduce gauge fields to describe the dynamics
of singularities in the original field configurations. Homotopy groups are utilized to identify topologically
protected singularities, and the conservation of their protected number is captured by a topological action term
that unambiguously obtains from the given set of symmetries. Stable phases of these theories include quantum
liquids with emergent massless Abelian and non-Abelian gauge fields, as well as topological orders with long-
range quantum entanglement, fractional excitations, boundary modes, and unconventional responses to external
perturbations. This paper focuses on the derivation of topological field theories and basic phenomenological
characterization of topological orders associated with homotopy groups πn(Sn), n � 1. These homotopies govern
monopole and hedgehog topological defects in d = n + 1 dimensions, and enable the generalization of both
weakly interacting and fractional quantum Hall liquids of vortices to d > 2. Hedgehogs have not been in the
spotlight so far, but they are particularly important defects of magnetic moments because they can be stimulated
in realistic systems with spin-orbit coupling, such as chiral magnets and d = 3 topological materials. We predict
topological orders in systems with U(1) × Spin(d ) symmetry in which fractional electric charge attaches to
hedgehogs. Monopoles, the analogous defects of charge or generic U(1) currents, may bind to hedgehogs via
Zeeman effect, or effectively emerge in purely magnetic systems. The latter can lead to spin liquids with different
topological orders than that of the resonant valence bond spin liquid. Charge fractionalization of quarks in atomic
nuclei is also seen as possibly arising from the charge-hedgehog attachment.
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I. INTRODUCTION

Our understanding of quantum matter rests upon universal
behaviors of particles. We can sharply distinguish the states of
matter by symmetry, or by their qualitative response to local
perturbations. A more subtle distinction is based on nonlocal
state properties, mathematically expressed through topolog-
ical invariants: state functions that are not affected by any
smooth local transformation. The list of known and envisioned
topological systems has been growing steadily since the earli-
est proposals for spin liquids [1] and the discovery of quantum
Hall states [2,3]. These original two-dimensional systems are
in most cases shaped by strong interactions between particles,
and possess topological order [4]: the ground state sponta-
neously selects the value of a topological invariant (through
a long-range quantum entanglement of many particles [5,6])
instead of an order parameter that breaks a symmetry. More
recent discoveries of topological materials based on spin-
orbit coupling [7–9], including three-dimensional topological
insulators [10–12] and (semi)metals [13–17], have inspired
explorations of electron interaction effects [18,19] that could
potentially produce topological order [20–30]. Promising can-
didates for three-dimensional interacting topological systems
include some Kondo insulators [31,32], topological magnetic
semimetals, and quantum spin-ice materials [33].

The purpose of this paper is to derive and analyze topologi-
cal field theories that describe both conventional and topolog-
ically ordered phases of spinor fields. Our ultimate goal is to

predict and characterize topological orders which may be pos-
sible to realize in correlated three-dimensional materials. The
spinor field ψ represents vector n̂(r) local degrees of freedom
such as spins or staggered moments, and carries a U(1) phase
associated with charge currents or an emergent symmetry. The
vector field n̂ supports hedgehogs as topological defects with
a point singularity, shown in Fig. 1. The U(1) phase supports
vortex singularities, which are topologically protected only
in two dimensions. Vortex loops in three dimensions are not
topologically protected since they can continuously shrink to
a point and vanish. Nevertheless, the diffusion of vortex loops
is captured by an emergent U(1) gauge field Aμ, which can
support its own quantized point singularities, topologically
protected monopoles. Both monopoles and hedgehogs can be
generalized to higher dimensions d and enumerated by integer
topological invariants of the homotopy group πd−1(Sd−1).
They will be the main protagonists in this paper because topo-
logically ordered phases will be seen as quantum disordered
states in which the number of delocalized topological defects
is conserved by the mechanism of topological protection.

To make progress, we first formulate a universal approach
to topological orders. We apply singular gauge transforma-
tions to derive emergent gauge fields from the topological
singularities of the physical fields. The flux of such a gauge
field is nothing but the invariant of the homotopy group
that classifies the singularities [34–36]. Therefore, a local-
ized singularity becomes the source of a flux quantum in a
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FIG. 1. Examples of singular vector field configurations: (a) vor-
tex, (b) antivortex, (c) hedgehog, (d) antihedgehog. Only the
point defects like (c) and (d) are topologically protected in d = 3
dimensions.

symmetry-broken phase. Quantum fluctuations that restore
symmetries can diffuse this flux and give the gauge field
its own dynamics. If the flux remains conserved despite the
fluctuations, one obtains topological orders whose hierarchy
is uniquely determined by the homotopy and symmetry. The
emergent gauge field is indistinguishable from a putative fun-
damental gauge field of the same kind, raising the possibility
that a singularity extraction is the fundamental mechanism
for the appearance of gauge fields in nature (this echoes
the elaborate demonstrations in models [37,38]). Guided by
the homotopy classification of topological defects [34], this
approach naturally generalizes electron fractionalization to
any applicable degrees of freedom in arbitrary dimensions. It
transparently identifies a real-space “magnetic” field behind
any topological state of matter (see Refs. [39–41] for exam-
ples with spin-orbit coupling), and stands as an alternative to
the popular slave-boson method (which introduces by hand
the parton fields of a fractionalized electron and a gauge field
to suppress the enabled unphysical fluctuations).

We further extend the previous studies of topological or-
ders by applying the above approach to spinors in arbitrary
d dimensions. We predict the existence of new topological or-
ders in systems with U(1) × SU(2) or general U(1) × Spin(d )
symmetry, where a fractional amount of U(1) charge becomes
attached to a hedgehog defect of an SU(2) or Spin(d ) order
parameter. We reveal various interesting properties of these
topological orders related to quantum entanglement, and their
notable survival at finite temperatures (in contrast to fractional
quantum Hall states). Earlier studies have focused on the

attachment of charge to U(1) monopoles, giving rise to dyons
in high-energy physics [42–45] and magnetoelectric effect in
condensed matter physics [20–30,46]; we reproduce some of
their results here for completeness. However, we stress that
hedgehogs are more physically accessible than monopoles
since the spin-orbit coupling in topological materials natu-
rally tends to stimulate their existence. Monopoles can be
nucleated and bound to hedgehogs via the same mechanism
which binds vortices to skyrmions in some chiral magnets
and yields a “topological” Hall effect [47,48]. Hedgehogs and
skyrmions have been found in various chiral magnets [49,50],
perhaps even in a chiral spin-liquid state [51]. Hence, the
topological orders based on hedgehogs could exist at least in
principle in the systems like chiral magnets and general three-
dimensional topological materials. Hedgehogs have been con-
sidered in high-energy physics mainly in the context of Higgs
fields [45].

A significant portion of our analysis is devoted to the
basic characterization of the phases captured by the field
theory. Apart from the conventional long-range ordered and
gapped disordered phases, we identify a hierarchy of quantum
disordered phases with Abelian and non-Abelian massless
gauge bosons, as well as topologically ordered incompressible
quantum liquids. The former includes the phases familiar
from the literature on U(1) spin liquids [52,53], and their
generalizations to non-Abelian structures and higher dimen-
sions. The topological orders we find form a large hierarchy
of fractionalized states in higher dimensions, just like the
fractional quantum Hall states in two dimensions. The incom-
pressible quantum liquids of monopoles are more constrained
than those of hedgehogs due to the fact that charge attached
to a monopole nucleates a quantized angular momentum in
the surrounding electromagnetic field [54]. Nevertheless, we
are not restricted by time-reversal symmetry and hence the
monopole liquids we discuss are less constrained than those
considered in the recent literature [30]. If the U(1) symmetry
emerges at low energies in a purely magnetic system, the
obtained fractionalized states are chiral spin liquids with
different topological orders than the more familiar resonant
valence bond (RVB) spin liquids.

Topological quantum entanglement is always evident in
the ground-state degeneracy, but need not show up in braid-
ing operations. We find that the hedgehog quantum liquids
scramble their topological order behind trivial particle-loop
braiding (unlike the monopole ones), although more com-
plicated linked-loop braiding [27,55–58] should be explored
further. We point out that braiding operations between par-
ticles can also be interesting. They are normally cast away
because the only topologically protected aspect of particle
braiding in higher dimensions is their bosonic or fermionic
statistics. However, the fractional quasiparticles with internal
degrees of freedom (spin) necessarily live in a long-range
entangled state and hence admit nontrivial “dynamically”
protected braiding operations. Dynamical protection against
local noise stems from the finite-energy cost of disturbances
in an incompressible quantum liquid. While the topologically
protected particle-loop braiding is Abelian in the theories we
consider, a dynamically protected braiding statistics specified
by additional data about the braiding operation can still be
non-Abelian.
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On the purely theoretical front, the topological field theory
we construct is a variant of the “background field” (BF) theory
[20,29,30,46] with antisymmetric tensor gauge fields. Here we
emphasize a new ingredient of such theories, the “linking” La-
grangian terms. These terms arise in the recursive extraction
of the gauge fields from topological singularities, and play
a crucial role in eliminating unphysical gauge symmetries
and shaping the phase diagram. They also enable a certain
perspective on some fundamental questions in field theory that
we will stumble upon: (i) why all fundamental fields carry
the same charge, (ii) can the charge coupled to a non-Abelian
gauge field be deconfined, and (iii) why the quarks have
fractional charge.

We will analyze the topological orders of hedgehogs and
monopoles in an arbitrary number d � 2 of spatial dimen-
sions for two reasons. First, this generalization will provide
a valuable insight and confidence about many unusual results
that we obtain (various phenomena occur in all dimensions
in qualitatively the same way). Second, we wish to address
the important open problem of topological order classification
[59–63]. Our analysis identifies homotopy as a universal pa-
rameter that classifies hierarchies of topological orders, and an
obvious first case to study is the well-known infinite sequence
of nontrivial homotopy groups πn(Sn) which pertain to the
continuous maps from an n-sphere to an n-sphere.

Summary of results and paper layout

We begin the technical discussion in Sec. II by illustrating
the main ideas with the familiar example of two-dimensional
quantum Hall liquids. Then, we generalize to d dimensions in
Sec. III and show how antisymmetric tensor gauge fields cap-
ture the singularities of charge and spin currents. Point defects
are represented by rank d − 1 gauge fields in d dimensions,
line defects by rank d − 2, etc., down to rank 1 gauge fields
that minimally couple to charge or spin currents. Monopoles
and hedgehogs define two separate rank hierarchies of gauge
fields, Abelian and non-Abelian, respectively. The conven-
tional part of the effective field theory is formulated in Sec. IV.
After taking care to not allow unphysical gauge symmetries,
we identify the hierarchy of phases where the switch from
Coulomb-type to Higgs-type dynamics occurs at some rank
1 � n < d . The dynamics at the highest rank also admits
topologically ordered phases that are protected according to
the πd−1(Sd−1) homotopy group. The Coulomb dynamics
at rank k features deconfined “topological” defects of the
rank k − 1 gauge field. We find that the asymptotically free
“charge” coupled to a non-Abelian or compact rank k − 1
gauge field also becomes deconfined in the rank k Coulomb
state. This promotion of asymptotic freedom to true freedom
ultimately enables the fractionalization of charge and spin,
if the homotopy provides an opportunity. In Sec. V, we
construct the topological Lagrangian density terms consistent
with symmetries in order to capture the topological protection
in incompressible quantum liquids. Then, Sec. VI presents the
basic analysis of the stable topological orders in the obtained
theories.

We show in Sec. VI A that both monopoles and hedgehogs
can independently shape topological orders in incompressible
quantum liquids. A necessary stability condition is the rational

quantization of monopole and hedgehog “filling factors,” in
direct analogy to quantum Hall liquids. These filling factors
play a role in the character of fractional quasiparticle exci-
tations (Sec. VI A), the topological ground-state degeneracy
on nonsimply connected manifolds (Sec. VI B), and various
aspects of quantum entanglement (Sec. VI C). The topological
ground-state degeneracy is the defining property of topolog-
ical order by the virtue of being the only resilient property
against all possible perturbations that leave the energy gap
open. This degeneracy is found to have a certain classical
character in d � 3 dimensions (Sec. VI B): it can be infinite in
some cases (with a topological sector defined for each value
of a classical topological invariant), and it protects the topo-
logical order as a thermodynamic phase at finite temperatures
in d � 3.

Further restrictions of topological orders are obtained in
Sec. VI D from the requirement that electrons or spin waves be
the microscopic degrees of freedom. This reduces the simple
hedgehog topological orders to a Laughlin-type sequence of
fractional states, while more complicated quantum liquids can
arise only hierarchically as in the case of quantum Hall states.
Interestingly, the topological orders of hedgehogs scramble
their identity in ordinary braiding operations. The fraction-
alization by monopoles in d = 3 is more complicated due to
the emergent spin of charge-monopole pairs, but represents
a more natural generalization of quantum Hall states. We
discuss both topologically and dynamically protected man-
ifestations of quantum entanglement in braiding operations.
We point out that dynamically protected non-Abelian braiding
may be possible owing to the existence of entangled internal
degrees of freedom (spin), but leave systematic calculations
for future studies.

Topological order of spins without charge degrees of free-
dom can arise in two forms. First, some mechanism may
reduce the full spin symmetry down to U(1). This is a path
to both U(1) and gapped spin liquids, here seen to arise from
the fluctuations of local spins that remain well defined at
some coarse-grained length scales instead of being bound into
short-range singlets. The ensuing gapped spin liquids, which
attach emergent U(1) charge to monopoles, are different from
the resonant valence bond (RVB) spin liquids (Sec. VI D). The
second form obtains in slave-boson theories with spin-orbit
coupling [64]. A local constraint that controls the fermion
density in a Mott insulator introduces an emergent gauge field,
so a deconfined charge associated with it can bind to spinon
hedgehogs through the spin-orbit coupling. We construct the
ensuing topological orders in Sec. VI D, assuming naively that
the emergent gauge symmetry is U(1).

We end the analysis with a basic argument supporting the
existence of protected soft boundary modes (Sec. VI E), and
a brief consideration of the interesting topological response,
especially fractional magnetoelectric and Kerr effects that can
be expected in the cases of fractionalization by monopoles
(Sec. VI F). The concluding Sec. VII explores the prospects
for realizing monopole and hedgehog topological orders in
real systems. We explain why chiral magnets, correlated
topological semimetals or insulators, and quantum spin-ice
materials are promising candidate materials, which in some
cases might be able to stabilize new topological orders. We
also speculate that a glimpse of a topological order discussed
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here might have been already found in nature, i.e., inside
atomic nuclei.

Various properties of multidimensional theories with ten-
sor gauge fields are presented in appendices, including the
forms of non-Abelian Maxwell couplings, duality mappings,
canonical formalism, and braiding operations.

We use the following conventions in this paper. All discus-
sions employ “natural” h̄ = c = 1 units, except in the parts
of Sec. VI F where we switch to Gaussian units. Space-time
directions are labeled by Greek indices μ, ν, λ . . . , and spatial
directions are labeled by Latin indices i, j, k . . . . Repeated
indices are summed over, and μ = 0 is temporal direction. We
mostly work in imaginary time and do not distinguish between
upper and lower indices. The use of real time is announced
when needed, and further emphasized by separating lower
and upper indices. Indices pertaining to internal degrees of
freedom are labeled with a, b, c.

II. EXAMPLE: QUANTUM HALL LIQUIDS

Consider a superfluid at zero temperature in d = 2 dimen-
sions. The order parameter characterizing the ground state is
a complex scalar function ψ = |ψ |eiθ of coordinates x ∈ R2;
its phase θ is well defined because the ground state breaks the
U(1) symmetry. If a single quantized vortex is placed at the
origin, then ψ becomes singular at the origin and θ winds by
2π on any loop that encloses the singularity. Let us define a
“singularity gauge field”

Aj = −ie−iθ ∂ je
iθ , (1)

or alternatively

Aj = ∂ jθ, (2)

with understanding that the gradient ∂ j is smooth, i.e., blind to
2π discontinuities of θ (x) ∈ [0, 2π ). The 2π -phase winding
is reflected in the following contour integral on any spatial
loop C that encloses the origin:∮

C
dx jA j = 2π. (3)

Then, we can use Stokes’ theorem to reveal that Aj carries a
singular quantized flux:

εμνλ∂μAλ = 2πδμ0 δ(x). (4)

Mathematically, Aj can be extracted from ψ by a singular
gauge transformation which keeps ∂ jθ + Aj invariant. If the
particles have physical charge e, then Aj must be combined
with the fundamental electromagnetic gauge field Aem

j in the
gauge-invariant form ∂ j θ + Aj − eAem

j .
We can describe many vortices using a “singularity gauge

field” Aj . This is redundant as long as vortices are not moving
since the superfluid state is accurately described by the order
parameter ψ and its phase θ . But, what happens if quantum
fluctuations destroy the superfluid long-range order by liber-
ating and delocalizing the vortices? The ensuing state with
restored U(1) symmetry can no longer be described by a finite
complex order parameter ψ because its phase θ is fluctuating
too much to be well defined. Interestingly, the gauge field Aj

can continue to provide a useful description of the state. The
gauge flux that was originally singular and associated with

quantized vortices can now diffuse and continuously spread
in space, producing a smoothly varying “magnetic” field B:

εμνλ∂νAλ → δμ0 B(x). (5)

Suppose we find B = 0. The most typical disordered state with
B = 0 is an ordinary Mott insulator. Its proper description
requires a lattice, and then a duality mapping [65,66] portrays
it as a “vortex condensate.” The condensation of vortices
implies that the number of vortices is not conserved (in any
condensate, a well-defined phase will render its canonically
conjugate observable, the particle number, undetermined due
to Heisenberg uncertainty). This phenomenon can be very
easily understood on a lattice even without a detailed duality
derivation. The only way to probe the instantaneous presence
of a vortex in some region is to analyze the winding of the
order parameter’s phase θ on a spatial loop that encloses that
region. When fluctuations destroy the original superfluid by
generating many vortices and antivortices, one is forced to use
only very small probing loops whose size does not exceed the
average separation l between vortices and antivortices. In fact,
l must be of the order of the lattice constant because no length
scale other than the ultraviolet cutoff is available to control
the density of vortices and antivortices. Going from one site
to another around such a small loop, θ changes discontinu-
ously and there is no way to distinguish configurations with
0,±2π,±4π, . . . , etc., phase winding. Vorticity is quantized
in units of 2π , and hence we cannot consider it conserved in
a Mott insulator.

Another quantum disordered state is possible in two dimen-
sions: a quantum Hall liquid. It normally takes applying an
external magnetic field to stabilize it, so it should be naturally
characterized by B �= 0 in Eq. (5). Most quantum Hall liquids
are fractional and possess topological order, which means
that some defining property of their ground state cannot
be disturbed by any smooth and local rearrangement of its
degrees of freedom. Going back to vortices in a superfluid,
we can easily identify a candidate for one such property, the
total vortex charge (vorticity). A single uncompensated vortex
in a two-dimensional superfluid costs energy E ∝ ln(L) that
scales as the logarithm of the system size L. Introducing an
antivortex at distance r from the vortex will reduce this energy
cost down to a finite value E ∝ ln(r). The infrared divergent
energy barrier to having uncompensated vorticity allows only
vortex-antivortex pairs to be created or destroyed, and acts
as a powerful agent that conserves the total vortex charge in
the system. This conclusion is based on the continuum-limit
analysis, which assumes that the order-parameter phase θ is
coherent on finite and sufficiently large length scales ξ in
comparison to the lattice constant a, and hence avoids the
described Mott insulator scenario for flux nonconservation.
In addition to pure energy reasons, there is also an entropy
component to the conservation of vortex charge: nucleating a
single vortex requires adjusting the local degrees of freedom
in a macroscopically large portion of the system that extends
at least in proportion to the system’s linear size L. For exam-
ple, one can smoothly deform a vortex to completely consume
its phase winding into a 2π -phase discontinuity across a semi-
infinite string that terminates at the singularity. However, the
string itself cannot be removed by any smooth transformation.
This constitutes a topological protection of the vortex charge.
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Now, we can imagine a state in which vortices and antivortices
move and destroy long-range superfluid coherence, but their
total number remains conserved and topologically protected.
Vortex world lines are closed loops in (2 + 1)-dimensional
space-time. This state is clearly not a plain Mott insulator,
and it can be sharply distinguished from a Mott insulator in
the thermodynamic limit.

Let us construct an effective action for the quantum liquid
with conserved vortex charge in the L � ξ � a limit. Note
that ξ ∼ L is a superfluid, and ξ ∼ a is a Mott insulator. For-
mally, the effective action obtains by coarse graining the mi-
croscopic action down to the phase coherence length scale ξ ,
which involves integrating out all high-energy modes with
wave vectors k > ξ−1 in the path integral. We argued that
the gauge field (2) is a useful quantity to describe such a
quantum liquid, and so the dynamics may be captured by a
certain Maxwell term in the action. However, we should be
more concerned about conserving flux. The relevant dynamics
for flux conservation is defined at the lattice scale a � ξ

which is not accessible in the effective theory. Consequently,
the effective Lagrangian density must acquire a topological
term Lt that explicitly implements flux conservation. We
cannot microscopically derive Lt, but we can construct it by
following very stringent fundamental requirements:

(1) Lt may not introduce new degrees of freedom.
(2) Lt cannot have any physical effect in conventional

states.
(3) Lt must not change any symmetries.
Using an independent Lagrange multiplier in the path

integral to enforce flux conservation is not the best option
because it could violate the first requirement (the Lagrange
multiplier would become a dynamical field after an approxi-
mate treatment). Instead, we will show that

Lt ∼ i JμJμ (6)

satisfies all requirements in imaginary time, where Jμ and Jμ

are the physical particle and vortex currents, respectively:

Jμ ∝ ∂μθ + Aμ, Jμ = εμνλ∂νAλ. (7)

If the particles have charge e, then one should also include
the fundamental electromagnetic gauge field Aem

μ through the
replacement Aμ → Aμ − eAem

μ in all formulas (required by
gauge invariance). We have implicitly carried out a singular
gauge transformation (2) to transfer vortex singularities from
the phase θ to the gauge field Aμ, while keeping the gauge-
invariant current Jμ unaltered. Vortex configurations are well
defined below the coherence length scale ξ and a related
timescale, so the phase θ becomes smooth across distances ξ

after the singular gauge transformation. However, rapid vortex
motion causes abundant θ fluctuations at length scales larger
than ξ , which are actually featured in the effective field theory.
These fluctuations promote θ into a natural Lagrange multi-
plier that implements flux conservation after an integration by
parts in Eq. (6):

Lt ∼ i (∂μθ + Aμ)Jμ → −i θ ∂μJμ + iεμνλAμ∂νAλ. (8)

Integrating out θ suppresses the gradient ∂ jJ j of the
“electromagnetic flux.” A nonzero gradient corresponds to
“monopoles,” i.e., events in which the gauge flux B = J0

is not conserved. The remaining part of Lt is the familiar

Chern-Simons coupling known to describe fractional quantum
Hall liquids [59] and quantum Hall effect in general through
the prescribed inclusion of the physical gauge field Aem

μ . The
effective Lagrangian density for the dynamics of quantum
Hall liquids also contains a Maxwell term:

Leff = 1

2e2
(εμνλ∂νAλ)2 + Lt. (9)

The formula (6) shows the essential structure of all topo-
logical terms we will construct in this paper. The numerical
coefficient to Lt is not yet of concern and needs to be
separately determined. The symmetric and simple form of
Lt guarantees that no symmetries are changed. Specifically,
charge conservation holds just as well as flux conservation,
and the explicitly broken time-reversal symmetry is anyway
violated by the external magnetic field. Later in this paper
we will elaborate the topological term construction and derive
it in a more robust form which also manifestly satisfies the
second requirement.

III. HIERARCHY OF SINGULARITY GAUGE FIELDS

Here, we generalize the vortex formalism of quantum Hall
liquids to topological defects in d spatial dimensions (x ∈ Rd ).
We are interested in degrees of freedom given by vector
fields n̂(x) of fixed magnitude. A d-dimensional vector n̂ can
label spin coherent states of a spinor field ψ in the Spin(d )
representation and naturally describe magnetic moments. A
two-dimensional vector n̂ = x̂ cos θ + ŷ sin θ is equivalent to
the overall U(1) phase θ of the same complex spinor ψ and
associated with charge currents.

Homotopy groups enumerate the topologically inequiv-
alent classes (or sectors) of field configurations, and thus
classify topological defects. A well-known sequence of homo-
topy groups πn(Sn) = Z, n = 1, 2, 3, . . . , comes with integer-
valued topological invariants, while the homotopy groups
πk (Sn) = {0} for k < n are trivial [35]. A d-dimensional
vector field of fixed norm n̂ ∈ Sd−1 can have only pointlike
topologically protected singularities in d-dimensional space
because πk (Sd−1) = {0} when k < d − 1. The protected sin-
gularity is a “hedgehog” topological defect characterized by
an integer winding number N ∈ πd−1(Sd−1). In d = 2 dimen-
sions, a hedgehog is equivalent to a vortex, the topologically
protected singularity of a complex scalar field that carries
charge currents. Interestingly, there is a generic mechanism
to extend the singularities of n-dimensional vector fields to
higher dimensions d > n. We will analyze here only one
instance of this dimensional extension, which starts from U(1)
vortices and leads to pointlike monopoles in d dimensions
characterized by the πd−1(Sd−1) homotopy group.

If a field f (x) belongs to a topological space X and
lives in d dimensions, then the total “topological charge”
N ∈ πd−1(X ) of its point defects inside a sphere Sd−1 is
a topological invariant of the map f : X → Sd−1. We can
generally express this invariant as a gauge field flux through
Sd−1. In the case of πd−1(Sd−1),

N = 1

q

∮
Sd−1

A = 1

q

∮
Sd−1

(
d−1∧
i=1

dx ji

)
Aj1... jd−1

≡ 1

q

∮
Sd−1

dd−1x ε j1... jd−1 Aj1... jd−1 , (10)
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where q is the topological charge quantum. The first notation
is the integral of a d − 1 form A on the oriented manifold Sd−1

surrounding the singularity. The quantity Aj1... jd−1 is a rank
d − 1 antisymmetric tensor which represents the “singularity
gauge field.” Throughout this paper, we will adopt the second
notation based on a conventional integral in flat space-time,
where the antisymmetrization and local projection of indices
to the oriented integration manifold is carried out by the
antisymmetric tensor ε j1... jd−1 . Using Stokes-Cartan theorem,
we can convert (10) into an integral over the volume bounded
by Sd−1:

N = 1

q

∫
dA ≡ 1

q

∫
dd x εi j1... jd−1∂iA j1... jd−1 . (11)

The gauge flux

J0(x) = εi j1... jd−1∂iA j1... jd−1 = q
∑

i

Niδ(x − xi ) (12)

has only quantized point singularities in any classical field
configuration. The goal in the remainder of this section is to
precisely define the singularity gauge field in the context of
charge and spin dynamics.

A. Monopoles

For our purposes, monopoles are point topological defects
arising from charge currents. The antisymmetric tensor gauge
field of rank n = d − 1 is amenable to smooth gauge transfor-
mations

Aj1... jn → Aj1... jn + 1

n

n∑
i=1

(−1)i−1∂ ji A j1... ji−1 ji+1... jn (13)

that preserve the flux (12). The quantity that specifies the
gauge transformation in the sum on the right-hand side is an
antisymmetric tensor of rank n − 1. Using this relationship,
we can recursively introduce antisymmetric tensors at all
ranks, from 1 to d − 1, and regard them as gauge fields.
At rank n = 1, we find the familiar U(1) gauge field that
transforms as

Aj → Aj + ∂ jθ. (14)

A singular gauge transformation (1) can transfer quantized
vorticity from θ to Aj . In a coherent superfluid state, the U(1)
phase θ of the order parameter is well defined and we do not
need any gauge field to specify the state. But, if fluctuations
destroy the long-range order, the phase θ becomes ill defined
and we may be able to describe a nontrivial state of diffused
vortices only using a well-defined gauge field Aj . Such a
state has its own degree of coherence if the gauge flux of
Aj is smooth and static. However, Aj (x) can develop its own
singularities. These would be “magnetic” monopoles in d = 3
dimensions, but appear multidimensional if d > 3. It is natural
to describe them by a rank 2 gauge field, which transforms as

Ai j → Ai j + 1
2 (∂iA j − ∂ jAi ) (15)

according to the rule (13). Here, we recognize the usual
electromagnetic field tensor Fi j = ∂iA j − ∂ jAi that can easily
describe an isolated monopole in d = 3 with magnetic field

Bk given by

Fi j = εi jkBk, ∂kBk (x) = 2πδ(x − x0). (16)

We can transfer the singularities of Aj into Ai j through a
singular version of the rank 2 gauge transformation (15). This
formally requires the appearance of Aj inside exponential
functions, analogous to the placement of θ in Eq. (1). A com-
pact lattice gauge theory discussed in Sec. IV C satisfies this
requirement, but the continuum limit used here will suffice
for most of our purposes. Next, in d > 3 dimensions we can
imagine a state in which these rank 2 singularities proliferate
and move, rendering Aj ill defined. A new degree of coherence
can be established in a state where the flux of Ai j remains
static and continuously distributed in space. Clearly, we can
repeat this exercise by considering the singularities of Ai j and
defining a rank 3 gauge field with transformations:

Ai jk → Ai jk + 1
3 (∂iA jk − ∂ jAik + ∂kAi j ). (17)

Proceeding recursively, we eventually reach the highest rank
d − 1 where the gauge field Aj1... jd−1 describes the actual
pointlike monopole singularities in d dimensions. Conversely,
the rank n gauge field describes (d − n − 1)-dimensional sin-
gularities.

It naively seems that the entire hierarchy of gauge fields
can be ultimately derived from a single scalar function θ (x)
by singular gauge transformations:

Aj = ∂ jθ,

Ai j = 1

2
(∂iA j − ∂ jAi ),

...

Aj1... jn = 1

n

n∑
i=1

(−1)i−1∂ ji A j1... ji−1 ji+1... jn . (18)

However, this leads to a familiar problem. Even though Aj1... jn
is perfectly capable of carrying finite rank n flux

J0k1...kd−n−1 (x) = εik1...kd−n−1 j1... jn∂iA j1... jn , (19)

as the example (16) shows, it ends up carrying zero flux when
we derive it from an analytic lower-rank gauge field according
to (18). We can deal with this problem by generalizing Dirac
strings attached to monopoles.

Consider a pointlike monopole at the origin. The intrinsic
rank d − 1 gauge field Aj1... jd−1 near the monopole should
carry flux J0(x) = q δ(x), but then it cannot have the form
produced by (18). In order to convert Aj1... jd−1 to the form
mandated by (18), we must add to it the gauge field of a
semi-infinite Dirac string that terminates at the monopole
and feeds it the flux q. After this string attachment, there
are no more sources and drains of flux, so we formally get
J0(x) = 0. And, if the Dirac string is physically unobservable,
then we still have a proper isolated monopole for all practical
purposes. The monopole-string combination allows us to rep-
resent Aj1... jd−1 solely in terms of Aj1... jd−2 . Similarly, we must
recursively define Dirac attachment at every other rank n in
order to relate Aj1... jn to Aj1... jn−1 .

Start with a Dirac string terminated at a monopole in
an (n + 1)-dimensional manifold Mn+1. Let us separate the
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full gauge field into the intrinsic monopole A′
j1... jn and Dirac

string A′′
j1... jn parts. The monopole is a topological defect of

the πn(Sn) homotopy group. We can compute its topological
charge I ′

n = q from A′
j1... jn by integrating (10) on an n-sphere

Sn ⊂ Mn+1 that encloses the monopole:

I ′
n =

∮
Sn

dnx ε j1... jn
A′

j1... jn . (20)

Recall that ε always projects its spatial indices onto the
integration manifold. By Stokes-Cartan theorem,

I ′
n =

∫
Mn+1

dn+1x ∂i �
′
i, �′

i ≡ εi j1... jn
A′

j1... jn . (21)

If we used the full gauge field A = A′ + A′′ to compute (20),
we would obtain zero because the monopole and string to-
gether present no sources and drains of flux. Consequently, we
can alternatively compute the monopole’s topological charge
I ′′
n = q by integrating the string part A′′

j1··· jn on any “flat” n-
dimensional manifold Mn that intersects the string at a single
point:

I ′′
n =

∫
Mn

dnx ε j1... jn
A′′

j1... jn

=
∫
Mn

dnx ε j1... jn

1

n

n∑
k=1

(−1)k−1∂ jk
A′′

j1... jk−1 jk+1... jn

=
∫
Mn

dnx εi j1... jn−1
∂i A′′

j1... jn−1
. (22)

We used (18) to express the rank n gauge field in terms of the
rank n − 1 gauge field, and obtained the expression

I ′′
n =

∫
Mn

dnx ∂i �
′′
i , �′′

i ≡ εi j1... jn−1
A′′

j1... jn−1
(23)

analogous to (21) but defined in one lower dimension, i.e.,
I ′′
n = I ′

n−1. This indicates that the projection of the Dirac string
onto Mn is a lower-dimensional πn−1(Sn−1) monopole living
in Mn. We can now recursively restart this analysis from Mn,
by attaching a Dirac string to the projected monopole strictly
within Mn. In fact, in order to establish relationships (18)
at lower ranks, we must continuously stack many manifolds
Mn that intersect the original string at all possible places, and
attach a reduced rank string inside each Mn. When we reach
the lowest rank 1, we obtain the final integrals:

I ′
1 =

∮
S1

dx A′
j =

∮
S1

dx ∂ jθ = 2πN (24)

that establish q = 2π . In conclusion, the monopole charge
quantum is q = 2π in all spatial dimensions d .

Physically observable Dirac attachments have tension and
lead to the confinement of monopoles into small neutral
clusters. Monopoles can exist as free topological defects
only in compact gauge theories where the quantized Dirac
attachments become unobservable.

B. Hedgehogs

Let n̂(x) be a field of d-dimensional unit vectors with
components n̂a (a ∈ {1, . . . , d}). The topological defects of

spins are characterized by the gauge field

Aj1... jd−1 = 1

(d − 1)!
εa0a1...ad−1 n̂a0

d−1∏
i=1

∂ ji n̂
ai . (25)

The integral (10) with this gauge field is quantized as an
integer if we choose q = Sd−1 to be the area of a unit
(d − 1)-sphere

Sn = 2π (n+1)/2

�
(

n+1
2

) . (26)

The corresponding hedgehog flux (12) is singular and quan-
tized in units of q = Sd−1 when the ground state possesses
long-range magnetic order.

We can parametrize the vector field n̂(x) using a set of
angles θ j (x), j ∈ {1, . . . , d − 1}:

n̂0 = cos θ1,

n̂1 = sin θ1 cos θ2,

n̂2 = sin θ1 sin θ2 cos θ3,

...

n̂d−2 = sin θ1 . . . sin θd−2 cos θd−1,

n̂d−1 = sin θ1 . . . sin θd−2 sin θd−1 (27)

on the domain θ j ∈ [0, π ] for j < d − 1 and θd−1 ∈ [0, 2π ).
Then (see Appendix A),

Aj1... jd−1 = εk1...kd−1

(d − 1)!

d−1∏
i=1

(sin θi )
d−1−i ∂ jiθki . (28)

Specifically, in naturally accessible dimensions,

d = 2 . . . Ai = ∂iθ1,

d = 3 . . . Ai j = 1
2 sin θ1[(∂iθ1)(∂ jθ2) − (∂iθ2)(∂ jθ1)].

(29)

We can also define

�i = εi j1... jd−1 Aj1... jd−1

= εi j1... jd−1

d−1∏
k=1

(sin θk )d−1−k ∂ jk θk, (30)

and observe that identifying θ j (x) with the spherical coordi-
nate system angles θ ′

j at x = (|x|, θ ′
1, . . . , θ

′
d−1) yields

θ j (x) = θ ′
j ⇒ �i (x) = xi

|x|d . (31)

The topological charge (11) is extracted via a Gauss’ law in
terms of �i:

N = 1

Sd−1

∫
dd x ∂i�i = 1, (32)

showing that the gauge flux ∂i�i = Sd−1δ(x) is singular. In
order to obtain any other quantized topological charge N �= 1,
we only need to tweak the relationship between θd−1 and the
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corresponding spherical coordinate system angle:

(∀ j < d − 1) θ j (x) = θ ′
j,

θd−1(x) = Nθ ′
d−1 ⇒ �i (x) = N

xi

|x|d . (33)

Note that only θd−1 can be modified this way because all
components of n̂ are periodic functions of it on the full 2π

interval. N is required to be an integer in order for n̂ to be
single valued and smooth everywhere in space.

The structure and properties of the hedgehog gauge field
Aj1... jd−1 are completely analogous to those of the monopole
gauge field; only the flux quantum q is different. Likewise, it
is possible to define an entire hierarchy of spin-related gauge
fields at different ranks, which is analogous to the hierarchy of
charge-related Abelian gauge fields Aj1... jn . This will become
useful when we construct and analyze the effective field
theory. The hierarchy ends with Aj1... jd−1 and starts at rank 1
where the gauge field is minimally coupled to currents. The
expression for spin current can be obtained from the prototype
Lagrangian density of magnetic degrees of freedom

L = K

2
(∂μn̂a)(∂μn̂a), (34)

which has rotational symmetry. Infinitesimal rotations n̂a →
n̂a + δn̂a,

δn̂a = εabc1...cd−2 n̂bδωc1...cd−2 + O(δω2), (35)

are generated by an antisymmetric tensor δωc1...cd−2 , and so by
Noether’s theorem we find a conserved spin current:

jμ ∝ πa
μδn̂a = K εabc1...cd−2 (∂μn̂a)n̂bδωc1...cd−2 , (36)

where πa
μ = δL/δ∂μn̂a = K∂μn̂a is the canonical momentum.

The tensor δω has d (d − 1)/2 degrees of freedom correspond-
ing to choices of independent two-dimensional rotation planes
in d-dimensional space (the two omitted indices in δω specify
the plane). Therefore, we identify d (d − 1)/2 different spin
currents which take the following form after normalization
and symmetrization:

jc1...cd−2
μ = 1

2
εabc1...cd−2

[n̂a(∂μn̂b) − n̂b(∂μn̂a)]

= εabc1...cd−2
n̂a(∂μn̂b). (37)

The rank 1 gauge field must be minimally coupled to this,
so it must carry the same internal spin indices. The effective
Lagrangian density must contain a gauge-invariant combina-
tion jc1...cd−2

μ + Ac1...cd−2
μ , so we can envision a singular gauge

transformation that preserves the Lagrangian density:

Ac1...cd−2
μ → εabc1...cd−2

n̂a(∂μn̂b). (38)

The purpose of this transformation is again to transfer the sin-
gularities of the matter field onto gauge fields, so that we could
keep track of their dynamics even when quantum fluctuations
diffuse them. As an example, consider the configuration n̂ =
x̂ cos φ + ŷ sin φ in d = 3 dimensions expressed in terms of
the azimuthal angle φ. It represents a “vortex” line stretching
along the z direction with singularity at (x, y) = 0, shown
in Fig. 1(a). Specifying the plane for n̂ near the singularity
requires one internal spin index c1. Note that this singularity
is not topologically protected because the “vortex” can be

smoothly deformed into a uniform n̂ configuration, by tilting
n̂ toward ẑ without ever reshaping the singular line.

In order to build the hierarchy of gauge fields, we must start
from (38), carry out a rank-promotion procedure at every rank,
and arrive at (25) at the highest rank d − 1. Clearly, each rank
promotion needs to consume one spin index and introduce one
spatial index. This leaves only one option for generating gauge
fields by singular gauge transformations:

Ac2...cd−1
λ1

→ εc0...cd−1
n̂c0
(
∂λ1

n̂c1
)
,

Ac3...cd−1
λ1λ2

→ 1

2
εc0...cd−1

n̂c0
(
∂λ1

n̂c1
)(

∂λ2
n̂c2
)
,

...

Aλ1...λd−1 → 1

(d − 1)!
εc0...cd−1 n̂c0

d−1∏
i=1

∂λi n̂
ci . (39)

All gauge fields are antisymmetric both with respect to their
upper and lower indices, and the presence of upper indices
makes them non-Abelian. Apart from being relevant to spin
dynamics in the presence of spin-orbit coupling, the rank 1
and 2 gauge fields have been of interest in the context of non-
Abelian monopoles in high-energy physics [45]. The best we
can do to relate a rank n gauge field to the lower rank one is

Acn+1...cd−1
λ1...λn

= 1

n

(
∂λn

n̂cn
)
Acncn+1...cd−1

λ1...λn−1
. (40)

This is a much more relaxed relationship than the one for
monopoles (18) due to the ∂λn n̂cn factor. Quantum fluctuations
that destroy long-range order will effectively uncorrelate the
gauge fields at different ranks through rapid changes of n̂cn .
For this reason, hedgehogs do not come with Dirac strings
attached.

IV. EFFECTIVE FIELD THEORY AND DYNAMICS

Our goal is to describe topologically nontrivial dynamics of
strongly interacting particles represented by a spinor field ψ .
The appropriate field theory will have the imaginary-time
Lagrangian density

L = Ld + Lt (41)

constrained by symmetries, where Ld governs conventional
dynamics and Lt is a topological term responsible for con-
serving topological charge in incompressible quantum liquids.
In order to simplify discussion, we will assume relativistic
dynamics and work with a conventional part of the Lagrangian
density such as

Ld = 1
2 |(∂μ + iAμ)ψ |2 − t |ψ |2 + u|ψ |4 + · · · . (42)

Since our main focus are insulating states, most of the analysis
will be applicable to nonrelativistic dynamics as well.

Charge and spin currents carried by the field ψ can have
singular configurations, which we now know how to extract
into gauge fields. The lowest-dimensional point singularities
are described by the highest rank gauge field with d − 1
space-time indices. The gauge fields that couple minimally to
currents have a single space-time index and describe (d − 2)-
dimensional singular domains. Lastly, (d − 1)-dimensional
domain walls that separate space into disconnected regions are
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singularities of the matter field itself (the corresponding rank 0
gauge field would not carry any space-time indices). In order
to capture possible quantum diffusion of these singularities,
we need to construct an effective theory in terms of the
gauge fields, which obtains from (41) upon coarse graining
to a certain coherence length scale ξ . We will postpone the
discussion of the topological term Lt to Sec. V, and focus
here on the effective theory derived from (42) and expressed in
terms of the gauge fields. We will initially rely on symmetries
to separately construct the effective Lagrangian densities for
charge dynamics in Sec. IV A and spin dynamics in Sec. IV B.
Following each symmetry construction, we will argue that
quantum fluctuations indeed dynamically generate the con-
structed Lagrangian terms at higher ranks. The final segment
of this discussion in Sec. IV C is about the phase diagram
of the effective theory. There we address the very important
issues of defect and charge deconfinement, which are required
for the existence of topological order and critically dependent
on the field theory regularization.

A. Abelian charge dynamics

Lagrangian density can contain only gauge-invariant scalar
combinations of fields. Generally, the Abelian gauge fields
introduced in Sec. III A can be involved in two kinds of
couplings at every rank n:

LCn = κn

2

(
jλ1...λn + Aλ1...λn

)2
,

LMn = 1

2(d − n)! e2
n

(
εμ1...μd−nνλ1...λn∂νAλ1...λn

)2
. (43)

The first term LCn minimally couples the gauge field to a
current, and the second Maxwell term LMn contains only
the gauge field and captures the energy density of flux. The
“conserved” current at rank n must have the form of a pure
gauge:

jλ1...λn =
n∑

i=1

(−1)i−1∂λiθλ1...λi−1λi+1...λn (44)

dictated by the rank n gauge transformations derived from
(13):

θλ1...λn−1 → θλ1...λn−1 − δθλ1...λn−1,

Aλ1...λn → Aλ1...λn +
n∑

i=1

(−1)i−1∂λiδθλ1...λi−1λi+1...λn . (45)

If all currents were independent degrees of freedom, the the-
ory would have an independent gauge symmetry at every rank.
However, the gauge symmetries at n > 1 ranks are unphysical.
We must introduce additional rank-linking terms to remedy
this problem:

LLn = �n

(
θλ1...λn + 1

n
Aλ1...λn

)2

. (46)

The links LLn break the gauge transformations (45) and
remove the current independence at ranks n > 1. The physical
U(1) gauge symmetry residing at rank 1 is spared, and the
physical charge current jμ = ∂μθ remains an independent
degree of freedom because the matter field θ never appears in

Eq. (46). In that manner, we obtain the full Lagrangian density

Ld =
d−1∑
n=1

(LCn + LMn + LLn) (47)

with correct symmetries and degrees of freedom, featuring the
gauge fields that describe all possible kinds of singularities.
We may also integrate out all θλ1...λn fields with n � 1 and
write

Ld =
d−1∑
n=1

(L′
Cn + LMn),

L′
Cn = κ ′

n

2

[
1

n

n∑
i=1

(−1)i−1∂λi
Aλ1...λi−1λi+1...λn

−Aλ1...λn

]2

. (48)

The effective field theory (48) has the necessary ingredients
to describe the phases with either confined or deconfined
monopoles, even if we regard it as being strictly noncompact.
When κ ′

n is large, the gauge fields at ranks n − 1 and n
become dynamically related according to (18) and every rank
n singularity must have a Dirac attachment. This confines the
singularities because Dirac attachments have a finite tension
expressed through the Maxwell terms in a noncompact theory.
In the opposite limit of sufficiently small κ ′

n, the system gains
more free energy density from the entropy of fluctuations than
from the energy of linking the gauge fields across ranks. Dirac
attachments become unnecessary and the singularities become
deconfined. Specifically, consider substituting a vanishing
rank n − 1 gauge field Aλ1...λn−1 = 0 in L′

Cn. Now, we find by
dimensional analysis that a singular configuration of Aλ1...λn at
rank n, without a Dirac attachment, costs at most

En =
∫

dd x L′
Cn ∼ EUV + κ ′

nRd−2n (49)

energy, where R is an infrared cutoff length scale and EUV is
an ultraviolet contribution. The singularity of rank n occupies
a (d − n − 1)-dimensional manifold, so its energy per unit
manifold area scales as R1−n, plus a constant that comes
from EUV (we assume that the theory is regularized in the
ultraviolet limit). Therefore, the price for having a singularity
is paid only locally when n > 1, and deconfined singularities
without Dirac attachments can be entropically stimulated with
small κ ′

n.
The higher rank Lagrangian terms in Eqs. (47) or (48)

arise dynamically from the lower rank terms in the process of
coarse graining. Starting from the basic coupling of a current
to a gauge field

L = κ

2
( jμ + Aμ)2 + · · · , (50)

we are free to separate the smooth matter field fluctuations θ

from singular vortex ones j′μ,

jμ = ∂μθ + j′μ, (51)

using some arbitrary convention for fixing the gauge of j′μ
(i.e., we use the same particular algorithm to calculate a defi-
nite j′μ from any given configuration of vortices). Integrating
out the smooth θ in the path integral would result in an
effective Lagrangian for j′μ + Aμ which must have a Maxwell
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term due to gauge invariance. If we integrate only certain
short-wavelength modes of θ in Eq. (50), we also preserve the
coarse-grained coupling between the current and the gauge
field:

L′ = κ ′

2
(∂μθ + j′μ + Aμ)2

+ K ′
[

1

2
(∂μ j′ν − ∂ν j′μ) + 1

2
Fμν

]2

+ · · · . (52)

We may complete a singular gauge transformation to absorb
j′μ into Aμ, and finish the coarse-graining step by integrating
out the short-wavelength fluctuations of the gauge field. The
next rank in d � 3 dimensions is generated by another round
of a singular gauge transformation and coarse graining. The
rank 1 gauge field makes a “matter” field at rank 2 (θμ ∼ Aμ),
and the rank 1 Maxwell term has the form of a rank 2 current-
gauge field coupling. Separate the smooth θμ and singular
monopole j′μν fluctuations of rank 2 “matter”

jμν = ∂μθν − ∂νθμ + j′μν, (53)

mirroring (51), then integrate out the short-wavelength fluc-
tuations of θμ. This produces a rank 2 Maxwell term in the
effective Lagrangian density, with an emergent gauge field
Aμν ∼ j′μν . Repeating these steps recursively generates anal-
ogous dynamics at all higher ranks. However, the emergent
“charge” quantization at all ranks derives from the topological
quantization of vorticity at rank 1.

The derivation of gauge fields from the singularities of
matter fields can explain why all particles that couple to the
same gauge field have the same unit of charge quantization (as
is the case in the standard model of particle physics). Consider
several complex scalar fields ψ1, . . . , ψn. Carry out singular
gauge transformations for every 1 � j � n in order to extract
singularities from the matter field phases into gauge fields Aj

according to Ajμψ j = −i∂μψ j . The resulting current terms
in the Lagrangian density read as κ j |(∂μ + iAμ j )ψ j |2. Now
assume that the dynamics has only one global U(1) symmetry.
This locks all singularity gauge fields Ajμ = Aμ + δAjμ to a
single free gauge field Aμ, allowing only small gapped fluctu-
ations δAjμ. If we integrate out δAjμ and also the short-length
fluctuations of ψ j , we obtain a coarse-grained theory with
current terms κ j |(∂μ + iAμ)ψ j |2 involving only Aμ. Coarse
graining also produces a Maxwell term (1/2e2)(εμνλ∂νAλ)2.
By renormalizing Aμ, we can bring e inside the current terms
κ j |(∂μ + ieAμ)ψ j |2 where it clearly plays the role of a single
quantized charge coupling for all matter fields. Particles with
charge 2e, etc., are bound states of the elementary ones. Frac-
tional quantization of charge is also possible, but requires a
special dynamical state of topological defects that we discuss
later.

B. Non-Abelian spin dynamics

Here we construct the effective Lagrangian density

Ld =
d−1∑
n=1

(
LCn + LMn + LLn

)
(54)

for the dynamics of spin currents and their singularities using
the same symmetry principles as in the previous section. We

expect

LCn = kn

2

(
jan+1...ad−1
λ1...λn

+ Aan+1...ad−1
λ1...λn

)2
,

LMn = 1

2g2
n

J an+1...ad−1
μ1...μd−n

J an+1...ad−1
μ1...μd−n

. (55)

All non-Abelian gauge fields Aan+1...ad−1
λ1...λn

are initially gener-
ated by singular gauge transformations (39) from the same
physical matter field n̂. However, when the singularities of n̂
diffuse by fluctuations, the gauge fields at all ranks acquire in-
dependent dynamics that goes beyond the limitations of (39).
The residual smooth fluctuations of n̂ are captured by currents
jan+1...ad−1
λ1...λn

that minimally couple to the gauge fields. We can
regard the currents as independent degrees of freedom, and
include the linking terms in the Lagrangian density

LLn = �′
n

(
jan+1...ad−1
λ1...λn

+ A
n

(
∂λn

n̂an
)
Aanan+1...ad−1

λ1...λn−1

)2

(56)

in order to have a single gauge symmetry at rank 1. We
formally define

Aa1...ad−1 = −εa0a1...ad−1 n̂a0 (57)

in consideration of the formula (37) for spin current, and the
operator A that antisymmetrizes the space-time indices

A fλ1...λn = 1

n!

1...n∑
P

(−1)P fλP (1)...λP (n) , (58)

where P is a permutation and (−1)P its parity. Note that large
values of km and �′

m at ranks m � n suppress the diffusion of
singularities and pin the currents to

jan+1...ad−1
λ1...λn

→ 1

n!
εa0...ad−1 n̂a0

n∏
i=1

(
∂λi n̂

ai
)
. (59)

If we integrate out all currents in Eq. (54), we obtain a more
economic version of the effective theory:

Ld =
d−1∑
n=1

(L′
Cn + LMn),

L′
Cn = k′

n

2

[A
n

(
∂λn

n̂an
)
Aanan+1...ad−1

λ1...λn−1
− Aan+1...ad−1

λ1...λn

]2

. (60)

The Maxwell terms LMn depend only on the gauge fields
through non-Abelian fluxes J an+1...ad−1

μ1...μd−n whose space-time in-
dices are compatible with (19) and internal indices correspond
to those of the gauge field. The gauge field curl is still an
essential component of flux. However, the non-Abelian gauge
invariance of Maxwell terms requires additional nonlinear flux
components, except at the highest rank n = d − 1 where the
flux is Abelian in any number of dimensions d:

Jμ = εμνλ1...λd−1∂νAλ1...λd−1 . (61)

We can determine the expressions for fluxes by working
exclusively with singular gauge fields (39) and considering
their transformations under smooth deformations of the vector
field n̂. Such deformations amount to smooth gauge trans-
formations that cannot move or reshape the singularities, and
hence do not affect the Maxwell Lagrangian density. Detailed
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derivation of the fluxes is shown in Appendix B. Here we only
state the most useful nontrivial result for rank n = 1 in d = 3:

J a
μν = εμναβ

(
∂αAa

β − εabcAb
αAc

β

)
. (62)

This form is familiar from the non-Abelian SU(2) gauge
theory:

J a
μν = 1

2εμναβF a
αβ, F a

αβ = ∂αAa
β − ∂βAa

α − gεabcAb
αAc

β

with gauge charge g = 2 corresponding to the choice
|n̂| = 1. The value of g is determined by the spin represen-
tation generators, which also determine |n̂|: if we had chosen
to work with the minimal SU(2) representation |n̂| = 1

2 , we
would have obtained g = 1.

The fundamental microscopic Lagrangian describes only
the rank 1. All higher ranks of the effective theory arise
dynamically in a coarse-graining procedure. The technical
demonstration of this claim is postponed to Appendix C due
to its complexity. There we also discuss in more detail the sin-
gular gauge transformations of non-Abelian gauge theories.

Classical vector field n̂ configurations can be topologically
nontrivial even without singularities. Such configurations are
generalized skyrmions. If a (d + 1)-dimensional vector field
lives in a d-dimensional space, then we can formally define a
rank d gauge field

Aj1... jd = 1

d!
εc0...cd n̂c0

d∏
i=1

∂ ji n̂
ci (63)

and compute its skyrmion number with the following volume
integral over entire space:

N = 1

Sd

∫
V

dd x ε j1... jd A j1... jd . (64)

This is quantized if the space can be effectively compactified,
for example, by the virtue of n̂ having the same constant value
at all points far away from the origin. However, skyrmions
enjoy topological protection only in the classical continuum
limit. A skyrmion can be smoothly deformed into a mostly
uniform field configuration whose spatial variations are con-
fined to a finite volume. Then, a quantum tunneling process, or
instanton, can flip it into a topologically trivial state. Formally,
one does not have enough space-time indices to construct a
topological current (61) from Aλ1...λd and a Lagrangian term
that conserves it. Instantons are governed by a remnant of the
Maxwell term in Lagrangian density:

Li = �

2
(∂0�0)2, (65)

where �0 is the rank d “dual” gauge field (30):

�0 = ε0 j1... jd A j1... jd . (66)

Instantons look like quantized “hedgehogs” ∂μ�μ �= 0 in
space-time. They unavoidably proliferate, and then their
coarse-grained dynamics involves arbitrary local fluctuations
of the real scalar field �0, which spoils the quantization of
skyrmion number N in the ground state.

C. Essential phase diagram

The effective field theories given by the Lagrangian densi-
ties (47) and (54) have rich phase diagrams. We will argue

that a proper regularization enables a hierarchy of phases
featuring Higgs-type and Coulomb-type gauge field dynamics
at different ranks n, up to n = d − 1 in d spatial dimensions.

The plain continuum limit Lagrangians written in the pre-
vious sections always penalize gauge flux through Maxwell
terms. This is a problem when we want to describe topo-
logically ordered phases with deconfined monopoles. The
solution to this problem is a compact gauge theory. If we
put a dimensionless gauge field Aμ1...μn = anAμ1...μn on a
lattice, where a is the lattice constant, then a compact Abelian
Maxwell term in the action can be symbolically written as

SMn = −βn

∑
{μ}

cos
(
εμ1...μd−nνλ1...λn�νAλ1...λn

)
. (67)

The summation runs over all oriented (n + 1)-dimensional
“plaquettes” of the space-time lattice (with discretized time).
It takes d − n ordered indices μ to specify a “plaquette”
orientation. The symbol inside the cosine is a placeholder for
the sum over the oriented n-dimensional “edges” of the given
“plaquette,” where �μ fi = fi+μ − fi is the discrete lattice
derivative of f in the direction μ computed at the lattice site i.
The lattice gauge field A is an angle variable that lives
on the oriented “edge” specified by its indices. For example,
the cubic (2 + 1)D space-time lattice has square plaquettes
with four corners 1,2,3,4 whose orientation is specified by
a single index μ (perpendicular to the plaquette); the lattice
curl inside the cosine is A12 + A23 + A34 + A41 if we relabel
the gauge fields living on the oriented plaquette’s edges by
the initial and final site of the edge. The continuum limit
a → 0 of (67) with a proper choice of the dimensionless
coupling βn is the noncompact Abelian Maxwell term. Taking
the continuum limit, i.e., expanding the cosine to quadratic
order, is permissible only if βn is large so that the fluctuating
values of A are small.

The benefit of the compact Maxwell term is that a 2π

flux quantum on a “plaquette” is physically unobservable
and constitutes a pure-gauge configuration (see Fig. 2). This
gives freedom to monopoles. Consider a (d = 3)-dimensional
system. We can insert a monopole by generating an appro-
priate rank 2 field configuration Aμν �= 0. This monopole can
interact with charge currents only if its presence affects the
rank 1 gauge field Aμ through rank linking. However, the
induced rank 1 gauge field of a monopole necessarily comes
with a Dirac string. If the gauge dynamics is noncompact,
then the string costs a finite energy per unit length and
confines the monopoles to small topologically neutral clusters.
In contrast, a compact theory makes the Dirac string invisible
by collecting all of its quantized flux through a single column
of plaquettes: monopoles can be free and charged particles can
experience them.

A by-product of monopole proliferation in pure rank 1
compact gauge theories is charge confinement. Monopoles are
abundant when β1 is small and the plain continuum limit of
(67) cannot be justified. Then, the lattice dynamics features
an angle-valued gauge field A whose canonically conjugate
electric field E must be integer valued. This field lives on
the lattice links, so electric flux comes in the form of quan-
tized strings that terminate at the locations of charged parti-
cles according to Gauss’ law. One could say that monopole
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FIG. 2. An unobservable Dirac string on the cubic lattice. The
gauge field Ai j = −Aji lives on lattice bonds between neighboring
sites i, j and equals zero everywhere except on the thick bonds,
where it is 2π . The lattice curl of the gauge field is defined on
lattice plaquettes as εμνλ∂νAλ ≡ A12 + A23 + A34 + A41 if the sites of
a square plaquette are labeled 1,2,3,4 in the counterclockwise sense.
Magnetic flux is zero on all plaquettes except the shaded one and the
ones parallel to it on the same vertical column. The flux value of 2π

lives in the compact Maxwell term (67) and has no physical impact.

fluctuations gap out the electric field: electric flux lines cost
energy in proportion to their length, so charged particles
are confined [67]. This phenomenon does not occur in the
disordered phase of a system as simple as our reference
model of neutral bosons hopping on a lattice. So, how can
we avoid it despite introducing gauge fields by singular gauge
transformations? The key feature of the present theory is the
presence of multiple gauge field ranks and links between
them. The confinement of rank 1 charge is avoided because the
rank-linking term in the action modifies Gauss’ law. Charged
particles can interact directly with the deconfined rank 2
gauge field in the disordered phase, and not act as sources of
the costly rank 1 electric flux. We elaborate this mechanism
later in this section, in the context of a non-Abelian gauge
theory. Another possible deconfinement mechanism is tied to
the frustrated compact gauge theories that naturally describe
certain frustrated magnets [52,68–70]. Here, entropy effects
keep charges free even in the strong-coupling regime with
small β1, as seen in solvable theoretical models [38,52,71,72]
and numerical calculations [73,74].

The goal of this paper is to explore topologically ordered
phases, and the practical feasibility of this task currently relies
on the continuum limit. Therefore, we will not emphasize
any further the compact formulation of the theory. Instead,
it will be understood that the continuum limit theory requires
an ultraviolet regularization that renders quantized Dirac at-
tachments unobservable, and such a lattice regularization is
indeed available. Note, however, that a regularization lattice
is not necessarily the microscopic lattice of the system.

Constructing noncompact Maxwell terms with non-
Abelian gauge fields is a more challenging task. One
could define dimensionless non-Abelian gauge fields that
operate on particle spinors, and construct the Maxwell

terms from the traces of the products of Peierls factors
W = exp(iεμ1...μd−nνλ1...λn�νAλ1...λn ). This works fine on two-
dimensional plaquettes because their oriented boundary is one
dimensional and uniquely represented by the order of W fac-
tors under the trace. However, it is unclear how to unambigu-
ously generalize this to higher dimensions and accommodate
rank n > 1 fields. Fortunately, a compact regularization is not
needed for non-Abelian gauge fields: hedgehogs do not come
with Dirac strings attached.

Now that we have defined a regularization where it is
needed, we can proceed with the phase diagram analysis. Let
us characterize the dynamics of the rank n gauge field as
Higgs type if its fluctuations are suppressed, and Coulomb
type if its fluctuations are abundant. We will shortly make
this characterization precise, with a provision which is not
emphasized in the plain continuum formulations of the effec-
tive theory. When we introduce a gauge field at rank n by a
singular gauge transformation, this gauge field must have a
strictly quantized and localized flux in the Higgs n state at
every position. The formal agent of flux quantization is either
an explicit constraint in the path-integral measure, or βn → ∞
in the compact gauge theory. Without this modification of the
effective theory, the artificially introduced gauge field would
gap out the gapless modes of the “matter” field as a part
of the Anderson-Higgs mechanism. The explicit constraints
on the gauge fields are not needed only in the topologically
ordered phases which we ultimately pursue. Also, we will
not tackle the important and difficult question of what stabi-
lizes the phases with Higgs dynamics at intermediate ranks.
Such phases feature emergent gauge boson excitations and
definitely require significant and perhaps intricate interactions
[37,38] between simple microscopic degrees of freedom (the
phase transitions involving scalars and emergent gauge fields
can be first order [75] and hence beyond reach of the basic
renormalization group treatment in scalar theories). Our goal
will be merely to identify and characterize these phases from
the perspective of singularity dynamics.

A Higgs state at rank m implies a Higgs state at all
higher ranks n > m. In a generalization of the usual Higgs
mechanism, the rank n gauge field A(n) is suppressed into
a Higgs state by the condensation of the current j(n) it
minimally couples to. Moreover, A(n) is suppressed if any
current j(m) at a lower rank m � n condenses. This is a
consequence of the origin of gauge fields in the matter field
singularities. A condensation of j(m) either expels or localizes
all of its singularities, making them costly and preventing their
diffusion which could give rise to soft gauge modes at higher
ranks. Formally, the simplified effective theories (48) and (60)
replace currents j(n) with constructs involving linked gauge
fields A(n − 1), so suppressed fluctuations of A(n − 1) in a
Higgs n − 1 state amount to matter condensation at rank n.
The Higgs mechanism then propagates recursively to all
higher ranks where it gaps out the gauge fields.

Similarly, a Coulomb state at rank n implies a Coulomb
state at all lower ranks m < n. When the rank n gauge field
A(n) fluctuates abundantly in its Coulomb n state, then the
singularities of the lower rank current j(n − 1) have nec-
essarily proliferated and diffused. The gauge field A(n − 1)
is gapped out by Coulomb mechanism (deconfinement of
defects), and its Coulomb dynamics recursively propagates

115144-12



TOPOLOGICAL ORDERS OF MONOPOLES … PHYSICAL REVIEW B 101, 115144 (2020)

down the ranks in the Lagrangian densities (48) and (60).
Note that the absence of a gauge symmetry at rank n does not
automatically induce a Higgs n state because the lower rank
Coulomb dynamics provides no bias for an “order parameter”
at rank n.

As a consequence of these relationships between ranks,
each conventional phase of the effective theory corresponds
to a sequence Gn = C1C2 . . .CnHn+1 . . . Hd−1 of Coulomb Cn

and Higgs Hn types of dynamics at consecutive ranks, with
a switch from Coulomb to Higgs dynamics at one particular
rank n. These phases are sharply defined in the thermody-
namic limit. Only the gauge field at the last Coulomb-type
rank n is spared from both Higgs and Coulomb mechanisms,
and remains massless with an infinite penetration depth. There
is one exception to this rule in the compact gauge theory.
We show in Appendix D that the rank d − 1 gauge field is
gapped in the all-Coulomb phase Gd−1 = C1 . . .Cd−1. In the
non-Abelian case, we naively expect that the matter coupled
to the massless gauge field at rank n is confined and free only
asymptotically. However, matter at lower ranks m < n is truly
free, as we discuss at the end.

This distinction between phases can also be characterized
by the confinement of singularity defects. A rank n defect in
d dimensions is a (d − n − 1)-dimensional excitation charac-
terized by the πn(Sn) homotopy group (with understanding
that only point defects at rank d − 1 are topologically pro-
tected). Confined defects are closed neutral manifolds of finite
size, typically small due to their high-energy cost per unit
manifold area. A Higgs n state features gapped fluctuations
of confined defects, and in that sense conserves the defect
charge. A deconfined state at rank n is characterized by
abundant, arbitrarily large, and possibly open manifolds of
(d − n − 1)-dimensional defects, and in that sense can be a
defect condensate.

As a physically relevant example, consider neutral spin-
less bosons in d = 3 dimensions. G0 = H1H2 is a superfluid
phase with Goldstone modes and confined vortices. The phase
G2 = C1C2 is a fully gapped conventional Mott insulator with
uncorrelated fluctuations. The phase G1 = C1H2 is unconven-
tional: the rank 1 matter field is gapped and coupled to an
emergent U(1) electrodynamics with deconfined vortices and
confined monopoles. This is identified with the U(1) spin
liquid in magnetic systems [52]. In the analogous case of
spin dynamics, G0 is a magnet, G2 a gapped paramagnet,
and G1 a paramagnet with an emergent non-Abelian gauge
field and asymptotic freedom for particles. The phases with
prominent gauge field dynamics are obviously realized in
our world, as described by the standard model of particle
physics.

Special phases C1 . . . Td−1 with topological order can be
stabilized by topological protection: any change of the to-
tal topological charge of point defects requires crossing an
infinite free-energy barrier in infinite systems. Such phases
are incompressible quantum liquids of abundant but noncon-
densed monopoles and hedgehogs. The rank d − 1 gauge field
remains gapped as if it lived in a Higgs state, and keeps the
lower rank gauge field gapped via the Coulomb mechanism,
thus propagating the gapped dynamics recursively down to
the rank 1. We will discuss these kinds of phases in Sec. VI
and show that they have deconfined fractional quasiparticles

in which a rationally quantized amount of charge or spin is
bound to a topological defect.

We have already established the possibility of topological
defect deconfinement. We now show that this also leads to
particles’ “charge” (spin) deconfinement at lower ranks even
in the non-Abelian gauge theory. An ordinary non-Abelian
theory in d = 3,

L = 1
2

∣∣(∂μ + igγ aAa
μ

)
ψ
∣∣2 − 1

4 F a
μνFμν,a (68)

featuring a field tensor

F a
μν = ∂μAa

ν − ∂ν Aa
μ − g f abcAb

μAc
ν, (69)

has the stationary-action field equation

Jμ,a = ∂ν Fμν,a − gf abcAb
νFμν,c (70)

that identifies a particle with charge g (spin) as a source of the
gauge flux. Charge is confined at least in the strong-coupling
limit. In contrast, the non-Abelian effective theory (60) in
d = 3 yields the following stationary condition by variations
of the rank 1 gauge field:

Ja
μ = ∂νF a

μν − gεabcAb
νF c

μν + k′
2(∂ν n̂a) jμν, (71)

where g = 2 and

jμν = 1
2

(
Aa

μ∂ν n̂a − Aa
ν∂μn̂a

)− Aμν. (72)

Now, we can avoid attaching the rank 1 gauge flux to a particle
and instead attach a rank 2 flux:

Ja
μ → k′

2(∂ν n̂a) jμν, F a
μν → 0. (73)

This is an option only if the gauge field Aμν is not dynamically
suppressed by the confinement of its flux. Very roughly, we
get a Gauss law type of relationship 〈n̂a〉∂i A0i ∼ Ja

0 ∼ δ(x) for
a static point source Ja

0 , and an infrared convergent energy cost
through the Abelian Aμν Maxwell term. Note that inserting a
definite spin Ja

0 necessarily creates a region with a nonzero av-
erage 〈n̂a〉 despite large fluctuations of n̂a in an incompressible
quantum liquid. Effectively, the rank 2 flux can screen charge
from the rank 1 flux and preempt charge confinement.

The above argument can be readily generalized to compact
Abelian gauge theories and higher dimensions. However, a
compact gauge theory in d = 2 dimensions does not have a
rank 2 gauge field that could deconfine charges. Instanton
events [67], identified as space-time “monopoles” in the lit-
erature on spin liquids [76–78], confine the particles at rank 1,
including any fractional partons of an electron. A weaker log-
arithmic charge confinement “by vortices” occurs even in the
continuum-limit situations, through the unbounded Coulomb
potential V (r) ∼ ln(r) between static charges a distance r
apart. It seems naively that charge deconfinement in d = 2 is
possible only if topological defects are suppressed by a Higgs
mechanism. Of course, the truth is more complicated and
interesting. Two-dimensional deconfinement without a Higgs
mechanism is experimentally evident in fractional quantum
Hall states, and it has been theoretically established in certain
U(1) spin liquids of Dirac spinons [78,79].

V. TOPOLOGICAL LAGRANGIAN TERM

Here, we construct the topological Lagrangian density term
Lt of the effective field theory. Its role is to implement the
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topological πd−1(Sd−1) charge conservation in the continuum
limit description of incompressible quantum liquids. This is
necessary only at the highest gauge theory rank n = d − 1
in d dimensions because a Maxwell term, which normally
controls defect confinement, is absent from the Lagrangian
density at rank d .

The total topological charge N of point defects contained
in a certain volume is given by (11). N is conserved if

∂0N = 1

q

∫
dd x εi j1... jd−1∂0∂iA j1... jd−1 = 0, (74)

or equivalently ∂0J0 = 0 expressed using the topological
current

Jμ = εμνλ1...λd−1∂νAλ1...λd−1 . (75)

However, this still allows instantaneous creation and annihi-
lation of arbitrarily separated defect-antidefect pairs. In order
to be consistent with local dynamics, we must promote the
condition for topological charge conservation into

∂μJμ = 0. (76)

One way to implement the topological charge conservation
involves introducing an auxiliary Lagrange multiplier field �

into the path integral and writing the topological Lagrangian
term as

Lt ∼ i �∂μJμ. (77)

Any world lines that violate (76) will destructively interfere
and cancel their contributions to the path integral. However,
this is not adequate because the topological charge is force-
fully conserved regardless of the underlying dynamics, even if
the particles are localized. The only remedy for this problem
is to use an existing degree of freedom as a Lagrange mul-
tiplier. The next section will describe the main construction
principles for a topological term that

(1) does not introduce new degrees of freedom;
(2) has no physical effect in conventional states;
(3) respects all symmetries.
Section V B then derives the topological term directly from

a spinor field that represents a vector field n̂ in d dimensions
using the Spin(d ) group. Finally, we consider symmetry prop-
erties and restrictions for topological terms in Sec. V C.

A. Topological term preliminaries

Section II has already hinted the following topological term
in the Lagrangian density:

Lt = i Kd JμJμ, (78)

where Kd is a coupling constant that we will determine later.
The particles’ gauge-invariant charge current Jμ is an existing
degree of freedom, so Lt satisfies the above criterion 1. The
conventional states for the criterion 2 are typically superfluids
and Mott insulators. A topological defect in a superfluid phase
always has a well-defined core from which the particles are
expelled. Therefore, the presence of a static defect with den-
sity J0 �= 0 at some location implies the absence of particles
J0 = 0 at that location, leading to Lt = 0 in a superfluid.
Similarly, if we reverse the roles played by the canonical
particle number operator n and its conjugate phase θ , we

find that the presence of a particle with density J0 �= 0 at
some location in a Mott insulator implies a local expulsion
of topological defects J0 = 0, again leading to Lt = 0. In
this sense, the topological term (78) satisfies the criterion 2.
For now, we will assume that the dynamical part Ld of the
Lagrangian density has the same symmetries as (78). If that is
not the case, we will have to modify the topological term in
order to fix its symmetries and satisfy the criterion 3. We will
discuss how this can be done in Sec. V C.

The Lagrange multiplier that implements topological
charge conservation ∂μJμ = 0 is hidden within the charge
current, as revealed in Sec. II. It works only in unconventional
incompressible quantum liquids where abundant quantum
fluctuations allow point defects and particles to occupy the
same location (with resolution determined by the coarse-
grained length scale ξ ). Note that incompressibility of both
particle and defect densities is crucial; if either can adjust,
it will adjust to avoid a costly overlap between particles and
defects. The symmetry (duality) between particle and defect
currents in Eq. (78) simultaneously reaffirms the particle
charge conservation ∂μJμ = 0. We can extract the currents
from appropriate spinor fields ψ for particles and � for point
defects

Jμ = − i

2
[ψ†(∂μψ ) − (∂μψ†)ψ] + Aμ|ψ |2,

Jμ = − i

2
[�†(∂μ�) − (∂μ�†)�] + Aμ|�|2 (79)

to show the charge conservation mechanism. Incompress-
ibility implies frozen amplitudes of ψ and �, so that only
the phases φ,� in ψ = |ψ |eiφ and � = |�|ei� are free to
fluctuate, producing effectively

Jμ = |ψ |2(∂μφ + Aμ), Jμ = |�|2(∂μ� + Aμ). (80)

Substituting in Eq. (78) yields

Lt = i Kd |ψ |2 (∂μφ + Aμ)Jμ

→ −i Kd |ψ |2 φ ∂μJμ + i Kd |ψ |2 AμJμ,

Lt = i Kd |�|2 (∂μ� + Aμ)Jμ

→ −i Kd |�|2 � ∂μJμ + i Kd |�|2 AμJμ (81)

after an integration by parts, so φ and � can act as Lagrange
multipliers that implement the conservation of topological and
particle charge, respectively.

Let us scrutinize the conservation mechanism more care-
fully. Both φ and � are angles. Integrating out φ ∈ [0, 2π ) in
(81) gives us∫ 2π

0
Dφ exp

{∫
dd+1x iKd |ψ |2φ ∂μJμ

}
∝
∏

x

sin(πKd |ψ |2dd+1x ∂μJμ)

Kd |ψ |2dd+1x ∂μJμ

→
∏

x

δ(∂μJμ) (82)

in the following qualitative sense. The final Dirac delta func-
tion of ∂μJμ is formally obtained from the integral over φ

only when the dimensionless number Kd |ψ |2dd+1x ∂μJμ is an
integer. This condition is indeed satisfied by the microscopic
quantization of topological charge, as we will now show by
discretizing the integral. Let dd x be the volume that contains
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a single particle, and ld be the volume that contains a single
topological defect. Consider a state with n topological defects
per particle, i.e., with the “filling factor” ν = 1/n. Since
dd x = nld , we can interpret

Kd |ψ |2dd+1x ∂μJμ ∼ Kd |ψ |2 nld �μJμ

= Kd |ψ |2 nq �μJ ′
μ (83)

with �μ = dx ∂μ being a discrete derivative on the scale dx,
and q the unit of topological charge (flux quantum). We
defined an integer-valued defect current J ′

μ = ldJμ/q based
on the fact that the flux density J0 makes J0/q the num-
ber density of topological defects. The quantized topological
current has no divergence if Kd |ψ |2nq ∈ Z, i.e., Kd |ψ |2 =
(ν/q) × integer. Later, when we consider topological orders,
we will reproduce this relationship in a proper field-theoretical
manner.

B. Topological term from spinor fields

The goal of this section is to construct the topological
Lagrangian term (78) directly from a spinor field ψ of parti-
cles. Such a construction is possible because the particle field
contains all information about the currents and topological
defects. We will develop the basic idea here, and analyze
symmetry restrictions and extensions in the next Sec. V C. To
begin with, the spinor ψ has to represent a U(1) phase θ for
charge dynamics and a vector field n̂ for spin dynamics. The
vector n̂ must be d dimensional with fixed magnitude in order
to have topologically protected hedgehog defects in d spatial
dimensions. Therefore, we will use a coherent state complex
spinor representation of the Spin(d ) group, which generalizes
spin to d dimensions.

The generators γ a of the Spin(d ) group are d Dirac matri-
ces that obey the Clifford anticommutator algebra

{γ a, γ b} = 2δab. (84)

The angular momentum operators that generate rotations in ab
planes

Jab = − i

4
[γ a, γ b] (85)

can be used to rotate a fixed reference spinor ψ0 into a
coherent state whose spin points along n̂ = (θ1, . . . , θd−1):

ψ (n̂) = e−iJd−1,d θd−1 . . . e−iJ2,3θ2 e−iJ1,2θ1 eiφ ψ0. (86)

The spherical coordinate system angles θi and n̂ are related
according to (27). The last angle φ is not associated with any
generator and defines a U(1) phase for charge currents.

The main ingredient of the topological Lagrangian term Lt

is the topological current (75) that involves the rank d − 1
gauge field. How can we extract this gauge field from the
spinor ψ? For example, if we use the Abelian singular gauge
transformations (18) recursively from the rank d − 1 down to
rank 1, we naively obtain the following relationship between
the Abelian gauge field and the spinor’s U(1) phase φ:

Aμ1...μd−1 = 1

(d − 1)!

(
εa1...ad−1

n∏
i=1

∂μai

)
φ. (87)

This expression applies an antisymmetrized product of deriva-
tives on φ. Any analytic function φ(x) automatically yields
Aμ1...μd−1 = 0, so this expression can have meaning only if
we define a rigorous rule for applying the derivatives on
singular functions. We will define such a rule by general-
izing the familiar two-dimensional case. When we extract a
vortex ψ (r, φ) = eiφ expressed using the polar angle φ into
a gauge field Ai = ∂iφ, then the magnetic flux B = εi j∂iA j ∼
εi j∂i∂ jφ = 2πδ(x) integrates as

2π =
∫

B2
d2x B =

∫
B2

d2x εi j∂i∂ jφ ≡
∮

S1
dxiAi =

∮
S1

dxi∂iφ.

The first integral is defined on a disk, or a 2-ball B2 that
contains the vortex singularity, and we formally rewrite it
using the double-derivative notation. In order to calculate
this integral, we apply Stokes theorem on the loop (1-sphere
S1) that bounds B2. The ensuing loop integral with one less
derivative is well defined.

Now consider general expressions

Fn = ψ†εμ1...μn∂μ1 . . . ∂μnψ (88)

for 1 � n � d involving the spinor (86), and integrals

Ik,n =
∫

Bn (k)
dnx Fn (89)

defined on n-dimensional ball domains Bn(k) indexed by k.
The integrals Ik,n can be sensitive only to the πn−1(Sn−1)
singularities of Fn(θ1, . . . , θd−1, φ), which are pointlike in
an n-dimensional domain. Let us start from the highest rank
in d dimensions. Consider one πd−1(Sd−1) point singularity
embedded inside a small ball Bd (1) ⊂ Rd with a sphere
boundary Sd−1(1). We anticipate that Fd is proportional to
the Dirac function δd (x) at the singularity, and hence properly
characterized by I1,d . All singularities that we integrate are
formally characterized by appropriate distributions like δd (x).
Let us define

I ′
1,d =

∫
Bd (1)

dd x
(
∂μ1ψ

†
)
εμ1...μd ∂μ2 . . . ∂μd ψ (90)

and apply Stokes-Cartan theorem

I1,d =
∫

Bd (1)
dd x ∂μ1

(
ψ†εμ1...μd ∂μ2 . . . ∂μd ψ

)− I ′
1,d

=
∮

Sd−1(1)
dd−1x ψ†εμ1...μd−1∂μ1 . . . ∂μd−1ψ − I ′

1,d . (91)

The displayed integral over Sd−1(1) contains the function
Fd−1 which is singular by construction and zero away from
the singularities. Thus, we can focus on the finite patches
Bd−1(k) ⊂ Sd−1(1) that contain one singularity of Fd−1 each:

I1,d + I ′
1,d =

∑
k

∫
Bd−1(k)

dd−1x Fd−1 =
∑

k

Ik,d−1. (92)

The original πd−1(Sd−1) point singularity of Fd does not
reside on Sd−1(1), yet it is detected in lower-dimensional
singular integrals over Bd−1(k). This is possible only if sin-
gular strings of Fd−1 emanate from the point singularity and
intersect Sd−1(1). Note that Sd−1(1) is of arbitrary size, and
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multiple strings lead to multiple intersection points embedded
inside the balls Bd−1(k).

Now, we can show that the residual d-dimensional inte-
gral I ′

1,d does not contribute to the topological Lagrangian
term. The integral (90) contains the same antisymmetrized
derivatives that are applied on ψ in Fd−1, so its value can
build up only from the points on the strings where Fd−1 is
singular. We will work in the continuum limit for simplicity,
assuming that some regularization procedure is available to
rescue the usual rules of calculus when needed. Let us change
the integration variables x ∈ Bd (1) into a “radius” s that scans
a singular string S and y1, . . . , yd−1 that span a shell Sd−1 lo-
cally perpendicular to the string at s. Since ∂s commutes with
all ∂yi , integrating out y1, . . . , yd−1 has a chance to produce
a finite spinor �(s) from the antisymmetrized ∂μ2 . . . ∂μd ψ in
(90) only if all directions μ2, . . . , μd are tangential to Sd−1.
Hence, we need

∂μ1ψ
† ≡ ∂sψ

† = iψ†

[
d−1∑
i=1

(∂sθi )�i − (∂sφ)

]
(93)

in the immediate vicinity of the strings, where each operator

�i = (eiJi+1,i+2θi+1 . . . eiJd−1,d θd−1 )†Ji,i+1

× (eiJi+1,i+2θi+1 . . . eiJd−1,d θd−1 ) (94)

is independent of θi. In the presence of multiple strings Sk we
get

I ′
1,d = i

∑
k

∫
Sk

ds

[
d−1∑
i=1

(∂sθi )Ī (i)
k,d−1 − (∂sφ)Īk,d−1

]
. (95)

The scalar factors

Īk,d−1 =
∫

Bd−1(k)
dd−1y ψ†εsμ2...μd

∂μ2
. . . ∂μd

ψ,

Ī (i)
k,d−1 =

∫
Bd−1(k)

dd−1y ψ†�i εsμ2...μd
∂μ2

. . . ∂μd
ψ (96)

involve singular integrands and hence cannot possibly depend
on the values of φ(x) and θi(x), respectively, away from the
strings x /∈ Sk . These scalars are not even arbitrary complex
numbers, so their invariance under global U(1) and Spin(d )
rotations also prohibits a dependence on φ(x) and θi(x) on the
local string x ∈ Sk . Therefore, we can treat them as constants:

I ′
1,d = i

∑
k

∫
Sk

[
d−1∑
i=1

(dθi )Ī (i)
k,d−1 − (dφ)Īk,d−1

]

= i
∑

k

[
d−1∑
i=1

(�θi )Ī (i)
k,d−1 − (�φ)Īk,d−1

]
. (97)

Here, �θi and �φ are the respective angle differences be-
tween the opposite ends of the string segments inside the
integration domain. If θi or φ varied slowly, we would need
to deal with the consequences of I ′

1,d being possibly finite.
However, we need a topological Lagrangian term only in the
effective theory that describes the coarse-grained dynamics of
an incompressible quantum liquid. The spatial and temporal
variations of θi, φ average out to zero on the coarse-graining

scale ξ (which is larger than the average spatial separation be-
tween mobile singularities), causing I ′

1,d to effectively vanish.
Given that I ′

1,d → 0 is irrelevant upon coarse graining in
incompressible quantum liquids, the relationship (92) directly
connects a d-dimensional integral I1,d on a ball Bd ⊂ Rd to
integrals Ik,d−1 defined on (d − 1)-dimensional balls (disks)
Bd−1 ⊂ Sd−1 that live on the boundary Sd−1 of the original Bd .
Such a connection separately holds for every pointlike topo-
logical defect in d-dimensional space. We can carry out iden-
tical analysis starting from each Ik,d−1 on its own Bd−1, and
relate it to similar Ik,d−2. Clearly, we can proceed recursively
down to the lowest rank, by constructing a tree graph in which
a node at any rank 2 < n � d represents an integral Ii,n equal
to the sum of I j,n−1 at lower ranks:

Ii,n =
∑

j

I j,n−1. (98)

If we explicitly calculate the well-defined integrals

I j,2 =
∫

B2( j)
d2x F2 =

∮
S1( j)

dx εμψ†∂μψ (99)

on loops that bound B2( j), we can recover the highest rank in-
tegrals Id which are related to (10) and extract the topological
charge of monopoles and hedgehogs.

Charge currents contribute (99) through the U(1) phase φ:

I j,2
charge−−−→ i|ψ |2

∮
S1( j)

dx εμ∂μφ = i|ψ |2
∮

S1( j)
dφ = 2π i|ψ |2Nj,

where Nj ∈ Z is the winding number of φ on the loop. We as-
sumed that |ψ |2 is finite, incompressible, and constant on the
loop length scales. The formula (98) recursively collects all
such winding numbers into Id , which is designed to detect the
topological charge of a pointlike monopole in d dimensions.
The collection pattern is identical to that of Dirac attachments
discussed in Sec. III A. If the spin structure of ψ is smooth,
we find

Id
charge−−−→

∫
Bd

dd x εμ1...μd ψ
†∂μ1 . . . ∂μd ψ = 2π i|ψ |2N (100)

for a uniform |ψ |2 �= 0, where N is the total monopole charge
contained within Bd .

Spin degrees of freedom n̂(θ1 . . . θd−1) can contribute to
(99) only through the angle θd−1 ∈ [0, 2π ) since the other
angles θ j ∈ [0, π ] are topologically inert on loops. A vortex
singularity of θd−1 can exist only at positions where θd−2 = 0
or θd−2 = π because n̂ given by (27) must be single valued.
At such positions, the value of θd−1 does not distinguish
different vectors n̂ = x̂a(ψ†γ aψ ). Hence, the spin coherent
state ψ can only acquire a U(1) phase factor eiθ under rotation
exp(−iJd−1,dθd−1). In other words, ψ is an eigenspinor of
Jd−1,d at the vortex singularities of θd−1, with an eigenvalue
S cos(θd−2) = ±S that depends on the Spin(d ) representa-
tion. The integral (99) is most easily calculated on an infinites-
imal loop around the vortex singularity, starting from (86)
and ∂μψ = −i(∂μθd−1)Jd−1,dψ + · · · where we ignore the

115144-16



TOPOLOGICAL ORDERS OF MONOPOLES … PHYSICAL REVIEW B 101, 115144 (2020)

topologically trivial angle variations:

I j,2
spin−−→ −i(ψ†Jd−1,dψ )

∮
S1( j)

dx εμ∂μθd−1

= −2π i|ψ |2S cos(θd−2)Nj . (101)

The winding number Nj of θd−1 is related to the topological
charge of a hedgehog defect in the n̂ configuration, as naively
indicated in the formula (33) and the surrounding discussion.
When we go one rank up, the integral Ii,3 is defined on
the S2 sphere which contains multiple loops indexed by j.
The total vorticity

∑
j Nj = 0 of θd−1 must vanish on that

closed manifold S2. However, vortices and antivortices are
necessarily attached to the opposite “poles” θd−2 = 0 and
θd−2 = π , respectively. One could visualize this situation
by imagining vortex lines of θd−1 that stretch in a three-
dimensional space and go through the S2 sphere. In this
manner, the factor cos(θd−2) in the above formula construc-
tively adds the opposite vortex charges on S2, and effectively
translates into a factor of 2 if we collect the numbers Nj only
from the “north” poles. Analogous factors of 2 appear each
time we move one rank up in the hierarchy because every
n-dimensional hedgehog configuration on an n-sphere always
has at least one “north” θn = 0 and “south” θn = π pole where
the lower rank angles θi, i < n, form an (n − 1)-dimensional
hedgehog of their own (living on a lower-dimensional sphere
Sn−1 ⊂ Sn centered at the pole). The formula (27) illustrates
this mathematically. Most generally, every point singularity
of Fn in an n-dimensional domain terminates a number of
south-pole and north-pole singular strings of Fn−1 in the same
domain, which together carry a vanishing πn−1(Sn−1) and a
nonvanishing πn(Sn) topological charge. The latter is equal to
twice the πn−1(Sn−1) charge collected from north poles only,
and both are immune to smooth field transformations. In the
end, we find

Id
spin−−→

∫
Bd

dd x εμ1...μd ψ
†∂μ1 . . . ∂μd ψ = −2d−1π i|ψ |2SN

(102)
for a uniform |ψ |2 �= 0, where S is a representation-dependent
eigenvalue of the rotation generators Jab and N is the total
hedgehog charge contained within Bd .

Finally, we are well positioned to explore the following
form of the topological Lagrangian term:

Lt ∝ i εμνλ1...λd−1ψ
†∂μ∂ν∂λ1 . . . ∂λd−1ψ. (103)

The structure of derivatives is compatible with (78). The rank
d − 1 gauge field should clearly emerge by coarse graining
the antisymmetrized (A) expression

Aλ1...λd−1 ∝ Aψ†∂λ1 . . . ∂λd−1ψ (104)

because its quantized integral (10) extracts the topological
charge enclosed within a sphere Sd−1 in the same fashion as
the integral Id treated to Stokes-Cartan theorem in Eq. (91).
The topological current (75) similarly emerges by coarse
graining

Jμ = εμνλ1...λd−1∂νAλ1...λd−1

∝ εμνλ1...λd−1 ψ†∂ν∂λ1 . . . ∂λd−1ψ. (105)

Note that the derivative ∂ν is initially applied on (104) exter-
nally, but it can be pulled inside, between ψ† and ψ , since
Jμ always lives in space-time integrals and we found that the
integrals I ′

n such as (90) can be ignored. Lastly, the topological
Lagrangian term (78) is

Lt = iKd JμJμ ∝ 1
2 [ψ†(∂μψ ) − (∂μψ†)ψ]Jμ

= 1
2 [ψ†(∂μJμψ ) − (∂μψ†Jμ)ψ]

= ψ†(∂μJμψ ) − 1
2∂μ(ψ†Jμψ ) − 1

2ψ†(∂μJμ)ψ

→ ψ†(∂μJμψ ). (106)

The absence of a U(1) gauge field Aμ in the charge current
Jμ is deliberate and in the spirit of extracting defect fluctu-
ations from matter fields; Aμ can be generated by a singular
gauge transformation. Behind the arrow, we removed a total
derivative and the vanishing contribution of ∂μJμ → 0 in
incompressible quantum liquids. The last remaining piece
amounts to (103) after observing that the omitted proportion-
ality constant in Eq. (105) must include a factor of |ψ |−2.
Jμ is intrinsically composed from the angles θi and φ that
ψ depends on, and does not scale in proportion to |ψ |2.

The precise proportionality constant in Eq. (103) can be
determined using (100) and (102). We know that the topo-
logical charges featured in these formulas obtain from the
same gauge fields that live in the topological Lagrangian term.
However, we have clearly identified two independent topolog-
ical charges, one for monopoles and one for hedgehogs. We
must relate them to two different gauge fields at rank d − 1,
according to (10):

monopoles: Nm = 1

2π

∮
Sd−1

dd−1x ε j1... jd−1
Am

j1... jd−1
,

hedgehogs: Nh = 1

Sd−1

∮
Sd−1

dd−1x ε j1... jd−1
Ah

j1... jd−1
.

Here, Am and Ah are the final members of the Abelian and
non-Abelian gauge field hierarchies, respectively. Since (103)
renders Lt ∝ Id , but extracts both topological charges from the
same spinor field, we can write

Lt = i Kd Sd−1

2d−1πS
ψ†εμ1...μd+1∂μ1 . . . ∂μd+1ψ

→ iKd Jμ

(
J h

μ − Sd−1

2d−1πS
J m

μ

)
(107)

with hedgehog and monopole currents

J h
μ = εμνλ1...λd−1

∂νAh
λ1...λd−1

,

J m
μ = εμνλ1...λd−1

∂νAm
λ1...λd−1

. (108)

It is interesting to note that the topological charges of
any additional vector fields m̂ embedded into the spinor ψ

would also be automatically governed by the topological
term (107). If such a vector field spans a vector space with
fewer dimensions than d , its topological defects would need
to be enriched by Dirac attachments similar to those of the
U(1) monopoles.
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C. Designing topological terms to meet symmetry requirements

The topological Lagrangian term (78) is manifestly invari-
ant under translations and rotations in space and time. Its other
important symmetry properties are transformations under time
reversal x0 → −x0 and mirror reflection xi → −xi. We will
analyze them in real rather than imaginary time. The fields
transform as

ψ (x0, x)
x0→−x0−−−−→ CI0ψ (−x0, x),

ψ (x0, x)
xi→−xi−−−−→ Iiψ (x0, x1, . . . ,−xi, . . . , xd ), (109)

where C performs complex conjugation of numerical factors
(CwC† = w∗), and Iμ carries out μ inversion on the spinor de-
grees of freedom. This leads to the following transformations:

J0
x0→−x0−−−−→ J0, J0

xi→−xi−−−−→ J0,

Jj
x0→−x0−−−−→ − Jj, Jj

xi→−xi−−−−→ (−1)δi j J j (110)

of the charge current (79), and applies to both relativistic and
nonrelativistic cases. The Abelian rank 1 gauge field must
transform the same way by gauge invariance. For all higher
ranks, we can use relationships (18) to deduce

Aμ1...μn

x0→−x0−−−−→ −
[

n∏
k=1

(−1)δμk ,0

]
Aμ1...μn ,

Aμ1...μn

xi→−xi−−−−→ +
[

n∏
k=1

(−1)δμk ,i

]
Aμ1...μn . (111)

Hence, the monopole current extracted from (75) transforms
as

J0
x0→−x0−−−−→ −J0 , J0

xi→−xi−−−−→ −J0,

J j
x0→−x0−−−−→ +J j , J j

xi→−xi−−−−→ −(−1)δi jJ j . (112)

Combining (110) and (112) yields nontrivial transformations
of the monopole topological term (78), which takes form Lt =
−Kd JμJ μ (without a factor of i) in the real time path integral:

Lt
x0→−x0−−−−→ −Lt, Lt

xi→−xi−−−−→ −Lt. (113)

The topological term breaks time-reversal and mirror sym-
metries. This is the behavior of a Chern-Simons coupling in
d = 2, and it generalizes to higher dimensions. We will show
later that the coupling constant Kd depends on the scalar gauge
flux at rank d − 1, which generalizes the magnetic field of
d = 2.

The topological Lagrangian Lt governs the dynamics of
hedgehogs as well, so we should also analyze the time-
reversal and mirror reflections of the spin currents (37) and
non-Abelian gauge fields. The latter must transform the same
as generalized currents (59), which in turn depend on how the
vector field n̂ transforms. There are two characteristic trans-
formation rules for n̂, pseudovector (P) and vector (V), which
are consistent with the expected rank 2 tensor transformations
of the angular momentum (85):

P: n̂a x0→−x0−−−−→ −n̂a, n̂a xi→−xi−−−−→ −(−1)δia n̂a,

V: n̂a x0→−x0−−−−→ n̂a, n̂a xi→−xi−−−−→ (−1)δia n̂a.

The rank n non-Abelian gauge field transforms as

P: Aan+1...ad−1
μ1...μn

x0→−x0−−−−→ (−1)n−1

[
n∏

k=1

(−1)δμk ,0

]
Aan+1...ad−1

μ1···μn
,

Aan+1...ad−1
μ1···μn

xi→−xi−−−−→ (−1)n

[
d−1∏

k=n+1

(−1)δak ,i

][
n∏

k=1

(−1)δμk ,i

]
Aan+1...ad−1

μ1...μn
,

V: Aan+1...ad−1
μ1...μn

x0→−x0−−−−→
[

n∏
k=1

(−1)δμk ,0

]
Aan+1...ad−1

μ1...μn

Aan+1...ad−1
μ1...μn

xi→−xi−−−−→ −
[

d−1∏
k=n+1

(−1)δak ,i

][
n∏

k=1

(−1)δμk ,i

]
Aan+1...ad−1

μ1...μn
. (114)

Then, the hedgehog current transforms as

P: J0
x0→−x0−−−−→ (−1)dJ0, J0

xi→−xi−−−−→ (−1)dJ0, J j
x0→−x0−−−−→ −(−1)dJ j, J j

xi→−xi−−−−→ (−1)d+δi jJ j,

V: J0
x0→−x0−−−−→ J0, J0

xi→−xi−−−−→ J0, J j
x0→−x0−−−−→ −J j, J j

xi→−xi−−−−→ (−1)δi jJ j, (115)

and the topological Lagrangian density Lt = −Kd JμJ μ in real time behaves according to

P: Lt
x0→−x0−−−−→ (−1)dLt, Lt

xi→−xi−−−−→ (−1)dLt,

V: Lt
x0→−x0−−−−→ Lt , Lt

xi→−xi−−−−→ Lt. (116)
We immediately observe that this is consistent with the behavior of monopoles (113) only in odd-dimensional d spaces when
the spin is a pseudovector.

One might be concerned whether the symmetry properties of the topological Lagrangian expressed using spinors are the same
as the properties deduced above. In the real-time path integral, this topological Lagrangian transforms as

Lt ∝ εμνλ1...λd−1ψ†∂μ∂ν∂λ1 . . . ∂λd−1ψ
x0→−x0−−−−→ εμνλ1...λd−1 (ψ†T †)∂μ∂ν∂λ1 . . . ∂λd−1 (T ψ ) = εμνλ1...λd−1ψ†

(
T †∂μ∂ν∂λ1 . . . ∂λd−1T

)
ψ

(117)
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under time reversal T . Here, we interpret the transforma-
tion either in the Schrödinger or Heisenberg picture. In
the Schrödinger picture, a simple scalar field transforms
as T ψ (x0, x) = ψ (−x0, x), so that Lt → −Lt as previously
found for monopoles. Interpreted in the Heisenberg picture,
this implies the transformation T †τT = −τ of the singular
operator

τ = εμνλ1...λd−1∂μ∂ν∂λ1 . . . ∂λd−1 . (118)

For spinors that represent a vector field n̂, we apply the time
reversal T on (86). In the Schrödinger picture,

T ψ = T e−iJd−1,d θd−1T † . . . T e−iJ2,3θ2T †. (119)

Since both the angular momentum operators Jab and the fac-
tors of i change sign under time reversal, all rotation operators
e−iJi,i+1θi stay the same apart from θi(x0) → θi(−x0). However,
the reference spinor ψ0 = ψ (0, θ2, θ3, . . . , θd−1) transforms
as T ψ (0, . . . ) = ψ (π, . . . ) in the case of pseudovectors (P),
and T ψ0 = ψ0 in the case of vectors (V). Pseudovector trans-
formations require T γ aT † = −γ a, while vector transforma-
tions are T γ aT † = +γ a; neither one of them affects the rank
2 tensor transformations of the angular momentum (85). After
all manipulations, one finds for pseudovectors

P: T ψ (θ1 . . . , θd−2, θd−1)

= ψ (π − θ1 . . . , π − θd−2, π + θd−1). (120)

Applying the derivatives from Lt on T ψ has the same effect
under time reversal as the transformations we deduced for
the hedgehog Lt . So, generally, the transformations of Lt

expressed in terms of currents and spinors are always the
same. However, this is unusual because the Heisenberg picture
now implies that there is no unique symmetry transforma-
tion for the singular operator (118). T τT † depends on the
dimensionality d and the type of spinor singularities that
this operator is applied to. We conclude that the singular
operator τ does not necessarily have a definite parity under
time-reversal and mirror reflections, i.e., it can have different
parities in distinct Fock subspaces.

The intrinsic dynamics of the system need not feature the
same reduced or broken symmetries as the above topological
term. Then, the topological order, if stable, must be described
by a different topological term L′

t with compatible symme-
tries. We will consider one example of an alternative topolog-
ical term L′

t that can be constructed from the spinor fields.
The degrees of freedom and their topological defects are the
same as before, so we may only couple different currents to
the topological defect current Jμ in L′

t. Consider spin currents
(37) and a pure spin-related topological Lagrangian

L′
t = −Ka2...ad−1

d ja2...ad−1
μ J μ (121)

in real time, whose coupling Ka2...ad−1

d necessarily breaks spin
rotation symmetry. Obviously, this can be useful only if
the spin dynamics actually has reduced symmetry, with two
unbiased spin directions equivalent to U(1). The time-reversal
and mirror reflections of L′

t for pseudovectors (P) and vectors

(V) are found to be

P: L′
t

x0→−x0−−−−→ −(−1)dL′
t ,

L′
t

xi→−xi−−−−→ −(−1)d

[
d−1∏
k=2

(−1)δak ,i

]
L′

t ,

V: L′
t

x0→−x0−−−−→ −L′
t ,

L′
t

xi→−xi−−−−→ −
[

d−1∏
k=2

(−1)δak ,i

]
L′

t .

We see, for example, that L′
t could be appropriate for topo-

logical orders in d = 3 with time-reversal symmetry, which is
absent in the original construction. A similar idea was used in
a two-dimensional setting [41] to describe spin-orbit-coupled
fractional topological insulators. In terms of the spinor fields,
we would write in real time

L′
t ∝ −Ka2...ad−1

d εa0a1a2...ad−1ε
μνλ1...λd−1

×ψ†γ a0γ a1∂μ∂ν∂λ1 . . . ∂λd−1ψ. (122)

Obviously, the symmetries of the possible topological terms
have certain restrictions determined by the nature of fields and
their topological defects. These are reflected on the possible
symmetries of topologically ordered ground states.

VI. TOPOLOGICAL ORDER

The following sections explore the physical properties of
incompressible quantum liquids in which πd−1(Sd−1) topo-
logical defects are abundant and mobile. Section VI A in-
troduces fractionalization of the intrinsic particles’ quantum
numbers. We will show that the topological Lagrangian term
tends to bind a rationally quantized amount of elementary
charge or spin to a mobile topological defect, and analyze
how this fractionalization holds up to perturbations that spoil
the conservation laws. We will find that stable topological
orders can be characterized by “filling factors” associated
with monopoles and hedgehogs, in analogy to fractional quan-
tum Hall states. Section VI B presents a calculation of the
topological ground-state degeneracy on nonsimply connected
manifolds. Section VI C contains a basic discussion of braid-
ing operations, and Sec. VI D considers restrictions imposed
on topological orders by microscopic properties of electrons.
Section VI E discusses soft boundary modes, and Sec. VI F
analyzes response to certain external perturbations.

A. Fractional quasiparticles

Here, we consider fractionalization in an incompressible
quantum liquid whose effective imaginary-time Lagrangian
contains the topological term (78). Fractionalization is re-
vealed by the kinematic relationship between the currents of
charge and topological defects. We will find this relationship
by converting the effective theory to real time and deriving the
stationary action condition from the variations of the Abelian
gauge field Aμ. Apart from the topological term, the relevant
parts of the real-time Lagrangian density that contain Aμ are
collected from (43) and (48), with a substitution κ1 = |ψ |2 to
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fix the units:

L = |ψ |2
2

( jμ + Aμ)( jμ + Aμ) − 1

4e2
1

FμνFμν

− κ ′
2

2

(
Fμν

2
− Aμν

)(
Fμν

2
− Aμν

)
− Kd |ψ |2( jμ + Aμ)J μ + · · · . (123)

Jμ = |ψ |2( jμ + Aμ) is the gauge-invariant charge current
density, Fμν = ∂μAν − ∂νAμ is the electromagnetic field ten-
sor, and Jμ is the current density of topological defects. This
is similar to the recently proposed BF theory [20,29,30,46] in
d = 3, without the linking term. Stationary variations δL = 0
with respect to Aμ produce the following field equation:

Jμ = 1

e2
1

∂νFμν + κ ′
2∂ν

(
Fμν

2
− Aμν

)
+ Kd |ψ |2J μ (124)

if Jμ is just the current of hedgehogs and hence independent
of Aμ. The case of monopoles is more complicated and we will
revisit it later, even though much of this discussion applies to
monopoles as well. Let us focus on the purely kinematic effect

Jμ → Kd |ψ |2J μ. (125)

This describes the binding between particle charge and topo-
logical charge. Excitations must include the composites of
particles and defects. Particle charge is microscopically quan-
tized as an integer in the present formalism, and topological
charge is quantized in the units of q by the integral (10).
In order for both particles and defects to be mobile in a
uniform incompressible quantum liquid, they cannot propa-
gate independently of each other: the Heisenberg uncertainty
principle necessarily localizes one or the other when they
move relative to each other in the same space. These facts
imply that a composite quasiparticle must be a bundle of an
integer number n of particles and an integer number m of
topological defects. Also, the composite quasiparticles must
have hard-core repulsive interactions. Let us define a “filling
factor”

ν = n

m
, n, m ∈ Z (126)

whose rational quantization is a necessary condition for the
stability of an incompressible quantum liquid. If we define a
scalar “magnetic field”

B = J 0 = ε0νλ1...λd−1∂νAλ1...λd−1 , (127)

then we can express the number density of topological defects
as B/q according to (11). Since |ψ |2 is the number density of
particles, we can alternatively write the filling factor as

ν = |ψ |2
B/q

= J0

J 0/q
. (128)

Note that we use the nonrelativistic charge current because the
particle-hole symmetry is broken. Comparing with (125), we
find Kd = B−1, and hence

Jμ → ν

q
J μ. (129)

The topological Lagrangian for hedgehogs (q = Sd−1) can
now be rewritten in real time as

Lt = −( jμ + Aμ) × ν

q
J μ. (130)

A composite bundle of n particles and m topological de-
fects is not an elementary excitation of the incompressible
quantum liquid. Since the topological defect number is con-
served and quantized, one can apply an external field to trap a
single topological defect in a small volume of the system. This
perturbation does not by itself localize the particle charge.
However, the charge fluid will dynamically redistribute to
supply the amount ν of charge to the region where the defect
is localized. This is described by the above field equation.
The resulting charge-defect composite object is an elementary
excitation, which can be also set to free motion. Charge
fractionalization occurs at least when ν < 1. Similarly, one
can localize a quantized conserved particle charge using an
external field. It is evident even without an explicit deriva-
tion that the dynamics of particle and topological charges
is self-dual: both charges are pointlike and governed by the
same symmetries and the duality-invariant topological term.
In the dual description, a localized particle charge is quantized
topologically. It attracts to itself a fractional amount ν−1 of
fluid topological charge, forming a fractional quasiparticle.
We would consider it an elementary excitation if ν > 1.

When particles and defects carry additional internal de-
grees of freedom (e.g., spin), these become fractionalized
too. However, it is up to symmetries to conserve or not
conserve these degrees of freedom. The precise conservation
laws may look different in the two dual descriptions. For
example, the topological charge conservation is guaranteed by
topological protection in any local theory, while the particles’
spin conservation is a matter of symmetry. Perturbations that
break the relevant gauge symmetry of the theory can modify
the field equation (124) and ruin the observable fractionaliza-
tion condition (129) even when the gap of the topologically
ordered state remains open. If such a perturbation is random
(e.g., disorder), then the quantized fractionalization may still
be asymptotically recovered in the long-wavelength limit, for
the fractional quasiparticles that experience the perturbation
only on average.

Let us now analyze the relationship between charge and
monopole currents, made complicated by an implicit depen-
dence of the monopole current Jμ on the gauge field Aμ. To
reveal this dependence, we must integrate out all gauge fields
at ranks n > 1. Substituting

Aλ1...λn = 1

n

n∑
i=1

(−1)i−1∂λi Aλ1...λi−1λi+1...λn + δAλ1...λn (131)

for all n > 1 in Eqs. (48) and (78) and integrating out the
gapped fluctuations of δAλ1...λn leads to a renormalization of
the rank 1 Maxwell term and an effective substitution of Aμ in

J μ = εμνλ1...λd−1∂ν∂λ1 . . . ∂λd−2 Aλd−1 (132)

consistent with the recursive inter-rank linking (18). As dis-
cussed before, the antisymmetrized derivatives have an effect
only on singular functions. The full monopole topological part
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of the stationary action condition for (123) becomes
∂Lt

∂Aμ

∝ −J μ − Aα

∂J α

∂Aμ

(133)

→ −J μ − (−1)d−1εανλ1...λd−2μ∂λd−2 . . . ∂λ1∂νAα

= −J μ + (−1)d−1εμνλ1...λd−2λd−1∂λd−2 . . . ∂λ1∂νAλd−1

= −(1 + (−1)σ+d )J μ = −2 fdJ μ. (134)

We substituted (132) and then carried out integration by parts
(indicated by the arrow) to transfer all space-time derivatives
onto Aα . The index α was subsequently relabeled into λd−1.
At the end, we reordered the indices λd−1, . . . , λ1, ν to recon-
struct J μ given by (132), and this produced the sign (−1)σ :

σ = (d − 2) + (d − 3) + · · · + 2 + 1 = (d − 2)(d − 1)

2
.

(135)

The ensuing kinematic field equation that relates charge and
monopole currents

Jμ → Kd |ψ |22 fdJ μ (136)

is modified by the constant

fd = 1

2
(1 + (−1)σ+d ) =

{
1,

[
d
2

]
is odd

0,
[

d
2

]
is even

(137)

where [x] is the integer part of x. This is merely a renor-
malization of the coupling Kd in spatial dimensions d ∈
{2, 3, 6, 7, 10, 11, . . . }, so we can repeat the previous analysis
to write

Jμ → ν

q
J μ, Lt = −( jμ + Aμ) × ν

2q
J μ (138)

with q = 2π for monopoles. Charge-monopole attachment
in d = 3 is often called Witten effect [42]. However, if d ∈
{4, 5, . . . }, then Jμ → 0 does not mirror monopole currents
and there is no binding of fractional charge to monopoles even
though the ground state can be topologically ordered. This
unusual pattern of dimensionality affecting response functions
has been also found in Ref. [80].

The full topological Lagrangian density of a generic
system can govern both monopoles and hedgehogs with
topological current densities J m

μ and J h
μ , respectively. An

incompressible quantum liquid is characterized by two inde-
pendent “filling factors,” νm for monopoles and νh for hedge-
hogs. Consider the topological Lagrangian density (107)
derived from a single spinor field ψ . In dimensions d ∈
{2, 3, 6, 7, 10, 11, . . . }, the coupling constant Kd is related to
the filling factors by

J0 = Kd |ψ |2
(
J h0 − Sd−1

2d−2πS
J m0

)
= Kd |ψ |2

(
Sd−1

νh
− Sd−1

2d−2πS

2π

νm

)
J0, (139)

from which we conclude

Kd |ψ |2 =
[

Sd−1

(
1

νh
− 1

2d−3S

1

νm

)]−1

. (140)

Therefore, the real-time topological Lagrangian is

Lt = − jμ + Aμ

Sd−1
(

1
νh − 1

2d−3S
1
νm

)(J hμ − Sd−1

2d−1πS
J mμ

)
, (141)

and its complete kinematic field equation is

Jμ = 1

Sd−1
(

1
νh − 1

2d−3S
1
νm

)(J hμ − Sd−1

2d−2πS
J mμ

)
. (142)

Note that νm → ∞ or νh → ∞ correspond to confined
monopoles or hedgehogs, respectively. Additional degrees of
freedom that support topologically protected defects could
give rise to more filling factors.

The independence of monopole and hedgehog filling
factors can be reduced by interactions that tend to bind
monopoles to hedgehogs:

LZ ∝ (
J h

μJ h
μ − αJ m

μ J m
μ

)2
. (143)

The physical origin of such interactions is the Zeeman cou-
pling of magnetic moments to magnetic field. The number of
monopoles bound to hedgehogs, and hence the ratio νm/νh,
is determined dynamically through the strength α of the spin-
orbit coupling. A linear coupling between the monopole and
hedgehog currents is harder to justify: it would enable a direct
conversion of hedgehogs to monopoles, which is forbidden at
least in d = 3 by angular momentum conservation.

The coupling of spin currents to topological defects (121)
is another route to incompressible quantum liquids, when
symmetries allow. The ensuing field equation

Jμ,a2...ad−1 = νa2...ad−1

q
J μ (144)

describes fractionalization of spin degrees of freedom. The
value of the spin-related filling factor can be finite only if
the Spin(d ) symmetry is broken and reduced to U(1). The
residual symmetry still conserves one spin degree of freedom
and enables its fractional quantization (assuming that no
other perturbation spoils the spin conservation law). However,
this symmetry reduction suppresses ordinary hedgehogs. Spin
currents can still couple either to charge monopoles, or to the
monopoles of the surviving spin U(1) degree of freedom in
purely magnetic systems (q = 2π ). The latter gives rise to
spin liquids.

B. Topological ground-state degeneracy on nonsimply
connected manifolds

Topological order in d � 2 can be identified by the
ground-state degeneracy on a nonsimply connected mani-
fold M = Sd−1 × S1 consisting of a (d − 1)-sphere swept
along an orthogonal loop direction. For simplicity, the sphere
and the loop have the same large radius L. Consider a
vector field configuration n̂(x1, . . . xd ) where the coordi-
nates (x1, . . . , xd−1) ∈ Sd−1 live on the sphere and xd ∈ S1

lives on the loop. Since the possible local states of n̂ ∈
Sd−1 span a sphere themselves, we can represent the field
n̂(x1, . . . , xd ) by the spherical angles (θ1, . . . , θd−1) that de-
pend on (x1, . . . , xd ). The topological invariant N of the vector
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FIG. 3. Processes that change the Abelian rank 1 flux 2πN ′ on a 2-torus representation of space. (a) Conserved flux: instantaneously create
a vortex-antivortex pair, drag the vortex around the torus (nonlocal), then annihilate it with the antivortex. (b) Nonconserved flux, a flux line
can tear and terminate with a monopole: create a vortex, afterward create an antivortex, then annihilate the pair (all local). The transformations
of the shown fictitious flux line (thick blue) that do not take place on the torus manifold are not physical processes that need to involve some
energy or time.

field is

N = 1

Sd−1

∮
Sd−1

d−1∏
i=1

dxi ε j1... jd−1 Aj1... jd−1 , (145)

where

Aj1... jd−1 = εk1...kd−1

(d − 1)!

d−1∏
i=1

(sin θi )
d−1−i ∂ jiθki (146)

is given by (28). For any finite N , the angles θi vary at most by
�θi ∼ 2πN on any closed loop of perimeter �x ∼ L around
the sphere, so Aμ1...μd−1 ∝ Ld−1.

The procedure for finding the ground-state degeneracy on
M starts with identifying “fundamental” field configurations
characterized by topological invariants. These are classical
configurations that all cost vanishing energy in the thermo-
dynamic limit. If quantum processes cause tunneling between
these configurations, their classical infinite degeneracy is
lifted down to a finite quantum degeneracy. Smooth local
deformations of a fundamental configuration are gapped in
an incompressible topological quantum liquid, and readily
integrated out only to renormalize the Maxwell coupling
constant. In that sense, we just need to study the spectrum
that arises from the quantum dynamics of the lowest-energy
fundamental configurations. We can even introduce weak
perturbations that adjust the form of the fundamental config-
urations to our liking, as long as the topological gap is not
closed.

So, let the fundamental configurations n̂(x1, . . . , xd ) be
undistorted hedgehogs given by (27), with (θ1, . . . , θd−2,

θd−1)=(θ ′
1, . . . , θ

′
d−2, Nθ ′

d−1) determined only by the spheri-
cal angles θ ′

i of the points on Sd−1. The resulting gauge field
is constant:

Aj1... jd−1 (x1, . . . , xd ) = N

(d − 1)! Ld−1
ε j1... jd−1 . (147)

We now extend the definition of the gauge field to allow its
indices μi to represent all space-time directions:

Aμ1...μd−1 (x0, x1, . . . , xd ) ≡ N

(d − 1)! Ld−1
ε0μ1...μd−1d . (148)

This is the correct extension because it implements flux con-
servation by satisfying a Faraday law:

∂μJμ = 0, (149)

where Jμ = εμνλ1...λd−1∂νAλ1...λd−1 is the topological defect
current density (i.e., flux). Local quantum processes on M
are not able to change the protected topological invariant N ,
but global tunneling (instantons) will introduce some quantum
dynamics for N .

Next, let us similarly set up the U(1) gauge field of charge
currents to

Aμ(x0, x1, . . . , xd ) ≡ N ′

L
δμ,d . (150)

This threads a U(1) flux 2πN ′ through the opening of the
S1 loop. N ′ is quantized as an integer because Aμ = ∂μφ

was obtained in a singular gauge transformation from the
single-valued U(1) phase φ. No local processes can change
N ′ if the flux of Aμ is conserved. However, if the Abelian rank
1 flux is not conserved, then there are local processes shown in
Fig. 3 that can change N ′. This possibility in incompressible
d > 2 quantum liquids, e.g., with deconfined monopoles, was
discussed in Sec. IV C. We will first construct a Hamiltonian
that describes only global flux tunneling, and eventually patch
it to take into account any locally caused N ′ fluctuations.

In d > 2, the topological Lagrangian term (78) takes the
form

Lt = i Kd |ψ |2(∂μθ + Aμ)εμνλ1...λd−1∂νAλ1...λd−1

→ i Kd |ψ |2εμνλ1...λd−1 Aμ∂νAλ1...λd−1

= i Kd |ψ |2
Ld (d − 1)!

(−1)dενλ1...λd−1dε0λ1...λd−1d N ′∂νN

= i Kd |ψ |2
Ld

(−1)d N ′∂0N (151)
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after integrating out the residual phase θ . At this point, taking
the time derivative of an integer N is sensible because the
actual quantization N/Ld vanishes in the thermodynamic limit
L → ∞. If we substitute the gauge fields in the rest of the
Lagrangian density

L = 1

(d − 1)!

1

2e2
1

(
εμ1...μd−1νλ∂νAλ

)2

+ 1

2e2
d−1

[
εμνλ1...λd−1∂νAλ1...λd−1

]2 + Lt , (152)

and integrate out the spatial coordinates on M, we obtain the
Lagrangian in which N and N ′ are canonical coordinates:

L =
∫

dd x L

= 2πSd−1

[
Ld−2 1

2e2
1

(∂0N ′)2

+ 1

Ld−2

1

2e2
d−1

(∂0N )2 + i(−1)d Kd |ψ |2N ′∂0N

]
. (153)

Here, the quantization of N, N ′ becomes a significant feature.
This theory can be understood only as the “continuum limit”
of a more accurate compact theory that we will construct in
the end. From the corresponding real-time Lagrangian

L = 2πSd−1

[
Ld−2 1

2e2
1

(∂0N ′)2 + 1

Ld−2

1

2e2
d−1

(∂0N )2

− (−1)d Kd |ψ |2N ′∂0N

]
we can obtain the canonical momenta:

P = δL

δ∂0N
= 2πSd−1

[
∂0N

Ld−2e2
d−1

− (−1)d Kd |ψ |2N ′
]
,

P′ = δL

δ∂0N ′ = 2πSd−1
Ld−2

e2
1

(∂0N ′), (154)

and the Hamiltonian

H = P(∂0N ) + P′(∂0N ′) − L = (P − αN ′)2

2M
+ P′2

2M ′ ,

where the “masses” are

M = 2πSd−1

e2
d−1

1

Ld−2

L→∞−−−→
d>2

0, (155)

M ′ = 2πSd−1

e2
1

Ld−2 L→∞−−−→
d>2

∞. (156)

The canonical momentum shift coefficient

α = −(−1)d 2πSd−1Kd |ψ |2 (157)

is determined by the hedgehog filling factor:
α

2π
= −(−1)d Sd−1

ν

q
= −(−1)dν (158)

based on the discussion in Sec. VI A. We interpret the Hamil-
tonian H as a quantum-mechanical operator whose spectrum
determines the topological ground-state degeneracy of in-
compressible quantum liquids on M. The canonical coordi-
nate operators have eigenvalues N, N ′ ∈ Z, so their canonical

conjugate operators have eigenvalues P, P′ ∈ (−π, π ). This
means that the Hamiltonian must be properly regularized at
high energies into a compact form, to treat P and P + 2π as
the same state:

H = t + t ′ − t cos(P − αN ′) − t ′ cos(P′). (159)

A vortex “line” N ′ �= 0 threaded through the S1 opening
of M = Sd−1 × S1 can occasionally drift through S1. Such
instanton events connect different classical ground states and
affect the kinetic energy E ∼ P′2 in the Hamiltonian H .
Since the Maxwell coupling constants en are not allowed
to depend on the system size, the “masses” for d > 2 have
extreme behaviors t ∼ M−1 → ∞ and t ′ ∼ M ′−1 → 0 in the
thermodynamic limit L → ∞. However, this picture includes
only the global instanton processes. If the Abelian rank 1 flux
is not conserved in the incompressible quantum liquid, then
local tunneling processes introduce N ′ fluctuations. It is clear
from the symmetries that such processes merely renormalize
t ′ to a finite value. Still, t � t ′ allows us to diagonalize H
perturbatively.

First consider the unperturbed problem t ′ = 0, which is
also physically relevant when the Abelian rank 1 flux is con-
served. The unperturbed ground-state energy does not depend
on the eigenvalue of P′. Any superposition of P′ eigenstates is
a Hamiltonian eigenstate, including the eigenstates of N ′. Fix-
ing N ′ also completely determines the eigenvalue of P in the
ground state because t → ∞. The ground-state degeneracy is
infinite given that the smallest possible ground-state energy
E0 = 0 is obtained with P = αN ′ (mod 2π ) for every N ′ ∈ Z.
If α is quantized as

α

2π
= ±ν = p

q
, p ∈ Z, q ∈ Z/{0}, (160)

then P takes one of the q possible discrete values in any
degenerate ground state. Otherwise, if α/2π is irrational, the
values of P span the entire continuous interval (−π, π ) across
all ground states. The latter indicates frustration, which can be
illustrated in a quantum phase transition from a Mott insulator
(with nonconserved topological charges) to an incompressible
quantum liquid characterized by quantum numbers P and N ′.
The system must pick some values of P and N ′ at the transi-
tion. If the system enters a state with an arbitrary eigenvalue
of P, it also needs to find the matching N ′ in order to not
pay energy that scales as Ld−2 with the system size L. The
matching N ′ for an irrational α/2π is generally infinite and
arbitrarily far away from the established N ′ in the system’s
original state. Fine tuning P is equally difficult. Without a
dynamics that can make either P or N ′ fluctuate (t ′ → 0), the
system is stuck in a metastable state with high energy. There
is probably a better conventional state that resolves metasta-
bility and has lower energy. On the other hand, a rational
α/2π = p/q leaves behind only a finite set of P eigenvalues
in the degenerate ground states, each of which corresponds to
an infinite set of matching N ′ values spaced by q. This is much
less frustration, especially if q is small, and gives the system a
good chance to enter a topologically ordered state across the
quantum phase transition.

Now consider a perturbation 0 < t ′ � t in the absence
of the Abelian rank 1 flux conservation. Its main effect is
to lift the macroscopic degeneracy of states labeled by N ′.
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The instanton Hamiltonian turns into a Hofstadter problem,
with a finite q-fold ground-state degeneracy for α/2π = p/q.
The Hofstadter gaps are of the order of t ′, and the band-
widths are dominated by t . Note that the instanton spectrum
is completely discrete in d > 2: the upper cutoff for N is
of the order of L/a, where a is the lattice spacing of the
microscopic crystal, so that the quantization of P is of the
order of 2πa/L and the quantization of instanton energy levels
inside a Hofstadter band is roughly t × 2πa/L ∼ Ld−3.

Certain aspects of this topological order have classical
character. First of all, the Abelian flux conservation with
t ′ = 0 produces infinite ground-state degeneracy; a separate
topological sector is defined for every classical configuration
of vortices threaded through the manifold opening. Even if
t ′ > 0 in the absence of flux conservation, the scaling
t ∼ Ld−2 creates macroscopic energy barriers in the instan-
ton spectrum E (P) between the remaining q-fold degenerate
ground states. Instanton and local fluctuations at finite tem-
peratures have energy δE ∼ T � t that is not sufficient to
change a topological sector. Therefore, the d > 2 topological
order survives at finite temperatures, until the rank d − 1 flux
conservation fails.

It is instructive to compare the classical topological order
for α/2π = p/q in d > 2 with the d = 2 topological order
of quantum Hall states. When the latter is analyzed on a
S1 × S1 = T 2 torus, one finds two integer canonical variables
N ≡ N1 and N ′ ≡ N2 of the same type, having the same finite
mass M. The corresponding canonical momenta are similarly
shifted in the Hamiltonian

H = (P − αN ′)2

2M
+ (P′ + αN )2

2M

→ t − t
∑
i=1,2

cos(Pi − αεi jNj ), (161)

but, since there is only one finite mass, the Hamiltonian al-
ways describes motion of a particle on a lattice in the presence
of an external magnetic flux α. The ensuing Hofstadter prob-
lem produces a finite q-fold ground-state degeneracy, with
finite-energy barriers between the ground states. Therefore,
the d = 2 topological order is fundamentally shaped by quan-
tum processes and does not survive at any finite temperature.

Monopoles can establish the same πd−1(Sd−1) topological
orders as hedgehogs on the manifold M = Sd−1 × S1, but
their deconfinement implies the Abelian flux nonconservation
at rank 1. If the monopole gauge field configuration Aμ1...μd−1

carries a nontrivial topological charge inside the opening of
Sd−1,

N = 1

2π

∮
Sd−1

d−1∏
i=1

dxi εμ1...μd−1 Aμ1...μd−1 , (162)

then the field configuration on M cannot be smoothly de-
formed to change N . Any attempt to smoothly change N
would have to start with a local deformation of the fields at
some x ∈ S1 that creates a nonzero flux divergence ∂μJμ �= 0
across the Sd−1 submanifold at x. This monopole front at x
would need to be gradually swept across the entire S1 sub-
space (by changing x) in order to bring the desired monopole
charge difference δN from infinity into the interior opening of
Sd−1 where the existing charge N sits. The entire procedure

is prohibited because the dynamics of incompressible quan-
tum liquid maintains ∂μJμ = 0 and the monopole front
would cost infinite energy. Nevertheless, N is quantized be-
cause the monopole must bring its unobservable Dirac string
through M.

The dynamics of monopole topological sectors is analo-
gous to that of hedgehogs. Repeating the above derivation
in d ∈ {2, 3, 6, 7, 10, 11, . . . } dimensions for monopoles and
hedgehogs combined leads to the instanton Hamiltonian on
M = Sd−1 × S1 up to a constant:

H = −th cos(Ph − αhN ′) − tm cos(Pm − αmN ′) − t ′ cos(P′)

with

αh

2π
= −(−1)dνh,

αm

π
= −(−1)dνm. (163)

Both νh and νm must be quantized as rational numbers in
stable topologically ordered phases.

The topological degeneracy of the ground states on a torus
T d = (S1)d can be obtained similarly because the topological
invariants of monopoles and hedgehogs are protected on
(S1)d−1 just as well as on Sd−1. Instanton dynamics is captured
by the Hamiltonian

H = −
∑

i

[
th cos

(
Ph

i − αhN ′
i

)
+ tm cos

(
Pm

i − αmN ′
i

)+ t ′ cos(P′
i )
]
,

where a set of canonical coordinates N ′
i , Nh

i , Nm
i ∈ Z and the

corresponding canonical momenta P′
i , Ph

i , Pm
i ∈ (−π, π ) are

defined for every torus direction i ∈ {1, . . . , d}.
Finally, we comment on the topological ground-state de-

generacy in pure spin systems without charge degrees of
freedom. The spin current and the non-Abelian gauge field
coupled to it cannot be topologically quantized in d > 2
because every n̂ configuration of the vector field on S1 is
smoothly deformable to any other configuration (the integer
quantization of N ′ in the instanton Hamiltonian is lost). The
spin-only topological Lagrangian density (121) “knows” this,
and anticipates dynamics in which the spin symmetry is
reduced to U(1), hence, enabling the topological quantization
of the remaining conserved current, and monopolelike topo-
logical orders.

C. Quantum entanglement and braiding

A defining feature of topological order is long-range
quantum entanglement that makes it impossible to smoothly
deform the ground state into an unentangled product state.
Here, we discuss a few aspects of entanglement in the
πd−1(Sd−1) topological orders of monopoles and hedgehogs,
mostly focusing on d = 3 dimensions. Some entanglement
manifestations are topologically protected and thus immune to
all smooth gap-preserving deformations of the Hamiltonian.
They sharply characterize the topological order in all cir-
cumstances. Other entanglement manifestations may be only
dynamically protected by the finite-energy gap of the topolog-
ically ordered state. They can depend on the symmetries and
Hamiltonian details, can be altered by the presence of gapped
excitations, and may be prone to having nonquantized readout
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values. Nevertheless, they still characterize topological order
under certain conditions.

Ground-state degeneracy on nonsimply connected mani-
folds, unrelated to symmetry breaking, is the basic manifesta-
tion of entanglement in every topologically ordered phase. A
Hamiltonian with a gapped topologically degenerate spectrum
cannot be smoothly transformed (without crossing a quantum
phase transition) into a topologically trivial Hamiltonian H0 =
H1 + H2 + · · · whose ground state |0〉 = |1〉 ⊗ |2〉 ⊗ · · · is
unentangled in terms of microscopic degrees of freedom
1, 2, . . . and hence nondegenerate (every factor |n〉 can in-
dependently minimize its corresponding Hamiltonian’s Hn

energy). The basic characterization of topological entangle-
ment is a map N (M) which evaluates to the ground-state
degeneracy on any given manifold M.

A topological quantum computer can implement qubits
with isolated topologically ordered systems whose ground-
state degeneracy is N . The established topological sector q ∈
{1, 2, . . . , N} of a qubit’s quantum state or thermal ensem-
ble in d � 3 is the stored quantum information that enjoys
topological protection. The state of a qubit can be changed
externally by global braiding processes of the kind shown
in Fig. 3. Multiple qubits can be entangled on purpose by
performing correlated braiding operations on them.

Beyond these basics, a topological order may be character-
ized by additional topologically protected features. Quantum
Hall liquids in d = 2 dimensions are sharply characterized by
the “exchange statistics” of fractional quasiparticles (anyons),
or more accurately by the U(1) or higher internal-symmetry-
group rotations of the many-body quantum state in braiding
operations that exchange quasiparticles’ positions. Exchang-
ing identical particles in d > 2 dimensions is topologically
protected only within two homotopy classes of braiding tra-
jectories, allowing a sharp distinction between only bosonic
and fermionic exchange statistics [59]. We will show later
that various aspects of d > 2 braiding are still dynamically
protected and possibly interesting for quantum computing.
But, first we wish to identify the topologically protected
braiding.

Generally, a braiding of excitations in a quantum state
|�(v)〉 is generated by some external time-dependent pertur-
bation G(t ) to the Hamiltonian H . The excitations may have
some internal degrees of freedom specified by a finite complex
vector v. We can express the effect of braiding using the
matrix W (t ) acting on v for which

v′ = W v,

〈�(v′)|U |�(v)〉 ≡ 〈�|W̄ †U |�〉 = 1 (164)

holds, where U = ∏
t e−i(H+G)dt is the time-evolution opera-

tor. In the case of Abelian braiding W̄ = eiϕ , we have

〈�|U |�〉 = eiϕ. (165)

The calculation of ϕ, or W in general, proceeds by the stan-
dard construction of a path integral where the time parameter
t is broken up into infinitesimal increments dt . Any aspect
of the action of G that involves many degrees of freedom
can be evaluated classically using the saddle-point approx-
imation. The simplest braiding involves pushing the point
quasiparticles on paths x(t ) with G(t ) = p dx(t )/dt , where

the canonical momentum operator p generates movement. In
the adiabatic limit, only the gauge field part of p matters and
produces the Aharonov-Bohm phase A dx in every braiding
step. Similar movement of multidimensional excitations gives
rise to generalized Aharonov-Bohm phases at higher ranks
of the gauge theory. The formalism for this is derived in
Appendix F.

The generalization of anyon braiding to d > 2 is the topo-
logically protected braiding of point quasiparticles p with
(d − 2)-dimensional excitations (“loops”) l . All variations of
such braiding are topologically equivalent to the enclosure of
p inside the closed (d − 1)-dimensional braiding trajectory
Sd−1 of l relative to p. The many-body quantum state collects
the entire quantized Aharonov-Bohm phase at rank d − 1
from the quantized defect bound to p. However, it turns out
that only monopoles can produce nontrivial Aharonov-Bohm
effects that characterize topological order. The topological or-
ders of hedgehogs are scrambled, and possibly characterized
by some other data.

How do the hedgehogs scramble their topological orders?
The πd−1(Sd−1) topological orders studied in this paper at-
tach the rank 1 charge to the gauge flux at a different rank
d − 1 in d > 2 dimensions. Therefore, nontrivial Aharonov-
Bohm effect is possible only if the gauge fields at different
ranks are coherently linked. Indeed, rigid linking (46) is
established within the Abelian gauge field hierarchy that de-
scribes monopoles. For example, Aμ in d = 3 is coerced into
1
2 (∂μAν − ∂νAμ) = Aμν by linking, and couples the charge
current to the monopole Aμν �= 0 via a jμAμ Lagrangian
density term. In contrast, inter-rank links within the non-
Abelian hedgehog hierarchy (56) involve an additional field
n̂ of spins. Abundant spin fluctuations in incompressible
quantum liquids spoil the correlations between the gauge
fields at different ranks (assuming the full spin symmetry).
Specifically, Aa

μ in d = 3 does not have extended correlations
on any large loop. Therefore, hedgehogs do not produce a
coherent spin Aharonov-Bohm effect, and similarly they lack
an intrinsic correlation with the Abelian gauge fields for the
charge Aharonov-Bohm effect. Hedgehogs can still experi-
ence nontrivial braiding indirectly if they bind monopoles.

At least, we can make progress by characterizing braiding
in monopole quantum liquids. In d = 3 dimensions, the el-
ementary excitations amenable to braiding are particles and
loops. The former are tied to rank 1 currents jμ and arise from
Witten effect [42], while the latter are tied to rank 2 currents
jμν and shaped by magnetoelectric effect (see Sec. VI F).
Braiding is Abelian, and the braiding phase (165) for the
particle-particle, particle-loop, and loop-loop braiding shown
in Fig. 4 is calculated in Appendix G, assuming monopole
filling factors ν = 1/n:

particle-particle “exchange” . . . ϕ
∗= 1

2πν,

particle-loop braiding . . . ϕ = 2πν,

loop-loop braiding . . . ϕ
∗= 0.

An asterisk above the equality sign indicates the absence
of topological protection. Only the particle-loop braiding is
topologically protected with ϕ = 2πν. Generalizing to hi-
erarchical states at other filling factors is straightforward
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FIG. 4. Braiding of elementary excitations in d = 3 dimensions:
(a) particle-particle, (b) particle-loop, (c) loop-loop. Only (b) is
topologically protected. One excitation (red) is kept fixed, while the
other one sweeps a closed trajectory. Simulated exchange of two
particles is a half of the process depicted in (a).

within the K-matrix formalism discussed in Sec. VI D. One
would hope that non-Abelian particle-loop braiding is also
possible in appropriately modified effective theories since the
monopole quantum liquids have much in common with quan-
tum Hall liquids and the latter have non-Abelian varieties [81].
Nontrivial topologically protected braiding of two and three
loops has been explored in various models [27,55–58], and
some discussions of non-Abelian quasiparticle braiding have
also appeared in the literature [82,83].

The remainder of this section analyzes the dynamically
protected braiding. One can simulate an exchange of two
identical fractional quasiparticles by driving them in a plane
on semicircular paths about their center of mass. In the sim-
plest case, the braiding phase is ϕ = 1

2πν for d = 3 monopole
liquids with ν = 1/n. It is calculated from the “field-induced”
corrections (caused by the topological Lagrangian term) to the
total rank 1 Aharonov-Bohm phase πν of the two particles.
This comes with a problem: the rank 1 Aharonov-Bohm phase
due to a monopole is affected by the attached Dirac string,
and hence gauge dependent. This issue is resolved by the
emergent spin of fractional quasiparticles, which we discuss
later. Identifying ϕ with an exchange statistical phase does
not make sense for multiple reasons. Mainly, ϕ is not topolog-
ically protected (topological protection is hidden only in the
amount of gauge flux attached to a particle). Modifications of
the braiding particle trajectories can change the value of ϕ,
even smoothly.

But, let us assume that we can put the particles on “fixed
rails” and drive them on accurate rigid trajectories. Now, ϕ

appears topologically quantized, unless some perturbations
or excitations cause bending of the gauge field lines created
by the braided particle’s charges and monopoles. This can
alter the gauge fluxes through the loops formed by particle
trajectories and modify the Aharonov-Bohm phase. Never-
theless, there is a dynamical protection mechanism against
this: if the Hamiltonian is perfectly symmetric, then the field-
line bending costs finite energy; all excitations are gapped.
Random disorder and neutral fluctuations will average out and
have a hard time spoiling the braiding phase if the braiding
trajectories are large enough.

Braiding operations are also not unique, and can be state
dependent. Different braiding operations generated by Gi,
i = 1, 2, . . . , in Eq. (165) can transform a given initial state
of two identical quasiparticles into the same final state (up to
a braiding phase), but generally produce different final states
from an arbitrary initial one. Consider π rotations of two

quasiparticles generated by
∫

dt G = πLn̂, where L is the
total angular momentum operator. Rotations about the center
of mass always exchange the locations of two quasiparticles,
but produce different final states depending on the rotation
axis n̂ if the quasiparticles have spin. Specifically in this
case, one can limit the π rotation to unentangled angular
momentum eigenstates of two identical particles: the lack
of entanglement makes the particles independent, and the
restriction to an eigenstate of Ln̂ is guaranteed to modify the
state only by a phase. Since the unentangled state of two spins
has the maximum possible eigenvalue of Ln̂, it is easy to see
that the braiding (165) by such a π rotation reproduces the
statistical phase ϕ of microscopic particles according to the
spin-statistics theorem. In the case of fractional quasiparticles,
the π rotation will also pick the field-corrected Aharonov-
Bohm phase due to attached monopoles.

Differences between exchange-simulating braiding op-
erations are another reason to not identify braiding with
exchange. However, these differences, and dynamically
protected braiding in general, can characterize topological
order in a given fixed set of dynamical conditions. For ex-
ample, if one ensures certain symmetries, a temperature well
below the gap scale, good isolation from the environment,
etc., then it is possible to probe topological order by dynam-
ically protected braiding. Hedgehog and monopole quantum
liquids have different “exchange” braiding due to different
Aharonov-Bohm effects. The difference between rotational
and irrotational braiding can reveal the role of spin in the
quantum entanglement.

A charge-monopole bound state, or a dyon, has emergent
spin. The spin angular momentum is stored in the electro-
magnetic field of the charge-monopole pair, as we review in
Appendix H. The quantum dynamics of this spin resolves the
naive gauge dependence of the monopole-induced Aharonov-
Bohm effect: the spin fixes the gauge. We show in Appendix I
that one must calculate the braiding Aharonov-Bohm phase
using the rank 1 gauge field that obtains when the monopole’s
Dirac string is oriented in the same/opposite direction as its
spin, so that the charge currents that try to screen out the
string generate a magnetic dipole moment consistent with the
spin. This directly applies to unfractionalized dyons, which
contain one unit of electric and magnetic charge, and carry
the elementary unit S = 1

2 of spin. In the case of fractional
dyons, one needs to solve a difficult Schrödinger equation for
an entire set of entangled dyon partons in order to determine
how their internal degrees of freedom form the total properly
quantized angular momentum.

Can the hedgehog quasiparticles experience fractional
braiding given that they lack an Aharonov-Bohm phase?
While we do not have a rigorous answer here, we cannot find
obvious obstacles to fractional and even non-Abelian braid-
ing. A necessary ingredient are internal degrees of freedom.
Suppose we inject an electron into a topologically ordered
liquid. When this electron breaks up into n fractional quasipar-
ticles, the partons must remain entangled in the total angular
momentum state identical to the original electron’s spin, even
as they fly far apart. Clearly the partons must have some
internal degrees of freedom. The long-range entanglement
is necessarily protected because the physical dynamics can
change the total charge and spin of the system only locally
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in integer amounts. The outcome of braiding operations (165)
can depend on the joint state of all quasiparticles that the
braided ones are entangled with, and a state-dependent braid-
ing can be non-Abelian. Everything said so far applies equally
to fractional dyons because they have emergent spin.

How can this enable fractional braiding? Suppose that
the ground state breaks time reversal but respects rotational
symmetry. If the π rotation about an axis n̂ induces a braiding
phase ϕ(n̂), then the time reversal of that braiding induces
ϕ′ = −ϕ(n̂). The latter is equivalent to the rotation about
−n̂, i.e., ϕ′ = ϕ(−n̂). Broken time reversal allows −ϕ(n̂) �=
ϕ(n̂) (mod 2π ), but the ensuing ϕ(−n̂) �= ϕ(n̂) (mod 2π ) is
inconsistent with rotational symmetry for generic fractional
phases ϕ. The rotational bias needed for fractional braiding
can exist in the entangled (spin) state of excited quasiparticles.

D. Microscopic particle operators and hierarchical states

The effective theory L of an incompressible quantum
liquid must be able to produce an excitation with the charac-
teristics of an electron. This introduces additional restrictions
on the hedgehog νh and monopole νm filling factors, beyond
their rational quantization that enables stable topological or-
ders. It also constrains long-range quantum entanglement and
correlation among fractional quasiparticles.

In the absence of monopoles, a fractional quasiparticle
attaches charge νh to a hedgehog quantum. A Laughlin-type
fractionalization νh = 1/n with n ∈ Z reproduces a physical
particle as a composite of n fractional quasiparticles. The
gauge fields of hedgehogs carry no angular momentum and
do not generate any Aharonov-Bohm phases. Therefore, the
simplest composite particle of charge e = 1 is a spinless
boson. In order to reconstruct spin S = 1

2 , we must have two
flavors ↑ and ↓ of fractional quasiparticles. The causality
of the microscopic Lorentz-invariant dynamics requires that
the particles with spin S = (2n + 1)/2 be fermions and those
with S = n bosons. Since we cannot obtain fermionic statis-
tics from Aharonov-Bohm phases, we must impose it at the
operator level: the current operators

Jμ = − i

2
[ψ†(∂μψ ) − (∂μψ†)ψ] + Aμψ†ψ (166)

in the effective theory must be constructed using complex
fields ψ in the case of bosons, and Grassmann fields in the
case of fermions. The fractional quasiparticles can themselves
be fermions whose composites become physical fermionic
particles. Then, νh = 1/n is restricted to odd n in the case
of fermions, and even n in the case of bosons (at least when
the fractional quasiparticles are represented as fermions).
Other rationally quantized values of νh must be obtained by
hierarchical constructions.

The field theory of incompressible quantum liquids admits
hierarchical states with multiple flavors of fractional quasi-
particles. We can express the dynamics of such states using
the formalism developed for quantum Hall liquids. Let us
introduce the fractional quasiparticle field operators ψn and
charge currents

jn,μ = − i

2
[ψ†

n (∂μψn) − (∂μψ†
n )ψn] (167)

for each flavor n = 1, . . . , Nf. The operators ψ†
n , ψn, which

create and annihilate a fractional quasiparticle, must be either
complex or Grassmann as required by their compatibility with
the exchange statistics of microscopic particles. They can
exist only in local combinations that protect the quantization
of charge and spin. The currents jn,μ are minimally coupled
to emergent rank 1 gauge fields an,μ. Every flavor has its
own hierarchy of singular configurations, ultimately leading
to a gauge field an,λ1...λd−1 of monopoles or hedgehogs at
rank d − 1. The effective Lagrangian density of fractional
quasiparticles contains Maxwell and linking terms for the
flavor gauge fields at all ranks, and a generalized topological
term that takes the following real-time form in the case of
hedgehogs (replace Sd−1 with 4π for monopoles):

L′
t = 1

Sd−1
εμνλ1...λd−1

[∑
n,m

Knman,μ∂νam,λ1...λd−1

+
∑

m

qmAμ∂νam,λ1...λd−1 +
∑

n

qnan,μ∂νAλ1...λd−1

]
−
∑

n

jn,μan,μ. (168)

Integrating out all flavor gauge fields reproduces the La-
grangian density (130) with an emphasized gauge coupling
of the physical charge current:

Lt = − ν

Sd−1
εμνλ1...λd−1 Aμ∂νAλ1...λd−1 + AμJμ. (169)

If we collect all coefficients Knm ∈ Z into a matrix K , qn ∈ Z
into a vector q, and jn,μ ∈ Z into a vector jμ, then the filling
factor ν and physical charge current are

ν = qT K−1q, Jμ = qT K−1 jμ. (170)

The K matrix and “charge” vector q specify a hierarchi-
cal incompressible quantum liquid. Elementary quasiparticles
correspond to integer quanta of the flavor currents. Setting
jn,0 to a combination of integers and calculating J0 reveals
the fractional charges carried by quasiparticles.

Capturing the electron’s spin in an effective theory requires
a basic hierarchical construction. The simplest fractionaliza-
tion of a spin S = 1

2 electron via hedgehogs is represented
by

K =
(

m 0
0 m

)
, q =

(
1
1

)
(171)

with an odd m and fermionic fractional quasiparticles. All
operators are allowed to change charge and spin only by an
integer (multiple of e and h̄, respectively), so that a group of m
fractional quasiparticles created from a single electron retains
long-range entanglement. We can specify the nature of spin
entanglement with an additional “spin” vector s that defines
the spin of fractional quasiparticles:

S = 1
2 sT K−1 j0. (172)

For example, consider

s =
(

m
−m

)
, s′ =

(
1

−1

)
. (173)
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The first case s describes fractional quasiparticles that indi-
vidually carry spin S = 1

2 and keep a group entangled state
with total spin S = 1

2 . This is compatible with fermionic
quasiparticle statistics. The second case s′ corresponds to
a fractionalized spin, still permissible since the usual spin-
statistics theorem, deduced from local causality, cannot be
justified for nonlocally entangled fractional quasiparticles.
The description of braiding statistics involving internal de-
grees of freedom will be postponed for future study. This
will require additional data to specify the braiding operation
details because such statistics is not topologically protected.
The general structure of braiding operations discussed in
Sec. VI C admits a non-Abelian statistics.

The fractionalization by monopoles in d = 3 dimensions
is more complicated than the fractionalization by hedgehogs.
When pointlike dyons with electric and magnetic charges
(ei, mi ), i = 1, . . . , N , are treated classically (Appendix H),
the quantization of electromagnetic angular momentum re-
duces to Schwinger-Zwanziger condition

(∀ i, j) eimj − e jmi ∈ Z. (174)

Incompressible quantum liquids with Laughlin-type
monopole filling factors νm = 1/n, n ∈ Z are consistent
with (174). These liquids break time-reversal symmetry. An
electronlike object made from n fractional dyons is itself a
dyon that carries a unit charge and n monopoles. For odd n,
the total angular momentum of the composite dyon and
its electromagnetic field can be L = 1

2 , depending on its
internal state. It has been argued that such dyons behave
as fermions under exchange in agreement with the
spin-statistics theorem [43,44], although the presence of
monopoles makes them nonlocal objects and complicates the
causality-based relationship between their spin and exchange
statistics.

A different possible electron fractionalization involves
fractional quasiparticles with electric and monopole charges
(e, m) ∈ {( 1

2 , 1), ( 1
2 ,−1), (− 1

2 , 1), (− 1
2 ,−1)}. This obtains

from

K =
(

2 0
0 2

)
, q =

(
1

−1

)
(175)

at νm = 1, and satisfies (174). Consider a composite par-
ticle ( 1

2 , 1) + ( 1
2 ,−1) made from a flavor-1 quasiparticle

and flavor-2 quasihole. This is a charge e = 1 object with
no net monopole charge that could produce unconventional
Aharonov-Bohm phases. The monopole and antimonopole
can form a magnetic dipole that carries a nonzero magnetic
moment. Furthermore, if the electric charge is displaced from
the monopoles, the composite will carry a quantized spin an-
gular momentum. A composite particle ( 1

2 , 1) + ( 1
2 ,−1) has

two charges e1 = e2 = 1
2 and two monopoles m1 = −m2 = 1.

If we arrange e1, m1 to sit at the position r/2 and e2, m2 to sit
at −r/2, then the total angular momentum is

L = 1
2 r̂.

This follows from the classical derivation in Appendix H, but
we shall assume that it holds quantum mechanically as well.
The composite particle effectively carries spin S = 1

2 , and
hence behaves as a fermion under any π -rotation exchange.

The composite particle is also a magnetic dipole, with dipole
moment m = 2πr obtained from the total magnetic field of
the two monopoles:

B(x) = 2π

(
x − r

2∣∣x − r
2

∣∣3 − x + r
2∣∣x + r

2

∣∣3
)

≈ 2π
3x̂(x̂r) − r

|x|3
(176)

for |r| � |x|. A relativistic fermion of mass me has mag-
netic moment |m| = 1/2me according to the Dirac equation.
This sets the average distance |r| = 1/4πme between the
two monopoles of the composite to roughly a half of the
Compton length. A physical electron in vacuum cannot be
modeled this way because its Compton length λC ∼ 10−12 m
is much larger than its size. However, an effective electron in
a correlated solid-state material has renormalized properties
in addition to being localized and sized with uncertainty of at
least one lattice constant a > 10−10 m. Therefore, this model
can provide an adequate construction of an electron operator
in the effective theory.

The states like (175) with S = 1
2 dipoles can be frac-

tionalized into even smaller partons. One approach involves
monopole clustering. Consider

K =
(

2n2 0
0 2n2

)
, q =

(
1

−1

)
(177)

with n ∈ Z and νm = 1/n2. This state breaks time-reversal
symmetry, unless monopoles are strictly bound into n-tuplets
by some force [30]. A generally time-reversal-invariant varia-
tion with νm = 0 is

K =
(

2n2 0
0 −2n2

)
, q =

(
1
1

)
. (178)

Schwinger-Zwanziger condition (174) imposes restrictions on
the actual elementary dyons that could make up an electron.
Assume the existence of a composite fractional quasiparti-
cle (e, m) = (1/n, 0) in the spectrum. Then, an elementary
dyon must be a bound state of n fundamental quasiparticles,
i.e., (e, m) = (1/2n, n). All elementary dyons are compatible
with one another, but must not be fractionalized into funda-
mental quasiparticles. The quasiparticle (e, m) = (1/n, 0) =
(1/2n, n) + (1/2n,−n) is a bound-state dipole of two ele-
mentary dyons, and hence is compatible with them. Combin-
ing n such dipoles together, with odd n, can reconstitute an
electronlike particle with total electric charge 1, spin S = 1

2 ,
and finite dipole moment. As explained earlier, this object
has fermionic statistics under exchange. Similarly, even n
describes best the fractionalization of bosonic spin singlets or
magnons into fermionic spinons. Note that the electromag-
netic response captured by the axion term θ = 2π (νm + 1

2 )
with νm = 1/n2 (the 1

2 shift comes from a quantum anomaly,
see Sec. VI F) is equivalent to θ = π/n2 for odd n, and
θ = 0 for even n, within the periodicity �θ = 2π/n2 due to
monopole clustering [30].

An interesting and probably more stable fractionalization
of (175) into smaller partons is

K =
(

2n2 0
0 2n2

)
, q =

(
n

−n

)
(179)
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with n ∈ Z and νm = 1. There is no need for a separate
mechanism to bind the fundamental fractional partons: the
microscopic particles are bound into n-tuplets prior to frac-
tionalization. The elementary quasiparticle charge is ±1/2n
just like in the monopole clustered states (177).

Spin systems without charge degrees of freedom can host
topologically ordered phases if the Spin(d ) symmetry is re-
duced to U(1). This precludes the formation of hedgehogs,
but allows the formation of spin monopoles in the residual
U(1) order parameter. The dynamics of the low-energy spin
U(1) degree of freedom and its monopoles are necessarily
controlled by the same type of effective theory that we ana-
lyzed in the context of charge dynamics. Therefore, we can
apply the same constructions of monopole topological orders
to gapped spin liquids.

The simplest gapped spin liquid is the resonant valence
bond (RVB) state with Z2 topological order [84]. It obtains
when electrons localized on a lattice form spin singlets with
their neighbors, and the singlets fail to crystallize due to
quantum fluctuations. Breaking a singlet creates a particle-
antiparticle pair of two neutral S = 1

2 spinons, which can
drift far apart at a finite-energy cost. None of the topological
orders considered so far, applied to quantum paramagnets,
reproduce exactly these excitations. The states (177) and (179)
contain elementary dyons with a fraction of the S = 1

2 angular
momentum unit for every n, and reproduce spinons only as
magnetic dipole bound states of multiple dyons. Also, they
have two independent flavors of spinons and their antipar-
ticles instead of one (multiflavored spinons occur in some
frustrated magnets, e.g., on the pyrochlore lattice). We can
alternatively construct general single-flavor topological orders
K = (n), q = (l ) with monopole clusterization into c-tuplets.
The elementary quasiparticles (e, m) = (lc/n, c) carry spin
S = em/2 = 1

2 if n = lc2, at the filling factor νm = l2/n =
l/c2 (l, c ∈ N, n = 2k, k � 1). This is still not a basic RVB
spin liquid: the spinon is a dyon, a source of gauge flux (a
2D equivalent would be a spinon-vison bound state). There-
fore, the gapped spin liquids obtained here are fundamentally
different from the spin liquids of short-range singlets; they
are made, instead, from magnetic moments that remain well
defined at some finite coarse-graining length scales.

E. Transverse response and boundary states

The topological Lagrangian term describes a steady-state
response of rank 1 charge currents to rank d − 1 gauge fields.
The response is linear even though the bulk is insulating, so
it implies the existence of soft boundary modes. This is the
natural generalization of the quantum Hall effect to higher
dimensions. Let us focus on the kinematic field equations
(129) in real time:

Jμ = ν

q
J μ = ν

q
εμνλ1...λd−1∂νAλ1...λd−1 . (180)

We can rewrite this as

Jμ = ν

q

e2
d−1

d!
εμλ1...λd Eλ1...λd (181)

using the “electromagnetic” field tensor Eλ1...λd , which is the
canonical conjugate momentum to the rank d − 1 gauge field

(E2) derived in Appendix E:

Eλ1...λd = (d − 1)!

e2
d−1

d∑
i=1

(−1)i−1∂λi Aλ1...λi−1λi+1...λd . (182)

The system already has an implanted scalar “magnetic” field
B = J 0, and we can similarly define an “electric” field
Ej1... jd−1 :

B = ε0νλ1...λd−1∂νAλ1...λd−1 = e2
d−1

d!
ε0λ1...λd Eλ1...λd ,

Ej1... jd−1 = ∂0Aj1... jd−1 −
d−1∑
i=1

∂ ji A j1... ji−10 ji+1... jd−1

= e2
d−1

(d − 1)!
E0 j1... jd−1 .

It can be shown that the “electric” field Ej1... jd−1 accelerates
the particles which carry rank d − 1 currents with canonical
momentum π j1... jd−1 . We can further obtain the spatial compo-
nents of the topological current (61) J i = εi0 j1... jd−1 Ej1... jd−1 ,
and rewrite (181) as

J0 = ν

q
B, Ji = ν

q
εi0 j1... jd−1 Ej1... jd−1 . (183)

This response is characterized by a fractionally quantized
transverse charge conductivity

σ i j1... jd−1 = Ji

E j1... jd−1

= ν

q
ε0i j1... jd−1 . (184)

Analogous consideration of the spin-current topological La-
grangian (121) leads to a transverse spin conductivity

σ i j1... jd−1;a1...ad−2 = Ji;a1...ad−2

Ej1... jd−1

= νa1...ad−2

q
ε0i j1... jd−1 , (185)

whose quantization has the same symmetry-dependent fate as
the spin fractionalization discussed in Sec. VI A.

Linear response conductivities (184) and (185) indicate the
presence of soft modes in the spectrum. Such modes can live
only at the boundary of a perfectly homogeneous system when
its bulk is gapped. A boundary B always corresponds to a
violation of translational symmetry. The density π0λ1...λn−1 of a
rank n matter field θλ1...λn−1 will generally be inhomogeneous
at the system boundary and hence introduce electric fields
Ej1... jn at the boundary in order to satisfy the Gauss law (E2).
This also holds at the highest rank n = d − 1. If we assume
for simplicity that the spatial inhomogeneity is expressed
only in the direction b ⊥ B perpendicular to the boundary,
we find that ∂ jE jk1...kn−1 �= 0 has a solution Ebk1...kn−1 �= 0 near
the boundary. Then, (184) implies charge currents Ji �= 0
near the boundary in all directions i ‖ B parallel to the
boundary. These currents exist in equilibrium and changing
them infinitesimally requires only an infinitesimal change
of the “electric” or “magnetic” field, which costs arbitrarily
small amount of energy. Hence, some gapless boundary states
must be available to carry these currents. A detailed study of
these boundary states in fractional incompressible quantum
liquids is left for future work, and below we give only some
qualitative remarks about their properties.
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The transverse response has a definite sense of chirality,
so it prevents the backscattering of currents on the system
boundary. The boundary spectrum is gapless in the absence
of perturbations that break the gauge symmetry. Note that
an ordinary (rank 1) electric field, either externally applied
or internally generated by disorder, cannot by itself cause
backscattering and open a gap. The equilibrium electric field
is pinned to zero in the bulk of an incompressible quantum liq-
uid, by screening via the mobile boundary charges. Otherwise,
the transverse response equation would predict the existence
of bulk equilibrium charge currents that can be infinitesimally
changed by infinitesimal perturbations, which would require
gapless bulk excitations.

The gapless boundary modes that produce a Lorentz-
invariant linear response (183) or (184) necessarily have a rel-
ativistic spectrum. Therefore, the boundary spectrum contains
chiral relativistic Dirac points.

F. Electromagnetic response in three dimensions

Incompressible quantum liquids in d = 3 dimensions have
unconventional electromagnetic properties when monopoles
proliferate and bind charge. Here, we briefly explore the
fractional magnetoelectric effect and Faraday/Kerr effect.
These properties arise from the Abelian part of the Lagrangian
density (48) combined with the topological term (138) in real
time:

L = |ψ |2
2

( jμ + Aμ)( jμ + Aμ) − 1

16π ē2
1

FμνFμν

− κ ′
2

2

(
Fμν

2
− Aμν

)(
Fμν

2
− Aμν

)
− 1

8π ē2
2

(
εμνλ1λ2∂νAλ1λ2

)(
εμαβ1β2∂

αAβ1β2
)

− νm

4π
Aμεμνλ1λ2∂νAλ1λ2 . (186)

We redefined the Maxwell couplings e2
n = 4π ē2

n in order to
facilitate the switch to the commonly used Gaussian units.
Integrating out Aμν renormalizes the rank 1 Maxwell term and
carries out the replacement

Aμν → 1
2 Fμν = 1

2 (∂μAν − ∂νAμ) (187)

in the topological Lagrangian density:

Lt = − νm

4π
εμναβ (∂μθ + Aμ)∂νAαβ

→ νm

8π
εμναβ (∂νAμ)Fαβ

= − νm

16π
εμναβFμνFαβ

= − νm

8π
F̃μνFμν. (188)

The arrow indicates integration by parts, and

F̃μν = 1
2εμναβFαβ (189)

is the dual electromagnetic field tensor.
We have previously emphasized the emergent gauge fields

that collect topological defects from the matter fields through

singular gauge transformations. However, the rank 1 gauge
field also includes the physical electromagnetic U(1) gauge
field. The derivations in Secs. II and IV A indicate that the
emergent gauge field Aμ should be simply absorbed into
the physical gauge field Aem

μ , and the combined gauge field
should appear in all terms of the effective theory. The coupling
of the final renormalized Maxwell term, which involves the
combined field, defines the physical charge unit e. When we
change the path-integral variables to relabel the combined
gauge field into Aμ − eAem

μ → −eAμ, we obtain the usual
Gaussian form of the effective Lagrangian density:

L = |ψ |2
2

( jμ − eAμ)( jμ − eAμ) − 1

16π
FμνFμν + Lt,

Lt = −e2νm

8π
F̃μνFμν = e2νm

2π
EB. (190)

The electric E and magnetic B fields

F i0 = Ei, F i j = −εi jkBk (191)

are the physical fields shifted by the emergent fields of the
incompressible quantum liquid.

Let us first explore the low-energy electrodynamics in the
bulk of an incompressible quantum liquid. If we rewrite the
field equation (124) using the charge density and current
density components of Jμ = e(ρ, j), we obtain in Gaussian
units

ρ = 1

4π
∇E + ανm

2π
∇B,

j = 1

4π

(
∇ × B − ∂E

∂t

)
− ανm

2π

(
∇ × E + ∂B

∂t

)
, (192)

where α = e2/h̄c (h̄ = c = 1) is the fine-structure constant.
The usual conservation law is satisfied for the total currents

∂ρ

∂t
+ ∇j = 0. (193)

Equations (192) include both the emergent and physical
gauge fields, and likewise the background and induced charge
currents. Note, however, that the corrections proportional to
νm come only from the emergent gauge field with compact
regularization because the physical gauge field obeys Ampere
and Faraday laws. When no external electromagnetic fields
are applied, the background current (ρ0, j0) = ( ανm

2π
∇B, 0) is

related only to the emergent gauge field. We will subtract
this background and reinterpret (192) below as a relationship
between the induced currents and perturbed electromagnetic
fields. Even though field perturbations are driven externally,
they still include the contribution of the emergent gauge fields
due to fractional charge-monopole attachment.

If there is no induced current flow (j = 0) or charge density
(ρ = 0) in the bulk, we find

E = −2ανmB + ∇ × α,

[1 + (2ανm)2]B − 2ανm∇ × α = ∂α

∂t
+ ∇α0. (194)

The parameter αμ = (α0,α) can be considered a “dual” gauge
field. When ∇ × α = 0, the electric field has no curl and
becomes proportional to the magnetic field, with a fractionally
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quantized proportionality constant 2ανm. This is magneto-
electric effect: an applied electric field will induce magneti-
zation, and an applied magnetic field will induce polarization.
The induced magnetization and polarization are captured here
through a bulk emergent electromagnetic field, but actually
originate from the physical response at the system boundary.
Most generally, the absence of currents ρ = 0, j = 0 relates
the full electromagnetic field to the “dual” gauge field αμ:

E = 1

1 + (2ανm)2

[
(∇ × α) − 2ανm

(
∂α

∂t
+ ∇α0

)]
,

B = 1

1 + (2ανm)2

[
2ανm(∇ × α) +

(
∂α

∂t
+ ∇α0

)]
.

An electromagnetic wave α ∝ ei(kx−ωt ), α ⊥ k, α0 = 0,

−iE = k × α + 2ανmωα

1 + (2ανm)2 ,

−iB = 2ανm(k × α) − ωα

1 + (2ανm)2 (195)

only has a Faraday-rotated polarization inside the system by
the angle arctan(2ανm), but otherwise propagates conven-
tionally with dispersion k2 = ω2 (polarization effects due to
bound charges are not included in this analysis). In the pres-
ence of static current flow, we obtain an anomalous Ampere
law:

4π j = [1 + (2ανm)2](∇ × B). (196)

It should be pointed out that the response derived here is a
classical approximation that works best in the limit |νm| � 1.
Otherwise, quantum corrections are significant. The part of
the action St = ∫

dt d3x Lt obtained from (188) is topologi-
cally quantized [85,86], so that all aspects of electromagnetic
response are ultimately functions of exp(2π iνm).

Relationships and phenomena analogous to the magneto-
electric effect can also be derived for spin currents in the
cases of topological orders governed by (121). However, such
phenomena involve the emergent non-Abelian gauge field at
rank 1, without an external physical counterpart that could
be manipulated experimentally. At least, the monopole-related
magnetoelectric effect can arise from the spin-orbit coupling
when monopoles are bound to hedgehogs via Zeeman effect.

Now, consider the contributions to electrodynamics from
higher-energy degrees of freedom, which are beyond reach
of the fractionalization effective theory. This response may
be subject to a quantum anomaly, depending on the details
of the microscopic particle dispersion. A quantum anomaly
represents the absence of a Lagrangian density symmetry
in the regularized action’s integration measure. Therefore,
the response due to a quantum anomaly cannot be obtained
from a stationary action condition and must be extracted
by integrating out fields in the path integral. The quantum
anomaly of three-dimensional topological systems can lead to
a correction of the topological term

�Lt = θ

(2π )2
EB, (197)

which effectively yields the shift νm → νm + θ/2π in the
response field equations. However, all aspects of topological

order, such as fractionalization, are shaped at low energies and
determined by the original unshifted filling factor νm because
the quantum anomaly is a high-energy regularization feature.

VII. CONCLUSIONS, POSSIBLE PHYSICAL
REALIZATIONS, AND FUTURE DIRECTIONS

In this paper, we have established the existence of stable
incompressible quantum liquids with topological order in
general d-dimensional systems of spinor fields. Independent
topological orders can be driven by the fluctuations of hedge-
hogs and monopoles. They generalize fractional quantum
Hall states in many ways, but also have novel properties
in d � 3 dimensions. We calculated the topological ground-
state degeneracy, and showed that it survives all sufficiently
weak perturbations even when all other common signatures of
topological order become washed out. The topological orders
in d � 3 are sharply defined phases at low finite temperatures,
in contrast to quantum Hall liquids in d = 2 dimensions. Free
topological defects can bind fractional amounts of charge or
spin, but the ultimate sharp quantization of fractional quantum
numbers also depends on symmetries and can be spoiled. We
presented a preliminary discussion of the long-range entangle-
ment in these topologically ordered phases, and considered
fractional braiding operations. We also briefly explored the
characteristic topological responses of these unconventional
states, including the anticipated fractional magnetoelectric
and Kerr effects.

There are many important questions left for future re-
search. First of all, the phenomenology of quantum entangle-
ment in d � 3 dimensions should be explored in great detail.
The present analysis did not identify topologically protected
braiding data that characterize the scrambled topological or-
ders of hedgehogs. We also argued in Secs. VI C and VI D
that the nonlocal entanglement of electron’s spin among
multiple fractional quasiparticles can give rise to nontriv-
ial dynamically protected braiding operations, possibly non-
Abelian despite the fact that the topological orders discussed
here are Abelian (the topologically protected particle-loop
braiding is Abelian). This conclusion was based on general
considerations regardless of the dimensionality d � 2, and
awaits a mathematical description in concrete terms (e.g., a
classification of nontrivial spin entanglement and operations
due to the quantum motion of hedgehogs in fractionalized
d = 3 chiral magnets). Non-Abelian dynamically protected
braiding of spin could perhaps provide a fertile platform for
universal topological quantum computing given the ability to
externally manipulate and measure magnetic moments, and
the three-dimensional space to perform braiding operations.

Another obvious subject left for future research is the
nature of soft boundary modes in d � 3 topologically ordered
phases. We have only rudimentarily established the existence
of such modes and their Dirac-type spectra, but it would be
extremely interesting to fully understand the consequences
of bulk fractionalization on the boundary dynamics. Among
anticipated phenomena [20,30,87–92] are surface topological
order, fractional parity anomaly, etc. This is also important
for practical reasons because the boundary modes are acces-
sible to experiments. A deeper analysis of unconventional
bulk responses to external probes is also important, and new
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ideas are needed to envision unambiguous methods to detect
topological order and measure its properties.

Undoubtedly, it would be interesting to construct micro-
scopic models that realize some of the topological orders
considered here. Solving such models would be difficult in
d > 2 dimensions, especially in the continuum limit. Lattice
models will be more tractable, especially in the context of
monopoles: d = 3 Hamiltonians analogous to the Hofstadter
problem in d = 2 can be readily constructed and perhaps
analyzed numerically in the strongly interacting regime. Such
models, however, are not realistic and would serve mainly as a
proof of concept. More realistic models would need to feature
frustrated spin dynamics, and would be much harder to solve.
At least, such models can be constructed by the requirement
that their continuum limit reduce to the theory considered
here. It should be pointed out that a lattice formulation of
dynamics introduces its own constraints on topological orders
by limiting the topological charge that can be stored and
preserved in a finite volume.

This paper was focused on the essential phenomenology
of topological order. Forthcoming sequel papers will focus
on making connections between the fundamental picture pre-
sented here and concrete topological materials. It will be
shown that the highest rank gauge flux of the hedgehog and
monopole gauge fields is directly related to a Berry flux
in momentum space. In other words, there is a generaliza-
tion of the famous Thouless-Kohmoto-Nightingale-den Nijs
(TKNN) formula [93] to all homotopy classes πn(Sn), and the
present theory provides a universal real-space description of
the known d = 3 topological materials. Another forthcoming
study will explore the dynamics of spins in the presence of
spin-orbit coupling and possible mobile electrons. Its purpose
is to provide the bridge to microscopic models of magnetic
topological materials, and lay down a more concrete founda-
tion for the phenomenological picture of hedgehog dynamics
presented here.

The candidate materials that might realize some of the frac-
tional states we discussed include chiral magnets and strongly
correlated topological insulators or semimetals. Specifically,
chiral magnets can be related to incompressible quantum
liquids of hedgehogs in the same manner as superconductors
are related to fractional quantum Hall liquids. A type-2 su-
perconductor can host gapped localized vortex defects, which
form an Abrikosov lattice in an externally applied magnetic
field. If quantum fluctuations melt this lattice, e.g., because
vortices become almost as dense as particles, then the ensuing
quantum vortex liquid state is naturally a fractional quantum
Hall liquid [94]. By analogy, the topological defects of a
d = 3 magnet are hedgehogs, which can form a lattice in
a chiral magnetically ordered phase [50]. Quantum melting
of such a hedgehog lattice could produce a topologically
ordered quantum liquid of the kind analyzed in this paper.
Note that even a truly periodic magnetic order with hedgehogs
in a microscopic crystal is interesting for this scenario; its
U(1) analog would be the quantum melting of a commensu-
rate vortex lattice in a crystal, which produces a Hofstadter
spectrum and still enables quantum Hall or Chern insulator
states. Related structures of magnetic topological defects are
skyrmion lattices in d = 2 dimensions [95], although they
are not topologically protected against quantum fluctuations.

There are currently no known chiral magnets that approach
the quantum limit, but some may be close.

Existing d = 3 topological insulators are already incom-
pressible quantum liquids of hedgehog topological defects,
albeit without topological order. In this sense, they are anal-
ogous to integer quantum Hall liquids. The topological states
analyzed in this paper generally break the time-reversal and
mirror symmetries, so additional provisions are required to
implement the nontrivial topology with time-reversal symme-
try. We anticipate that this requires a lattice formulation of the
theory, in the same sense as it is possible to construct a time-
reversal-invariant quantum “Hall” state by pushing a magnetic
π flux through every lattice plaquette. Strong interactions are
then also needed to stabilize topological order with fractional
charged quasiparticles. Interactions are strong in quantum
Hall liquids due to the flatness of the Landau-level bands.
Approximate band flatness can also be achieved in d = 3
systems, but this is not a necessary condition for topological
order. Some interacting Weyl and Luttinger [19] semimetals,
characterized by similar Berry fluxes as topological insulators,
can perhaps become unstable in the presence of interactions or
additional degrees of freedom such as magnetic moments. If
an energy gap opens in the energy vicinity of the semimetal’s
nodal points, then the Berry flux is not removed but only
redistributed. Hence, it is possible to obtain a topological
insulator, perhaps even with topological order and fractional
excitations.

Spin liquids are another system of interest in the context
of this work, but this is not a new story [53]. The theory
presented here regards spin liquids as phases of purely mag-
netic degrees of freedom with U(1) symmetry, and hence
sharply distinguishes them from the similar phases that (also)
involve charge. Topological order involves attaching spin to
the monopoles of an emergent U(1) gauge field, and the
simplest fractional quasiparticle is a fermionic spinon. The
U(1) spin liquid in d = 3 dimensions [52,53], with gapped
matter and monopoles but gapless photons, is the Abelian
version of the phase we labeled C1H2 in Sec. IV C. If one
identified topological order by the conservation of abundant
topological defects, then the U(1) spin liquid would not have
it. A d = 3 topological order is present only in the phases we
labeled C1T2, which are fully gapped and generalize quantum
Hall liquids. These phases can either break or respect the time-
reversal (TR) symmetry, and may be characterized as “chiral”
and Zn [23,30] spin liquids, respectively. Nevertheless, we
found in Sec. VI D that spin-monopole attachment produces
gapped spin liquids that have fundamentally different excita-
tions than the resonant valence bond spin liquids. Also related
to these are symmetry-protected topological (SPT) phases of
bosonic degrees of freedom in magnets [46].

Quantum spin-ice materials like Tb2Ti2O7, Pr2Sn2O7,
Pr2Zr2O7, NaCaNi2F7 are promising candidates for realizing
U(1) spin liquids [33,96], and possibly also topological orders
with spin-monopole attachment. The essential low-energy
Hamiltonian describes their dynamics as a compact U(1)
gauge theory [52]. The deconfined phase of this model is a
stable U(1) spin liquid. A more realistic model may need to
include spin interactions generated by the spin-orbit coupling
[97,98]. If such interactions are strong enough, topological
order also becomes an option. The spin-orbit coupling is
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generally able to stimulate the appearance of point topolog-
ical defects, even in purely spin systems (to be shown in
a forthcoming paper). The role of matter field is played by
the spins themselves in the spin-ice materials, so the gauge
“charge” can be accumulated simply by applying an external
magnetic field. When both “charge” and “monopoles” are
present in the ground state, there is a chance that interactions
may bind them into fractional quasiparticles. The ensuing
topologically ordered phase could perhaps be experimentally
seen as an incompressible magnetization plateau state in a
nonsaturating magnetic field, with gapless neutral modes at
the crystal boundary.

Charge fractionalization in quantum chromodynamics (QCD)

At the end, we entertain the possibility that the fractional
quantization of quarks’ charge in atomic nuclei could be a
glimpse of a topological order discussed in this paper. Such
a view is different than the traditional standard model picture
of quarks as elementary particles, but it has appealing fea-
tures. We will assume that fundamental quarks are elementary
fermions that have the SU(3) color “charge” and carry the
same unit e = 1 of the electric U(1) charge just like electrons.
This fits the essential idea raised in this paper that gauge fields
emerge from the dynamics of topological defects, hence, all
elementary particle fields coupled to the same gauge field
should carry the same charge. The integer charge assignment
considered here is color independent and different from the
Han-Nambu assignment [99,100].

How and why can the charge of fundamental quarks frac-
tionalize into the observed amounts 2

3 and − 1
3 for “up” and

“down” quarks, respectively? For simplicity, we can work
with the most basic QCD Lagrangian density [101]

L = ūi�Du + d̄ i�Dd = q̄Li�DqL + q̄Ri�DqR (198)

of massless u and d quarks, where�D = γ μ(∂μ − iAμ) is the
Dirac operator gauged with all the gauge fields that quarks
couple to, and

qL = 1 − γ 5

2
q, qR = 1 + γ 5

2
q (199)

are the left-handed (L) and right-handed (R) isospin quark
spinors qT = (u, d ). The chirality γ 5 = iγ 0γ 1γ 2γ 3 is a good
quantum number for ungauged massless Dirac fermions,
which leads to the conservation of isospin singlet and triplet
chiral currents

jμ5 = q̄γ μγ 5q, jμ5a = q̄γ μγ 5τ aq (200)

at the classical level. Here, τ a are the isospin SU(2) genera-
tors (a ∈ {1, 2, 3}). However, the Adler-Bell-Jackiw quantum
anomaly [102,103] breaks the conservation of chiral currents
in the gauge theory. Specifically, the “up” and “down” isospin
flavors independently experience the same chiral anomaly:

∂μ jμ5a = − e2

32π2
δa,3εμναβFμνFαβ. (201)

This response can be equivalently reproduced from a topolog-
ical Lagrangian term [80]. Therefore, a quantum anomaly is
related to the topological Berry flux of a gapped state; opening
up a gap creates a topological insulator. Indeed, spontaneous

and explicit chiral symmetry breaking in the full QCD gaps
out all quarks, mesons, and baryons. The momentum-space
Berry flux corresponds to a nonzero background flux of a
hedgehog/monopole rank 2 gauge field in real space. The
topological insulator of Dirac fermions is invariant under
time reversal, so one cannot collect a finite Berry flux in
a band from the plain momentum-space spin texture of all
states. A finite Berry flux is extracted from the spin helicity
σp̂ of chiral currents instead of charge currents. Since the
chirality and helicity of a massless positive-energy Dirac
particle are identical, the chiral Berry flux (the difference of
the Berry fluxes of left-handed and right-handed particles) is
positive in the “conduction” band and each particle of positive
chirality is matched by a spin hedgehog. The chirality of a
negative-energy particle is opposite from its helicity, implying
a negative chiral Berry flux in the “valence” band. But, an
antiparticle is then again matched by a spin hedgehog (created
by the removal of an antihedgehog).

We can now consider what might be happening inside a
proton. As a color-neutral object, a proton must be made
from three quarks. However, we assume that the fundamental
quarks have electron’s unit charge, and then we need two
e = +1 quarks and one e = −1 antiquark. Being relativistic
Dirac fermions, these particles bring three hedgehogs into the
makeup of a proton. The hedgehogs intrinsically match the
chiral currents, but since a fundamental quark carries both
charge and chirality, we can equivalently associate charge to
hedgehogs. We assume that the strong nuclear force com-
presses the quarks into such a small volume that the distance
between them does not exceed the confinement length of
hedgehog-antihedgehog pairs (which must be finite in the
QCD ground state, or else quarks themselves would be de-
confined). This is enough for a proton to become a droplet
of an incompressible quantum liquid. Figure 5 depicts an at-
tachment of the two positive unit charges to three hedgehogs,
which creates three u quarks as fractional quasiparticles with
charge 2

3 . One of these u quarks forms a tight bound state
with the remaining fundamental antiquark, thus producing a
d quark with charge − 1

3 . This is a more complex composite
object than the u quark, hence naturally more massive and
less stable. We can similarly envision the emergence of a
neutron, starting from the stable particles that a free neutron
decays into. First, we fractionalize the positive charge and
form three u quarks just as in the case of a proton. Then,
we convert two u quarks into d quarks by binding with the
available negative unit charges. The schematic model does not
do justice depicting the spin and color distribution among the
nucleon constituents. Note that the hedgehogs associated with
the electron and neutrino do not directly couple to the quarks
and should not contribute to quark fractionalization.

Of course, more analysis is needed to verify this picture.
For example, why should the hedgehogs attach to and frac-
tionalize only the positive-charge fundamental quarks? This
seems to involve a sort of Cooper pairing between positive
fundamental quarks prior to fractionalization (mediated by
the third quark?). The answer is hidden in the details of
dynamics. Locally, the proton’s matter breaks the particle-
antiparticle symmetry, so a bias in the flux-particle attachment
is not surprising, and, it is even important for the stability
of topological order. The effective topological Lagrangian Lt
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FIG. 5. Fractionalization toy models of a proton (a) and a neutron
(b). The assumption is that quarks fundamentally have the same
charge unit as electrons, but the strong nuclear force causes charge
fractionalization by compressing quarks to relative distances smaller
than the topological defect confinement length. The relevant topolog-
ical defects are spin hedgehogs and U(1) monopoles bound to them.
They emerge from the relativistic nature of Dirac fields and prolif-
erate in the ground state due to the chiral/axial quantum anomaly.
The actual u and d quarks are seen as fractional quasiparticles of
an incompressible quantum liquid droplet where particle/antiparticle
symmetry is locally broken.

describing this situation in protons could have the form (168)
with

K =
⎛⎝3 0 0

0 3 0
0 0 3

⎞⎠, q =
⎛⎝ 2

2
−1

⎞⎠, (202)

and ν = 3. The fractional quasiparticle flavors correspond to
three color states. The fractional charges in different colors

are ( 2
3 , 2

3 ,− 1
3 ) according to (170), and ν = 3 reflects the

degeneracy of color states (there is one Dirac fermion state
per hedgehog in a “band,” for each color and spin; a “band”
is not fully populated at least due to spin degeneracy, so the
incompressibility requires certain short-range repulsive inter-
actions between fundamental quarks). Note that Lt written in
(168) breaks parity P and time-reversal T, but stays invariant
under PT, so it does not violate any symmetry of the standard
model. A topological term that respects P and T can also
be constructed by inserting a chirality iψ̄γ 5ψ factor in the
definition of Lt. As a matter of principle, if the fractionaliza-
tion proposal is correct, it might be possible to obtain other
charge fractions in different circumstances, constrained by
color neutrality. Quark-gluon plasmas might exist in many
varieties of topologically ordered incompressible quantum
liquids, perhaps as rich as fractional quantum Hall states.
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APPENDIX A: HEDGEHOG GAUGE FIELD

Here, we derive (28) from (25) using the representation
(27) of the vector field n̂(x) in terms of angles θ1, . . . , θn,
where n = d − 1 for notational convenience. The derivatives
of n̂a are

∂ n̂a

∂θb
= n̂aXa,b, Xa,b = cot θb δb�a − tan θb δb,a+1

(here, the repeated index a is not summed over) so that the
antisymmetric gauge field tensor (25) is

Aμ1...μn = 1

n!
εa0a1...an n̂a0

n∏
i=1

∂ n̂ai

∂xμi

= εa0a1...an

n!
n̂a0

n∏
i=1

∂ n̂ai

∂θbi

∂θbi

∂xμi

= A εa0a1...an

n∏
i=1

Xai,bi

∂θbi

∂xμi

, (A1)

where

A = 1

n!

n∏
j=1

cos θ j (sin θ j )
n+1− j . (A2)

Since all indices ai are different, their values are all possible permutations ai = P (i) of (0, 1, . . . , n). Similarly, bi = P(i) are all
possible permutations of (1, . . . , n). The parity (−1)P of a permutation P is εa0a1...an , and the parity (−1)P of a permutation P is
εb1...bn . Then,

Aμ1...μn = A
∑
P

(−1)P
n∏

i=1

XP (i),bi

∂θbi

∂xμi

= A
∑
P

(−1)P
∑

P

n∏
i=1

XP (P−1(i)),i
∂θP(i)

∂xμi

= A
∑

P

(−1)P
∑
P−P

(−1)P−P
n∏

i=1

X(P−P)(i),i
∂θP(i)

∂xμi

=
[

A
∑
P ′

(−1)P
′

n∏
i=1

XP ′(i),i

]
εb1...bn

n∏
i=1

∂θbi

∂xμi

= A det(X ) × εb1...bn

n∏
i=1

∂θbi

∂xμi

. (A3)
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We also introduced a permutation P ′ ≡ P − P of (0, . . . , n) given by P ′(i) = P (P−1(i)) for i �= 0 and P ′(0) = P (0), whose
parity is (−1)P

′ = (−1)P (−1)P. Finally, we interpreted the expression in the square brackets as the determinant of the
(n + 1)-dimensional matrix X :

det(X ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 X0,1 X0,2 · · · X0,n−1 X0,n

1 X1,1 X1,2 · · · X1,n−1 X1,n

1 X2,1 X2,2 · · · X2,n−1 X2,n

1 X3,1 X3,2 · · · X3,n−1 X3,n
...

...
...

. . .
...

...
1 Xn−1,1 Xn−1,2 · · · Xn−1,n−1 Xn−1,n

1 Xn,1 Xn,2 · · · Xn,n−1 Xn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − tan θ1 0 0 · · · 0 0
1 cot θ1 − tan θ2 0 · · · 0 0
1 cot θ1 cot θ2 − tan θ3 · · · 0 0
1 cot θ1 cot θ2 cot θ3 · · · 0 0
...

...
...

...
. . .

...
...

1 cot θ1 cot θ2 cot θ3 · · · cot θn−1 − tan θn

1 cot θ1 cot θ2 cot θ3 · · · cot θn−1 cot θn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∏

i=1

1

cos2 θi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0 0 0
1 cot θ1 0 0 · · · 0 0 0
1 cot θ1 cot θ2 0 · · · 0 0 0
1 cot θ1 cot θ2 cot θ3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
1 cot θ1 cot θ2 cot θ3 · · · cot θn−2 cot θn−1 0
1 cot θ1 cot θ2 cot θ3 · · · cot θn−2 cot θn−1 cot θn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∏
i=1

1

cos2 θi
cot θi =

n∏
i=1

1

sin θi cos θi
.

Substituting in Eq. (A3) yields the formula (28):

Aμ1...μn =
n∏

j=1

cos θ j (sin θ j )n+1− j

sin θ j cos θ j

1

n!
εb1...bn

n∏
i=1

∂θbi

∂xμi

=
n∏

j=1

(sin θ j )
n− j 1

n!
εb1...bn

n∏
i=1

∂θbi

∂xμi

. (A4)

APPENDIX B: NON-ABELIAN MAXWELL TERMS IN THE EFFECTIVE LAGRANGIAN

The rank n gauge field obtained from the vector field n̂ by a singular gauge transformation (39) is

Aan+1...ad−1
λ1...λn

= 1

n!
εa0...ad−1 n̂a0

n∏
i=1

(
∂λi n̂

ai
)
. (B1)

Smooth infinitesimal deformations

n̂ → n̂ + δn̂ (B2)

generate gauge transformations of Aan+1...ad−1
λ1...λn

that must leave invariant the rank n Maxwell term in the Lagrangian density:

LMn = 1

2g2
n

J an+1...ad−1
μ1...μd−n

J an+1...ad−1
μ1...μd−n

. (B3)

Here, we determine the form of the gauge fluxes J an+1...ad−1
μ1...μd−n required by gauge invariance. It is immediately apparent that the flux

cannot be a plain curl of the gauge field since it acquires a nonzero correction under a gauge transformation:

δ
(
εμ1...μd−nλ0λ1...λn

∂λ0
Aan+1...ad−1

λ1...λn

) = 1

n!
εa0...ad−1εμ1...μd−nλ0...λn δ

n∏
i=0

∂λi n̂
ai = 1

n!
εa0...ad−1εμ1...μd−nλ0...λn

n∑
j=0

(
∂λ j δn̂a j

) 0...n∏
i �= j

∂λi n̂
ai . (B4)

The same correction can be obtained from a quadratic form of (B1), so the gauge-invariant flux can be
expressed as

J an+1...ad−1
μ1...μd−n

= εμ1...μd−nλ0...λn

⎡⎣∂λ0
Aan+1...ad−1

λ1...λn
−

[ n−1
2 ]∑

k=0

f an+1...ad−1b1...bd−k−2c1...cd−n+k−1

d,n,k Ab1...bd−k−2
λ0...λk

Ac1...cd−n+k−1
λk+1···λn

⎤⎦ (B5)

using a suitable set of structure constants f . The bounds for the integer k exhaust all possibilities for the quadratic gauge
field combinations without repetitions. The structure constants must be antisymmetric at least under any exchange among the
a indices, the b indices, and the c indices. The total number of indices in f is 3d − 2n − 4. We require J an+1...ad−1

μ1...μd−n = 0 at
all nonsingular points in space-time; a singularity gauge field (B1) should have a nonvanishing flux only at the positions of
singularities in the field configuration n̂. This is a necessary condition for gauge invariance. A sufficient condition is obtained
by also requiring that the flux transform only as a locally rotating tensor under gauge transformations. This will be achieved by
simply ensuring a proper tensor structure for the flux. The necessary condition implies the following δJ an+1...ad−1

μ1...μd−n = 0 behavior
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under gauge transformations at nonsingular points:

δJ an+1...ad−1
μ1...μd−n

= εμ1...μd−nλ0...λn

⎧⎨⎩ 1

n!
εa0...ad−1 δ

n∏
i=0

∂λi n̂
ai −

[ n−1
2 ]∑

k=0

f an+1...ad−1b1...bd−k−2c1...cd−n+k−1

d,n,k

(k + 1)!(n − k)!

× δ

[(
εb1...bd

n̂bd−k−1

k∏
i=0

∂λi n̂
bd−k+i

)(
εc1...cd

n̂cd−n+k

n∏
i=k+1

∂λi n̂
cd−n+i

)]⎫⎬⎭ = 0.

After some relabeling of upper indices,

δJ an+1...ad−1
μ1...μd−n

= εμ1...μd−nλ0...λn

⎧⎨⎩ 1

n!
εa0...ad−1 δ

n∏
i=0

∂λi n̂
ai −

[ n−1
2 ]∑

k=0

f an+1...ad−1b1...bd−k−2c1...cd−n+k−1

d,n,k

(k + 1)!(n − k)!

× εb1...bd−k−1a0...ak εc1...cd−n+kak+1...an

(k + 1)!(n − k)!
δ

(
n̂bd−k−1 n̂cd−n+k

n∏
i=0

∂λi n̂
ai

)⎫⎬⎭ = 0.

The antisymmetry under any λi ↔ λ j exchange imposes antisymmetric exchanges among a0 . . . an in the structure constant f
term (any contributions symmetric under ai ↔ a j cancel out). The indices bd−k−1 and cd−n+k of the n̂ components without
derivatives are not present in the structure constant. If bd−k−1 �= cd−n+k , then the two ε factors (which carry all possible
vector indices) either make bd−k−1 or cd−n+k equal to one of a0 . . . an, or enforce bd−k−1 ∈ {c1, . . . , cd−n+k−1} and cd−n+k ∈
{b1, . . . , bd−k−2}. In the former case, one takes a derivative n̂a∂λn̂a = 1

2∂λ|n̂|2 = 0 under δ(. . . ) and the f term vanishes. In the
latter case, we can make the f term vanish by requiring that the structure constants be antisymmetric under exchange of any
bi ↔ c j when bi �= c j . Note that some bi indices must be equal to some ci indices and f should be symmetric under the exchange
of those. At this point, we ensured that the f term could be nonzero only if bd−k−1 = cd−n+k , and then n̂an̂a = |n̂|2 = 1 under
δ(. . . ) yields

δJ an+1...ad−1
μ1...μd−n

= εμ1...μd−nλ0...λn

(
δ

n∏
i=0

∂λi n̂
ai

)

×
⎧⎨⎩ 1

n!
εa0...ad−1 −

[ n−1
2 ]∑

k=0

f an+1...ad−1b1...bd−k−2c1...cd−n+k−1

d,n,k (−1)n+1 Pb1...bd−k−2a0...ak ,c1...cd−n+k−1ak+1...an

(k + 1)!(n − k)!

⎫⎬⎭ = 0, (B6)

where we defined

Pb1...bd−1,c1...cd−1 =
1...d−1∑

P
(−1)P

d−1∏
i=1

δbicP (i) (B7)

in terms of permutations P of d − 1 elements, and used

εb1...bd−k−2ia0...ak
εc1...cd−n+k−1iak+1...an

= (−1)d−k−2(−1)d−n+k−1εib1...bd−k−2a0...ak
εic1...cd−n+k−1ak+1...an

= (−1)n+1Pb1...bd−k−2a0...ak ,c1...cd−n+k−1ak+1...an .

We find from (B6) the condition that the structure constants must satisfy for every combination of an+1, . . . , ad−1:

A
[ n−1

2 ]∑
k=0

f an+1...ad−1b1...bd−k−2c1...cd−n+k−1

d,n,k

Pb1...bd−k−2a0...ak ,c1...cd−n+k−1ak+1...an

(k + 1)!(n − k)!
= (−1)n+1

n!
εa0...ad−1 , (B8)

where A indicates antisymmetrization with respect to a0, . . . , an (only the antisymmetric part survives the summation over λi).
Since the Levi-Civita symbol ε and the Kronecker symbol δ transform like tensors under rotations in Euclidean space-time,
we will automatically satisfy the sufficient condition for gauge invariance by finding the structure constants f that themselves
transform like tensors. We can convert this into a system of linear equations for structure constants which automatically expels
the nonantisymmetric terms on the left-hand side. Multiplying (B8) by εa0...ad−1 and summing over a0, . . . , ad−1 yields

εa0...ad−1

[ n−1
2 ]∑

k=0

f an+1...ad−1b1...bd−k−2c1...cd−n+k−1

d,n,k

Pb1...bd−k−2a0...ak ,c1...cd−n+k−1ak+1...an

(k + 1)!(n − k)!
= d!

n!
(−1)n+1. (B9)

To summarize, we are looking for f a...b...c... which is antisymmetric under exchanges among its a indices, b indices, c indices,
and b ↔ c indices for b �= c. Also, any f factor that multiplies εa0...ad−1 but is not antisymmetric under exchanges among
a0, . . . , ad−1 can be set to zero because it does not contribute to the above equation. It is always possible to find structure
constants under these constraints, and in some cases there is a unique solution. However, there are multiple solutions when the
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variable k in the above sum can take multiple values, i.e., when n � 3. These solutions for flux can be written as (ε∂A − εAA)2

where the quadratic part εAA takes different forms. This complexity reveals intricate interactions between the non-Abelian
topological defects, but it should be kept in mind that the above procedure establishes only the necessary and not the sufficient
condition for gauge invariance. The full gauge transformation of nonsingular gauge fields discussed above may further restrict
the form of Maxwell terms. Some examples are as follows.

(i) d = 3, n = 1:

3! = εa0a1a2 f a2b1c1
3,1,0 Pb1a0,c1a1 = εa0a1a2 f a2b1c1

3,1,0

(
δb1c1δa0a1 − δb1a1δa0c1

) = εa0a1a2 f a0a1a2
3,1,0 .

There is a unique solution:

f abc
3,1,0 = εabc.

(ii) d = 4, n = 2:

−4!

2!
= εa0a1a2a3 f a3b1b2c1

4,2,0

Pb1b2a0,c1a1a2

2!

= 1

2!
εa0a1a2a3 f a3b1b2c1

4,2,0

(
δb1c1δb2a1δa0a2 − δb1c1δb2a2δa0a1 + δb1a1δb2a2δa0c1 − δb1a1δb2c1δa0a2 + δb1a2δb2c1δa0a1 − δb1a2δb2a1δa0c1

)
= 1

2!
εa0a1a2a3

(
f a3a1a2a0
4,2,0 − f a3a2a1a0

4,2,0

)
.

There is a unique solution:

f abcd
4,2,0 = 1

2εabcd .

(iii) d = 4, n = 1:

4! = εa0a1a2a3 f a2a3b1b2c1c2
4,1,0 Pb1b2a0,c1c2a1

= εa0a1a2a3 f a2a3b1b2c1c2
4,1,0

(
δb1c1δb2c2δa0a1 − δb1c1δb2a1δa0c2 + δb1c2δb2a1δa0c1 − δb1c2δb2c1δa0a1 + δb1a1δb2c1δa0c2 − δb1a1δb2c2δa0c1

)
= εa0a1a2a3

(− f a2a3ba1ba0
4,1,0 + f a2a3ba1a0b

4,1,0 + f a2a3a1bba0
4,1,0 − f a2a3a1ba0b

4,1,0

)
= 4εa0a1a2a3 f a0a1ba2ba3 .

There is a unique symmetrized solution:

f abpcqd
4,1,0 = 1

8 (εabcdδpq − εabpdδcq + εabpqδcd − εabcqδpd ).

(iv) d = 5, n = 3:

5!

3!
= εa0a1a2a3a4

[
f a4b1b2b3c1
5,3,0

Pb1b2b3a0,c1a1a2a3

3!
+ f a4b1b2c1c2

5,3,1

Pb1b2a0a1,c1c2a2a3

2! × 2!

]

= εa0a1a2a3a4

[
− f a4b1b2b3c1

5,3,0

δa0c1

3!

1...3∑
P

(−1)P
3∏

i=1

δbiaP (i)

+ f a4b1b2c1c2
5,3,1

δb1a2δb2a3δc1a0δc2a1 − δb1a2δb2a3δc1a1δc2a0 + δb1a3δb2a2δc1a1δc2a0 − δb1a3δb2a2δc1a0δc2a1

2! × 2!

]

= εa0a1a2a3a4

[
− 1

3!

1...3∑
P

(−1)P f a4aP (1)aP (2)aP (3)a0

5,3,0 + 1

2! × 2!

(
f a4a2a3a0a1
5,3,1 − f a4a2a3a1a0

5,3,1 + f a4a3a2a1a0
5,3,1 − f a4a3a2a0a1

5,3,1

)]
= εa0a1a2a3a4

(− f a4a1a2a3a0
5,3,0 + f a4a2a3a0a1

5,3,1

) = εa0a1a2a3a4

(
f a0a1a2a3a4
5,3,0 + f a0a1a2a3a4

5,3,1

)
.

There are multiple solutions:

f abcde
5,3,0 + f abcde

5,3,1 = 1
6εabcde. (B10)

APPENDIX C: SINGULAR GAUGE TRANSFORMATIONS AND DYNAMICAL GENERATION OF HIGHER RANKS
IN THE NON-ABELIAN EFFECTIVE THEORY

Maxwell terms LMn at rank n in the effective Lagrangian arise from integrating out the smooth short-wavelength fluctuations
of currents at the same rank. A further integration of singular currents at short length scales generates the current term at rank
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n + 1, and gives it the form compatible to that of the rank n Maxwell term. We will roughly sketch this process here. Let us write
the rank n flux as

J an+1...ad−1
μ1...μd−n

= εμ1...μd−nα0...αn
X an+1...ad−1

α0...αn
. (C1)

The formulas for X were discussed and derived in Appendix B. The rank n Maxwell term is

LMn ∼ J an+1...ad−1
μ1...μd−n

J an+1...ad−1
μ1...μd−n

= (d − n)!
0...n∑
P

(−1)PX an+1...ad−1
α0...αn

X an+1...ad−1
αP (0)...αP (n)

= (d − n)!

(n + 1)!

[
0...n∑
P

(−1)PX an+1...ad−1
αP (0)...αP (n)

]2

, (C2)

where P indicates a permutation and (−1)P its parity. We will consider a fixed gauge in which singularity gauge fields have not
yet been generated from the given matter field configuration n̂. In this gauge, the current at rank n + 1 is

Jan+2...ad−1
λ1...λn+1

= 1

(n + 1)!
εa0...ad−1

n̂a0

(
n+1∏
i=1

∂λi n̂
ai

)
(C3)

and the current term in the Lagrangian density is

LC,n+1 ∼ (
Jcn+2...cd−1
λ1...λn+1

)2 = εa0...an+1cn+2...cd−1εb0...bn+1cn+2...cd−1

[(n + 1)!]2
n̂a0

⎛⎝n+1∏
j=1

∂λ j n̂
a j

⎞⎠n̂b0

(
n+1∏
k=1

∂λk n̂bk

)

= (d − n − 2)!

[(n + 1)!]2

1...n+1∑
P

(−1)P
(

n+1∏
i=1

δaibP (i)

)⎛⎝n+1∏
j=1

∂λ j n̂
a j

⎞⎠(n+1∏
k=1

∂λk n̂bk

)
. (C4)

The last line obtains for a0 = b0, where the derivative-free factors n̂a produce n̂an̂a = |n̂| = 1. The terms with a0 �= b0 imply
a0 = bi, i > 0, and hence vanish by ∂λ|n̂|2 = 0. Now, we unpack the permutations

LC,n+1 ∼ (
Jcn+2...cd−1
λ1...λn+1

)2 = εa1...an+1cn+2...cd εb1...bn+1cn+2...cd

[(n + 1)!]2(d − n − 1)

⎛⎝n+1∏
j=1

∂λ j n̂
a j

⎞⎠(n+1∏
k=1

∂λk n̂bk

)

= 1

[(n + 1)!]2(d − n − 1)
Y cn+2...cd

λ1...λn+1
Y cn+2...cd

λ1...λn+1
, (C5)

and proceed working on the Y factors

Y cn+1...cd−1
λ0...λn

= εa0...ancn+1...cd−1

⎛⎝ n∏
j=0

∂λ j n̂
a j

⎞⎠ = A εa0...ancn+1...cd−1
∂λ0

⎛⎝n̂a0

n∏
j=1

∂λ j n̂
a j

⎞⎠ = n!A ∂λ0
Jcn+1...cd−1
λ1...λn

∝ AX cn+1...cd−1
λ0...λn

. (C6)

Here, A antisymmetrizes the space-time indices. The last proportionality follows from (B5) and (C1). Specifically in the chosen
gauge, Y is proportional to antisymmetrized X without the non-Abelian part involving structure constants in Eq. (B5), where
the rank n gauge field emerges from the singularities of (C3) upon a singular gauge transformation and coarse graining. In
conclusion, structurally

LC,n+1 ∼ (AX )2 ∼ LM,n.

The full coarse-graining procedure expands all terms into their full gauge-invariant forms featuring gauge fields. Given the
above structural relationship, we anticipate that fluctuations indeed generate the Lagrangian terms at all ranks, starting from the
fundamental ones at rank 1. The same effect was revealed in the case of Abelian charge dynamics.

APPENDIX D: DUALITY MAPPING OF THE ABELIAN COMPACT GAUGE THEORY AT RANK n

Here, we consider the action

S = −k
(n+1)∑
�

cos
(
εμ1...μd−nνλ1...λn∂νAλ1...λn

)− t
(n)∑
�

cos

(
n∑

l=1

(−1)l−1∂λ1θλ1...λl−1λl+1...λn − Aλ1...λn

)
(D1)

of a matter field θ coupled to a rank n gauge field A on a (d + 1)-dimensional space-time cubic lattice. The sums run over
n-dimensional hypercube “plaquettes” of the lattice, and the indices μ, . . . label independent lattice directions along lattice
bonds. A quantity fμ1...μn with n indices μi ∈ {0, 1, . . . , d} lives on an oriented n-dimensional plaquette of the space-time lattice.
One specifies a plaquette by a lattice site i and an ordered set of indices (μ1, . . . , μn) that indicate space-time directions of the
plaquette edges that emanate from the site i. The plaquette orientation is given by the value of εμ1...μnαn+1...αd+1 that obtains from
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ε1,2,3,...,d+1 with the minimum number of index permutations. A plaquette orientation can be changed either by an exchange of
two indices or by a sign change of one index; fμ1...μn defined on a plaquette with positive orientation is equivalent to − fμ1...μn on
the same plaquette with negative orientation, and consistent with fμ1...μn being an antisymmetric tensor. The lattice derivative ∂ν

is defined by ∂ν fi = fi+ν̂ − fi. The Maxwell term k is specified on an (n + 1)-dimensional plaquette spanned by νλ1 . . . λn, and
the remaining indices μ1 . . . μd−n are redundant in the compact formulation but kept for the sake of the continuum limit where
they are contracted in a quadratic form. Note that the nature of lattice derivatives is such that we can apply integration by parts
(in an infinite system):∑

i

f ∂μg =
∑

i

( figi+μ̂ − figi ) =
∑

i

( fi−μ̂gi − figi ) = −
∑

i

gi( fi − fi−μ̂) = −
∑

i

g∂μ f .

The dual action is derived as follows. Decouple the cosines in S with integer-valued antisymmetric tensor fields Jλ1...λn and
�μ1...μd−n using Villain’s approximation exp(−t cos x) ≈ ∑

m exp(−T m2 + imx):

S =
(n−1)∑
�

[
1

2τ
Jλ1...λn Jλ1...λn + iJλ1...λn

(
n∑

l=1

(−1)l−1∂λl θλ1...λl−1λl+1...λn − Aλ1...λn

)]

+
(n)∑
�

[
1

2κ
�μ1...μd−n�μ1...μd−n + i�μ1...μd−n

(
εμ1...μd−nνλ1...λn∂νAλ1...λn

)]
. (D2)

Large values of t (k) correspond to large values of τ (κ), and small values of t (k) correspond to small values of τ (κ). Integrating
out the angles θ and A produces

S =
(n)∑
�

1

2τ
Jλ1...λn Jλ1...λn +

(n+1)∑
�

1

2κ
�μ1...μd−n�μ1...μd−n (D3)

with constraints on J and �:

(∀ l ) ∂λl Jλ1...λn = 0, εμ1...μd−nνλ1...λn∂ν�μ1...μd−n + Jλ1...λn = 0. (D4)

The constraints can be solved by expressing J and � in terms of new antisymmetric tensor fields a and φ:

Jλ1...λn = εμ1...μd−nνλ1...λn∂νaμ1...μd−n , �μ1...μd−n =
d−n∑
l=1

(−1)l−1∂μl φμ1...μl−1μl+1...μd−n − aμ1...μd−n . (D5)

The values of a and φ can be real as long as J and � are integer valued. In fact, the integer-value constraint on � automatically
makes J integer valued. We can soften the integer-value requirement on � using a sine-Gordon term (λκ ) without affecting the
universality class of the theory. Substituting the above constraint solutions in the action yields

S = 1

2τ

(d−n+1)∑
�

(
εμ1...μd−nνλ1...λn∂νaμ1...μd−n

)2 + 1

2κ

(d−n)∑
�

(
d−n∑
l=1

(−1)l−1∂μl φμ1...μl−1μl+1...μd−n − aμ1...μd−n

)2

− λκ

(d−n)∑
�

cos

(
2π

d−n∑
l=1

(−1)l−1∂μl φμ1...μl−1μl+1...μd−n − 2πaμ1...μd−n

)
. (D6)

This is the dual theory, formulated on the dual cubic lattice.
Note that an n-dimensional plaquette of the original lattice is
dual to a (d − n)-dimensional plaquette of the dual lattice.

1. Phase diagram

The original theory of angle-valued fields (D1) is expected
to have Higgs and Coulomb phases. The Higgs phase is a θ

condensate with all excitations gapped by Higgs mechanism.
At least in this phase, we may take the continuum limit of both
compact terms because all field fluctuations are suppressed.
The Coulomb phase must have a massless gauge boson due to
gauge invariance. It features abundant field fluctuations, so it
is not a priori clear that the compact terms can be expanded
to quadratic order for the continuum limit. The surviving

compactness means that the electric field E (canonically
conjugate to A) is integer valued, and any charged sources of
the frozen E (with fluctuating A) are confined.

The phase diagram of the dual theory (D6) must match the
phase diagram of the original theory (D1). The condensation
of θ in the original Higgs phase is consistent with abundant
fluctuations of J (due to the iJ∂μθ term in the intermediate
action), implying correspondence to a dual Coulomb phase
with abundant a fluctuations. The suppression of A in the
original Higgs phase is similarly tied to the fluctuations of
φ. Conversely, abundant fluctuations of θ, A in the original
Coulomb phase correspond to the suppressed fluctuations of
φ, a in a dual Higgs-type phase. However, there is a problem:
the original Coulomb phase is gapless, so the dual Higgs phase
must be gapless despite the presence of the dual gauge field a.
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Similarly, the original Higgs phase is gapped, so the dual
Coulomb phase must be gapped too despite the presence of the
dual gauge field a. If the dual theory contained only the matter
field φ, then its superfluid (Higgs) and disordered (Coulomb)
phases would correctly match the excitation spectra of the
original theory. Another problem is how to obtain gapless
phases from fields whose gauge-invariant configurations are
discrete valued and always classically cost a finite action.

The hint to solving the second problem is that the only
gapless mode in the original theory is the A photon of the
Coulomb phase, and the corresponding gapless mode of the
dual theory is the Goldstone mode of φ. Indeed, the field φ

is not required to be integer valued, only the combination �

in Eq. (D5) is. Let us separate the transverse and longitudinal
modes of a and absorb the longitudinal modes into ∂φ by a
change of variables. This amounts to gauge fixing through
some condition imposed on φ and a. However, neither φ nor
a can be integer valued in a fixed state-independent gauge
on the lattice. Hence, separating transverse from longitudinal
gauge modes inevitably runs into geometric frustration on the
lattice. A set of nonquantized transverse gauge modes a can
emerge from frustration and live at very long wavelengths
with small amplitudes, as long as they are compensated by
appropriate longitudinal φ modes to make � integer val-
ued. These long-wavelength a modes cost arbitrarily small
Maxwell energy, but the attached longitudinal modes are
generally costly through the noncompact κ−1 term of the dual
action (D6). For this reason, the presence of the κ−1 term
effectively gaps out the transverse a modes, and we can safely
integrate them out. The resulting effective theory may have
a sine-Gordon term for the surviving longitudinal modes φ,
but the sine-Gordon coupling cannot be infinite because φ

is fundamentally not quantized as a result of frustration (it
cannot be even finite if it is a relevant perturbation that flows
to infinity under renormalization group). The final dual theory
for low-energy excitations is approximately a noncompact
longitudinal model:

S = 1

2κ ′

(d−n)∑
�

(
d−n∑
l=1

(−1)l−1∂μl φμ1...μl−1μl+1...μd−n

)2

. (D7)

This model correctly matches the phases of the original theory
and their excitation spectra. The analogous compact model

S′ = −λ′
(d−n)∑
�

cos

(
2π

d−n∑
l=1

(−1)l−1∂μl φμ1...μl−1μl+1...μd−n

)

also matches the phases of the original theory and almost all
of its excitations. It only differs from the original theory in
regard to its confinement of charges in the Coulomb phase.
An excitation with quantized “electric” charge in the original
theory corresponds to a quantized topological defect of the
dual theory. The compact theory S′ does not confine its defects
in the ordered phase because the frustration of φ due to
separated quantized defects can be collected into a singular
multidimensional “fault line” that terminates at the defects
and costs no λ′ energy. Consequently, the noncompact theory
(D7) correctly describes the spectrum of charged excitations
in the original model’s Coulomb phase.

2. Without gauge fields in the original theory

A special case of the original theory (D1) obtains in
the k → ∞ limit, which suppresses the gauge field A. The
ensuing action contains only the matter field:

S = −t
(n)∑
�

cos

(
n∑

l=1

(−1)l−1∂λ1θλ1...λl−1λl+1...λn

)
. (D8)

Its phase diagram consists of a superfluid ordered phase with
gapless Goldstone modes, and a disordered gapped phase.
Following the same procedure as before, we obtain the dual
theory

S = 1

2τ

(d−n+1)∑
�

(
εμ1...μd−nνλ1...λn∂νaμ1...μd−n

)2

− λκ

(d−n)∑
�

cos

(
2π

d−n∑
l=1

(−1)l−1∂μl φμ1...μl−1μl+1...μd−n

− 2πaμ1...μd−n

)
. (D9)

The main difference from (D6) is the absence of the non-
compact term with dual matter (κ → ∞). Repeating the pre-
vious analysis, we find that the long-wavelength transverse
modes of a must still bind some longitudinal modes of φ in
order to satisfy the integer constraint (D5) on �, but these
longitudinal modes now cost no energy in the absence of
the noncompact matter term. Therefore, the gauge bosons
are massless by gauge invariance, unless a Higgs mechanism
occurs. The Higgs phase of the dual model is fully gapped and
corresponds to the disordered phase of the original model. The
dual Coulomb phase has massless photons, which correspond
to the massless Goldstone modes of the original model’s
superfluid phase.

Note that we could also consider a fully compact Maxwell
term in the dual theory S′. However, such a compact theory
would confine its charges in the Coulomb phase, so the topo-
logical defects of the original model’s ordered phase would
need to be confined too. Defect confinement is not present in
the original compact theory, so the correct dual theory indeed
has a noncompact Maxwell term.

3. Without matter fields in the original theory

Another special case of the original theory is the limit
t → 0:

S = −k
(n+1)∑
�

cos
(
εμ1...μd−nνλ1...λn∂νAλ1...λn

)
. (D10)

This is a pure compact gauge theory at rank n, which describes
the phase Gd−1 = C1 . . .Cd−1 from Sec. IV C after all other
gapped fields have been integrated out. The dual theory is
derived using the same approach as before, but with J = 0,
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a = 0:

S = 1

2κ

(d−n)∑
�

(
d−n∑
l=1

(−1)l−1∂μl φμ1...μl−1μl+1...μd−n

)2

− λκ

(d−n)∑
�

cos

(
2π

d−n∑
l=1

(−1)l−1∂μl φμ1...μl−1μl+1...μd−n

)
.

(D11)

This is a gauge theory at rank d − n − 1 provided that n <

d − 1 because the Abelian current term of rank d − n is
equivalent to the Maxwell term at rank d − n − 1.

The highest rank n = d − 1 is special because the “longi-
tudinal” field φ becomes a scalar without indices. The dual
action (D11) reduces to sums over lattice links:

S = 1

2κ

∑
−

(∂μφ)2 − λκ

∑
−

cos(2π∂μφ). (D12)

It has been shown [104] that λκ is always relevant here and
flows to infinity under renormalization group (in d = 2, but
the argument naively extends to d > 2), so this turns into a
height model with φ ∈ Z (an arbitrary real-valued uniform
offset to φ is irrelevant). The final dual theory

S = 1

2κ

∑
−

(∂μφ)2, φ ∈ Z (D13)

with integer-valued field is known to have only an ordered
“smooth” phase in d = 2 dimensions [76], and the ordered
phase is only more stable in d > 2. This ordered phase is
evidently gapped and corresponds to the confining phase of
the original pure-gauge theory (D10).

A disordered phase of the dual theory would correspond to
the large-k phase of the original theory (D10). At large k, the
fluctuations of A would be suppressed and we would naively
be able to expand the cosine to quadratic order and take
the continuum limit. The ensuing noncompact gauge theory
would then have a massless photon mode. However, this is
not actually accurate. What does this correspond to in the dual
theory? In order to quantize the dual theory, we introduce
a canonically conjugate observable n to φ, defined on dual
lattice sites i through [ni, φ j] = iδi j . Since φ ∈ Z, we find that
n ∈ [0, 2π ) is a continuous variable. The dual Hamiltonian
takes the form

H = −u

2

∑
i

cos(ni ) + 1

2κ

∑
〈i j〉

(φi − φ j )
2. (D14)

The φ-disordered state is ordered in n, but the settled value of
〈ni〉 = 0 in the ground state is not separated from other values
〈ni〉 �= 0 by a finite gap and consequently κ−1 is not a small
perturbation. It has been shown that the actual spectrum is
gapped in d = 2. The dual height model is in its smooth phase
for all κ , so that 〈φ〉 is always well defined in the ground state.
Conversely, the original compact gauge theory at the highest
rank n = d − 1 is always confined and gapped.

APPENDIX E: CANONICAL FORMALISM OF THE
MULTIRANK ABELIAN GAUGE THEORY:

ENERGY-MOMENTUM TENSOR
AND ANGULAR MOMENTUM

The Abelian Lagrangian density (47) of gauge and matter
fields at rank n in d dimensions is

L = 1

(d − n)!

1

2e2
n

(
εα1...αd−nμλ1...λn∂μAλ1...λn

)2

+ κn

2

(
n∑

i=1

(−1)i−1∂λiθλ1...λi−1λi+1...λn + Aλ1...λn

)2

.

The canonical conjugates to Aλ1...λn and θλ1...λn−1 are

Eμλ1...λn = δL
δ∂μAλ1...λn

,

πμλ1...λn−1 = δL
δ∂μθλ1...λn−1

= n
δL

δAμλ1...λn−1

= −n ∂νEμνλ1...λn−1 .

(E1)

Eμλ1...λn is the generalized field tensor (Fμν in electrodynam-
ics). The formulas for πμλ1...λn−1 follow from gauge invariance
and the Lagrange field equation for the gauge field. The
explicit expressions are

Eλ1...λn+1 =
(
εα1...αd−nρν1...νn∂ρAν1...νn

)
εα1...αd−nλ1...λn+1

(d − n)!e2
n

= n!

e2
n

n+1∑
i=1

(−1)i−1∂λi Aλ1...λi−1λi+1...λn+1, (E2)

πλ1...λn = nκn

[
n∑

i=1

(−1)i−1∂λiθλ1...λi−1λi+1...λn − Aλ1...λn

]
.

The symmetry under translations by a

xμ → xμ + δa δαμ,

Aλ1...λn → Aλ1...λn + δa ∂αAλ1...λn ,

L → L + ∂μ(δa δαμL)

yields the conserved canonical energy-momentum tensor

Tα,μ = Eμλ1...λn ∂αAλ1...λn + πμλ1...λn−1 ∂αθλ1...λn−1 − δαμL.

Similarly, rotations lead to the conservation of angular mo-
mentum. Under infinitesimal rotations by δθ ,

Rαβ (δθ ) = e−iMαβδθ → 1 − iMαβδθ,

(Mαβ )μν = −i(δαμδβν − δανδβμ),

the coordinates xμ and tensor fields like Aλ1...λn transform as

xμ → xμ − δθ (δαμxβ − δβμxα ),

Aλ1...λn → Aλ1...λn + δθ (xα∂β − xβ∂α )Aλ1...λn

+ δθ �αβ;λ1...λn,γ1...γn Aγ1...γn .

Rotations in the αβ plane are obtained when both α and β

are spatial indices, otherwise, we have the generalized Lorentz
transformations in the imaginary (Euclidean) space-time. The
“spin matrix” �αβ is responsible for rotating the internal
degrees of freedom of the field. For the gauge fields in this
theory, Rαβ (δθ ) is separately applied on each index of Aλ1...λd−1
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and only the lowest-order terms are kept (the sense of rotation
is opposite to that of xμ):

�αβ;λ1...λn,γ1...γn =
n∑

k=1

(Mαβ )λkγk

∏
i �=k

δλiγi

=
n∑

k=1

(
δαλk δβγk − δαγk δβλk

)∏
i �=k

δλiγi .

As a scalar, the imaginary-time (Euclidean) Lagrangian den-
sity transforms according to

L → L + δθ (xα∂β − xβ∂α )L
= L + δμ[δθ (xαδβμ − xβδαμ)L] − δθ (δβα − δαβ )L
= L + ∂μWμ,

where

Wμ = δθ (xαδβμ − xβδαμ)L.

Therefore, the canonical angular momentum current density
is

Jαβ,μ ∝ Eμλ1...λnδAλ1...λn + πμλ1...λn−1δθλ1...λn−1 − Wμ

= xαTβ,μ−xβTα,μ+Eμλ1...λd−1�αβ;λ1...λd−1,γ1...γd−1 Aγ1...γd−1

+πμλ1...λn−1�αβ;λ1...λn−1,γ1...γn−1θγ1...γn−1 .

The canonical construction of Tα,μ and Jαβ,μ using Noether’s
theorem ensures the conservation laws ∂μTα,μ = 0 and
∂μJαβ,μ = 0. However, the canonical tensors Tα,μ and Jαβ,μ

are not symmetric in their indices and do not look gauge
invariant. These issues are fixed by symmetrizing the energy-
momentum tensor.

The symmetrized energy-momentum tensor and angular
momentum currents (without commas separating their in-
dices) are

Tμν = 1

n κn
πμλ1...λn−1πνλ1...λn−1 + e2

n

n!
Eμλ1...λn Eνλ1...λn − δμνL,

Jαβμ = xαTβμ − xβTαμ. (E3)

They differ from the canonical ones only by total derivatives
and hence describe the same bulk quantities.

APPENDIX F: BRAIDING OF
MULTIDIMENSIONAL EXCITATIONS

A useful operation that generalizes from particle braiding
is braiding of multidimensional objects. Consider creating a
(quasi)particle-antiparticle pair at some point in space, driving
the particle along a closed-loop path, and eventually annihilat-
ing the pair. This operation leaves behind a Dirac string loop.
Now consider creating adjacent Dirac loops that completely
cover a sphere. If all loops have the same orientation relative
to the local orientation of the sphere’s surface, then the initial
and final states are both free of charge or gauge flux and
hence differ only by a phase. This phase can be fractionalized
and it can characterize topological order. Let us begin with
constructing the operator that creates a Dirac loop. First, we
want to create a particle-antiparticle pair in terms of charge.

The operator

ψ†(x) = e−iνθ (x) (F1)

creates a pointlike lump of charge ν at location x if θ is the an-
gle operator conjugate to the integer-valued particle number,
i.e., the usual U(1) phase. Creating a particle-antiparticle pair
separated by a distance δx is accomplished with

ψ (x)ψ†(x + δx) → e−iν(∂μθ+Aμ )δxμ . (F2)

We have gauged this operation in order to create a physical
state. Movement of a particle along a path is done by chaining
similar pair-creation operations: in every infinitesimal move-
ment step, one creates a new particle-antiparticle pair dis-
placed by δx along the path in such a way that the antiparticle
lands at the same position as the old “driven” particle and
annihilates it, leaving behind just the new particle at a new
position. It is easy to see that the loop creation operation is
given by the operator∏

δxμ∈P
e−iν(∂μθ+Aμ )δxμ = exp

(
− iν

∮
P

dxμ(∂μθ + Aμ)

)

= exp

(
− iν

∮
P

dxμ jμ

)
. (F3)

For the simplicity of notation, we work here with a renor-
malized charge current jμ = ∂μθ + Aμ “per particle” that
does not contain the incompressible |ψ |2 density factor. The
quasiparticles of an incompressible quantum liquid combine
a monopole with a lump ν of charge, so we also need to
create a monopole/antimonopole pair and drive the monopole
around the loop. Since the monopole is a point particle, its
normalized current Jμ ∼ ∂μφ can be similarly written in
terms of an operator eiφ that creates a monopole. By duality,
we simply need to replace the charge current operator jμ
with the normalized defect current operator Jμ in the above
formula. The full Dirac loop operator is then

LP = exp

(
− i

∮
P

dxμ(ν jμ + qdJμ)

)
. (F4)

One must independently find the charge qd . Since the operator
LP creates a Dirac loop, we can immediately extend it to an
operator that moves the loop sweeping an open cylindrical
surface S from one end to another:

LS = exp

(
−i
∫
S

daμ εμνλ∂ν (ν jλ + qdJλ)

)
.

Here, daμ is a vector normal to the surface with a magnitude
equal to the local surface area element. The surface is ori-
entable, and its orientation in the integral corresponds to the
direction of sweep. At this stage, we observe that the Dirac
attachment links between different gauge field ranks require
us to transport the matter and gauge field configurations
associated with the quasiparticle at all intermediate ranks.
The rank 2 matter field describes one-dimensional extended
objects, which are actually quantized flux lines linked to Dirac
strings. We must generate the appropriate rank 2 matter field,
and the rank 2 gauge field it couples to, when we create
and move a Dirac loop. Defining the gauge-invariant rank 2
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current jμν = ∂μθν − ∂νθμ − Aμν , we have a correction:

LS = exp

(
− i

∫
S

daμ εμνλ[∂ν (ν jλ + qdJλ) + q2 jνλ]

)
.

(F5)
The charge constant q2 for jμν needs to be separately deter-
mined. We have constructed the correction to LS purely on
symmetry grounds and by formal analogy to the operator LP
that moves a pointlike object along a one-dimensional path.
More formally, jμ is equivalent to the canonical momentum of
the matter field per particle (the density factor |ψ |2 is stripped
away), and indeed generates translations. Similarly, jμν is the
canonical momentum of the rank 2 matter field per particle
per unit length (given its units), so it can be used as above
to generate translations of a line-shaped object. This would
be all in d = 3 (Jλ contains a derivative of Aμν), and we
could continue in the same fashion to higher ranks in d > 3
by defining operators that create (n − 1)-dimensional objects
and sweep them across n-dimensional manifolds Mn:

LMn = exp

[
−i
∫
Mn

n∏
i=0

dxi εμ1...μn

(
qn jμ1...μn

+ qn−1

n

n∑
i=1

(−1)i−1∂μi jμ1...μi−1μi+1...μn + · · ·
)]

. (F6)

If the manifold Mn is closed (without a boundary), then only
the highest-rank gauge field can contribute:

LMn = exp

(
−iqn

∮
Mn

n∏
i=0

dxi εμ1...μn Aμ1...μn

)
. (F7)

So, creating a loop, sweeping it across a closed surface S, and
then annihilating it in d = 3 is achieved by

LS = exp

(
− i

∮
S

daμ εμνλ[∂ν (ν jλ + q3Jλ) + q2 jνλ]

)
= exp

(
− iq2

∮
S

daμ εμνλAνλ

)
= e−2π iq2N , (F8)

where N is the total π2(S2) topological charge enclosed by
S. The currents jμ and Jμ have no curl in an incompressible
quantum liquid, so they dropped out.

APPENDIX G: FRACTIONAL BRAIDING STATISTICS

Here, we analyze the Aharonov-Bohm phase in both dy-
namically and topologically protected braiding operations in
d = 3 dimensions. The starting point is the following La-
grangian density of an incompressible quantum liquid with
monopoles:

L = − jμAμ − jμνAμν − κ

(
Fμν

2
− Aμν

)(
Fμν

2
− Aμν

)
− ν

4π
εμναβAμ∂νAαβ + LM1 + LM2, (G1)

where Fμν = ∂μAν − ∂νAμ, LMn are rank n Maxwell terms,
and the external currents jμ and jμν describe inserted
fractional excitations: pointlike quasiparticles at rank 1 and
loops at rank 2, respectively.

Consider first the braiding of two point quasiparticles. The
braiding outcome is nontrivial even though it is not topologi-
cally protected. The external currents of two quasiparticles at
positions x1(t ) and x2(t ) are jμν = 0 and jμ = jμ1 + jμ2 :

j0
1 (x, t ) = q1δ(x − x1(t )), ji

1(x, t ) = q1ẋi
1δ(x − x1(t )),

j0
2 (x, t ) = q2δ(x − x2(t )), ji

2(x, t ) = q2ẋi
2δ(x − x2(t )).

Integrating out δAμν in Aμν = 1
2 Fμν + δAμν renormalizes the

rank 1 Maxwell term and replaces the topological term with
an axion term

L = − jμAμ − ν

4π
εμναβAμ∂ν∂αAβ + LM1. (G2)

If we define the operator

Cμν = ν

2π
εμναβ∂α∂β, (G3)

then integrating out Aμ yields

L = 1
2 jμC−1

μν jν + · · · , (G4)

when we neglect the “radiative” interactions between charges
and currents induced by electromagnetic field fluctuations
(through LM1). It is important to note that (G3) is a sym-
metric operator (its antisymmetric parts would not contribute
the braiding action S). Namely, transposing C flips the sign
through the exchange of external indices μ, ν, but this sign
flip is canceled in the integration by parts ε...αβ∂α∂β →
ε...αβ (−∂β )(−∂α ). The effective braiding action

S =
∫

d4x L =
∫

d4x
1

2

(
j1μA

μ
2 + j2μA

μ
1

)
(G5)

captures the Aharonov-Bohm phase associated with the braid-
ing of two quasiparticles around each other. Each quasiparticle
picks the Aharonov-Bohm phase only from the flux attached
to the other quasiparticle, via

Aiμ = C−1
μν jνi ⇒ CμνAiν = ν

2π
εμναβ∂α∂βAiν = jμi .

Substituting the above formulas for jμn (x, t ) allows us to
determine Aμ

n . For a quasiparticle at rest, A0
n = 0 and

ε0i jk∂i∂ jAnk = 2πqn

ν
δ(x − xn). (G6)

Therefore, Aμ
n is the U(1) gauge field of a monopole at xn with

topological charge 2πqn/ν. The fractional charge of a point
quasiparticle in the Laughlin-type incompressible quantum
liquid with the filling factor ν = 1/m is qn = ν. This endows
Aμ

n with a single 2π unit of monopole flux. Each quasiparticle
of charge qn = ν picks an Aharonov-Bohm phase from the
monopole quantum attached to the other quasiparticle, but
(G5) associates only a half of the total two-particle phase to
the braiding operation. This result is analogous to the d = 2
case of quantum Hall liquids [59], but different from the d = 3
field-induced correction calculated in Ref. [44]

As an example, simulate the exchange of two identical
quasiparticles by driving them on opposite semicircular paths
in a single plane about their center of mass. Each quasiparticle
contributes 1

2 × �ν
2 to the Aharonov-Bohm phase; � = 2π is

the solid angle that subtends a closed loop in the braiding
plane, and the extra factor of 1

2 is the patch for the semicircular
path. The braiding phase is a half of the total Aharonov-Bohm
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phase of both quasiparticles, ϕ = 1
2νπ . This phase is not

topologically protected, but if one is able to precisely control
the quasiparticle trajectories then the value of ϕ is protected
dynamically; it can be arbitrarily changed only at the cost
of exciting additional gapped excitations that distort the field
lines of charges and monopoles. There is also another issue
regarding the gauge-dependent choice for the unavoidable
Dirac string, discussed in Appendix I.

A few comments are in order. The above derivation utilizes
antisymmetrized combinations of derivatives, which vanish
when applied to any analytic function. Hence, we rely on
singular field configurations at rank 1 in order to describe
monopoles. As explained in the paper, quantized monopole
singularities in the rank 1 gauge fields are made possible
by the compact regularization of the field theory, and their
mathematical structure is analogous to that of a U(1) phase θ

in the description of quantized vortices. The antisymmetrized
derivatives of gauge fields should be computed mod 2π . If we
naively annihilated them, we would never be able to capture
any interaction between charge currents and monopoles at
rank 1.

Now, let us calculate the braiding phase of a quasiparticle
and a loop. Repeating the above procedure of integrating out
Aμν and then Aμ in Eq. (G1) leads to the effective Lagrangian
density

L → − jμAμ − Fμν

2
jμν − ν

8π
εμναβAμ∂νFαβ + LM1 + · · ·

→ 1

2
( jμ − jμα∂α )C−1

μν ( jν − ∂β jνβ ) + · · · , (G7)

with an abuse of notation: ∂β from the last bracket acts to the
left on the objects outside the bracket. We are again neglecting
radiative contributions to current-current interactions. The
braiding action is

S =
∫

d4x
1

2

[− jμα∂αC−1
μν jν − jνβ∂βC−1

μν jμ
]

=
∫

d4x jμνAμν, (G8)

where

CμαAμν = −∂ν jα.

If we rewrite Aμν = ∂μaν − ∂νaμ, then

εμναβ∂α∂β (∂μaλ − ∂λaμ) = −2π

ν
∂λ jν (G9)

yields a monopole solution

εμναβ∂α∂β∂μaλ = 0, εμναβ∂α∂βaμ = 2π

ν
jν (G10)

without higher-rank singularities. Since the fractional quasi-
particle carries charge j0 ∝ q1 = ν, the ensuing rank 2 gauge
field Aμν is simply the “electromagnetic” field tensor of a
unit 2π monopole attached to the quasiparticle. The braiding
phase is the full Aharonov-Bohm phase collected from a
2π -monopole quantum at rank 2. We also need the loop’s
rank 2 charge q2. The rank 2 “electric charge” density (per
unit volume and loop’s unit length) j0i couples to A0i in the
Lagrangian density, and similarly, the rank 2 “magnetic flux”
density ji j couples to Ai j . The linking Lagrangian terms relate

Aμν to 1
2 Fμν , so the ratios of electric and magnetic charges are

the same in the two descriptions. The magnetoelectric effect
derived in Sec. VI F relates electric and magnetic fields as
E = −2ανB where α = e2/h̄c → 1/4π is the fine-structure
constant in natural units. Therefore, a 2π unit of magnetic flux
binds ν electric field units in the loop. The loop is a fractional
excitation that carries rank 2 charge q2 = ν.

As an example, consider driving the point particle on a
closed path through the loop. Relative to the quasiparticle,
the loop sweeps a torus-shaped surface that encloses the
quasiparticle and collects all of its monopole’s flux. The rank
2 Aharonov-Bohm phase (F8) is 2πν, so the braiding phase is
ϕ = 2πν. This is naively expected from the Aharonov-Bohm
effect at rank 1, for a quasiparticle of charge q1 = ν that
encircles a 2π -quantized vortex loop, but now we have a
confirmation that there are no special corrections from the
topological Lagrangian term.

Lastly, we briefly show that loop-loop braiding is trivial
in the presently considered topological orders. The braiding
action for two loops described with currents jμ = 0 and jμν =
jμν
1 + jμν

2 is obtained from (G7):

S =
∫

d4x
1

2

[− jμα
1 ∂αC−1

μν ∂β jνβ

2 − jμα
2 ∂αC−1

μν ∂β jνβ

1

] → 0

after an integration by parts which transfers ∂β onto a target
on its right. This action vanishes because the closed rank
2 loops satisfy ∂μ jμν = ∂ν jμν = 0. Physically, this braiding
only moves electric and magnetic flux lines around one an-
other, and hence does not generate Aharonov-Bohm phases.
The situation would have been different if rank 1 electric or
magnetic charge were attached to the loops [27,55–58].

APPENDIX H: ELECTROMAGNETIC ANGULAR
MOMENTUM OF CHARGES AND MONOPOLES

Consider a system of point charges ei at locations xi and
point monopoles mj at positions x j . The angular momentum
of the electromagnetic field contributed by the charge ei and
all monopoles relative to xi is

Li =
∫

d3x (x − xi ) × (E(x) × B(x))

= ei

4π

∫
d3x

1

|x| {x̂[x̂ B(x + xi )] − B(x + xi )}. (H1)

Using

(B∇)x̂ = B − x̂(x̂B)

|x| (H2)

we obtain

Li = − ei

4π

∫
d3x [B(x + xi )∇]x̂

→ ei

4π

∫
d3x [∇B(x + xi )]x̂

= 2π

4π

∑
j

eim j

∫
d3x δ(x + xi − x j )x̂

= 1

2

∑
j

eim jδx̂i j . (H3)

The arrow indicates integration by parts, and δxi j = x j − xi =
|δxi j |δx̂i j . Since the total momentum carried by the elec-
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tromagnetic field is zero, the angular momentum does not
depend on the anchor point. The total electromagnetic angular
momentum of all charges and monopoles, with respect to any
anchor point, is

L =
∑

i

Li = 1

2

∑
i j

eim jδx̂i j . (H4)

This angular momentum was computed classically, and hence
represents the expectation value 〈�|L|�〉 of the angular mo-
mentum operator L in the quantum state |�〉 of charges,
monopoles, and their electromagnetic field. If |�〉 is an
eigenstate of L (along some direction), then the above ex-
pression must have a quantized magnitude in agreement with
the quantization of angular momentum eigenvalues. We will
specialize to such circumstances by aligning all δx̂i j in the
same direction.

Let us calculate the angular momentum produced by N
dyons whose sizes are negligible next to their separations. If
ith dyon carries electric charge ei and magnetic charge mi,
then the total angular momentum is

L = 1

2

N∑
i=1

N∑
j=1

eimjδx̂i j

= 1

2

∑
i

eimiδx̂ii + 1

2

∑
i< j

(eimj − e jmi )δx̂i j . (H5)

If all δx̂ii and δx̂i j = −δx̂ ji are independent variables, then the
angular momentum quantization requires

(∀ i) eimi ∈ Z,

(∀ i �= j) eimj − e jmi ∈ Z. (H6)

The former is Dirac’s monopole charge quantization [54] and
the latter is Schwinger-Zwanziger condition [105,106]. These
conditions ensure that the sign changes of δx̂i j , i.e., internal
dyon rotations and pairwise dyon exchanges, do not violate
angular momentum quantization or dyon exchange statistics.
All alterations can change the total angular momentum only
by an integer (multiple of h̄). Note that an exchange of two
identical dyons does not affect the total angular momentum.
Violating either of these conditions due to a fractionalization
of ei would need to be compensated by long-range correla-
tions among δx̂i j in order to protect the quantization of L.

The two conditions (H6) together seem to prohibit charge
fractionalization unless monopoles can exist only in multi-
monopole clusters. However, there is a way out. Classically,
a system of noncoinciding charges and monopoles that satisfy
Dirac quantization can be transformed into a system of point-
like dyons though a duality mapping E + iB → eiθ (E + iB)
of electrodynamics with electric and magnetic charges. The
resulting dyons satisfy Schwinger-Zwanziger condition. The
total electromagnetic angular momentum is invariant under
duality, and thus does not obtain contributions from the inter-
nal structure of dyons after duality, as if δx̂ii ≡ 0 in Eq. (H5).
This hints a path to the eventual quantum regularization,
where neither electric nor magnetic charge are ever localized

at a single point. At the least, it is more appropriate to write

L =
∑

i

Li + 1

2

∑
i< j

(eimj − e jmi )δx̂i j, (H7)

where Li is the intrinsic dyon’s quantum spin.
Next, we briefly review the quantum dynamics of dyon’s

emergent spin. Consider an elementary dyon made from a unit
charge e = 1 and unit monopole m = 1. The electromagnetic
angular momentum (H4) must be included in the angular
momentum operator of the dyon. If the monopole is fixed
at the origin, then the charge particle’s stationary state can
be an eigenstate of the total angular momentum operators L2

and Lz by rotational symmetry. One can easily verify that the
operators

Li = −iεi jkx j (∂k − iAk ) − em

2

xi

|x| (H8)

satisfy the commutation relations [Li, Lj] = iεi jkLk for
i, j, k ∈ {x, y, z}. The plain kinetic energy Hamiltonian of the
charge particle is found to be

H = 1

2Mr2

[
− ∂

∂r

(
r2 ∂

∂r

)
+ L2 −

(
em

2

)2
]

(H9)

in spherical coordinates. Since the kinetic energy is positive,
the minimum angular momentum magnitude is em/2 → 1

2 .
Consequently, there are two degenerate lowest-energy eigen-
states, corresponding to Lz → ± 1

2 . The angular part of the
wave functions is given by the monopole harmonics Y1

2 ,l,m:

Y1
2 , 1

2 , 1
2

= − 1√
2π

sin

(
θ

2

)
eiφ,

Y1
2 , 1

2 ,− 1
2

= − 1√
2π

cos

(
θ

2

)
(H10)

in the gauge

A = 1

2r

1 − cos θ

sin θ
φ̂ (H11)

for the monopole’s magnetic field

B = ∇ × A = r̂
2r

. (H12)

It is interesting to observe that the gauge-invariant current

Jμ ∝ − i

2
[Y ∗(∂μY ) − (∂μY ∗)Y ] − |Y |2Aμ

= ± sin θ

8πr
φ̂μ (H13)

contains vortexlike flow (concentrated near the monopole and
with a proper core) that builds a magnetic moment consistent
with the total angular momentum direction Lz = ± 1

2 .

APPENDIX I: DYON BRAIDING

Here, we attempt to analyze the braiding of dyons with a
few thought experiments. We will initially assume that the
Aharonov-Bohm phase completely determines the braiding
statistics, and run into a paradox: the statistics is not symmet-
ric and depends on the braiding path. We will then “resolve”

115144-45
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the paradox by making a naive assumption that quantized
Dirac strings have a physical effect on fractional charges. The
ultimate correct understanding of Aharonov-Bohm phases
will be obtained at the end from a closer scrutiny of dyon
quantum mechanics.

Suppose that a dyon consists of a fractional charge ν bound
to a monopole quantum. Driving a dyon on a loop P near
another static dyon produces the Aharonov-Bohm phase

ϕ = ν

∮
P

δy A(y) = ν

2
�P , (I1)

where �P is the solid angle through which the loop is seen
from the static dyon. Let us simulate an exchange of two iden-
tical dyons in d = 3, by driving them in opposite directions on
a circle centered at their center of mass. Relative to dyon 1, the
dyon 2 completes a half of a twice larger circle which is seen
through the solid angle � = 2π . This accumulates the phase
ϕ2 = νπ/2 for the dyon 2. The same happens to the dyon 1,
so the total Aharonov-Bohm phase of both dyons is ϕ1 + ϕ2 =
νπ . The two-body wave function of dyons acquires a half of
this phase as calculated in Appendix G.

Since �P is well defined only modulo 4π , the Aharonov-
Bohm phase ϕ is well defined modulo 2πν. This is fine
for integer ν, but presents a problem when ν is fractional.
Even worse, the simulated monopole-quasiparticle exchange
is generally anisotropic: the time reversal ϕ = νπ → −νπ �=
ϕ + 2πn has the same effect as the reorientation ẑ → −ẑ
of the exchange rotation axis. Both issues could be easily
resolved if the Dirac strings were detectable in the presence
of fractional charge. A monopole source Aμν is fundamentally
isotropic, but the rank 1 gauge field linked to it by Aμν ∼
1
2 (∂μAν − ∂νAμ) cannot be isotropic due to a necessary Dirac
string. This inter-rank link is frustrated and the attached Dirac
string spontaneously breaks the rotation symmetry. Then, the
4π uncertainty of �P is just the contribution of the Dirac
string to the Aharonov-Bohm phase, and its natural anisotropy
leads to the exchange anisotropy.

So, can a fractional charge see a 2π -quantized Dirac
string? The Aharonov-Bohm phase is well defined for any
charge and flux in the absolute continuum limit. However,
the fundamental quantization of charge and flux is defined
only with a compact regularization. A Dirac string is truly
deprived of any physical content in a compact lattice gauge
theory; it can be erased by a gauge transformation that looks
singular in the continuum limit, but cannot be sharply distin-
guished from a nonsingular transformation on a lattice. Let us
explicitly construct such a transformation. Consider a straight
quantized string given by the continuum-limit gauge field
A(r, θ, z) = θ̂/r expressed in cylindrical coordinates. If we
place this gauge field on a lattice, then we can carry out a
gauge transformation to collect all of its

∮
dy A = 2π into a

single lattice link on any loop that encloses the string. The re-
sulting gauge field lives inside factors eiAi j in a compact gauge
theory, and hence can be trivially removed due to the equiva-
lence of Ai j ∈ {0, 2π}. At the same time, the wave function of
a nearby particle that couples to the gauge field will acquire a
global �ϕ = 2π phase winding by this gauge transformation.
The gauge-invariant charge current Jμ ∼ ∂μϕ + Aμ is not
changed by this Dirac string removal. In this sense, the string

specifically associated with the gauge field is not physically
observable with gauge-invariant operators.

On the other hand, we are working with artificial gauge
fields in this paper. When we apply a singular gauge trans-
formation to extract a gauge field from ordinary matter, that
gauge field represents physical currents in a singular gauge. A
quantized Dirac string represents a vortex of charge currents,
and the analysis of topological ground-state degeneracy in
Sec. VI B relies on its physical reality.

A simple thought experiment can further explore the reality
of quantized Dirac strings. Consider an infinite superconduct-
ing medium of unit-charge particles with a spherical hole that
contains a monopole quantum. The superconductor cannot
expel the monopole’s flux, so it will try to screen it. In typical
realistic situations, a superconductor screens magnetic flux
by admitting localized Abrikosov vortices via the phase of
its order parameter. So, one might naively imagine that a
vortex would form near the hole, collect all of the monopole’s
flux and take it to infinity through a narrow localized tube,
inside which the depletion of the order parameter is physically
observable. The first problem with this picture is that an
Abrikosov vortex cannot terminate at a point surrounded by
the superconductor, such as any point on the surface of the
hole. The monopole-screening vortex would necessarily have
to stretch between the exterior boundaries of the superconduc-
tor, and only pass through the hole. One arm of the vortex
would collect the actual monopole’s flux, while the other
continuation arm would be an avatar of the “unobservable”
Dirac string (i.e., it would have phase winding without a gauge
flux in the core). This is a frustrated situation, the vortex arms
must spontaneously choose arbitrary directions. Clearly, one
should carefully consider dynamics in order to find out how
this frustration is resolved.

The proper approach is to first solve the Schrödinger equa-
tion for the superconductor’s charged particles in the presence
of a monopole. Assuming that we may neglect interactions
between the particles, the solution is given by monopole har-
monics. The ground state is always degenerate by rotational
symmetry: it is an eigenstate of the total angular momentum
L, but the minimum orbital quantum number is l = 1

2 due to
the angular momentum of the electromagnetic field. This is
reviewed in Appendix H. The superconductor must condense
in one of these degenerate single-particle states and effectively
break the rotation symmetry by choosing the quantization axis
for L. Therefore, the physical superconductor’s state is biased
with respect to rotations according to the quantum dynamics
of angular momentum. The ultimate resolution of monopole
screening is not very different from the first qualitative picture
we built: the gauge-invariant currents of monopole harmonics
(H13) indeed look much like an Abrikosov vortex that passes
through the hole, and build a magnetic moment consistent
with the angular momentum 〈L〉 direction.

The lesson learned from this thought experiment is that
Dirac strings are only as real as the physical states of par-
ticles that espouse them. A physical excitation that carries
a quantized line or loop singularity is a vortex, but we
can describe it using a singular gauge field. Such excita-
tions can have nontrivial braiding statistics with fractional
charges.
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Two pointlike dyons can also have nontrivial braiding
statistics. A part of this braiding statistics is the Aharonov-
Bohm phase. However, the Dirac string attached to the
monopole appears to make the Aharonov-Bohm phase gauge
dependent. Now, we know how to resolve this problem. Solve
the Schrödinger equation of a dyon to find the gauge-invariant
charge currents in the dyon’s ground states. These are given by
(H13) for an elementary quantized dyon, and strictly related
to the physical spin L = 1

2 of the dyon. Then, carry out the
usual singular gauge transformation j = |Y |2a to extract the

topological defect into a gauge field. The outcome is

a+ = − 1

2r

sin θ

1 − cos θ
φ̂, a− = 1

2r

sin θ

1 + cos θ
φ̂ (I2)

for the dyon’s spin states Lz = ± 1
2 . These gauge fields de-

scribe the original dyon’s monopole, but the attached Dirac
string does not have an arbitrary orientation any more; its
orientation is determined by the dyon’s spin.
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