
PHYSICAL REVIEW B 101, 115133 (2020)

Competition between Kondo physics and Kitaev physics in Kitaev
clusters coupled to a fermionic bath
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Geometrically frustrated quantum impurities coupled to metallic leads have been shown to exhibit rich
behavior with a quantum phase transition separating Kondo screened and local moment phases. Frustration
in the quantum impurity can alternatively be introduced via Kitaev couplings between different spins of the
impurity cluster. We use the numerical renormalization group (NRG) to study a range of systems where the
quantum impurity comprising a Kitaev cluster is coupled to a bath of noninteracting fermions. The models
exhibit a competition between Kitaev and Kondo dominated physics depending on whether the Kitaev couplings
are greater or less than the Kondo temperature. We characterize the ground-state properties of the system and
determine the temperature dependence of the crossover scale for the emergence of fractionalized degrees of
freedom in the model. We also demonstrate qualitatively as well as quantitatively that in the Kondo limit, the
complex impurity can be mapped to an effective two-impurity system, where the emergent spin 1/2 comprises
of both Majorana and flux degrees of freedom. For a tetrahedral-shaped Kitaev cluster, an extra orbital degree of
freedom closely related to a flux degree of freedom remains unscreened even in the presence of both Heisenberg
and Kondo interactions.
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I. INTRODUCTION

Frustration effects due to anisotropic spin interactions have
been shown to have dramatic effects in quantum lattice sys-
tems. A class of such systems consists of spin-orbit coupled
Mott insulators that exhibit strong bond-directional exchange
interactions arising in spin-orbit coupled Mott insulators.
These are also known as Kitaev materials [1]. There is enor-
mous interest in the physics of Kitaev materials in two as
well as three dimensions as the models exhibit spin fraction-
alization into the elusive Majorana fermions that appear as
emergent degrees of freedom coupled to a Z2 gauge field [2].
The search for systems exhibiting Kitaev physics is a matter
of ongoing research, possible candidates include Na2IrO3 [3],
α-Li2IrO3 [4], and especially, RuCl3 [5,6], where a quantized
thermal Hall effect has been reported, which is interpreted as
the smoking-gun signature of the Majorana edge mode of a
chiral spin liquid [7–9]. The Kitaev honeycomb lattice is one
of the rare cases, where a spin liquid can be solved exactly and
it has been shown that at low temperatures, there is an ordering
of the Z2 static gauge field with the spectrum being given by
those of itinerant Majoranas. However away from the Kitaev
limit, it is extremely challenging to study the system using
numerical as well as analytical methods.

A large group of studies has focused on the effect due
to defects in the Kitaev honeycomb lattice in 2d [10,11]
as well as in Kitaev materials in 3d [12]. The signature of
these defects can act as probes in the understanding of the
underlying properties of the spin liquid. Defects can be due to
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the presence of vacancies in the lattice or due to the coupling
with magnetic impurities at one or more lattice sites. The main
result of these studies is that in a two-dimensional Kitaev hon-
eycomb lattice, a vacancy binds a Z2 flux at the impurity site
[10,11]. Additionally, the response to an external magnetic
field has been shown to be similar to that of a local moment
at the defect site with a nontrivial dependence on the field
in both gapped and gapless phases. Subsequent studies, using
perturbative scaling [13,14] as well as more rigorous numeri-
cal treatment using the numerical renormalization group [15],
have shown the existence of an unstable fixed point that gives
rise to a first-order flux transition between the weak-coupling
flux-free phase and the strong-coupling impurity-flux phase,
upon tuning the coupling between the impurity and the lattice.
Other studies have used slave-particle mean field theories to
investigate situations involving a Kondo lattice model on the
honeycomb lattice with Kitaev interactions among the local
moments, giving rise to fractionalized Fermi liquid behav-
ior and exotic superconductivity [16,17]. Here, the effective
hybridization of Majorana modes and conduction electrons
due to the Kondo effect imprints superconductivity onto the
conduction electron system.

While the properties of the idealized Kitaev model and
of certain defects in the model are well understood, there is
only limited understanding of the properties of the system
when the gauge degree of freedom becomes dynamical due
to perturbations beyond the pure Kitaev model. We propose
that quantum impurity problems can provide an alternative
approach to complement the current understanding of the
interplay of Majorana and gauge degrees of freedom in such
situations. In this study, we study small “Kitaev clusters” such
as those shown in Figs. 1(a) and 1(b). The clusters in question
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FIG. 1. Finite size Kitaev clusters. (a) A Kitaev cube consisting
of eight spins. The x, y, and z interactions are shown using solid
(black), dashed (blue), and dotted (red) lines, respectively. (b) A
four-site Kitaev tetrahedron cluster. (c) A schematic representation
of a model under consideration. Kitaev (cubic) cluster interacting
with a bath of noninteracting fermions with Kondo coupling J . The
fermionic bath is attached to only one corner of the cube (site 1).

are defined to be small structures made up of spin 1/2s,
the only criteria being that the sites are tricoordinated with
anisotropic Kitaev interactions on each link, which allows for
an analytic solution of the cluster in terms of the flux and
Majorana degrees of freedom. The cluster is attached at one
site to a fermionic bath via a Kondo coupling. This couples
not only the Majorana states and the conduction electrons but
also gives rise to a dynamics of the flux degree of freedom on
neighboring plaquettes.

From a quantum impurity perspective, the problem is that
of studying a complex impurity system where the frustration
effect is incorporated locally via Kitaev terms. Frustration
effects due to anisotropic spin interaction have been shown
to give rise to interesting phenomena such as the spin frac-
tionalization in quantum spin-lattice systems. However, not
much is known about the effect of frustration in the context
of quantum impurity systems. So far the focus has been
on geometric frustration that can arise, for example, in a
setup consisting of three quantum dots coupled to metallic
leads [18,19]. A rich range of behavior involving many-body
physics has been observed in both the ferromagnetic as well
antiferromagnetic regimes. Local frustration drives the system
into a phase transition separating the local moment phase with
degenerate ground states and a Kondo-screened Fermi liquid
phase. These results indicate the possibility of interesting
physics when frustration is introduced via Kitaev terms. In
particular, there is a competition between the Kitaev physics
leading to the ordering of the Z2 degrees of freedom and the
effect of the Kondo coupling that leads to a singlet formation.
We therefore study this competition in a model which can be
solved in a numerically exact way.

We use numerical renormalization group (NRG) to study
the class of quantum impurity problems described above
[20–22]. It has been an extremely reliable tool that allows
for an essentially exact calculation of static and dynamical

properties of the quantum impurity. The different fixed points
of the model can be easily read off from the structure of the
many-body NRG spectrum at the end of each iteration, thus
enabling us to directly observe any fractionalized impurity
degree of freedom, if any. The NRG would also allow us to
study the full crossover from the high-temperature to the low-
temperature ground state(s) and the different crossover tem-
peratures can be determined from impurity thermodynamic
properties such that the entropy.

The rest of the paper is organized as follows. The model
along with the Hamiltonian is formally defined in Sec. II.
The numerical methods used are briefly described in Sec. III,
that includes the NRG as well an overview of Kitaev’s exact
solution of the honeycomb lattice that is also applicable to
the finite Kitaev clusters. The main results of this study
are presented in Sec. IV. Firstly, in Sec. IV A, we discuss
some basic properties of the Kitaev clusters by themselves
including the specific heat to illustrate spin fractionalization
in the clusters. Impurity entropy properties of both the cube as
well as the tetrahedron obtained using NRG are presented in
Sec. IV B where the dependence of the crossover temperature
on model parameters is determined. In Secs. IV C and IV D,
we show numerically and analytically respectively, that the
system can be mapped to an effective two-impurity problem.
The expectation values of the plaquette fluxes for the case of
the Kitaev cube are presented in Sec. IV E. Further discussion
of our results and implication for future studies are presented
in Sec. V.

II. MODEL

In this study, we consider a range of problems where the
impurity consists of a finite-size Kitaev cluster. Each site in
the cluster consists of a spin 1/2 that is tricoordinated and
the nature of the bonds are direction dependent like in the
case of the Kitaev honeycomb lattice. The structure of the
Kitaev cluster for a cube (consisting of eight sites and twelve
links) and that for a tetrahedron (consisting of four sites and
six links) are shown schematically in Figs. 1(a) and 1(b),
respectively. For a cluster consisting of Ns spins, the sites
are labeled as 1, . . . , Ns as shown in the respective figures.
In the case of the cube, we choose a configuration where
the x, y, and z bonds are along three different directions
and are shown using (black) solid, (blue) dashed and (red)
dotted lines respectively.1 In the case of the tetrahedron, there
is only one possible configuration for the six bonds, where
each pair of opposite bonds belong to either the x, y, or z
type of interactions. The impurity part (Kitaev cluster) of the
Hamiltonian can be written as

Himp =
∑
{i j}

1

4
K {i j},γ σ̂

γ

i · σ̂
γ

j , (1)

1The cube can easily be mapped to a two-dimensional geometry
consisting of two quadrilaterals, one enclosing the other. Hence the
bond directions do not refer to three dimensional directions. For a
Kitaev cluster consisting of eight sites, there exists several distinct
configurations that consists of a tricoordinated geometry. We choose
one particular configuration in this study.

115133-2



COMPETITION BETWEEN KONDO PHYSICS AND KITAEV … PHYSICAL REVIEW B 101, 115133 (2020)

where γ = x, y, or z represents the type of interaction,
and the Kitaev couplings K {i j},γ are dependent on the bond
type {i j}. In addition to the Kitaev couplings, one can also
include Heisenberg couplings given by

∑
{i j} JH Si · S j along

the bonds. For JH �= 0, the gauge fields are no longer static,
and instead become dynamical degrees of freedom.

We consider a geometry where this complex impurity is
attached to one end of a noninteracting fermionic bath as
shown schematically in Fig. 1(c). Although, the figure illus-
trates a system where the impurity consists of a Kitaev cube,
the following formalism remains unchanged for any Kitaev
cluster in general. The bath comprises a semi-infinite tight
binding chain with nearest-neighbor hopping. The fermionic
site at one end of the chain (labeled as site 0 of the chain)
is Kondo-coupled to one corner of the cluster (site 1 of the
cluster). The total Hamiltonian can be written as

H = Himp +
∑
j,σ

ε jc
†
j,σ c j,σ

+
∑
j,σ

t j (c
†
j,σ c j+1,σ + c†

j+1,σ c j,σ ) + JSimp
1 · s0. (2)

Here, c†
j,σ creates a fermionic excitation at site j � 0 with

energy ε j and spin configuration σ =↑ or ↓; t j is the tight-
binding hopping coefficient between sites j and j + 1; J
is the Kondo exchange coupling between the spin Simp

1 at
site 1 of the cluster and s0 = ∑

σ,σ ′ c†
0,σ

1
2σσ,σ ′c0,σ ′ , the spin

configuration at site 0 of the fermionic chain. In general,
the density of states of the fermionic bath depends on the
hopping parameters t j . We choose a density of states ρ(ε) =
(1/2D)�(|ε − D|), that is constant for energies within a cut-
off bandwidth D and is zero otherwise.

All the Kitaev couplings are chosen to have a constant
value, i.e., K {i j},γ = K , except for the three bonds that connect
site 1 to the three nearest-neighbor sites of the cluster, such
that K {i j},γ = K ′ if either i or j = 1. These three bonds are
shown using thick lines to distinguish them from the other
bonds. There can be several variations of the preceding ge-
ometry that describe similar systems, which may give rise to
further interesting phenomena. This will be commented on in
Sec. V of the paper.

III. METHODS

A. Numerical renormalization group

We use numerical renormalization group (NRG) to solve a
class of problems as described by Eq. (2). The NRG has been
used extensively in the context of quantum impurity systems.
It is also applicable in this work as we study an impurity in the
form of a Kitaev cluster that is attached to a fermionic bath.
However, compared to applications of the NRG so far, where
the impurity consisted of only a few sites, the Kitaev cluster is
far more complex and hence numerically more challenging
to solve. See Appendix A for a brief discussion on some
technical aspects of the NRG as applicable to this study.

B. Exact diagonalization of Kitaev clusters

In order to understand the properties of the system at the
different intermediate fixed points, one needs to understand

the behavior of the Kitaev impurity by itself, i.e., in the
absence of the fermionic bath. This can be done using either
of the two following methods.

1. Spin representation

The impurity Hamiltonian can be set up using a σ z
i basis

(|↑↑↑ . . . ↑〉, |↓↑↑ . . . ↑〉,.., |↓↓↓ . . . ↓〉). It is straightfor-
ward to solve the system by performing a direct diagonal-
ization of the 2Ns × 2Ns Hamiltonian matrix (for an overview,
refer to, e.g., Ref. [23]).

2. Majorana representation

Alternatively, we can also study the cluster using a transfor-
mation from the spin representation to Majorana fermions as
was first introduced by Kitaev [2]. This method was originally
developed to find an exact solution of the Kitaev honeycomb
lattice, and has also been used to study other tricoordinated
lattice geometries with Kitaev couplings [24]. Since the finite
clusters considered in this study satisfy the Kitaev criteria,
they can also be exactly solved using this approach. The key
step in this technique is the fractionalization of each spin
degree of freedom into four Majorana degrees of freedom.
Fermionic creation or annihilation operators can be usually
expressed in terms of two Majorana fermions; hence this step
increases each degree of freedom of the system by a factor of
two. Thus, for a system consisting of Ns spins, the dimension
of the Hilbert space is artificially enlarged from 2Ns to 22Ns . In
the extended Hilbert space, each spin operator can be written
in terms of four Majorana operators as

σ
γ
i = ibγ

i ci, (3)

where γ = x, y, or z. The Majorana operators bγ
i and ci are

Hermitian and satisfy the following relations:(
bγ

i

)2 = c2
i = 1,{

bβ
i , bγ

j

} = 2δi jδβγ , {ci, c j} = 2δi j,
{
ci, bγ

j

} = 0. (4)

The Ising interactions in Eq. (1) can then be re-expressed as

σγ σ γ = (
ibγ

i ci
)(

ibγ

j c j
)

= −i
(
ibγ

i bγ
i

)
cic j

= −iuγ

i jcic j, (5)

where the bond operators uγ
i j = ibγ

i bγ
i are associated with the

respective links < i j > in the cluster. It can be shown that the
operators ui j’s are Hermitian and have eigenvalues ±1. Thus
they behave like a Z2 gauge field. The impurity Hamiltonian
can thus be transformed to the form

H̃imp = i

4

∑
i j

Ai jcic j, (6)

where the Ai j’s are defined as

Ai j =
{

Kγ
i j u

γ
i j

2 , if i and j are connected
0, otherwise

. (7)

The operators ui j also commute with each other as well
as with the impurity part of the Hamiltonian (1). Thus the
Hilbert space can be split up into common eigenspaces of
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the operators ui j , where within the subspace, the operators
can be replaced with their eigenvalues ±1. This is akin to
choosing a Z2 gauge field, see below for a discussion of the
corresponding flux configurations.

In a given Z2 configuration, the matrix elements of A are
thus fixed, and Eq. (6) is reduced to a quadratic Hamiltonian.
Since ui j = −u ji, the matrix A is real and skew symmetric.
Thus iA is imaginary, Hermitian and has real eigenvalues
−εm,−εm−1, . . . , εm−1, εm, with Ns = 2m. Equation (6) can
then be reduced to the canonical form using a transformation

(b′
1, b′′

1, . . . , b′
m, b′′

m) = (c1, c2, . . . , c2m−1, c2m)Q, (8)

where the transformation matrix Q is constructed such that
odd (even) columns of Q equals the real (respective imagi-
nary) part of the eigenvectors of iA. In the canonical form, the
Hamiltonian can be written as

H̃canonical = i

2

m∑
λ=1

ελb′
λb′′

λ =
m∑

λ=1

ελ

(
a†

λaλ − 1

2

)
, (9)

where b′
λ and b′′

λ are the normal modes and a†
λ = 1

2 (b′
λ − ib′′

λ)
are the corresponding fermionic creation operators.

For the small clusters considered in this work, neither of
the above mentioned techniques (i.e., exact diagonalization
using spin and Majorana representation) has significant nu-
merical advantage over the other. The Majorana approach,
however, requires a projection back to the physical Hilbert
space. Both the above-mentioned methods have been em-
ployed to study the energy spectrum of the Kitaev clusters
and to corroborate the results obtained with each other. Ad-
ditionally, together, they help us understand the properties of
the system from two different viewpoints.

C. Plaquette fluxes

Kitaev showed that for any closed loop in the honeycomb
lattice, one can define the loop operator

Ŵl =
∏

(i j)∈l

Ki j, (10)

in terms of the bond operators Ki j = σ
γ
i σ

γ
j . The eigenvalues

of these operators can be associated with the “magnetic flux”
through the loop. It can be shown that for even loop length,
Wl has eigenvalues of ±1; whereas for odd loop lengths, it
has eigenvalues of ±i, and is relevant to cases where the time-
reversal symmetry is broken. The loop operators correspond-
ing to elementary plaquettes or plaquette operators Ŵp com-
mute with each other as well as with the Hamiltonian. Thus
the gauge-invariant states obtained from the energy spectrum
can be described in terms of the eigenvalues of the plaquette
operators. For example, in the case of the honeycomb lattice,
the plaquette flux operators have a form similar to

Ŵp = σ x
1 σ

y
2 σ z

3σ x
4 σ

y
5 σ z

6 , (11)

where the sites 1, 2, . . . , 6 form a hexagonal plaquette. It is
well known, that the ground state of the Kitaev honeycomb
lattice corresponds to the eigenvalues wp = 1 for all the
plaquette operators Ŵp. Elementary excitations, known as
“visons”, are pointlike and are associated with wp = −1 or
a π flux through an elementary plaquette [1,2].

6

FIG. 2. Plaquette flux operators of the Kitaev cube. One can
define six flux operators, each associated with one of the six sides
of the cube. In the presence of a nonzero coupling between the
fermionic bath and site 1 of the cube, the operators Ŵ1,2,3(Ŵ4,5,6),
shown using open (solid) arrows, do not commute (commute) with
the Hamiltonian.

The above formalism can also be adapted to the case
of finite clusters considered in this study. Analogous to the
plaquette operators in the Kitaev honeycomb lattice, we can
define operators that correspond to the different sides of the
Kitaev clusters. For example, in the case of the cubic cluster,
we can define six plaquette operators (Ŵp, p = 1, 2, . . . , 6)
corresponding to the six sides of the cube, as shown schemat-
ically in Fig. 2. The plaquette operators (shown using arrows)
are defined as

Ŵp =
∏

(i j)∈p

σ
γ
i σ

γ
j , (12)

where we have chosen a convention such that the loop is
always traversed clockwise when viewed from outside. They
can also be written explicitly in terms of the spin operators as

Ŵ1 = −σ z
1σ z

2σ z
3σ z

4 ,Ŵ2 = −σ x
1 σ x

4 σ x
8 σ x

5 ,Ŵ3 = −σ
y
1 σ

y
5 σ

y
6 σ

y
2 ,

Ŵ4 = −σ z
5σ z

8σ z
7σ z

6 ,Ŵ5 = −σ x
6 σ x

7 σ x
3 σ x

2 ,Ŵ6 = −σ
y
4 σ

y
3 σ

y
7 σ

y
8 .

(13)

Since the loop length is even, the eigenvalues of Ŵp are wp =
±1, where wp = +1(−1) is associated with a zero (π ) flux
through the loop. It should be noted that the closed geometry
imposes a constraint on the flux operators such that all the
operators are not independent of each other. For example,
Ŵ1Ŵ2Ŵ3Ŵ4Ŵ5 = Ŵ6.

In the Majorana formalism, it is straightforward to compute
the eigenvalues of the flux operators. For a given flux con-
figuration, the plaquette flux is gauge-invariant and is given
simply by the product of the bond operators:

wp =
∏

(i j)∈p

ui j . (14)

In the presence of the Kondo coupling to site 1, as described
in Eq. (2) for J �= 0, the operators Ŵ1,2,3 (shown using open
arrows) no longer commute with the Hamiltonian, whereas
Ŵ4,5,6 (shown using solid arrows) still commute. One can
instead define an impurity flux operator ŴI = Ŵ1Ŵ2Ŵ3 =
Ŵ4Ŵ5Ŵ6, that commutes with the Hamiltonian.

Similar to the case of the cube, one can define four pla-
quette operators for the Kitaev tetrahedron corresponding to
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the four sides of the cluster. Using the same convention used
before, the plaquette operators can be expressed in terms of
the spin operators as

Ŵ1 = iσ x
2 σ

y
3 σ z

4 , Ŵ2 = iσ x
1 σ

y
4 σ z

3 ,

Ŵ3 = iσ x
4 σ

y
1 σ z

2 , Ŵ4 = iσ x
3 σ

y
2 σ z

1 ,
(15)

Since the loop length is odd, Ŵp have eigenvalues wp = ±i
corresponding to ±π/2 fluxes through the elementary plaque-
ttes. Once again, upon coupling site 1 with a fermionic bath,
the operators Ŵ2,3,4 defined in Eq. (15) no longer commute
with the Hamiltonian, whereas the impurity flux operator
ŴI = Ŵ2Ŵ3Ŵ4 commutes with the Hamiltonian.

IV. RESULTS

In this section, we discuss the results for our study. The
main results are for systems where a Kitaev cube is coupled
to fermionic bath. However, we also include some results for
that of a Kitaev tetrahedron to show the similarities as well as
the differences between the two cases. The half-bandwidth is
assumed to be D = 1, so that it acts as a unit with respect to
which all the other energy scales of the problem are measured.
We adopt natural units such that kB = h̄ = 1. Unless otherwise
mentioned, the Kitaev couplings, K = 0.5. The strength of
the Kitaev couplings K ′ between site 1 and the three nearest
neighbors act as a tuning parameter to study these systems. All
NRG calculations are done using a discretization parameter
value of  = 3 and keeping between 600–1000 states after
each iteration.

A. Kitaev clusters

Before delving into the main results, let us briefly go over
some elementary properties of Kitaev clusters. In particular,
let us look at the specific heat properties of the clusters. We
perform a direct diagonalization of both Kitaev cube and
Kitaev tetrahedron. All the Kitaev couplings are set to K =
K ′ = 1. Also, the Boltzmann constant kB is assumed to be 1.
The specific heat of the systems is defined as

Cv = kBβ2(〈E2〉 − 〈E〉2). (16)

Figure 3 plots the specific heat Cv against temperature T
on a logarithmic scale for both the Kitaev cube and the Kitaev
tetrahedron using solid and dashed lines, respectively. The
plot for the Kitaev cube shows a prominent two-peak struc-
ture. This is similar to what is observed in different Kitaev
spin-lattice systems for both 2d and 3d systems [25,26], and
is characteristic for the fractionalization of the spins into Ma-
jorana fermions and the emergent Z2 gauge fields. The high-
temperature (low-temperature) peak arises from the quench
of entropy carried by the Majorana fermions (the visons).
For the case of the tetrahedron, the two-peaked structure is
less prominent and the two peaks are barely distinguishable
due to the finite size of the cluster (the number of sites
Ns = 4). At zero temperature, the cube has a unique ground
state characterized by a π flux through all the six plaquettes
or faces. The ground state of the tetrahedron on the other
hand is doubly degenerate with either π/2 or −π/2 fluxes

FIG. 3. Specific heat Cv of Kitaev clusters. Cv is plotted against
temperature T on a logarithmic scale for both a Kitaev cube and
tetrahedron using solid and dashed lines, respectively. The Kitaev
couplings are set to K = 1. Both the clusters demonstrate two peaks
(less prominent in the case of the tetrahedron) as is observed for
Kitaev spin systems.

through the four plaquettes.2 This is reflected in the impurity
properties of the full model as will be discussed in the next
section. Remarkably, the clusters demonstrate that similar to
the case of the Kitaev spin liquids they exhibit signatures
of the fractionalization of the spins and subsequent ordering
of the emergent Z2 gauge fields, albeit with finite size effects.
A detailed study of the energy spectrum of the clusters is
presented in Sec. IV D of the paper.

B. Impurity entropy

1. Kitaev cube

Figure 4 plots the impurity contribution to the entropy Simp

of the model for the Kitaev cube. Subfigure (a) plots Simp for
various values of the Kitaev couplings K ′, the Kitaev coupling
to the spin with Kondo coupling (see Fig. 1), for a fixed value
of Kondo coupling J = 0.3. As the temperature decreases, the
entropy initially reduces from the high-temperature value of
ln 28. This is mainly due to the sampling out of the high-
energy states of the spectrum of the cube by itself. Subse-
quently, there is a competition between K ′ and the Kondo
temperature TK . For K ′ > TK , the problem turns out to be
a trivial one. In this case, the impurity and the fermionic
bath are decoupled from each other. The Kitaev cube has a
nondegenerate ground state with π fluxes through all the six
sides. Hence, Simp drops to zero at a temperature T ∼ K ′.

For K ′ < TK , the entropy exhibits a shoulder at Simp = ln 4.
At this stage, the system can be effectively described by a
seven-site cluster consisting of the Kitaev cube minus site 1
and a decoupled free local moment at site 1 as shown schemat-
ically in Fig. 5(a). The spectrum of the impurity part of the
system can easily be computed using direct diagonalization

2It is interesting to note that the clusters have the necessary reflec-
tion symmetries such that the ground-state flux configurations can be
determined using Lieb’s theorem. See Ref. [27].

115133-5



CHOWDHURY, ROSCH, AND BULLA PHYSICAL REVIEW B 101, 115133 (2020)

10-15 10-10 10-5 100
0

1

2

3

4
                                          K'

 0.0               5.0 x10-4

 2.0 x10-4      10-3

 2.5 x10-4      10-2

 3.0 x10-4      10-1

 4.0 x10-4

S im
p  / 

ln
 (2

)

T

(a)

J = 0.3

10-15 10-10 10-5 100
0

1

2

3

4

                                 J
 0.28     0.32
 0.29     0.33
 0.30     0.34
 0.31     0.35

S im
p  / 

ln
 (2

)

T

(b)

K' = 5 x10 -4

FIG. 4. (a) Impurity contribution to the entropy Simp plotted
against temperature T for a Kitaev cube with coupling strength K =
0.5 for a representative case of Kondo coupling J = 0.3. The plots
are for different values of coupling K ′ (refer to legend). The impurity
entropy for a single impurity Kondo model with coupling J = 0.3
is also plotted with an additional entropy of ln 2 using dashed lines
for comparison to show the suppression of the Kondo temperature
due to truncation effect. (b) Simp plotted against temperature T for
various values of the Kondo coupling J keeping the Kitaev coupling
K ′ = 5 × 10−4 fixed.

by setting the strength of the Kitaev links K ′ = 0. The ground
state of this cluster is found to be fourfold degenerate and can
be explained as follows. The Kitaev cube with a vacancy can
described by a certain ground-state configuration of the bond
variables ui j (i, j �= 1) as shown using solid lines connecting
the c Majorana fermions (shown using black solid dots), along
with three dangling majoranas at the three nearest-neighbor
sites. This seven-site cluster has a degeneracy of 2, and can
thus be described by an effective “emergent” spin 1/2 denoted
by Se in the following. Together with the spin at site 1, it forms
a four-dimensional Hilbert space with an associated entropy
of ln 4. As we discuss in more detail in Sec. IV D, these
spins encode both majorana and flux degrees of freedom. As
the temperature is reduced, the spin at site 1 forms a Kondo

(b)

J

(c)

Jx

y
z

(a)

FIG. 5. Intermediate fixed points of the model. (a) K ′ < TK < T .
The system consists of a decoupled spin at site 1 and a seven-site
cluster consisting of the Kitaev cube with a vacancy. (b) T ∗ < T <

TK . The corner site (site 1) is Kondo-screened by the fermionic bath
forming a Kondo singlet. The rest of the cube can be represented by
the bond operators ui, j (solid black lines) and the noninteracting c
Majorana fermions (red open circles) at the remaining seven sites
in addition to three dangling majoranas. (c) T < T ∗ < TK . The
screened site interacts via Kitaev couplings K ′ with three adjacent
sites of the cube, The model can be effectively described by a
Heisenberg interaction with a spin 1/2, leading to an additional
Kondo screening for temperatures T < T ∗.

singlet with the fermionic bath at the characteristic Kondo
temperature TK ∼ exp(−1/J ) [TK ≈ 10−3 in Fig. 4(b)]. Thus
Simp decreases from ln 4 to ln 2 as is demonstrated by all
the curves for K ′ � 0.001. In the case of the cubic cluster,
we numerically determine TK as the temperature at which
the impurity entropy Simp crosses 3

2 ln 2 while decreasing
from ln 4 to ln 2. As the temperature is further lowered,
the Kitaev like interactions between the corner site and the
rest of the cube comes into play [depicted using doubled
dashed lines in Fig. 5(c)]. These three Kitaev interactions
effectively induce a Heisenberg coupling of the emerging spin
Se with S1. Therefore a second Kondo effects gets activated
resulting in a further screening of an effective spin-1/2 degree
of freedom, and thus Simp decreases from ln 2 to zero at a
crossover temperature T ∗. This can be further understood by
examining the low-energy spectrum of the Kitaev cube, that
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FIG. 6. Crossover temperature T ∗ for a Kitaev cube. (a) T ∗ plotted on a logarithmic scale against −1/K ′ keeping J = 0.3 constant and
varying K ′ [same parameters as in Fig. 4(a)]. (b) T ∗ plotted on a logarithmic scale against the Kondo temperature TK keeping K ′ = 5 × 10−4

constant and varying J [same parameters as Fig. 4(b)]. (c) T ∗ plotted on a logarithmic scale against −TK/K ′ combining the plots shown in
(a) and (b). Also plotted are similar sets of data obtained for various values of K ′ keeping the Kondo coupling fixed at J = 0.32.

will be discussed in detail in Sec. IV D. Simp for a standard
Kondo model consisting of a spin-1/2 impurity and using the
same value of Kondo coupling J is also plotted in Fig. 4(a)
using dashed lines. For K ′ = 0, the impurity entropy is just a
sum of the impurity entropy of the Kondo model and of the
seven-site cluster with one side removed (hence an additional
entropy of ln 2 is added to it for comparison). Numerically,
the two Kondo temperatures do, however, not match which is
a numerical artifact.

Figure 4(b) plots Simp for various values of the Kondo
coupling J for a fixed value of the Kitaev couplings K ′ =
5 × 10−4. T ∗ is defined to be the temperature at which Simp

crosses 1
2 ln 2 while decreasing from ln 2 to zero. Note that

a very small value of K ′ is chosen deliberately in order to
avoid the trivial decoupled fixed point behavior that occurs
for K ′ > TK . The nature of the curves are qualitatively similar
to that in Fig. 4(a). The crossover temperature T ∗ decreases
as J is increased (or as TK increases). It should however be
noted that the above discussed two-stage screening can only
be achieved for a very small range of the Kondo coupling
0.29 � J � 0.35. This is because if J � 0.35, the Kondo
temperature shifts to higher values and it is challenging to
distinguish TK separately from the decrease in the entropy of
the Kitaev cube by itself. On the other hand, for J � 0.28, the
Kondo temperature becomes smaller than K ′.

Figure 6 illustrates how the crossover temperature T ∗
depends on the different parameters of the model. Figure 6(a)
plots T ∗ on a logarithmic scale against −1/K ′ for various val-
ues of 10−5 < K ′ < 10−4 keeping J = 0.3 [same as parame-
ters as in Fig. 4(a)]. The crossover temperature T ∗ is found to
vary linearly with the inverse of 1/K ′, i.e., T ∗ ∝ exp(−c/K ′).
Figure 6(b) plots T ∗ on a logarithmic scale against the Kondo
temperature TK that in turn depends on the Kondo coupling J ,
for various values of 0.29 � J � 0.35 keeping K ′ = 5 × 10−4

constant [same parameters as in Fig. 4(b)]. As is evident from
the linear nature of the plot, T ∗ is found to be proportional to
exp(−TK ). Figure 6(c) combines both sets of data T ∗ is plotted

against −TK/K ′. In addition to the sets of data in Figs. 6(a)
and 6(b), we have also plotted similar sets of data obtained for
various values of K ′ keeping J = 0.32 fixed. All the sets of
data are found to collapse on the same straight line. Hence the
crossover temperature behaves as

T ∗ ∼ exp(−ηTK/K ′), (17)

where η = ηc (for the Kitaev cube) is a constant that depends
solely on the geometry of the impurity cluster.

2. Kitaev tetrahedron

One can also perform a similar analysis for a system where
the impurity consists of a Kitaev tetrahedron as shown in
Fig. 1(b) where one corner of the tetrahedron (site 1) is
Kondo-coupled to the fermionic bath. Figure 7(a) plots the
entropy Simp for such a model against temperature T on
a logarithmic scale for model parameters K = 0.5, J = 0.3
and for various values of K ′ as shown in the legend. On
comparison with Fig. 4(a), it is found that the impurity entropy
for this model shows qualitatively similar behavior as that
of the cube, except that there is a residual entropy of ln 2
even after the two-stage screening process. In this case, Simp

initially decreases from the high-temperature value of ln 24 to
ln 8 as the temperature is decreased. Below the characteristic
Kondo temperature TK , the fermionic bath forms a Kondo
singlet with the spin at site 1, decreasing the entropy by ln 2.
The rest of the impurity consists of a triangle with x, y, and
z interactions along the three bonds. A direct diagonalization
of the triangular cluster confirms that the spectrum consists
of two symmetric energy levels, where each level is fourfold
degenerate, thus resulting in an entropy contribution of ln 4.
This intermediate fixed point can also be understood in terms
of a Majorana fermion formalism as in the case of the Kitaev
cube. As the temperature is further reduced, the K ′ interac-
tions felicitate in the screening of an additional spin degree of
freedom and hence Simp decreases from ln 4 to ln 2 (compared
to ln 2 to 0 for the cube). Similar to the case of the cube,
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FIG. 7. (a) Impurity contribution to the entropy Simp plotted
against temperature T for a Kitaev tetrahedron with coupling strength
K = 0.5 for a representative case of Kondo coupling J = 0.3. The
plots are for different values of coupling K ′ (refer to legend).
(b) Crossover temperatures T ∗ extracted from the data in (a) plotted
on a logarithmic scale against the ratio of TK/K ′.

the crossover temperature T ∗ is defined to be the temperature
at which Simp crosses 3

2 ln 2. Figure 7(b) plots T ∗ against the
ratio of −TK/K ′ for the plots in (a). Once again, we find that
the plot is linear implying that T ∗ ∝ exp(−ηt TK/K ′), where
ηt is a constant for the tetrahedral geometry.

The residual twofold degeneracy of the ground state arises
from the two possible values of the conserved flux W1 = ±i
on the face opposite to the Kondo coupled spin. This flux
breaks time-reversal symmetry. This leads to two questions:
(i) why does the breaking of time-reversal symmetry not affect
the Kondo effect? and (ii) what will happen when the flux is
promoted to a dynamical degree of freedom, e.g., by switching
on a Heisenberg coupling within the cluster? These questions
will be addressed in Sec. IV D.

C. Mapping to a two-impurity Kondo model: numerics

In this section, we demonstrate that the low-temperature
properties of the impurity entropy of the Kitaev clusters can
in general be understood in terms of a simple two-impurity
setup. It was shown in the previous section that when K ′ 
TK , the system undergoes a two-stage Kondo screening for
both geometries of the cluster considered in this study. At
first, the spin at site 1 of the impurity cluster is Kondo
screened by the fermionic bath at a temperature TK . At this

JJJ’

FIG. 8. Schematic representation of the two-impurity Kondo
model. The impurity consists of two spin 1/2s with an interimpu-
rity Heisenberg coupling J ′ (dashed line). One of impurity sites is
coupled to the fermionic bath via Kondo coupling J (solid line).

intermediate stage, the model consists of a Kondo singlet and
a decoupled impurity consisting of one site less, with three
dangling majoranas. As the temperature is further lowered,
the K ′ terms mediate x, y, and z interactions along the three
bonds connecting the nearest neighbor sites. The combined
effect of these interactions is such that the rest of the impurity
behaves as a spin degree of freedom connected to the rest
of the system. Thus the cubic cluster can be mapped, at low
temperatures, to a much simpler impurity consisting of just
two spin 1/2s as shown schematically in Fig. 8. Note that for
the Kitaev tetrahedron, there is an additional free ln 2 degree
of freedom giving rise to a residual entropy, and thus the
mapping to a two-impurity model is not clear. Nonetheless, we
show that these three models exhibit similar fixed points and
the crossover temperature scales have similar dependencies on
the model parameters.

The two-impurity Kondo model has been studied in the
past comprehensibly, mostly in connection to a setup using
quantum dots [28–36]. Almost all the studies considered a ge-
ometry where both of the impurities are coupled to one or two
fermionic bath, in addition to being connected to each other.
In these systems, the competition between Kondo-screening
and interimpurity singlet leads to a quantum phase transition
in the presence of a certain particle-hole symmetry [30,32].
However, the geometry we consider in this study is different
from that of previous works and is much simpler. The model
consists of two spin-1/2 impurities with an interimpurity
Heisenberg coupling J ′S1 · S2. Only one of the impurities (S1)
is attached to a fermionic bath via Kondo exchange coupling
J . We demonstrate that this model exhibits thermodynamic
properties that have similar temperature dependencies as that
of both the Kitaev cube and tetrahedron, except for the resid-
ual ln 2 entropy in the case of the latter.

Figure 9(a) plots the impurity contribution to the entropy
Simp against temperature T (plotted on a logarithmic scale)
for the two-impurity model for a fixed value of Kondo cou-
pling J = 0.3 and varying the interimpurity coupling J ′. The
behavior is similar to that of the Kitaev clusters, as there is a
competition between the Kondo and Heisenberg interimpurity
couplings. For J ′ > TK , the two impurity spins forms a singlet,
and hence Simp decreases from the high-temperature value
of ln 4 to zero at a temperature T ∼ J ′. However, for J ′ <

TK , S1 is screened by the bath at the corresponding Kondo
temperature TK ≈ 10−4, thereby reducing Simp from ln 4 to
ln 2. As the temperature is further decreased, Simp decreases
from ln 2 to 0 at a crossover temperature T ∗ that varies as
ln T ∗ ∝ −1/J ′. Figure 9(b) plots Simp for various values of
the Kondo coupling J keeping J ′ = 5 × 10−5 fixed instead.
The nature of the graph for low temperatures is once again
similar to that of the cubic cluster shown in Fig. 4(b). Simp

decreases from ln 4 to ln 2 at T = TK (J ), and then decreases
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FIG. 9. (a) Impurity contribution to the entropy Simp plotted
against temperature T for a two-impurity model as shown in Fig. 8
for a representative case of Kondo coupling J = 0.3 and for various
values of interimpurity coupling J ′ (refer to legend). (b) Simp plotted
against temperature T for various values of Kondo coupling J ,
keeping J ′ = 5 × 10−5 fixed. (c) Crossover temperature T ∗ plotted
on a logarithmic scale against −TK/J ′ for the plots in (a) and (b) as
well as for cases where J ′ is varied keeping J = 0.28 and 0.32 fixed,
respectively.

further from ln 2 to 0 at the crossover temperature that varies
as ln T ∗ ∝ −TK . The combined dependence of T ∗ on both
J ′ and TK (and indirectly its dependence on J) is shown in
Fig. 9(c), that plots T ∗ on a logarithmic scale against the ratio
−TK/J ′. Data are shown for the two plots in (a) and (b), using
hollow squares and circles, respectively. We have also added
similar sets of data for cases where J ′ is varied while keeping
the Kondo coupling fixed at J = 0.28 and 0.32, respectively.
All the sets of data are found to be linear and collapse onto
each other, thus confirming that the crossover temperature can
be expressed as T ∗ ∼ exp(−ηTK/J ′), where η = η2IK (for the
two-impurity geometry) is a constant coefficient.

The two-stage screening effect can be explained as fol-
lows. In the limit that J ′ < TK , the interimpurity coupling
is effectively zero at high temperatures. The spin at site 1
is Kondo-screened by the electrons in the fermionic bath at

the characteristic Kondo temperature TK ≈ D̃ exp(−1/ρ0J ),
ignoring higher-order corrections, where ρ0 is the density of
states of the bath electrons and D̃ is some renormalized value
of the bandwidth or cutoff energy of the bath electrons. After
the formation of the Kondo singlet, the S1 becomes a part
of the fermionic bath via repeated spin-flip scatterings (more
generally speaking, the impurity spin is absorbed in the Fermi
liquid comprising the bath electrons). The impurity density of
states exhibits Abrikosov-Suhl resonance at the Fermi energy
and below TK , where the width of the resonance is given
by the Kondo temperature TK . Thus for temperatures much
lower than the Kondo temperature, TK behaves as the effective
bandwidth as observed by the second spin site S2, hence ρ̃0 ∼
1/TK . S2 is Kondo-screened at a further lower temperature
given by T ∗ ≈ D̃ exp(−1/ρ̃0J ′) ≈ T̃K exp(−ηTK/J ′), where η

is an inverse proportionality constant connecting ρ̃0 and TK .
The prefactor T̃K is some renormalized value of the Kondo
temperature (or the effective bandwidth) that adds to logarith-
mic corrections to the data collapse shown in Fig. 9(c) as well
as those in Fig. 4(c). It should be noted that the crossover
temperature T ∗ is difficult to extract even numerically. The
Kondo temperature by itself is logarithmically small energy
scale. T ∗ has a similar expression as that of the Kondo tem-
perature, where the logarithmic argument is itself a function
of TK , thus giving rise to extremely small energy scales.

D. Mapping to two-impurity Kondo model: analytics

Why the seemingly complex Kitaev clusters behave like
a simple two-spin impurity is an intriguing question. More
precisely, we need to understand why after Kondo screening
of site one of the cluster, the rest of the cluster or the cluster
minus a vacancy behaves at the lowest energy scales as an
effective spin 1/2. To do this, it is imperative that we examine
the low-energy spectrum of the Kitaev clusters. This can eas-
ily be done using direct diagonalization in both the spin and
Majorana representations as discussed in Sec. III B. However,
one must note that in the spin representation, the eigensates of
the Hamiltonian are not necessarily the eigenstates of the pla-
quette flux operators in the case of degenerate energy levels.
Hence, one cannot label the eigenstates using flux quantum
numbers. This problem is solved using a technique as follows.
We consider instead a Hamiltonian H ′ = H + ∑

i αiŴi, where
H is the original Hamiltonian, α′

i  K (i = 1, . . . , 5) are
negligible random numbers, and Ŵi are the six flux operators.
Thus, by adding small incommensurable perturbations that
are proportional to the flux operators, one can force the
eigenstates of H ′ to also be the eigenstates of the plaquette
flux operators. (Since Ŵ6 = Ŵ1Ŵ2Ŵ3Ŵ4Ŵ5, it is automatically
ensured that the resulting states are also eigenstates of the Ŵ6

along with the rest of the flux operators.)

1. Kitaev cube

We consider a cubic cluster where the Kitaev couplings
K = 1 (on an arbitrary scale) and the three couplings K ′
(connecting site 1 with the three nearest neighbors) are varied
from 0 to 1. Figure 10(a) plots all the energies for E < 0. The
spectrum is symmetric with respect to zero, so the positive
energies can be easily visualized from the negative spectrum.
Since the plaquette length equals 4, the flux through each
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FIG. 10. (a) Energy spectrum of the Kitaev cube shown in
Fig. 1(a) with Kitaev couplings K = 1.0. The couplings K ′ between
site 1 and the neighboring three sites are varied from 0.0 to 1.0.
The states are distinguished based on the number of π and 0 fluxes
through the sides of the cube. (b) Energy spectrum of a Kitaev
tetrahedron shown in Fig. 1(b) with Kitaev couplings K = 1.0. The
states are distinguished based on the number of ±π/2 fluxes through
the sides of the tetrahedron. (c) A magnified plot of the ground-state
flux configurations and the lowest lying threefold degenerate excited
states after subtracting of the ground-state energy for K ′ = 0. The
data for the cube are plotted with hollow symbols whereas those
for the tetrahedron are plotted using (+) and (×) for the “singlet”
and “triplet” states, respectively. The solid (dashed) line shows
the corresponding singlet (triplet) energy level for two spin 1/2s
connected via Heisenberg coupling with strength K ′/

√
3.

FIG. 11. Flux configurations of the three degenerate states that
effectively behave as a triplet. In each of the three configurations,
there is a zero flux associated with the shaded pair of adjacent sides
(with arrows pointing outwards). The rest of the four sides have a π

flux associated with them.

plaquette is either π or 0. Thus the eigenstates can be labeled
by counting the number of π and 0 fluxes through the six sides
of the cube. We use a notation to label each state by a pair
of numbers of the form: (nπ , n0) where nπ (n0) denotes the
number of π (0) fluxes, satisfying nπ + n0 = 6. For example,
the cube has a unique ground state for all values of 0 < K ′ � 1
with π fluxes through all the six sides. This state is plotted
with a solid black line and labeled as (6,0) in the legend
accompanying the figure. Since flux excitations must occur
in pairs, the only other possible flux configurations are (4,2),
(2,4), and (0,6), plotted using dashed, dotted and dash-dotted
lines respectively. In addition to the above classification, for
the eigenstates containing two 0 or π fluxes, one can note
whether they occur in opposite or adjacent sides. This is also
distinguished using a subscript of “O” and “A,” respectively
in the legend.

The information that is most relevant to the results in our
case is contained in the lowest lying eigenstates, i.e., the
ground and the first excited states of the system, since the
effect of higher excited states are negligible at low temper-
atures. As mentioned above, the ground state is found to
be nondegenerate for K ′ > 0 and has π fluxes through all
the six plaquettes. The first excited states are found to be
threefold degenerate and contain two 0 fluxes through a pair
of adjacent plaquettes. The three possible flux configurations
are illustrated in Fig. 11 where the sides associated with π

fluxes are unmarked. In contrast, the pair of sides associated
with a 0 flux are shaded and shown with arrows coming out of
the surface of the cube. The ground state and the three excited
states behave like a singlet and triplet states respectively, thus
justifying the mapping to a two-impurity system as discussed
in the previous section. This is further illustrated in Fig. 10(c)
that plots (using open symbols) the pair of states on a magni-
fied scale where 0 � K ′ � 0.1. The ground-state energy EG,0

for the cluster with K ′ = 0 is subtracted from all energy levels.
It can also be shown that for K ′  K , the energies of “singlet”
and “triplet” states can be approximated by −3K ′/4

√
3 and

K ′/4
√

3, respectively (see Appendix B). These are plotted
using solid and dashed lines in Fig. 10(c) and agrees with the
numerical data. Thus the lowest lying energy levels resemble
that of a Heisenberg interaction between the two spin 1/2s, S1

and Se, with an effective coupling strength K ′/
√

3.
We find that the emerging spin Se = 1

2σe can, for example,
be written as

σ x
e = σ x

4 σ
y
8 σ z

7σ z
6σ

y
5 = −iby

4u48u87u76u65bz
5,

σ y
e = σ x

5 σ z
8σ z

7σ x
6 σ

y
2 = −ibz

5u58u87u76u62bx
2,

σ z
e = σ

y
2 σ

y
6 σ z

5σ x
8 σ x

4 = −ibx
2u26u65u58u84by

4. (18)
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This formula can be checked by projecting the operators
onto the two-dimensional Hilbert space spanned by the two-
degenerate ground-state wave functions of the cube with one
site (S1) removed. In Eq. (18), we have written the spin
operators also in terms of the dangling Majorana fermion
and a string of gauge links connecting the two. Here, the
“dangling Majoranas” refer to the three single dots shown
in Fig. 5, and the presence of a gauge string ensures that σe

is a gauge-invariant operator in the physical Hilbert space.
Note that alternative representations of σe also exist (e.g.,
σ̃ x

e = σ z
4σ

y
3 σ

y
7 σ z

8σ x
5 = −iby

4u43u37u78u85bz
5), where the gauge

string is along a different path. Using the ground-state flux
configuration, one can show that these operators are identical
in the low-energy sector (but differ at higher energies). In
ground-state flux sector, one can choose a gauge such that
the product of the ui j’s in Eq. (18) equals 1 for all three spin
operators. In this case, the emergent spin is simply given by
the dangling Majorana fermions

σ x
e = −iby

4bz
5, σ y

e = −ibz
5bx

2, σ z
e = −ibx

2by
4. (19)

According to our analysis, one can therefore view the two-
stage Kondo effect for small K ′ in at least two different ways.
One point of view is to argue that the Kondo coupling induces
strong quantum fluctuations in the three flux configurations of
Fig. 11 defining the triplet state. For sufficiently strong Kondo
coupling, the triplet combines with the singlet to form two
separate spins, which are highly entangled states of strongly
fluctuating flux- and Majorana configurations. An arguably
simple picture emerges when one does not track the dynamics
of the flux configuration but instead describes the cube with
one spin removed simply by the three dangling Majorana
states of Eq. (19) [or, by the equivalent, gauge invariant
formula of Eq. (18)]. While the emergent spin is a highly
nonlocal object, it nevertheless allows for a straightforward
mapping to a two-spin Kondo model.

2. Kitaev tetrahedron

A similar analysis can be performed for the Kitaev tetrahe-
dron. The energy spectrum for such a calculation is plotted in
Fig. 10(b). Since the bond length of the plaquette operators
is three, it is known that each side of the tetrahedron can
have a plaquette of ±π/2. We use the same notation as in
the previous subsection and label each state using a pair of
numbers that denote the number of π/2 and −π/2 fluxes
respectively through the sides, the possible configurations
being (4,0), (2,2), and (0,4). The spectrum appears to be
simpler than that of the cube, with only four energy levels
that are symmetric with respect to zero. However, one added
complexity is that the ground state is doubly degenerate
consisting of either π/2 or −π/2 flux through all the four
sides for all vales of K ′ > 0. The first excited states consist
of six degenerate levels that can be classified as follows. For
the ground-state flux configuration with π/2 (−π/2) fluxes
through all the four sides, there are three flux excitations with
−π/2 (π/2) fluxes through two of the three sides adjacent
to site 1. For small values of 0 < K ′ < 0.1, the energy levels
(after subtracting off the energy for K ′ = 0) are also plotted
in Fig. 10(c) using symbols (+) and (×) for the ground states
and excited states respectively. Surprisingly, the data for the

tetrahedron lies on top of those of the cube implying that in
the limiting case, they have the same dependence on K ′. Thus
the ground state of each flux configuration and the three cor-
responding excited states behave like “singlet” and “triplet”
states with an effective Heisenberg coupling of K ′/

√
3 (see

Appendix B.
We can again provide an explicit construction of the emer-

gent spin Se which is responsible for the two-stage Kondo
effect for small K ′. In the presence of the Kondo coupling,
the fluxes in contact with S1 become fluctuating quantum
variables, but the flux Ŵ1 = −iσ x

2 σ z
3σ

y
4 on the opposite face

of the tetrahedron remains conserved. In the flux sector with
flux −π/2 or Ŵ1 = −i, the emergent spin is given by

σ x
e = σ

y
4 σ z

3 = ibz
4u43by

3,

σ y
e = σ z

2σ x
4 = ibz

4u42bx
2,

σ z
e = σ x

3 σ
y
2 = ibx

2u23by
3. (20)

For these spin operators, one finds that σα
e σβ

e =
iεαβγ σ

γ
e (iŴ1), i.e., one recovers the well-known commutation

relations only in the flux sector where Ŵ1 = −i. The presence
of the static flux Ŵ1 implies that time-reversal symmetry
is broken as the expectation value 〈σ x

2 σ z
3σ x

4 〉 is finite. Why
does the breaking of time-reversal symmetry not destroy
the Kondo effect and is this an artifact of the Kitaev limit
or is it valid on more general grounds (e.g., when an extra
Heisenberg coupling is added)? To understand the nature
of the ground-state degeneracy and role of the broken
time-reversal symmetry it is useful to analyze the symmetries
of the tetrahedron. Here the important symmetries are the
180◦ rotations of the spins around either the x, y, or z axis.
A rotation around the z axis is, for example, described by
Sx → −Sx, Sy → −Sy, and Sz → Sz. Remarkably, these
rotations leave the flux invariant. The three spin-rotation
symmetries ensure that despite the broken time-reversal
symmetry, no magnetic field emerges. This ensures that
a Kondo effect can be realized even in a system where
time-reversal symmetry is broken.

If we add a nearest-neighbor Heisenberg coupling to the
tetrahedron Hamiltonian, the flux Ŵ1 is not conserved any-
more. Nevertheless, the ground state of the cluster remains
twofold degenerate. The degeneracy of the (non-Kramers)
doublet in the absence of the Kondo coupling is protected
by a combination of time-reversal symmetry and rotation
symmetries (the degeneracy can, e.g., be lifted if the coupling
on one leg of the tetrahedron is changed so that rotation
symmetries are lost). The Kondo coupling induces quantum
fluctuations of the non-Kramers doublet and therefore the
question emerges whether the combination of Kondo and
Heisenberg coupling leads to a screening of the remaining
flux degree of freedom. In Fig. 12, we show the impurity
entropy Simp against temperature for the Kitaev tetrahedron
for Kitaev couplings K = 0.5 and K ′ = 10−4, and Kondo
coupling J = 0.3, Additional Heisenberg couplings JH and
J ′

H are also added along the bonds (where similar to the
notations adopted for the Kitaev couplings, J ′

H denotes the
coupling between S1 and the other three spins). Plots are for
different values of the proportionality constant α (see legend)
where JH = αK and J ′

H = αK ′. The numerical result clearly
shows that the residual entropy remains at ln 2: while the
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FIG. 12. Impurity contribution to the entropy Simp plotted against
temperature T for a Kitaev tetrahedron with Kitaev couplings K =
0.5 and K ′ = 10−4, and Kondo coupling J = 0.3. Additional Heisen-
berg couplings (JH and J ′

H ) between the sites of the cluster are
also introduced such that JH = αK and J ′

H = αK ′. The plots are for
different values of α (refer to legend).

non-Kramers doublet does become a dynamical degree of
freedom due to the combined presence of Kondo and Heisen-
berg couplings, the doublet remains unscreened. Technically,
this is a consequence of the fact that the coupling of the
conduction electrons to the doublet is an irrelevant operator.
Time-reversal and rotation symmetries forbid a linear cou-
pling of the doublet operator τ with the conduction electron
spin. Only irrelevant higher order terms involving the product
of two electron spin operators are symmetry allowed. We
have checked this statement by calculating the spectrum of a
Kitaev-Heisenberg tetrahedron in the presence of a magnetic
field B applied to site 1 of the cluster. We find that the splitting
of the ground state is proportional to B2 − BxBy − ByBz −
ByBx and therefore quadratic in the field.

Thus, we have demonstrated qualitatively as well as quan-
titatively that upon tuning the couplings K ′ connecting one
corner of a Kitaev cube to its three nearest neighbors, the
lowest-level energy states behave like a set of “singlet-triplet”
similar to that of two spin 1/2s connected by a Heisenberg
coupling, with the effective Heisenberg coupling given by
J ′ = K ′/

√
3. Now let us conclude this discussion by combin-

ing the results for the Kitaev cube as well as the two-impurity
Kondo model. Figure 13 plots the crossover temperature T ∗
for both the Kitaev cube as well as the tetrahedron along with
that for an impurity consisting of two spin 1/2s connected
via Heisenberg coupling J ′. The x axis is chosen to be the
ratio −TK/J ′, where the effective coupling J ′ = K ′/

√
3 for

the Kitaev clusters. As is seen from the plot, the three sets
of data are parallel to and lie on top of each other thus
confirming the simple mapping of the Kitaev clusters to that
of the two-impurity model at low-energy scales. The minor
difference in the intercept arising from different prefactors in
the exponential relations is possibly due to truncation errors
and an incorrect estimation of the Kondo temperature.

-12 -8 -4 0
10-20

10-15

10-10

10-5

100

 2-Imp
 Cube
 Tetrahedron

T 
*

-T
K
/J '

FIG. 13. Combined plot of crossover temperature T ∗ against the
ratio of the coupling TK/J ′ for cases where the impurity consists of
Kitaev clusters (cube and tetrahedron) and two spin 1/2s connected
with Heisenberg coupling J ′. For the Kitaev clusters, the effective
coupling J ′ equals K ′/

√
3.

E. Plaquette fluxes

In Sec. IV E, we have introduced six plaquette flux opera-
tors Wp (p = 1, 2, . . . , 6) corresponding to the six sides of the
Kitaev cube. In the presence of a nonzero coupling of site 1 of
the cube to a fermionic bath, the flux operators corresponding
to the sides adjacent to site 1, i.e., ŴAdj. = Ŵ1,2,3 do not
commute with the Hamiltonian whereas the flux operators
corresponding to the sides that are opposite to site 1, i.e.,
ŴOpp. = Ŵ4,5,6 still commute with the Hamiltonian. This is
demonstrated in Fig. 14 that plots the expectation values of the

10-3 10-2 10-1 100 101 102
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

〈

 J = 0.30
 J = 0.32

〈 W
p〉

T
K 

/ K '

FIG. 14. Expectation values of the flux operators Ŵp for the Ki-
taev cube plotted against −TK/K ′ on a logarithmic scale for J = 0.3
and 0.32 (see legend). The Kitaev couplings K = 0.5. The plots are
for Ŵp = ŴAdj. = Ŵ1,2,3 (open symbols) and for Ŵp = ŴOpp. = Ŵ4,5,6

(solid symbols). ŴOpp. commutes with the Hamiltonian and has an
expectation value of −1 (π flux) for all values of TK/K ′, whereas
ŴAdj. do not commute and the expectation value decreases from 0
(Kondo limit) to −1 (Kitaev limit) as K ′ is increased.
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plaquette flux operators 〈Ŵp〉 at zero temperature for various
values of Kitaev coupling K ′, against the ration TK/K ′. The
plots are for a fixed value of K = 0.5, and for two values of
the Kondo coupling, J = 0.3 and 0.32. 〈ŴAdj.〉 and 〈ŴOpp.〉 are
shown using hollow and solid symbols respectively. For large
values of K ′ � TK (Kitaev limit), all the plaquette operators
Ŵp have an expectation value of −1 implying π flux through
all the plaquettes. However as K ′ is decreased, ŴAdj. averages
out and hence increases from −1 at K ′ ∼ TK and approaches 0
as K ′ → 0. Thus for large Kondo coupling, the fluxes exhibit
strong fluctuations. Also, the data collapse onto each other
signifying a single universal function that solely depends on
TK/K ′. On the other hand, the expectation values of ŴOpp. is
pinned at −1 as expected.

As discussed in Sec. IV E, the impurity flux defined by
ŴI = Ŵ1Ŵ2Ŵ3 is still a good quantum number for J � 0.
In the limit J = 0, all the flux operators are good quantum
numbers and hence the ground state of the system can also
be labeled in terms of the eigenvalues wp of all the plaquette
flux operators Ŵp. In this limit, for the ground state, wp = −1
for all values of p = 1, 2, . . . , 6 implying that there is π flux
through all the sides. Hence the corresponding eigenvalue of
the impurity flux operator ŴI also equals −1. We found that
even away from this limit, i.e., for values of J > 0, 〈ŴI〉 =
−1. Thus no flux transition is observed in the Kitaev cube im-
purity systems. It is imperative to note the differences between
this result and those obtained in previous studies that focused
mainly on the effect of defects on a two-dimensional Kitaev
honeycomb lattice. The defects can be either in the form of
vacancies [10,11] on the lattice or can be due to the presence
of a magnetic impurity Kondo coupled to one site in the lattice
[13–15] The two dimensional Kitaev honeycomb lattice has
been shown to capture an impurity π flux at a vacancy site.
Thus upon coupling a magnetic impurity to a site and then
tuning the Kondo coupling between the impurity and the
lattice site, a flux transition from impurity flux was observed
as the Kondo coupling was tuned from zero (Kitaev limit) to
J � K (vacancy limit). This difference can be attributed to the
following comments. (i) Although the two sets of problems
are similar and try to investigate the physics arising in due
to the competition of both Kitaev and Kondo physics, yet the
exact geometries are vastly different and that affects specific
properties of the system. (ii) It has been shown that for a finite
size two-dimensional Kitaev honeycomb lattice consisting of
just three plaquettes with open boundaries, upon attaching a
Kondo impurity to the center, there exists a flux transition
from 0 to π flux. Thus the finite size of the clusters is unlikely
to be the reason for the absence of a flux-transition. (iii) It
has been shown that for three dimensional Kitaev materials,
a vacancy does not bind a flux [12]. Hence it is likely that
due to the closed geometry of the clusters considered in
this study, that do not exhibit a flux transition inspite of the
demonstrating interesting effects due to the competition of
Kitaev and Kondo couplings.

For the case of the Kitaev tetrahedron, the situation is quite
different. In the limit of J = 0, the ground state is doubly
degenerate, with the plaquette fluxes of either wp = i (π/2
flux) or wp = −i (−π/2 flux) through all the sides. Thus if
one calculates the expectation value 〈Ŵp〉 of the individual
plaquettes, they average out to zero. This is true even for cases

where J > 0. Hence it is not possible to extract any useful
information from a plot of the 〈Ŵp〉 for the Kitaev tetrahe-
dron. Due to the presence of the time-reversal symmetry, the
expectation values of the fluxes are all zero.

V. DISCUSSION

To summarize, we have introduced a novel approach to
investigate the physics of Kitaev materials by looking at finite-
size Kitaev clusters in the context of quantum impurities. The
clusters by themselves are interesting constructs that can help
in the understanding of Kitaev physics. Due to the finite size
of clusters, it is relatively simple to the find out the spec-
trum using exact diagonalization techniques. We have studied
models where these Kitaev clusters, specifically the case of
cube and tetrahedron, is coupled to a bath of noninteracting
fermions. There exists a competition between the Kitaev cou-
plings K ′ and the Kondo temperature TK . For the case where
K ′ > TK , the cluster decouples from the bath, whereas for the
more interesting case where K ′ < TK , the model undergoes
a two-stage screening process. By studying the spectrum of
the finite clusters, we were able to map the set of models
to that exhibited by a model comprising of two spin 1/2s
interacting with a fermionic bath, where the emergent spin 1/2
consists of a highly entangled state of both Majorana and flux
degrees of freedom. For the Kitaev cube, we also showed the
effect of couplings on the plaquette fluxes, particularly the
strong fluctuations of the flux degrees of freedom in the Kondo
limit (small values of Kitaev couplings K ′).

One interesting aspect of the results is the fact that after
the Kondo screening of the one site of the Kitaev cluster, the
interaction between the screened site and rest of the cubic
cluster can be described by that of two spin 1/2s interacting
via Heisenberg interactions. Thus a vacancy created at the
corner of the cube due to Kondo-screening generates an ef-
fective local moment degree of freedom, which can be viewed
as arising from dangling Majorana bonds. This is similar to
what has been obtained in studies on vacancies in the Kitaev
honeycomb lattice, i.e., the formation of a local moment
at the site adjacent to the vacancies that has a nontrivial
dependencies on applied magnetic field [10,11]. Although
there have been studies exploring the effect of bond disorder
in the Kitaev honeycomb lattice in a fixed gauge sector [37],
an investigation on the effect of a finite concentration of
vacancies is lacking. In particular, it would be interesting to
understand how an increase in the concentration of the lattice
vacancies effect (or destroys) spin fractionalization and the
ordering of Z2 gauge fluxes at low temperatures.

For the Kiteav tetrahedron, a residual flux degree of free-
dom leads to a twofold degeneracy of the ground state and
a ln 2 residual impurity entropy of the Kitaev-Kondo model.
We have shown that this residual entropy is not quenched
when the flux becomes a dynamical degree of freedom due
to an extra Heisenberg coupling. The non-Kramers doublet
is protected by spin-rotation symmetries and time reversal
and does not undergo a Kondo effect. Our results show that
even in the presence of extra Heisenberg coupling terms, the
fractionalization of spins into Majorana and gauge degrees of
freedom provides a useful language to describe the effective
low-energy theory governing the physics of our clusters. For
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the future, it will be interesting to connect the physics of the
impurity models to properties of bulk Kitaev Kondo models
using, for example, ideas from dynamical mean field theory.
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APPENDIX A: NUMERICAL RG

The numerical renormalization group (NRG) was origi-
nally developed to explain the properties of magnetic impu-
rities in a metallic bulk, the continuous band of conduction
electrons is mapped to a semi-infinite tight binding chain of
fermions also known as the Wilson chain. The discretization
parameter  � 1 acts as a control parameter, and the contin-
uum limit is achieved at the limit  → 1. Previous studies on
a variety of quantum impurity problems have shown that, de-
pending on the problem, a range of 2 �  � 6 to be practical
and useful, although  values as high as 9 have been used to
study critical exponents at quantum phase transitions [38,39].
The impurity is connected to the first site of the tight-binding
Wilson chain and the strength of the hopping coefficients fall
off as −L/2 with the length L of the chain. The ground state
is then determined using an iterative diagonalization of the
Wilson chain, adding one fermionic site at each iteration.

In this study, the complex Kitaev cluster acts as a quantum
impurity that is Kondo-coupled to a semi-infinite fermionic
chain. For a cluster consisting of Ns spins, the basis states
at iteration zero are formed using (i) the basis states of the
Kitaev cluster using a spin representation consisting of 2Ns

states (|↑↑↑ . . . ↑〉, |↓↑↑ . . . ↑〉,..., |↓↓↓ . . . ↓〉) ⊗ (ii) the
four configurations of the c0 site (|0〉, |↑〉, |↓〉, and |↑↓〉). In
the subsequent iterations, one fermionic site is added and the
scaled Hamiltonian is iteratively diagonalized in the standard
fashion. Due to the presence of the Kitaev couplings, the z
component of the total spin of the system, Sz, is no longer
conserved, and hence one cannot label the eigenstates using
the eigenvalues of the Sz operator. The total charge measured
from half-filling can still be used as a good quantum number
and the Hamiltonian can be block-diagonalized by breaking
up the Hilbert space into subspaces labeled by the charge
quantum number. However, the lack of spin symmetries
increases the overall computational time. In the NRG, the
total number of states increases by four at each iteration and
hence it becomes impractical to work with all the states. So,
the high-energy excitations are truncated at the end of each
iteration by either keeping only a fixed number of lowest lying
states or by using an energy cutoff. However, for the Kitaev
cube, for example, the number of basis states at iteration
zero equals 28 × 4 = 1024 (compared to 2 × 4 = 8 for the
single-impurity Kondo model and 4 × 4 = 16 for the single
impurity Anderson model). In order to not loose too much
information at the initial iterations, all the states are kept for
the first few iterations before implementing the truncation
scheme. Overall, the large number of states at iteration zero

can lead to large truncation effects at the initial iterations,
and it is impractical to counterbalance this by increasing the
number of kept states by a feasible number. Although it is
impossible to get rid off this problem completely, we found
that it merely renormalizes the Kondo temperature. This is
evident, for example, in Fig. 4(a) that shows a noticeable
difference in Kondo temperatures TK for (i) a single spin
(shown using dashed lines) and (ii) a Kitaev cube with K ′ = 0
such that the rest of the cluster is decoupled from site 1. Thus
the enormous truncation effect results in an overestimation
of the Kondo temperature. However, we emphasize that the
qualitative behavior of the model at low temperatures is
unaffected, although it is crucial that we use the numerically
estimated (and hence “modified”) Kondo temperature TK in
our calculations.

Thermodynamic properties of the system such as entropy
can also be calculated by computing the expectation value of
the appropriate operators, at the end of each NRG iteration.
To determine the temperature dependencies of an observable,
we associate a temperature T ∝ −N/2, N being the iteration
number. The impurity contribution to the thermodynamic
properties are determined by subtracting off the contribution
from the fermionic bath alone. We use this formalism to
calculate the expectation value of the plaquette fluxes through
the different sides of Kitaev clusters as will be discussed
shortly.

APPENDIX B: MAPPING TO TWO-IMPURITY KONDO
MODEL: PERTURBATIVE ANALYSIS

Here, we present a perturbative treatment of the finite-
clusters to obtain analytical expressions of the effective
Heisenberg coupling in terms of the Kitaev couplings for both
the Kitaev cube and tetrahedron. We consider clusters with
Kitaev couplings K ′ between site 1 and the three nearest-
neighbor sites and couplings K for the rest of the links, similar
to what was done in Sec. IV D. The energies of the cluster can
be obtained by solving the respective Kitaev clusters using
the Majorana fermion formalism described in Sec. III B 2. The
couplings are chosen such that K ′  K , and we compute the
energies by keeping terms upto lowest order in K ′. Note that
in the case of the Kitaev honeycomb lattice, one usually uses
a convention such that the bond operators are taken to be
positive (or negative) depending on whether they point from
sublattice A to B (or vice versa). For the case of the finite
systems considered here, the choice of the bond operators
is quite arbitrary. As mentioned in Sec. III B 2, we use a
convention such that ui j = 1 if i > j and ui j = −1 otherwise.

At first, let us compute the energies of the relatively easier
case of the Kitaev tetrahedron. The ground state is found to be
double degenerate with flux configurations ( π

2 , π
2 , π

2 , π
2 ) and

(−π
2 ,−π

2 ,−π
2 ,−π

2 ) (in the unprojected Hilbert space this
flux configuration is over-counted by a factor of 8 reflecting
eight possible gauge choices). As an example, let us choose a
flux configuration given by the following values of ui j :

u12 = −1, u23 = 1, u13 = −1,

u14 = −1, u24 = −1, u34 = 1.
(B1)
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The A matrix defined by Eq. (7) for the set of bond variables
is given by

iA = i

2

⎛
⎜⎝

0 −K ′ −K ′ −K ′
K ′ 0 K −K
K ′ −K 0 K
K ′ K −K 0

⎞
⎟⎠. (B2)

The eigenvalues of iA (or the single-particle energies of the
fermionic spectrum) are found to be

εi =
{

±
√

3

2
K ′,±

√
3

2
K

}
. (B3)

The ground-state energy of the many-particle Majorana spec-
trum is then given by

E0 = −1

2

2∑
i=1

εi = −
√

3

4
(K + K ′). (B4)

Upon subtracting the value of E1(K ′ = 0), we get

E0(K ′) − E0(K ′ = 0) = −
√

3

4
K ′ = −3

4

1√
3

K ′. (B5)

For the first excited state, there are six gauge-invariant
states (we ignore the first excited unphysical states that arise in
the Majorana spectrum). Each of those states has a multiplic-
ity of 8 (arising from different gauge choices), thus the total
number of degenerate levels in the unprojected Hilbert space
is 48. As an example, let us consider a set of {ui j} values as
follows:

u12 = −1, u23 = −1, u13 = 1, (B6)

u14 = −1, u24 = 1, u34 = −1. (B7)

This corresponds to one of the pair of triplet states with a flux
configuration of (−π

2 , π
2 ,−π

2 , π
2 ). The A matrix is given by

iA = i

2

⎛
⎜⎝

0 −K ′ K ′ −K ′
K ′ 0 −K K

−K ′ K 0 −K
K ′ K K 0

⎞
⎟⎠, (B8)

and has the following eigenvalues:

± 1

2
√

2
(3K2 + 3K ′2 ±

√
9K4 + 14K2K ′2 + 9K ′4)1/2. (B9)

Expanding the eigenvalues and keeping terms upto linear
order in K ′, we obtain the single-particle energy levels:

ε1 =
√

3

2
K and ε2 = K ′

2
√

3
. (B10)

The (physical) energy of the first-excited levels is given by

E1 = −1

2
(ε1 − ε2) =

(
−

√
3K

4
+ K ′

4
√

3

)
. (B11)

Upon subtracting the energy at K ′ = 0, we obtain

E1(K ′) − E1(K ′ = 0) = K ′

4
√

3
= 1

4

1√
3

K ′. (B12)

Thus it is evident that the ground and the first excited levels
have a dependency on K ′ similar to that of a pair of singlet-
triplet states that arise for two spins if they are mutually con-
nected via Heisenberg interactions with an effective strength
J ′ = K ′/

√
3.

Let us repeat the calculations for the cube as well for the
sake of completeness. For the ground state, we choose, as an
example, the following one of the 27 possible configurations
of {ui j} that leads to the unique ground state characterized by
a gauge-independent flux configuration of (π, π, π, π, π, π ):

u12 = 1, u23 = 1, u34 = 1, u14 = 1,

u56 = −1, u67 = −1, u78 = −1, u58 = −1, (B13)

u15 = −1, u26 = −1, u37 = −1, u48 = −1.

The A matrix is given by

iA = i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 K ′ 0 K ′ −K ′ 0 0 0
−K ′ 0 K 0 0 −K 0 0

0 −K 0 K 0 0 −K 0
−K ′ 0 −K 0 0 0 0 −K
K ′ 0 0 0 0 −K 0 −K
0 K 0 0 K 0 −K 0
0 0 K 0 0 K 0 −K
0 0 0 K K 0 K 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B14)

with eigenvalues

±
√

3

2
K,±

√
3

2
K,±

√
3

2
K,±

√
3

2
K ′. (B15)

The ground-state energy of the fermionic many-body state is
given by

E0 = −1

2

4∑
i=1

εi = −
√

3

4
(3K + K ′). (B16)

For the first excited state, let us consider a configuration (out
of 3 × 27 such possibilities) given by

u12 = 1, u23 = 1, u34 = 1, u14 = 1,

u56 = −1, u67 = −1, u78 = −1, u85 = −1, (B17)

u15 = −1, u26 = −1, u37 = −1, u48 = −1,

The A matrix

iA = i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −K ′ 0 −K ′ −K ′ 0 0 0
K ′ 0 K 0 0 −K 0 0
0 −K 0 K 0 0 −K 0
K ′ 0 0 0 0 0 0 −K
K ′ 0 0 0 0 −K 0 −K
0 K 0 0 K 0 −K 0
0 0 K 0 0 K 0 −K
0 0 0 K K 0 K 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B18)

has eigenvalues:

±
√

3K/2,±
√

3K/2,

± 1

2
√

2

(
3K2 + 3K ′2 ±

√
9K4 + 14K2K ′2 + 9K ′4)1/2

.
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The structure of the eigenvalues is similar to that of the
tetrahedron. Keeping terms up to linear order in K ′, the single-
particle energies can be expressed as

ε1, ε2, ε3 =
√

3K

2
, and ε4 = K ′

2
√

3
. (B19)

The (physical) first-excited state energy is given by

E1 = 1

2
(ε1 + ε2 + ε3 − ε4) (B20)

= −1

2

(
3
√

3K

2
− K ′

2
√

3

)
. (B21)

Upon subtracting E0(K ′ = 0) from the expressions for E0 and
E1, we get respectively

E0(K ′) − E0(K ′ = 0) = −3

4

1√
3

K ′ and

E1(K ′) − E1(K ′ = 0) = 1

4

1√
3

K ′.
(B22)

Equation (B22) has the same form as those in Eqs. (B5) and
(B12), respectively. Thus, for small values of K ′  K , both
the Kitaev cube and tetrahedron can be mapped to an impurity
consisting of two spins with an effective Heisenberg coupling
given by K ′/

√
3.
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