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We theoretically investigate the possibility of lasing in an electromagnetic resonator coupled to a voltage-
biased hybrid double quantum dot comprised of a double quantum dot tunnel coupled simultaneously to a normal
metal and a superconducting lead. Using a unitary transformation, we derive a resonator-double quantum dot
interaction Hamiltonian in the rotating-wave approximation which reveals the fact that lasing in this system is
mediated by electron transitions between Andreev energy levels in the system’s density of states. Moreover,
by employing a Markovian master equation incorporating dissipation effects for the electronic and photonic
degrees of freedom, we numerically calculate the steady-state reduced density matrix of the system from which
we determine the average photon number and its statistics in the resonator in various parameter regimes. We find
that at some appropriate parameter configurations, lasing can be considerably enhanced due to the possibility of
electron transitions between multiple Andreev levels in the system.
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I. INTRODUCTION

The laser has been one of the most intriguing optical
devices over the past few decades, and today, it has found
a tremendous number of applications in different fields of
science and technology. While in conventional lasers light
amplification is induced by optical pumping of a large number
of atoms which are weakly coupled to the cavity mode, the
realization of a strongly coupled one-atom laser in tightly con-
fined cavity modes is of fundamental interest to researchers
due to its particular properties and uses [1–8]. Following the
first experimental achievement in 2003 using a single cesium
atom strongly coupled to a cavity mode [9], many theoretical
proposals and experimental demonstrations were put forward
to explore other realizations of single-atom lasers [10–16].
Among these, quantum dot (QD) lasers find a lot of interest
because of their tunability as well as their fabrication advan-
tages. In the last two decades, based on the cavity quantum
electrodynamics, many micro- and nanocavity lasers with a
single QD have been fabricated [17–22].

Recently, similar effects were demonstrated in the cir-
cuit quantum electrodynamics architecture, where a double
quantum dot (DQD) or a superconducting qubit, which is
constantly driven into an excited state by an external electric
or magnetic bias, plays the role of an active medium in
the electromagnetic resonator formed in a superconducting
transmission line [23–32]. In particular, it was theoretically
predicted in Ref. [24] and then experimentally shown in
Ref. [26] that a voltage-biased DQD can create a lasing
state when it is coupled to a resonator through an electric
dipole interaction. By noting that it was a DQD coupled to
two normal-metal leads which was actually considered in the
aforementioned proposals to establish the lasing state in the
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resonator, it would be valuable to see whether replacing one
of the normal-metal leads by a superconductor would have
any implications for the lasing behavior.

In general, by coupling a QD to a normal lead and also
to a superconducting lead, some new intriguing features arise
in the energy configurations and transport properties of the
QD, which are basically due to the formation of the resonant
Andreev reflections at the QD-superconducting lead inter-
face [33–39]. Recently, the role of such hybrid single QD
structures in creating a lasing state in an electromagnetic res-
onator became attractive [40,41]; however, the consequences
of using a hybrid DQD in a voltage-biased DQD laser has not
been studied so far. It should be noted that Bruhat et al. [42]
recently conducted an experiment on a hybrid DQD system
coupled to an electromagnetic resonator. They did not study
the lasing state in their setup, but instead, they investigated the
mechanism of resonator-DQD coupling and observed a sym-
metric coupling between the hybrid DQD and the resonator
which is attributed directly to the roles of superconducting
proximity effects in the DQD.

In this paper, we consider a setup comprising a hybrid
DQD which is capacitively coupled to an electromagnetic
resonator. Using an analytical treatment of the Hamiltonian
of the system and also a numerical simulation of the full
quantum system in the steady state, we analyze the lasing
state in various parameter regimes of this model system.
We show that a lasing state with sub-Poissonian statistics
is present in this system at frequencies equal to the energy
differences between Andreev energy levels in the density of
states of the hybrid DQD. There are two Andreev energy
levels corresponding to each energy level of the hybrid DQD
which are arranged in the density of states (DOS) of the
system symmetrically around the chemical potential of the su-
perconducting electrode. Therefore, depending on the weights
of different Andreev levels in the DOS, there are some specific
parameter regimes for which the system shows lasing due to
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the electron transitions between the corresponding Andreev
energy levels of the hybrid DQD.

The remainder of this paper is organized as follows: In
Sec. II, the model Hamiltonian is introduced, and the under-
lying formalism of the paper is set up. Our numerical results
are considered in Sec. III, and conclusions are presented in
Sec. IV.

II. MODEL AND FORMALISM

A. Model Hamiltonian

As shown in Fig. 1, our model system consists of a hybrid
DQD, which is capacitively coupled to a single-mode electro-
magnetic resonator. The total Hamiltonian of the system can
be written as

Ĥ = Ĥdqd + Ĥl + Ĥl−d + Ĥph + Ĥph−dqd , (1)

where Ĥdqd is the Hamiltonian of the DQD given by

Ĥdqd =
∑

σ

εLn̂L,σ + εRn̂R,σ + td
∑

σ

(d†
R,σ dL,σ + H.c.)

+ URn̂R,↑n̂R,↓ + ULn̂L,↑n̂L,↓ + ULRn̂Ln̂R, (2)

where n̂i,σ = d̂†
i,σ d̂i,σ is the electron number operator with spin

σ = ↑,↓ in dot i = L, R with energy εi and td is the hy-
bridization energy between DQDs. Moreover, UL and UR are
the on-site Coulomb interaction energies for the left and right

FIG. 1. A single mode resonator is capacitively coupled to a
voltage-biased hybrid double quantum dot connected to a normal
metal and a superconducting lead.

dots, respectively, and ULR is the mutual Coulomb interaction
between the two dots in the DQD. Furthermore, Ĥl and Ĥl−d

stand for the Hamiltonian of the leads and tunneling between
leads and the DQD, which are given by

Ĥl =
∑
k,α,σ

(εk,α + μα )ĉ†k,α,σ
ĉk,α,σ

+
∑
k,α

�α (ĉ†k,α,↑ĉ†k,α,↓ + H.c.), (3)

Ĥl−d =
∑

k,α,i,σ

tα,i(ĉ
†
k,α,σ

d̂i,σ + H.c.), (4)

where ĉσ denotes the annihilation operator of an electron with
spin σ in the single-particle state of the left (α = N) or right
(α = S) lead, characterized by the momentum k with energy
εk,α , and μα is the chemical potential of the corresponding
lead. Moreover, �i is the pairing energy gap in the respective
lead, which is given by �N = 0 for the normal lead and a
real positive �S for the superconducting lead. Furthermore,
tα,i is the tunneling energy between lead α and dot i. The
left (right) lead is coupled only to the left (right) dot; thus,
tN,R = tS,L = 0.

Because we are interested in studying the impacts of the
presence of superconducting pairing correlations on the lasing
behavior in the DQD-resonator coupled system, it is reason-
able to consider electronic transitions in the superconducting
subgap regime and to disregard the quasiparticle excitations in
the continuum region of the superconducting lead. In practice,
this is equal to considering a large superconducting gap limit,
�S → ∞, in which all energy scales of the system are smaller
than the edges of the superconducting gap. By using a Green’s
functions description [43] or a Schrieffer-Wolf transforma-
tion [44], it can be shown that in this so-called infinite-gap
approximation, the superconductor lead is decoupled from the
right dot, leaving an effective pairing potential �S (d̂†

R,↑d̂†
R,↓ +

H.c.) in the Hamiltonian of the DQD, where �S = 2π |tS,R|2ρS
0

is the electron tunneling rate between the DQD and the
superconducting lead in the wideband approximation and ρS

0
is the lead’s density of states in its normal state. Thus, we can
rewrite the Hamiltonian of the DQD as

ĤSC
dqd = Ĥdqd + �S (d̂†

R,↑d̂†
R,↓ + H.c.). (5)

The Hamiltonian of the single-mode resonator is given
by Ĥph = h̄ω0(â†â + 1

2 ), where â is the bosonic annihilation
operator of the resonator mode with frequency ω0. The cou-
pling of the DQD to the resonator is modeled by a capacitive
interaction between electrons in the DQD and the electric field
in the resonator, and its Hamiltonian is given by

Ĥph−dqd = −
∑
i,σ

gin̂i,σ (â + â†), (6)

where gi is the coupling strength between the dot i and the
resonator mode.

B. Master equation description

The coupled DQD-resonator system can be driven into a
nonequilibrium state by applying a finite bias voltage μN =
eVb to the normal electrode, where e is the charge of an
electron. Following the standard recipe for deriving the master
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equation, we consider the DQD-resonator subsystem with the
Hamiltonian ĤS = ĤSC

dqd + Ĥph + Ĥph−dqd to be an open sys-
tem which we seek for its dynamics when it is weakly coupled
to the normal-metal electrode and a photon bath. Then, the
dynamics of the system can be described by using a master
equation of the reduced density matrix ρ of the coupled DQD-
resonator system, which in the Markovian approximation is
given by [45,46]

d

dt
ρ̂(t ) = − i

h̄
[ĤS, ρ̂(t )] + Lphρ̂(t ) + LN ρ̂(t ), (7)

where Lph and LN are, respectively, the Lindblad superoper-
ators describing the dissipation of photons and the electron
tunneling between the QD and the normal-metal electrode.
While for a general description of the dynamics of the
DQD-resonator system, a precise microscopic derivation of
the above Lindblad superoperators is necessary, as we are
interested here in investigating the possibility of lasing in the
hybrid DQD-resonator system, we will focus on situations
where the system is at low temperatures and also there is a
large bias voltage applied to the normal-metal lead. These as-
sumptions introduce great simplifications in our calculations
and allow us to represent the action of the above Lindblad
superoperators on the reduced density matrix of the DQD-
resonator system by the following forms:

Lphρ̂(t ) = κ
[
âρ̂(t )â† − 1

2 {â†â, ρ̂(t )}] (8)

and

LN ρ̂(t ) = �N

∑
i,σ

[
Ĉiσ ρ̂(t )Ĉ†

iσ − 1

2

{
Ĉ†

iσĈiσ , ρ̂(t )
}]

, (9)

where κ is the decay rate of the photons in the resonator, �N =
2π |tN,L|2ρN

0 is the electronic tunneling rate to the normal-
metal lead, and Ĉiσ = d̂†

i,σ (d̂i,σ ) for positive (negative) bias
voltages. We emphasize that if we had not considered the
infinite-gap approximation for the superconducting lead, it
would have been necessary in Eq. (7) to consider the effect of
coupling to the superconducting lead by introducing its corre-
sponding Lindblad superoperator [47]. We also note that the
above formalism best describes the coupled DQD-resonator
system when the coupling between the DQD and resonator
is weak. For a general treatment in the presence of strong
coupling between the DQD and the resonator we can refer
to Ref. [46].

By solving Eq. (7) for d ρ̂(t )/dt = 0, we obtain the re-
duced density matrix of the coupled DQD-resonator system
in the steady state, from which we can calculate the average
value of every observable of the system using the relation
〈Ô(t )〉 = Tr[Ôρ̂(t )], where Tr[· · · ] is the trace with respect
to all degrees of freedom in the system. Of interest to us here
are the average photon number nphoton = 〈a†a〉 and the Fano
factor of the photons, where the latter can be calculated by
the relation F = (〈a†aa†a〉 − 〈a†a〉2)/〈a†a〉. The Fano factor
can be referred to as a means to distinguish between the
photon bunching (F > 1) or antibunching (F < 1) regimes
and describes whether the photons inside the resonator have
either sub-Poissonian (F < 1), Poissonian (F = 1), or super-
Poissonian (F > 1) statistics [48].

With the knowledge of the reduced density matrix of the
system, we can also calculate the distribution of the photons
in the resonator, which is given by the diagonal elements of
TrQD[ρ̂(t )] in the occupation number basis, where TrQD[· · · ]
is the trace with respect to the degrees of freedom of the QD.

C. Rotating-wave approximation

Despite its simplicity, Eq. (7) cannot be solved analytically,
and it is necessary to solve it numerically. Before present-
ing our numerical results, it is instructive to examine the
Hamiltonian of the system in a rather different representation
which is more familiar in the context of the quantum optics
literature [49]. By transforming to a representation in which
the Hamiltonians ĤSC

dqd and Ĥph are diagonal, we can find a

rotating-wave approximation (RWA) description of Ĥph−dqd

from which a clear interpretation of the lasing mechanism
can be obtained easily. However, the simultaneous presence of
pairing (�S ) and tunneling (td ) terms in ĤSC

dqd makes its analyt-
ical diagonalization practically impossible. Nevertheless, we
can use perturbation theory to obtain a unitary transformation
to the lowest order in �S , which can be used to obtain an
approximating expression for diagonalized ĤSC

dqd .
We relegate the details of deriving such a unitary trans-

formation to Appendix A, and here we solely present the
results. Using a unitary transformation Û , whose explicit
representation is given in Eq. (A6), the Hamiltonian ĤSC

dqd
becomes diagonalized as

ˆ̃H
SC

dqd = Û †ĤSC
dqdÛ =

∑
i,σ

Eiγ̂
†
i,σ γ̂i,σ + O

(
�2

S

)
, (10)

where E1(E2) = (εL + εR)/2 ± {[(εL − εR)/2]2 + t2
d }1/2 and

the fermionic operators γ̂i,σ , with i = 1, 2 and σ =↑,↓, are
related to the d̂i,σ operators through Eq. (A6). By applying the
same unitary transformation to the DQD-resonator coupling
Hamiltonian Ĥph−dqd and after some algebra, we reach the fol-

lowing expression for the transformed Hamiltonian ˆ̃H ph−dqd

in the rotating-wave approximation:

ˆ̃H
RWA

ph−dqd = uv
∑

σ

â

{
(gL − gR)

[
γ̂
†
1,σ γ̂2,σ

−�S

(
u2

2E2
+ v2

2E1

)
γ̂
†
1,σ γ̂

†
2,−σ

]

−(gL+gR)�S
1

E1+E2
γ̂
†
1,σ γ̂

†
2,−σ +O

(
�2

S

)}+H.c.,

(11)

where u(v) = 1√
2
[1 ± εL−εR

[(εL−εR )2+4t2
d ]1/2 ]1/2. Note that for �S =

0, the above equation is reduced to the usual electric dipole
coupling between a DQD and a resonator. We emphasis that,
to the linear order of �S , in addition to the term proportional
to gL − gR which is usual for the electric dipole coupling of
a DQD to a resonator, there appears a new term in Eq. (11)
which is proportional to gL + gR. In fact, this new, intrigu-
ing DQD-resonator coupling term is particularly due to the
coupling of the superconducting lead to the DQD, and its
effects were observed only very recently in Ref. [42]. Another
interesting thing which we can understand from Eq. (11)
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is that photon creation is accompanied by a new electronic
transition in the DQD represented by the operator γ̂

†
1,σ γ̂

†
2,−σ ,

which is related to the Andreev reflections in DQD due to
the coupling to the superconducting lead. It should be noted
that Eq. (11) is obtained perturbatively to the first order of
�S , and it should not be used for a quantitative explanation
of the lasing in the DQD-resonator coupled system in the
general case.

III. RESULTS AND DISCUSSION

In order to solve Eq. (7) numerically, we need to express its
matrix representation in an appropriate basis. We can express
the operators in Eq. (7) in the basis spanned by the states
|nL↑〉 ⊗ |nL↓〉 ⊗ |nR↑〉 ⊗ |nR↓〉 ⊗ |np〉, where ni,σ = 0, 1 is the
electron occupation number and np = 0, 1, 2, . . . , represents
the number of photons in the resonator. In practice, we need
to truncate the maximum value of the photon number in the
resonator to a sufficient value np,max, which should be taken
to be large enough to ensure the convergence of the numerical
calculations. In our calculations, np,max = 70 is found to be
a sufficient cutoff number. It is noteworthy that to calculate
the steady-state reduced density matrix, we need to solve a set
of [24 × (np,max + 1)]2 equations, which is a highly time and
memory consuming process. The uniqueness of the calculated
reduced density matrix is guaranteed by using the normaliza-
tion condition Tr[ρ̂(t )] = 1. Our numerical calculations were
performed by utilizing the QUTIP package [50].

Since there are no previous experiments addressing a
model similar to what we consider in this work, we will
take the values of our model parameters to be on the order
of experimentally accessible values which are reported in
some previous experimental works [42,51,52]. So we take the
energy of the left dot level and the interdot tunneling energy
to be εL = 10 μeV and td = 5 μeV. Also, we set �N = 0.1 ∼
1 μeV and �S = 1 ∼ 5 μeV. The chemical potential of the
superconducting electrode is taken to be the energy reference,
μS = 0, and a large positive bias voltage is applied directly
to the normal electrode, μN = eVb. Moreover, we set the
resonator damping to κ = 10−3 μeV and also the magnitude
of the DQD-resonator coupling to |gL| = |gR| = g0 = 6.62 ×
10−2 μeV. To simplify our discussion and for more clarity,
we momentarily disregard the electron-electron interactions in
the DQD and demonstrate the presence of the lasing state in
the noninteracting case. We shall come back to the issue of the
presence of nonzero electron-electron interactions in the DQD
at the end of this section. In Fig. 2(a), we fix the frequency of
the resonator to h̄ω0 = 13.3 μeV and plot the average photon
number and the Fano factor of the photons in the resonator as a
function of the energy level of the right dot εR. We see that the
average photon number in the resonator shows an asymmetric
peak with a maximum photon number of about nphoton = 20,
around εR = 2.6 μeV, accompanied by a Fano factor slightly
lower than F = 1, corresponding to a sub-Poissonian distri-
bution of the photons in the resonator. A rigorous way to
interpret why the lasing happens at this particular gate voltage
and resonator frequency and also why the photon peak is
asymmetric is to look at the local density of states (LDOS)
of the DQD when it is in the equilibrium state and isolated
from the resonator and the normal lead. The LDOS can easily
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FIG. 2. (a) Average photon number (solid brown line) and Fano
factor (dashed green line) as functions of the energy level of the
right dot εR. (b) Local density of states of the DQD for εR =
2.6 μeV. Other parameter are εL = 10 μeV, td = 5 μeV, UL = UR =
ULR = 0, �N = 0.1 μeV, �S = 1 μeV, μS = 0, h̄ω0 = 13.3 μeV,
gL = −gR = g0 = 6.62 × 10−2 μeV, and κ = 10−3 μeV.

be obtained from −Im[GR
i (ω)], where GR

i (ω) is the retarded
Green’s function of dot i, which can be calculated by using the
Lehmann representation (see Appendix B) [53]. In general, by
coupling to a superconducting lead, the peaks in the LDOS
of a QD with energies around the chemical potential of the
superconducting lead will be split into two Andreev reflection
subgap levels with equal but opposite sign energies [38]. On
the other hand, since we have assumed a large positive bias
voltage on the left lead, we can expect that the direction of
electron tunnelings should be from the left to the right dot. If
the energy levels of the two dots are in resonance, we will end
up with an electric current originating from resonant Andreev
reflections at the interface of the right dot and the supercon-
ducting lead [33,54]. However, when the energy levels of the
two dots are misaligned, electron tunnelings from left to right
dots are assisted by some photon excitation or absorption in
the resonator, the frequency of which is equal to the energy
difference between the two corresponding LDOS peaks of the
left and right dots.

We plot the LDOS of the left and right dots in Fig. 2(b) for
the gate voltage at which the photon number in the resonator
is maximized. We see that the LDOS of the left dot has a large
peak around h̄ω ≈ 12.3 μeV, while the LDOS of the right
dot has two main peaks at energies h̄ω ≈ ±1 μeV. It can be
deduced that the photon number peak in Fig. 2(a), which is for
resonator frequency h̄ω0 = 13.3 μeV, is because of electron
transitions between the two peaks in the LDOS of the DQD
shown by an arrow in Fig. 2(b). Interestingly, we see that there
is another possible electron transition with energy difference
h̄ω ≈ 11.3 μeV, and we anticipate we can see its lasing effect
by tuning the frequency of the resonator to the appropriate
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FIG. 3. (a)–(d) Average number of photons in the resonator as
a function of resonator frequency ω0 and the energy level of the
right dot εR for various values of �S and gL and gR. (a) �S = 1 μeV
and gL = −gR = g0, (b) �S = 5 μeV and gL = −gR = g0, (c) �S =
1 μeV and gL = gR = g0, and (d) �S = 5 μeV and gL = gR = g0.
White circles show the energy difference of various peaks in the
LDOS at the respective εR. Other parameters are as in Fig. 2.

frequency. The origin of the asymmetry in the photon peak
in Fig. 2 can also be deduced from the LDOS by noting
that the weight of the Andreev subgap peaks in the LDOS is
dependent on the values of the gate voltages. From the above
discussion, it becomes clear that because of the presence of
the superconducting lead, there is, of course, more than one
possible lasing frequency in our model system corresponding
to each parameter configuration of the DQD. To see this, we
plot false-color plots of the average photon number in the
resonator as a function of εR and ω0 in Fig. 3. Additionally,
we have also calculated energy differences between various
LDOS peaks of the system at the different gate voltages,
which are shown in Fig. 3 by white circles. In Fig. 3(a), we
consider the same parameter configuration as in Fig. 2. We
see that lasing happens at various gate voltages as well as
in different resonator frequencies. Moreover, as expected, the
resonator frequencies at which we can see nonzero lasing are
exactly equal to the energy differences between various LDOS
peaks. It is interesting to note that the regions with nonzero
lasing do not follow a regular pattern, which is mainly because
the positions and heights of the LDOS peaks are nonlinear
functions of the values of td , εR, εL, and �S . Alternatively, this
nonlinearity can also be seen in the approximate expression

which we obtained for the DQD-resonator coupling in
Eq. (11).

Next, in Fig. 3(b), we investigate the effect of increasing
the coupling energy between the right dot and the supercon-
ducting lead by setting �S = 5 μeV. Because of the increasing
value of �S , the LDOS peaks are renormalized, and therefore,
their energy differences are also changed. Accordingly, the
profile of the lasing which should follow these energy differ-
ences is changed as well. An important feature in Fig. 3(b)
is the presence of two points, which are marked by two
white arrows. We see that at these points, two branches with
nonzero lasing cross, and very intriguingly, as a result of
this branch crossing the photon number in the resonator is
considerably increased. Actually, the crossing of two energy
difference branches means that there are two distinct possible
electron transitions in the LDOS with exactly the same energy
difference. Hence, we can deduce that the sudden increasing
of the photon number at these points is due to multiple-
photon excitation due to the electron transitions from different
pairs of peaks in the LDOS. Another feature in Fig. 3(b) is
that, in the regions around the crossing points, some nonzero
lasing occurs at frequencies which are not associated with any
energy difference branches. We speculate that these nonzero
lasing points originate from a two-level lasing mechanism
corresponding to the electron transitions from the two nearby
branches [55].

So far, in Figs. 2, 3(a), and 3(b), we have investigated
the properties of the lasing state for the situation where the
DQD-resonator coupling is asymmetric, where gL = −gR =
g0. However, as we have shown by using some approximative
calculations in Sec. II, a spectacular character of coupling a
hybrid DQD to the resonator is the presence of a new coupling
mechanism which is dependent on the sum of the coupling
strength of each dot to the resonator, gL + gR, and therefore,
one can obtain lasing in this system even for symmetric
DQD-resonator coupling as gL = gR. Thus, it is interesting
to study the presence of lasing in such symmetric couplings.
We have plotted in Figs. 3(c) and 3(d) the same plots as in
Figs. 3(a) and 3(b), except that here, we consider the case of
gL = gR = g0. Here, because the energy configurations of the
DQD are not changed, the profile of the energy differences is
not altered. However, we see that there are still some nonzero
lasing states available for the system in this symmetric cou-
pling configuration. We emphasize that in the case where the
DQD is coupled to two normal metals, the DQD-resonator
coupling is described only by a term proportional to gL −
gR, and one could expect that a symmetric DQD-resonator
coupling as gL = gR would result in a completely vanishing
DQD-resonator coupling and therefore no lasing can happen
in such situations.

Having realized the presence of the lasing in the coupled
hybrid DQD-resonator system as well as its origins and
some of its properties, we now study the effect of nonzero
electron-electron interactions on the lasing state in our model
system. Although it seems that the presence of finite electron-
electron interactions in the hybrid-DQD could suppress the
superconducting proximity correlations in the DQD and, ac-
cordingly, could reduce the lasing state, previous theoretical
and experimental analysis has shown that, indeed, the elec-
tronic transport through a hybrid QD mainly depends on three
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FIG. 4. Average number of photons in the resonator as a function
of resonator frequency ω0 and the energy level of the right dot εR

for the presence of finite electron-electron interactions in the DQD.
We set UL = UR = 82 μeV and ULR = 40 μeV, and other parameters
are εL = −110 μeV, td = 5 μeV, �N = 1 μeV, �S = 5 μeV, μS =
0, gL = −gR = g0, and κ = 10−3 μeV.

energy scales, namely, U/�S , �N/�S , and td/�S [51,54,56].
So even for large U values, we can expect nonzero con-
ductance through the DQD, and therefore, the presence of
lasing in this case is also no surprise. As a representative
example, in Fig. 4, we investigate the presence of lasing
for a parameter configuration like that in Fig. 3(b), except
that here we consider a large electron-electron interaction in
the DQD by setting UL = UR = 82 μeV and ULR = 40 μeV,
which are roughly similar to the values given in Ref. [42]. As
a result of electron-electron interaction, the energy difference
branches are split into many branches (some of them are
not shown in Fig. 4), and among them, in some particular
regions, we can see some nonzero lasing states in various
resonator frequencies. Note the large negative gate voltages εL

and εR applied to the DQD in Fig. 4, which are necessary to
compensate the large Coulomb interactions in the DQD. Also,
note that the energy difference branches are obtained from
the energy differences of the roots of the retarded Green’s
function, which is calculated for the full interacting system
by using the Lehmann representation.

IV. CONCLUSIONS

In this paper, we studied the possibility of lasing in a
single-mode electromagnetic resonator which is capacitively
coupled to a hybrid DQD. We found that lasing in this system
is mediated by electron tunneling between various peaks in the
LDOS of the DQD which are induced by Andreev reflections
at the DQD-superconducting lead’s interface. Because of this
particular lasing mechanism, we showed that the average
photon number in the resonator in the lasing state can be
further enhanced by multiple electron tunnelings between two
different pairs of Andreev reflection peaks with the same

energy difference in the LDOS of the DQD. Also, we showed
that this system could also exhibit “two-state lasing” which
is due to the electron transitions between different Andreev
levels in the hybrid DQD with different energy differences.
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APPENDIX A: DIAGONALIZATION OF ĤSC
dqd

Here, we present the details of steps needed for diag-
onalizing the Hamiltonian ĤSC

dqd . In these calculations we
disregard the Coulomb interaction in the DQD to simplify our
presentation. We start with the matrix representation

ĤSC
dqd = �̂†(h0 + �Sh1)�̂, (A1)

where �̂† = (d̂†
1,↑, d̂1,↓, d̂†

2,↑, d̂2,↓),

h0 =

⎛
⎜⎜⎜⎝

ε1 0 td 0

0 −ε1 0 −td

td 0 ε2 0

0 −td 0 −ε2

⎞
⎟⎟⎟⎠, (A2)

and

h1 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠. (A3)

We then define four fermionic operators γ̂i,σ , with i = 1, 2
and σ = ↑,↓, such that Û †h0Û is diagonal, where Û † =
(γ̂ †

1,↑, γ̂1,↓, γ̂
†
2,↑, γ̂2,↓). This is possible when the operators γ̂i,σ

are related to d̂i,σ operators through a Bogoliubov transforma-
tion Û = K�̂, where K is given by

K =

⎛
⎜⎜⎜⎝

u 0 v 0

0 u 0 v

−v 0 u 0

0 −v 0 u

⎞
⎟⎟⎟⎠, (A4)

where

u(v) = 1√
2

√√√√1 ± εL − εR√
(εL − εR)2 + 4t2

d

. (A5)

Then, we find that Û †h0Û = diag(E1,−E1, E2,−E2), where
E1(E2) = 1

2 [εL + εR ±
√

(εL − εR)2 + 4t2
d ].

To take into account the effect of the second term in
Eq. (A1), we perform a first-order perturbation on the eigen-
functions of the matrix h0 with respect to the perturbation term
�Sh1. These perturbed eigenfunctions can be represented by

Û = (K + �SK ′)�̂, (A6)
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where

K ′ =

⎛
⎜⎜⎜⎝

0 uv2

2E1
− uv2

E1+E2
0 v3

2E1
+ u2v

E1+E2

− uv2

2E1
+ uv2

E1+E2
0 − v3

2E1
− u2v

E1+E2
0

0 u2v
E2+E1

− u2v
2E2

0 uv2

E2+E1
+ u3

2E2

− u2v
E2+E1

+ u2v
2E2

0 − uv2

E2+E1
− u3

2E2
0

⎞
⎟⎟⎟⎠.

(A7)

Now, it is straightforward to show by matrix multiplication
that the first-order correction to the eigenenergies of ĤSC

dqd is
zero, and its diagonalized form in terms of γ̂i,σ operators can
be given by

ˆ̃H
SC

dqd = U †ĤSC
dqdU =

∑
i,σ

Eiγ̂
†
i,σ γ̂i,σ + O

(
�2

S

)
. (A8)

The main benefit which we can obtain from the above cal-
culations is that we can apply the same unitary transformation
U on the DQD-resonator coupling Hamiltonian Ĥph−dqd to
obtain its representation in terms of γ̂i,σ operators as

ˆ̃H ph−dqd

= −
∑

σ

(â + â†)

{
(gL − gR)

×
[
−uvγ̂

†
1,σ γ̂2,σ + �Suv

(
u2

2E2
+ v2

2E1

)
γ̂
†
1,σ γ̂

†
2,−σ

]

− (gL + gR)

[
�S

uv

E1 + E2
γ̂
†
1,σ γ̂

†
2,−σ

]}
+ H.c. (A9)

APPENDIX B: LEHMANN REPRESENTATION OF GR
i (ω)

As we discussed in Sec. III, to the linear order of
interaction between the DQD and the resonator and in the

weak-coupling regime, it is reasonable to expect that the
possible lasing frequencies in the resonator can be explained
by electron transitions between various peaks in the LDOS of
the DQD when it is isolated from the resonator and also from
the normal lead. It is convenient to calculate the LDOS of the
DQD from −Im[GR

i (ω)], where GR
i (ω) is the retarded Green’s

function of dot i and can be calculated from the Lehmann
representation [53]. In the following we briefly summarize the
main steps needed to calculate the retarded Green’s function
of the DQD.

Our starting point is the Hamiltonian of the DQD,

ĤSC
dqd =

∑
ασ

εα n̂α,σ + Uα n̂α,↑n̂α,↓ + ULRn̂Ln̂R

+ td
∑

σ

(d†
R,σ dL,σ + H.c.) + �S (d̂†

R,↑d̂†
R,↓ + H.c.).

(B1)

To proceed, we need the eigenstates and the eigenenergies of
Eq. (B1), for which, as we discussed in Sec. II, obtaining an
analytical expression for its eigenstates is practically impos-
sible. Nevertheless, we can rely on numerical methods and
express the numerically calculated eigenstates of Eq. (B1) and
their corresponding eigenenergies by |n〉 and En, where n =
1, 2, . . . , 16. Having the eigenspectrum of the Hamiltonian of
the DQD, we can then calculate the retarded Green’s function
of the DQD from

GR
i,σ (ω) = 1

Z

∑
m,m′

〈m|di,σ |m′〉〈m′|d†
i,σ |m〉

ω + Em − Em′ + iη

(
e−βEm + e−βEm′ ),

(B2)
where Z = ∑

m e−βEm , η is an infinitesimal positive constant,
and β is the inverse temperature.
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