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Measurements destroy entanglement. Building on ideas used to study ‘quantum disentangled liquids,’ we
explore the use of this effect to characterize states of matter. We focus on systems with multiple components,
such as charge and spin in a Hubbard model or local moments and conduction electrons in a Kondo lattice model.
In such systems, measurements of (a subset of) one of the components can leave behind a quantum state of the
other that is easy to understand, for example in terms of scaling of entanglement entropy of subregions. We bound
the outcome of this protocol, for any choice of measurement, in terms of more standard information-theoretic
quantities. We apply this quantum disentangling protocol to several problems of physical interest, including
gapless topological phases, heavy fermions, and scar states in the Hubbard model.
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I. INTRODUCTION

Consider a quantum state of a two-component system, say,
local moments interacting with electrons as in a Kondo lattice
model or spin and charge degrees of freedom in a Hubbard
model. How shall one characterize the quantum entanglement
between the two components? One possible route is to in-
tegrate out one of the components and study the properties
of the resulting reduced density matrix corresponding to the
other component. Now one can characterize the entanglement
between the two components via the von Neumann entropy
of the resulting reduced density matrix. For example, if the
two components were unentangled to begin with, then the
reduced density matrix would be pure and therefore will
have zero von Neumann entropy. At the other extreme, if the
original wave function satisfies the eigenstate thermalization
hypothesis (ETH), then the resulting density matrix will have
a volume law von Neumann entropy [1–7]. A seemingly
very different, and perhaps more feasible approach from an
experimental standpoint, is to perform a measurement on only
one of the components such that the state of that component
is fully specified and study the resulting wave function. Basic
principles of quantum mechanics dictate that the measurement
renders the measured degrees of freedom as classical objects
with definite values, and now the only quantum degrees of
freedom belong to the unmeasured component. One measure
of the entanglement between the two components is the
change in the entanglement between different subsystems
of the unmeasured component due to the measurement. For
example, if the two components were unentangled to begin
with, then the measurement leaves the reduced density matrix
of the unmeasured component completely unchanged.

One application of such a partial-measurement-based pro-
tocol was discussed in Ref. [8], where a new state of mat-
ter, called ‘quantum disentangled liquid’ (QDL), was intro-
duced. In a QDL state, measurement leads to a dramatic
reduction in the bipartite entanglement of the unmeasured
component (‘disentangling’). Specifically, in such a phase,
although the original wave function has a volume law bipartite

entanglement, the unmeasured component only has area-law
entanglement post measurement. It was argued that in con-
trast, in a conventional ‘non-QDL’ system, a similar protocol
will instead lead to volume law entanglement for the unmea-
sured component post measurement. A physical picture [8] is
that one component consists of ‘heavy’ particles, whose posi-
tions provide a disorder potential which can Anderson/many-
body localize the ‘light’ particles. A context in which the
physics of QDL is realized is the Hubbard model in 1 + 1
dimensions [9,10], where the role of ‘heavy’ and ‘light’
particles is played by the spin and charge degrees of freedom,
respectively. Strong numerical evidence was found that a band
of QDL-like states survives the breaking of integrability [11].
These are examples of ‘scar states’—states in the middle of
the spectrum of a nonintegrable system that are not ergodic
(in a many-body system, this means that they violate ETH).

In this paper we will show that the two seemingly differ-
ent ways to characterizing entanglement introduced above—
integrating out versus partial measurement—are intimately
related. We will bound the outcome of the QDL proto-
col in terms of various conditional information measures—
combinations of von Neumann entropies of subsystems,
which can be interpreted as a quantum analog of conditioning
on the subset of measured degrees of freedom. Specifically,
we will show in Sec. I A that a specific kind of conditional
entropy provides a lower bound on the expected entanglement
of a state after a partial measurement. We also give (less-
effective) upper and lower bounds on an alternate version of
the QDL protocol in terms of conditional mutual information
(CMI).

One practical advantage of the conditional information
measures is that, in contrast to the measurement-based pro-
tocol, they are operator agnostic—they do not depend on a
choice of which operator to measure. Relatedly, in an exact
diagonalization study, implementation of conditional infor-
mation measures do not involve averaging over any degrees
of freedom, in contrast to measurement-based protocol where
one needs to average over the outcome of a measurement,
which can be time consuming.
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As just discussed, entanglement after partial measurement
has so far been used as a tool to characterize scar states,
or more generally, to address questions related to quantum
thermalization in closed many-body systems. We will show
that this set of ideas has much broader applications and is
especially useful in characterizing entanglement in ground
states of multicomponent systems. As an example, in Sec. IV
we will characterize a ‘gapless topological phase’ in a model
of spinful bosons where the charge degrees of freedom form
a Luttinger liquid, while the spin degrees of freedom rep-
resent a symmetry protected topological (SPT) phase which
is decoupled from the charge degrees of freedom at low
energies. Specifically, we will show that measuring the charge
degrees of freedom results in a gapped SPT wave function of
spins, where the edge states in the entanglement spectrum are
now much more apparent compared to those in the entangle-
ment spectrum of the full gapless wave function. The post-
measurement wave function can also be used to understand
phase transitions in the spin sector between a SPT phase and
a non-SPT phase.

As another application to ground state wave functions of
correlated electrons, we will characterize phases relevant to
Kondo lattice systems using conditional mutual information.
In Sec. VI, we will show that in a heavy Fermi liquid, within
a mean-field description, the entanglement of local moments
conditioned on conduction electrons violates the area-law
entanglement scaling in the manner of a Fermi liquid, thus
exposing the underlying large Fermi surface which includes
the local moments. We will also discuss the utility of con-
ditional mutual information in diagnosing topological order
in a fractionalized Fermi liquid, where at low energies local
moments decouple from the conduction electrons and become
topologically ordered.

We return in Sec. II to the notion of QDL in a Hubbard
model discussed in Ref. [11] and study it from the perspective
of conditional information measures. We will show that the
‘scar states’ where spin degrees of freedom effectively de-
couple from the charge degrees of freedom have a distinctive
footprint in both conditional entropy and CMI, similar to the
signature in the measurement-based diagnostic.

In Sec. III we observe that the entanglement negativity can
also be used to distinguish QDL behavior from ergodicity.
This is a measure of the bipartite entanglement in a mixed
state which vanishes in separable states

∑
c ρc

A ⊗ ρc
B—it is a

measure of quantum entanglement and not classical correla-
tions. A QDL state is precisely one where the entanglement
of the light degrees of freedom alone is area law, whereas
a general ergodic state has longer-range entanglement. We
identify a precise situation where a sharp distinction can be
made and verify the expected behavior in the Hubbard model.
We note that the quantity called SPT entanglement, defined
in Ref. [12] and shown there to label SPT states (at least
for Abelian groups), is an example of a measurement-based
protocol similar to the ones we study.

A. A bound on the QDL diagnostic

Following the discussion in Ref. [8], consider a mea-
surement on the degrees of freedom belonging to only one
component in a two-component system. A measurement

effectively freezes the measured degrees of freedom to the
outcome of the measurement. In the resulting wave function,
the only quantum fluctuations correspond to the unmeasured
component, and the probabilities associated with these quan-
tum fluctuations can therefore be thought of as conditional
probabilities—they are conditioned on the outcome of the
measurement. This motivates us to seek a connection between
the measurement based QDL diagnostic of Ref. [8] and con-
ditional entropy (CE).

To build such a connection, we recall some general aspects
of the QDL diagnostic. Consider a Hilbert space H = A ⊗
B ⊗ C with three parts. The QDL protocol takes as input a
state ρABC and a choice of operator XC on C. We will assume
that the outcomes of XC provide a nondegenerate basis for C,
so a measurement of XC with outcome c completely specifies
the state of C to be |c〉. The protocol is:

(1) Measure Xc and obtain outcome c with probability
pc = trAB〈c|ρABC |c〉.

(2) In the resulting state ρc
AB find the von Neumann en-

tropy of subsystem A, S(ρc
A ≡ trBρc

AB).1

(3) Average over the distribution pc to obtain the QDL
diagnostic

SQDL(A|XC ) ≡
∑

c

pcS
(
ρc

A

)
.

A related quantity which depends on a state ρABC but not a
choice of operator is the conditional entropy of A conditioned
on C2

S(A|C) ≡ Sρ (AC) − Sρ (C).

Classically, the conditional entropy is the Shannon entropy
of the conditional probability distribution p(a|c); quantum
mechanically it is not the von Neumann entropy of any state
and indeed can be negative. Its being negative is a sign that
subsystems A and C are entangled. The conditional entropy
has an operational meaning [13] in terms of the number of
qubits from A needed for C to reconstruct their joint state
ρAC given free local operations and classical communication;
when it is negative it means that their entanglement can be
used as a resource, for example to teleport quantum informa-
tion from C to A.

We now show that the conditional entropy is a lower bound
for the QDL diagnostic for any XC :

S(A|C) � SQDL(A|XC ). (1.1)

Proof. First, we note that the conditional entropy can be
rewritten in terms of a relative entropy, D(ρ||σ ) ≡ trρ log ρ −
trρ log σ , as follows:

S(A|C) = A − D(ρAC‖uA ⊗ ρC ) (1.2)

1Since ρc
AB is a mixed state, this includes entropy of mixture, in

addition to entropy of entanglement. With this in mind, we study
instead a measure of mixed-state entanglement (the logarithmic
negativity) in Sec. III.

2For a subsystem A and a density matrix ρ on a larger system
we denote the von Neumann entropy Sρ (A) = S(ρA) = −trρA log ρA,
with ρA ≡ trĀρ. When there is no ambiguity about the density matrix
in question, we will write S(A).
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FIG. 1. Comparison of the conditional entropy S(A|C) with the QDL quantity SQDL ≡ ∑
c pcSρc (A) for several Haar random states of

ABCD, with ABCD of the given dimensions. Left: For some values of subsystem sizes, the bound is seen to be fairly tight. Right: In other
cases, as when S(A|C) is negative, the bound is loose. Negative S(A|C) is an indication that subsystems A and C are entangled more with each
other than with the rest of the world.

where uA is the uniform density matrix on HA, uA ≡
1A/ dim HA, and we find it convenient to use A ≡ log dim HA

to denote the size of region A.
The rewriting (1.2) is useful because the relative entropy is

monotonic under the action of any quantum channel E

D(ρ||σ ) � D(E (ρ)||E (σ )). (1.3)

Consider in particular the diagonal-part channel on C in the
basis of eigenstates |c〉C of OC , defined as:

ρABC �→ E (ρABC ) ≡
∑

c

〈c|ρABC |c〉 ⊗ |c〉〈c|

≡
∑

c

pcρ
c
AB ⊗ |c〉〈c|. (1.4)

This is the state that obtains if XC is measured, but the outcome
of the measurement is not known.

The key step is

S(A|C)
(1.3)
� A − D(EC (ρAC )||EC (uA ⊗ ρC )) (1.5)

=
∑

c

pcS
(
ρc

A

) = SQDL(A|XC ). (1.6)

The right equality is shown in great detail in Appendix A.
Therefore,

S(A|C) � SQDL(A|XC ),

a lower bound on the QDL quantity. �
How tight is the bound we just proved? To learn something

about this, in Fig. 1 we show the QDL diagnostic versus
conditional entropy for a collection of Haar-random states, for
various choices of partitions of some small Hilbert spaces. By
Haar-random states we mean states of the form U |ψ0〉 where
|ψ0〉 is some reference state (here, a product state) and U is a
unitary sampled from the Haar measure.

As a side remark, we note the relevance of the notion of
“quantum discord” [14,15] to this discussion. This quantity
was introduced in attempts to distinguish between quantum
and classical correlations in a given quantum state. Given a
bipartite density matrix ρAC and a measurement X on C, the
discord is defined to be

discord(ρAC, X ) ≡ SA + SC − SAC − χ (pc, ρ
c)

= −S(A|C) + SQDL(A|XC ), (1.7)

the difference between the QDL quantity and our lower
bound for it. In the middle step, χ (pc, ρ

c) ≡ S(
∑

c pcρc) −∑
c pcS(ρc) is the Holevo quantity, which will reappear below

in Sec. V. The Holevo quantity provides a bound on the
amount of classical information that can be sent by a quantum
channel. (The discord of ρ itself is defined by extremizing
over the choice of measurement on C.)

B. Distinguishing QDL and ergodic states
with conditional entropy

The conditional entropy is capable of distinguishing be-
tween QDL and ergodic states. To do this, we further bipar-
tition each subsystem into spatial regions, that is, divide the
system into ABCD where A, B are light and C, D are heavy.
We assume the total system size is L = A + B = C + D.

For the purposes of this argument, to describe an ergodic
state, we will use Page’s rule [16]:

Sergodic(A) = min(A, Ā)

where A denotes the system size, dim HA ∼ eA. Therefore
when A + C is less than half the system

Sergodic(A|C) = S(AC) − S(C) = (A + C) − C = A (1.8)

has a volume law in the size of A.
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To describe a QDL state, we will use the model QDL
wave function on a system of two types of hardcore bosons
from [8]:

�QDL(N, n) = ψ (N )
L∏

j=1

1√
2

(
δn j ,0 + eiπNj δn j ,1

)
. (1.9)

n j = 0, 1 are the light degrees of freedom and Nj = 0, 1
are the heavy degrees of freedom. ψ (N ) is an ergodic wave
function. When necessary, we assume that it is ψ (N ) =
sgn({Nj})2−L/2, independently random signs for each config-
uration of the heavy degrees of freedom.

First let us determine SC . The reduced density matrix is

ρC (NC, N ′
C )

=
∑
n,ND

�QDL(NC, ND, n)�	
QDL(N ′

C, ND, n) (1.10)

=
∑
ND

ψ (NC, ND)ψ	(N ′
C, ND)

∏
j∈C

(
1 + eiπ (Nj+N ′

j )

2

)

= δNC ,N ′
C

∑
ND

|ψ (NC, ND)|2. (1.11)

If we use the random-sign form of the wave function, this
is a diagonal density matrix all of whose eigenvalues are
equal (to 2−C), so the entropy is maximal. To estimate the
entropy more generally we can compute the purity S2(ρC ) ≡

− log trρ2
C � S(ρC ).

trρ2
C =

∑
NC ,N ′

C

ρ(NC, N ′
C )ρ(N ′

C, NC )

=
∑
NC

(∑
ND

|ψ (NC, ND)|2
)2

= 2−C,

and therefore S2(ρC ) = C log 2 is volume law in the size of C.
Since S2 � SvN , this implies that the von Neumann entropy is
also volume law.

In the case where A = C, the calculation of SAC is done
in Ref. [8]. We give the more general calculation for A < C
because it will be useful below:

ρAC (NC, nA; N ′
C, n′

A)

=
∑

ND,nB

�QDL(NC, ND, nA, nB)�QDL(N ′
C, ND, n′

A, nB)

(1.12)

= f (NC, nA) f (N ′
C, n′

A)
∏

j∈C\A

(
1 + eiπ (Nj+N ′

j )

2

)

×
∑
ND

ψ (NC, ND)ψ	(N ′
C, ND) (1.13)

where, as in Ref. [8],

f (N, n) ≡
∏
j∈A

1√
2

(
δn j ,0 + eiπNAδn j ,1

)
.

Then

trρ2
AC =

∑
NC ,N ′

C

∑
nA,n′

A

f (NC, nA)2 f (N ′
C, n′

A)2

︸ ︷︷ ︸
=1

∏
j∈C\A

δNj ,N ′
j

(1.14)

×
∑
ND

ψ (NC, ND)ψ	(N ′
C, ND)

∑
N ′

D

ψ (N ′
C, N ′

D)ψ	(NC, N ′
D) (1.15)


∑

NC=N ′
C

∑
ND,N ′

D

2−2L+
∑

ND=N ′
D

∑
NA,N ′

A

∑
NC\A

2−2L−
∑

ND=N ′
D=NC=N ′

C

2−2L (1.16)

= 2C+2D−2L + 2D+2A+(C−A)−2L − 2C+D−2L (1.17)

= 2−C + 2A−L − 2−L. (1.18)

Therefore in this case

S(AC) = − log trρ2
AC = − log(2−C + 2−D−C+A − 2−L ).

In the special case A = C, this is S(AC) =
− log (2−C + 2−D − 2−L ) in agreement with Ref. [8].

Therefore, in a QDL state, we expect

S(A|C) = S(AC) − S(C)

= − log(2−C + 2−D−C+A − 2−L ) − C log 2.

Setting A = C = l , for l � L this behaves as

S(A|C)
l�L −2−Ll + O(2−2Ll2) (A = C = l ), (1.19)

a negative volume law with a coefficient which vanishes
exponentially with system size (Fig. 2, left).

If instead A = l but we hold fixed C = L/2, then

S(A|C)
l�L −2−L/2l + O(2−L/2l2) (A = l,C = L/2),

(1.20)

the (negative) volume-law coefficient still vanishes exponen-
tially with system size but not as fast (Fig. 2, right). We will
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QDL

ergodic
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8
S(A|C)

|C|=L/2, |A|= , L=12

QDL

ergodic

2 3 4 5 6

2

4

6

8
S(A|C)

|A|=|C|= , L=12

FIG. 2. Expectations for conditional entropy in a QDL state
(blue) and an ergodic state (orange), based on (1.19) and (1.20). Left:
when regions A and C are the same size, l . Right: when |C| is fixed
at L/2 and |A| = l .

compare this expectation with the behavior in scar states of
the Hubbard model below in Sec. II.

C. Mutual information QDL diagnostic

An alternate protocol replaces the von Neumann entropy
with the mutual information between A and B. That is, replace
the latter two steps of the protocol by

(1) In the resulting state ρc
AB find the mutual information

between A and B: Iρc
AB

(A : B).
(2) Average over the distribution pc to obtain an alternate

QDL diagnostic

IXC (A : B|C) ≡
∑

c

pcIρc
AB

(A : B).

When ABC is the full system, and measuring XC com-
pletely fixes the state of C, then ρc

AB is a pure state. To see
this explicitly, write the initial state |ψABC〉 in the basis of
eigenstates of the operator XC :

|ψABC〉 =
∑

c

|ψAB(c)〉 ⊗ |c〉.

Then by the axioms of quantum mechanics, when we measure
XC and get the outcome c, the resulting state (up to normaliza-
tion) is

|ψABC〉 measure XC , get c→ |ψAB(c)〉 ⊗ |c〉,

a product state between AB and C, ρAB|c = |ψAB(c)〉〈ψAB(c)|.
In such a state the von Neumann entropy of AB vanishes,
S(ρc

AB) = 0, and hence

Iρc
AB

(A : B) = S
(
ρc

A

) + S
(
ρc

B

) − S
(
ρc

AB

) = 2S
(
ρc

A

)
. (1.21)

Averaging (1.21) over the distribution of outcomes pc says
that under these conditions, the mutual information version of
the QDL diagnostic is twice the original QDL diagnostic:

IXC (A : B|C) = 2SXC (A) if ABC is pure.

A related quantity which depends on a state ρABC but not a
choice of operator is the conditional mutual information

I (A : B|C) ≡ SAC+SBC − SACB − SC

= I (A : BC) − I (A : C) (1.22)

= D(ρACB||ρA ⊗ ρBC ) − D(ρAC ||ρA ⊗ ρC ) (1.23)

where D(ρ||σ ) ≡ trρ log ρ − trρ log σ � 0 is the relative en-
tropy. In Sec. V B we will bound the alternate QDL diagnostic
in terms of the conditional mutual information.

II. CONDITIONAL ENTROPY AND QDL PHYSICS
IN THE HUBBARD MODEL

To establish the utility of the diagnostics introduced in
Sec. I, we compute the conditional entropy and conditional
mutual information in the same model studied in Ref. [11].
We perform exact diagonalization of the one-dimensional
Hubbard model with a repulsive nearest neighbor interaction
added to break integrability

H = −t
∑

iσ

c†iσ ci+1σ + U
∑

i

ni↑ni↓ + V
∑

i

nini+1 (2.1)

where niσ ≡ c†iσ ciσ and ni ≡ ∑
σ niσ .

Given an eigenstate of H, we compute the conditional
entropy S(A|C) for a subset of the charges (the light degrees
of freedom), conditioned on a subset of the spins (the heavy
degrees of freedom). We partition the system as in Fig. 3,
so that subsystem A is all the charge degrees of freedom on

A
C D

Bcharge
spin C D

BA

FIG. 3. Left: Partition of the Hubbard model degrees of freedom. A (C) is chosen to be the charge (spin) degrees of freedom on sites 1
through l . Right: Conditional entropy in a one-dimensional Hubbard model as a function of the location of the bipartioning cut at couplings
U = 4, V = 3/4. The chain is periodic and has L = 12 sites, the particle number is at half filling, and the magnetization is zero. We show the
result for two charge band states and one spin band state, which can be compared, respectively, with (1.8) and (1.19).
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sites 1 through l , B is the remainder of the charges, C is all the
spins on sites 1 through l , and D is the remainder of the spins.

In Fig. 3 we show the result for the conditional entropy
S(A|C) = S(AC) − S(C) in several eigenstates. Our results
confirm those of Ref. [11], and the striking difference in
behavior between ergodic and QDL states illustrates the utility
of conditional entropy as a proxy for observing QDL be-
havior. The behavior sharply distinguishes QDL and ergodic
behavior, in agreement with our expectations from Sec. I B.
In particular, in the case of a QDL state, the slope of S(A|C)
as a function of the size of A is indeed negative. A more
quantitative comparison is obstructed by the small system
size. The discussion of the conditional mutual information can
be found in Appendix B.

III. QDL AND NEGATIVITY

For mixed states, the von Neumann entropy is not a
good measure of entanglement, since it includes also classi-
cal uncertainty. A computable measure of entanglement for
mixed states is the logarithmic negativity [17,18], defined
as EN (ρ) ≡ − log |ρTA | = − log (

∑
a |λa|), where λa are the

eigenvalues of ρTA , the partially transposed density matrix,
ρ

TA
ab,a′b′ ≡ ρa′b,ab′ .

In a QDL state, the reduced density matrix for the ‘light’
particles is essentially separable, because ρA = ∑

c pcρA(c)
and each ρA(c) is area law due to QDL-ness. Therefore the
negativity is area law for this mixed state. This result holds
irrespective of the size of the Hilbert space of the ‘heavy’
particles, and as we now show, leads to a new diagnostic for
the QDL states when the Hilbert space of heavy particles is
smaller than half the total Hilbert space.

The area law of negativity is not necessarily a very striking
characterization because negativity is area law even for a
Gibbs state [19]. Such a thermal state is obtained by tracing
out more than half the degrees of freedom in a purely ergodic
wave function. In contrast, for an ergodic wave function,
integrating out less than half the degrees of freedom leads to
a volume law negativity [20,21]. The intuition is that nothing
dramatic happens if one integrates out a very small region, so
negativity will continue to be volume law until the subsystem
looks thermal. This intuition is verified numerically in ergodic
spin chains [20] and proved analytically for Haar random
states [21].

Therefore, when the Hilbert space of heavy particles is
smaller than half the total Hilbert space, then the area law
of negativity is another way to quantify QDL behavior. This
expectation is verified in Fig. 4.

IV. DETECTING SPT PHYSICS IN A GAPLESS SYSTEM
VIA PARTIAL MEASUREMENT

We now turn to applications of QDL-based protocols to
questions about interesting ground states of condensed matter.
We consider a model of spin 1 hardcore bosons governed by
the Hamiltonian

H = −t
∑

iσ

b†iσ bi+iσ + H.c. + J
∑

i

�Si · �Si+1 + D
∑ (

Sz
i

)2
.

(4.1)

FIG. 4. The logarithmic negativity for a spin-band state and a
charge-band state of the deformed Hubbard model. Here the magne-
tization is chosen to be mz = 2, at half filling, so that the spin (heavy)
Hilbert space is smaller than the charge (light) Hilbert space.

The hopping amplitude t determines an overall energy scale
and we set it equal to 1. This model was originally considered
in Ref. [22] as a strong coupling limit of a particular two leg
fermionic ladder; the spinful hardcore boson represents two
fermions bound into a triplet state across a rung of the ladder.

In addition to a trivial paramagnet phase, a spin-1 chain
also possesses a nontrivial SPT phase known as the Haldane
phase [23–25]. In Ref. [22], the model in (4.1) was argued
to exhibit spin-charge separation in the sense that the ground
state wave function factorizes into a charge wave function
times a spin wave function on the squeezed lattice (the lattice
obtained by deleting the unoccupied sites). As a result of this
spin-charge separation, it was argued that the spin degrees of
freedom can form an SPT phase, despite the presence of the
gapless charge degrees of freedom.

Here we apply the QDL protocol to freeze the charge
degrees of freedom and study the entanglement properties of
spins in the resulting wave function. For a conventional spin
wave function, one signature of an SPT phase is a degeneracy
in the entanglement spectrum due to the edge modes [26].
We therefore propose to use the entanglement spectrum of
the post-projection wave function to access the topological
properties of the state.

The ground state of (4.1) was obtained for both open and
periodic boundary conditions using DMRG, with bond di-
mensions up to χ = 3000. Figure 5 shows the post-projection
entanglement spectra in the topological phase (J � D). It is
very easy to see the systematic double degeneracy throughout
the entire entanglement spectrum. As we increase D and
go over to the trivial phase, the degeneracy disappears as
expected.

In addition to the entanglement spectrum, we can look at
the entanglement entropy of the post-projection wave func-
tion. In particular, we study SQDL(c, A) ≡ ∑

c pcS(ρc
A) where

pc is the probability of finding a particular configuration c of
the (measured) charge degrees of freedom, and ρc

A denotes
the density matrix corresponding to the (unmeasured) spin
degrees of in a subregion A.

115131-6



DISENTANGLING QUANTUM MATTER WITH … PHYSICAL REVIEW B 101, 115131 (2020)

FIG. 5. Leftmost: Entanglement spectrum across the center bond of the full wave function. Right plots: Entanglement spectrum across the
center bond for the projected wave function |�s〉 for three randomly chosen hole configurations. The system size is L = 96, with couplings
J = 0.1 and D = 0.01. Also shown is the mean spacing between pair levels in the entanglement spectrum 〈�〉.

We studied (4.1) at system size L = 64 with periodic
boundary conditions. It is somewhat impractical (and in gen-
eral impossible) to average over all charge configurations,
so we calculated SQDL via Monte Carlo sampling with the
distribution pc. The results in the topological phase, in the
trivial phase, and directly at the critical point are shown in
Fig. 6. In all cases, the entanglement entropy as a function of
subsystem size for the full wave function (with no projection)
has the form

S(l ) ∼ c

3
log

(
L

π
sin

(
π l

L

))
+ b (4.2)

with c = 1 away from the critical point and c = 2 at the
critical point. Away from the critical point, the spins are
essentially in a gapped phase which mixes very weakly with
the gapless charge degrees of freedom, so we see c = 1 worth
of gapless charge.

Applying the QDL projection freezes the charge degrees
of freedom; the entanglement entropy of the post-projection
wave function collapses into an area law behavior characteris-
tic of a gapped phase in one dimension. At the critical point,
the post-projection wave function retains the entanglement
entropy of a critical wave function (4.2) with precisely c = 1,
in line with the fact that the spins are in a c = 1 state at the
critical point.

As far as we are aware, performing partial projections and
studying properties of the ‘leftover’ wave function has not
been generally explored in the context of ground state wave
functions.3 The distinction between an SPT and a trivial phase
is typically predicated on the existence of a finite energy gap
in both phases [27]. However there appear to be examples
where features usually associated with SPT phases persist in
the presence of gapless modes, including the model studied

3As we noted above, an interesting exception is Ref. [12], which
however does not study gapless states.

in this section as well as the models described in Ref. [28].
Quantum disentangling is likely to provide a useful method
for studying such systems.

V. MORE BOUNDS ON THE OUTCOME
OF THE QDL PROTOCOL

A. An upper bound on the QDL quantity

Here we give an upper bound on the QDL quantity in terms
of information theoretic objects. The Holevo bound is a lower
bound on the Holevo quantity

χ
({

pc, ρ
c
A

}) ≡ S

(∑
c

pcρ
c
A

)
−

∑
c

pcS
(
ρc

A

)
(5.1)

(the entropy of the average density matrix minus the average
of the entropies) in terms of the mutual information between
the distribution pc (call it X ) and that of any measurement Y
that can be done on A:

0 � H (X : Y ) � χ.

We use the letter H to emphasize that H (X : Y ) is the mutual
information between two classical distributions. By subtrac-
tion, this implies that the QDL quantity is bounded above:

∑
c

pcS
(
ρc

A

)=S

(∑
c

pcρ
c
A

)
−χ � S

(∑
c

pcρ
c
A

)
−H (X : Y ).

The bound gets stronger the bigger is H (X : Y ).
The average density matrix is just4∑

c

pcρ
c
A = trBCρABC = ρA.

4To check this, we can purify ρABC by a state |ψ〉ABCD. Then

(ρA)aa′ =
∑

c

∑
bd

ψ c
abdψ

	c
a′bd =

∑
c

pc(ρc
A)aa′ .
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FIG. 6. QDL Measure SQDL(c, l ) across the phase diagram. (Left) Topological phase: entanglement entropy of post-projection spin wave
function collapses to an area law. (Middle) Critical point: entanglement entropy of post-projection spin wave function shows critical behavior
with central charge c = 1. (Right) Trivial phase: entanglement entropy of post-projection spin wave function collapses to an area law.

So the first term on the RHS is S(
∑

c pcρ
c
A) = SA. Therefore

SQDL � SA − H (X : Y ). (5.2)

So, at the weakest, we have SQDL � SA (which follows from
concavity of the von Neumann entropy).

To improve upon this estimate, we must ask: As we vary
the choice of measurement Y , how large can H (X : Y ) get?
The largest it can be is called the accessible information

I ≡ max
Y

H (X : Y ). (5.3)

We note that

H (X : Y ) � I (A : C). (5.4)

This follows from (1.3) because the distribution pxy|x〉 ⊗ |y〉
is the state that results from measuring the operators X,Y
on A ⊗ C and not looking at the answer. A lower bound on
the accessible information just in terms of ρA = ∑

c pcρ
c
A

is given in Ref. [29], but is not useful for our purposes,
because the bound (the “subentropy” of ρA) is itself a bounded
quantity, independent of the size of HA. In Haar random states,

numerical experiments (Fig. 7) show that the inequality (5.4)
is far from saturated on average.

B. QDL mutual information and CMI

Denoting the QDL mutual information

IXC (A : B|C) ≡
∑

c

pcIρc
AB

(A : B) ≡ IQDL,

we will show that it can be bounded above and below in terms
of the conditional mutual information:

Iρ (A : B|C) − (Iρ (AB : C) − IEρ (AB : C))

� IQDL � Iρ (A : B|C) + (Iρ (A : C) − IEρ (A : C)). (5.5)

Here E is the quantum channel (1.4) associated with the mea-
surement XC . The quantity appearing in the error terms IEρ (A :
C) = χ (ρc

A, pc) is again the Holevo quantity. Moreover, in
both the lower and upper bound, Iρ (A : C) − IEρ (A : C) is
again the quantum discord.

FIG. 7. Left: Lower bounds on the accessible information between A and C versus the mutual information I (A : C) in many Haar-random
states on ABC of the indicated dimensions. Each dot represents a state of ABC; the vertical position is the largest value of H (X : Y ), optimizing
over measurements Y on A. We see that there are random states for which the Holevo bound is tight, but on average it is far from being
saturated. Right: various quantities considered in this paper, averaged over 100 Haar-random states on ABC, as a function of Hilbert space size,
with ratios of dimensions of A, B,C held fixed.
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To see the upper bound on IQDL, use (1.3) in the first term of

Iρ (A : B|C) = D(ρABC ||ρA ⊗ ρBC ) − D(ρAC |ρA ⊗ ρC ) (5.6)

� D(EρABC ||E (ρA ⊗ ρBC )) − D(ρAC |ρA ⊗ ρC ) (5.7)

= SEρ (A) + SEρ (BC) − SEρ (ABC) − Iρ (A : C). (5.8)

In terms of the spectral decomposition of ρc
AB = ∑

i λ
(c)
i |λ(c)

i 〉〈λ(c)
i |, in the state (1.4) we have

SE (ρ)(ABC) =
∑

c

pc

∑
i

λ
(c)
i log pcλ

(c)
i = H (p) +

∑
c

pcS
(
ρc

AB

)
and similarly for SE (ρ)(BC). In contrast, SEρ (A) = S(

∑
c pcρ

c
A). Use (1.3) in the first term of

Iρ (A : B|C) � S

(∑
c

pcρ
c
A

)
+ H (p) +

∑
c

pcS
(
ρc

B

) −
(

H (p) +
∑

c

pcS
(
ρc

AB

)) − Iρ (A : C) (5.9)

=
∑

c

pc
(
S
(
ρc

B

)+S
(
ρc

A

) − S
(
ρc

AB

))−∑
c

pcS
(
ρc

A

) + S

(∑
c

pcρ
c
A

)
− Iρ (A : C) (5.10)

=
∑

c

pcIρc
AB

(A : B) + S

(∑
c

pcρ
c
A

)
−

∑
c

pcS
(
ρc

A

) − Iρ (A : C) (5.11)

= IOC (A|C) + χ
({

pc, ρ
c
A

}) − Iρ (A : C) (5.12)

= IOC (A|C) + IEρ (A : C) − Iρ (A : C). (5.13)

(Indicated in blue are terms which are added and subtracted.)
In the other direction, we can bound I (A : B|C) from above in terms of the QDL mutual information:

Iρ (A : B|C) = Sρ (A|C) + Sρ (B|C) − Sρ (AB|C) (5.14)

= −D(ρAC ||1A ⊗ ρC ) − D(ρBC ||1B ⊗ ρC ) − Sρ (AB|C) (5.15)

(1.3)
� −D(EρAC ||E1A ⊗ ρC ) − D(EρBC ||E1A ⊗ ρC ) − Sρ (AB|C) (5.16)

= SEρ (AC) − SEρ (C) + SEρ (BC) − SEρ (C) − Sρ (AB|C) (5.17)

=
∑

c

pc(Sρc (A) + Sρc (B)) − Sρ (ABC) + Sρ (C) (5.18)

=
∑

c

pcIρc (A : B) +
∑

c

pcSρc (AB) + Sρ (C) − Sρ (ABC) (5.19)

= IQDL +
∑

c

pcSρc (AB) + Sρ (C) − Sρ (ABC) (5.20)

= IQDL +
∑

c

pcSρc (AB)−Sρ (AB) + Sρ (AB) + Sρ (C) − Sρ (ABC) (5.21)

= IQDL − χ
(
pc, ρ

c
AB

) + Iρ (AB : C). (5.22)

Note that

SEρ (A|C) =
∑

c

pcSρc (A) + H (X ) − H (X ) =
∑

c

pcSρc (A).

We have not yet found an example where the error terms in the bound (5.5) do not scale with system size. Numerical experiments
(Fig. 8) on random states show that while neither directly bounds the other, the IQDL quantity and the CMI exhibit the same
scaling behavior.

VI. DISENTANGLING HEAVY FERMI LIQUIDS

We now turn to the applications to heavy-fermion physics.
An elementary model for heavy fermion materials is the
Kondo lattice model (KLM). The KLM consists of a lattice of

localized moments �S coupled to a sea of conduction electrons
by spin exchange.

HK =
∑

k

ε(k)c†k ck + JK

∑
i

�Si · �si + JH

∑
〈i j〉

�Si · �S j (6.1)
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FIG. 8. Top: the IQDL quantity versus I (A : B|C) for many pure Haar-random states of ABCD, with ABCD of the given dimensions. Bottom:
a fit to the average behavior of both the IQDL quantity and the CMI in Haar-random states as a function of the overall Hilbert space size d ,
holding fixed the ratios of dimensions of ABC (|D| = 1 here). Both exhibit a volume law in system size ∝log d .

where �s = 1
2 c†α �σαβcβ is the electron spin. We have also in-

cluded the possibility of antiferromagnetic exchange interac-
tions between the local spins. This model has been extensively
studied and exhibits several phases. The phase diagram is
determined by a competition between an RKKY effect which
favors a magnetically ordered state and the Kondo interaction.
In addition to the heavy Fermi liquid (HFL) phase which
has a large Fermi surface (FS), there is the possibility of an
alternative paramagnetic state where the spins decouple from
the conduction electrons and enter a spin-liquid state [30].
Such an ‘FL∗ phase’ is characterized by a fractionalized spin
liquid coexisting with a small FS of conduction electrons.

One important distinction between the HFL phase and the
FL∗ phase is that in the former, the conduction electrons and
the local moments are entangled at long distances, while in the
latter, they are not. One way to characterize this entanglement
is to consider the mutual information between these two
degrees of freedom in a given spatial region, as discussed
in Refs. [31,32]. Within this scheme, one considers local
moments fA and conduction electrons cA in a given subregion
A and considers S( fA) + S(cA) − S( fA ∪ cA). One potential
drawback of this quantity is that both S( fA) and S(cA) are sen-
sitive to short distance entanglement between local moments
and conduction electrons in region A and will generically be
volume law. This short distance volume law entanglement
is not canceled out by the subtracted term S( fA ∪ cA) which
satisfies an area law up to multiplicative logarithmic correc-
tions. Here we instead explore QDL inspired ideas to study the

nature of entanglement between the spins and the conduction
electrons. Compared to a mutual-information-based protocol,
we will find that a QDL based protocol can be devised which
is sensitive only to long distance entanglement.

In a system with a FS, the entanglement entropy of a region
of linear size l will behave as S(l ) ∼ ld−1 log l , a violation
of the area law [33,34]. Consider measuring the positions
of all conduction electrons in the ground state of the KLM.
In an HFL state, the local moments participate in the Fermi
surface, and we expect that the resulting wave function will
continue to have the properties of a state with a Fermi surface,
namely, S(l ) ∼ ld−1 log l . In contrast, in the FL∗ state where
the local moments form a gapped spin liquid, one expects that
the resulting wave function satisfies S(l ) ∼ ld−1 − γ where
γ is the topological entanglement entropy corresponding to
the topological order of the local moments. This is analogous
to our discussion of gapless SPT state in Sec. IV, where the
charge degrees of freedom form a Luttinger liquid, while the
spin degrees of freedom form an SPT state.

Motivated by the discussion in Sec. V, we consider the
conditional mutual information between two nonoverlapping
sets of local moments A and B, conditioned on the state of all
the conduction electrons C.

I (A : B|C) = SAC + SBC − SABC − SC

= SA + SB − SAB = I (A : B), (6.2)

where the last relation follows because ABC is the full system.
We consider the system on a torus of dimensions Lx × Ly and
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A

C

Blocal moments

conduction electrons C

BA

FIG. 9. Subsystems involved in the conditional mutual informa-
tion which expose the Fermi surface behavior of the local moments.

cut the system at fixed x into two cylinders A and B. Due to the
local Kondo hybridization, the entanglement entropy of local
moments will be dominated by a volume law. Schematically,
we expect the entanglement of spins in a region of size LA

(large compared to the lattice spacing) to be described by

Slocal moments(l ) = a1LyLA + a2Ly log min(LA, LB) + · · · .

(6.3)

In the HFL phase, spins participate in the Fermi surface
and we expect the area-law violating coefficient a2 to be
nonzero. The dependence on Ly and LA may be understood by
thinking of the 2D system on the torus as a collection of wires
running in the x direction, one for each value of the conserved
momentum ky [35,36].

The mutual information between spins in A and spins in
B conditioned on all itinerant electron degrees of freedom
provides a subtraction scheme for subtracting out the volume
law contribution in Eq. (6.3), thereby exposing the coefficient
a2. With the definitions in Fig. 9, for the case l = L/2 where
A and B are each half of the spins, we have

I (A : B|C) = SA + SB − SAB ∼ 2a2Ly log LA. (6.4)

Here we restrict ourselves to a mean-field treatment
of the KLM where the local moments are represented by
Abrikosov/slave fermions �Si = f †iα �σαβ fiβ [37,38]. When the
Kondo coupling is sufficiently large, one obtains the HFL
phase which is characterized by a mean field order parameter
V = 〈c† f 〉 representing the hybridization between c and f
electrons.

Since the mean-field Hamiltonian is quadratic in fermion
creation/annihilation operators, we can calculate the entan-
glement entropy of subsets of degrees of freedom using the
correlation matrix technique [39]. Specifically, we consider a
rectangular system of size 2Ly × Ly and measure the mutual
information between f electrons (or c electrons) in the left and
right halves of the system. The results in the HFL phase are
shown in Fig. 10. Entanglement entropy of f or c electrons
alone follows a volume law. In contrast, their mutual infor-
mation behaves as I (A : B) ∼ l log l , providing evidence that
both f and c participate in the Fermi surface. We also studied
the special case of nc = 1, which corresponds to a Kondo
insulator, and we find that the mutual information of both
f and c saturates to an area law without any multiplicative
logarithmic correction, as expected (Fig. 11, left).

When the Kondo screening is not operative, the mean field
description of the system has V = 0. As mentioned above, a
natural state with V = 0 is the FL∗ state. An alternative pos-
sibility that exists within mean field is an antiferromagnetic
ordered state of local moments decoupled from the conduction
electrons [40,41]. The right panel of Fig. 11 shows that, as
expected, the mutual information of c fermions is Fermi-
surface-like, while the f fermions are in a product state with
no entanglement (an ‘AFs’ state [40,41] where ‘s’ denotes
small Fermi surface).

The mean field parameter V is not gauge invariant, and
therefore it vanishes if the constraint n f = 1 is implemented
exactly. We propose that the conditional mutual information
provides a gauge-invariant order parameter for the HFL phase
and the FL∗ state. Although it is difficult to imagine measuring
the mutual information experimentally for a macroscopic
quantum system, it would be extremely interesting to imple-
ment our scheme within a Gutzwiller projected wave function
where n f = 1 is satisfied exactly on each site. We leave this
for future work.

FIG. 10. Conditional mutual information calculated in the paramagnetic HFL phase, in mean field theory. The sample has dimensions
2Ly × Ly. It is bipartitioned into left and right Ly × Ly halves, A and B, as in Fig. 9; we vary the full system size Ly. Left: Conditional mutual
information of f electrons as a function of system size, I ( f ∈ A : f ∈ B|c) = I ( f ∈ A : f ∈ B). Right: Conditional mutual information of c
electrons, I (c ∈ A : c ∈ B| f ) = I (c ∈ A : c ∈ B).
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FIG. 11. In these plots we show conditional mutual information in different parts of the phase diagram, within mean field theory. Each
plot shows both Sf ∈A + Sf ∈B − Sf (crosses) and Sc∈A + Sc∈B − Sc (vertical lines), in the geometry described in Fig. 9, as a function of overall
system size Ly. Left: Conditional mutual information at a value of couplings in the HFL phase but at nc = 1. Both curves exhibit a strict
area law indicative of no Fermi surface. Right: Conditional mutual information calculated in the AFs phase. The conduction electrons show
behavior indicative of a Fermi surface, while the local moment fermions do not.

VII. DISCUSSION

In this paper we generalized and employed the idea of
quantum disentangled liquids (QDL) introduced in Ref. [8]
in several different directions:

(1) We obtained a relation between the QDL quantity
and conditional entropy, which provides an operator-agnostic
definition of a QDL phase. In particular, we showed that in
a finite energy eigenstate belonging to a QDL state, condi-
tional entropy of light degrees of freedom is negative with
a vanishingly small volume law coefficient, in contrast to
an ergodic state, where it is positive, with an O(1) volume
law coefficient. In addition, we showed that the scaling of
entanglement negativity can also sharply distinguish between
a QDL state and an ergodic state.

(2) We argued that a QDL-based protocol can detect topo-
logical invariants in a gapless topological phases by studying
a concrete model where charge degrees of freedom form a
Luttinger liquid while the spin degrees of freedom are in an
SPT state.

(3) We argued that a QDL-based protocol can be used
to detect universal features of entanglement in Kondo lattice
systems and can serve as an order parameter for a heavy Fermi
liquid.

Further, we obtained several inequalities relating the QDL
quantity to conditional information theoretic quantities.

Broadly speaking, our approach provides a way to char-
acterize entanglement in multicomponent systems. It stands
in contrast to more commonly used field-space entangle-
ment [42–44], or particle-space entanglement [45,46], both of
which lead to volume law entanglement even in the ground
state of a local Hamiltonian due to nonlocal bipartitions of
the Hilbert space. This makes it harder to separate univer-
sal contributions to entanglement entropy. In contrast, the
measurement-based QDL quantity as well as conditional

entropy follow an area law in the ground state (up to loga-
rithmic corrections).

We derived several inequalities relating QDL quantity
to operator-agnostic measures such as conditional entropy.
These inequalities can be thought of as a manifestation of the
monogamy of entanglement, which simply states that if party
A is strongly entangled with party B, then it can’t entangle
strongly with another party C. For example, in the QDL phase,
the light degrees of freedom with Hilbert space A are strongly
entangled only with the heavy degrees of freedom in their im-
mediate vicinity, which we denote as C. Therefore, measuring
C disentangles A leading to an area-law scaling for the QDL
quantity. Monogamy of entanglement implies that A would be
unable to entangle with heavy degrees of freedom which are
not in their immediate vicinity, and therefore, S(AC) ≈ S(C),
leading to a small value for the conditional entropy S(A|C).

Gapless topological phases are poorly understood in gen-
eral. Examples in one dimension include Refs. [28,47,48]
as well as the model in Eq. (4.1) from Ref. [22], the sub-
ject of our discussion in Sec. IV. As briefly discussed in
Sec. VI, we expect that in a fractionalized Fermi liquid (the
FL∗ phase) of Kondo lattice model, the conditional mutual
information of local moments will satisfy an area law and
also contain a subleading nonzero topological entanglement
entropy (assuming that the local moments are in a gapped
topological state). It will be interesting to extend this idea
to gapless phases obtained via slave particle construction.
Consider, for example, the Halperin-Lee-Read (HLR) state
[49], which is a compressible quantum Hall state found in
the half-filled Landau level. This phase can be understood in
terms of a parton construction [50] c = f b where c is the
annihilation operator for the electron, the fermion f forms
a Fermi liquid, and b forms an incompressible fractional
quantum Hall state at ν = 1

2 . The identification of diagnostics
which reveal the topological order hidden in this gapless state
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is a long-standing problem [51]. Might one be able to reveal
it using the ideas described in this paper? For example, can
one devise a procedure which projects out only the degrees
of freedom corresponding to fermion f ? A related question
arises in the context of spin-3/2 spin chain, where it has been
argued that despite the gapless spin degrees of freedom in the
bulk, there still exist topological edge states [52]. Can one
project out the effective spin-1/2 degrees of freedom to reveal
the edge states corresponding to the effective spin-1 degrees
of freedom?

A comment is in order about the use of measurement-
based protocols for ground-state properties. One may have the
impression that the projection onto the measurement outcome
is a very violent operation. This makes it not obvious that
the post-measurement wave function is still sensitive to subtle
low-energy properties of the original state. However, a repre-
sentation of the resulting amplitudes in terms of a path integral
makes clear that the measurement projection only changes the
boundary conditions on the path integral (at the Euclidean
time slice where the wave function is evaluated) and therefore
does not change its universal properties.

Finally, it will be interesting to consider implementing the
measurement of QDL quantity in experiments to put bounds
on conditional entropy using Eq. (1.1). Naively, when |A| =
O(1) and |C| � 1, one might think that QDL quantity can be

measured without much difficulty by performing a projecting
measurement on C followed by a state tomography on A.
However, a major challenge with this approach is that state
tomography requires an O(|A|) destructive measurements on
A, and the outcome of projective measurement on C prior
to these destructive measurements should be identical. This
is because the QDL quantity involves S(ρc

A), the density
matrix ρc

A on A for a fixed outcome c in C. This will be
challenging when |C| � 1. Despite these difficulties, QDL
quantity is easier to measure than the conditional entropy
because the latter will require state tomography on C as
well.
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APPENDIX A: DETAILS OF THE LOWER BOUND ON THE QDL DIAGNOSTIC

Here we give the full details of the proof that S(A|C) � SQDL.

S(A|C)
(1.3)
� A − D(EC (ρAC )||EC (uA ⊗ ρC )) (A1)

= A − tr
∑

c

pcρ
c
A ⊗ |c〉〈c| log

(∑
c′

pc′ρc′
A ⊗ |c′〉〈c′|

)
+ tr

∑
c

pcρ
c
A ⊗ |c〉〈c| log

(∑
c′

pc′uA ⊗ |c′〉〈c′|
)

(A2)

= A −
∑

c

pctrAρc
A〈c|

(
log

(∑
c′

pc′ρc′
A ⊗ |c′〉〈c′|

)
− log

(∑
c′

pc′uA ⊗ |c′〉〈c′|
))

|c〉 (A3)

≡ A + A1 + A2. (A4)

To evaluate A1,2 we must find the eigenbasis of the operators inside the log. The eigenvectors of uA ⊗ ∑
c′ pc′ |c′〉〈c′| are |a〉A ⊗

|c〉C (where {|a〉} is any basis for A) and the eigenvalues are pc′e−A. Therefore

A2 = +
∑

c

pctrAρc
A〈c|

(∑
a,c′

(log pc′ − A)|a〉〈a|A ⊗ |c′〉〈c′|
)

|c〉 (A5)

= trAρc
A︸ ︷︷ ︸

=1

(∑
c

pc log pc −
∑

c

pcA

)
(A6)

= −H (p) − A. (A7)

The operator appearing in the log in A1 is σ ≡ ∑
c′ pc′ρc′

A ⊗ |c′〉〈c′|. Let |s(c)
a 〉 be eigenvectors of ρc

A with eigenvalue s(c)
i . Then

σ
∣∣s(c)

a

〉 ⊗ |c〉 =
∑

c′
pc′ρc′

A

∣∣s(c)
a

〉 ⊗ ∣∣c′〉 〈c′|c〉︸︷︷︸
=δcc′

= pcs(c)
a

∣∣s(c)
a

〉 ⊗ |c〉

so the eigenvectors of σ are {∣∣s(c)
a

〉 ⊗ |c〉}, a = 1 . . . dim HA, c = 1 . . . dim HC .
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That is,

σ =
∑
a,c

pcs(c)
a

∣∣s(c)
a

〉〈
s(c)

a | ⊗ ∣∣c〉〈c|.
Therefore

A1 = −
∑

c

pctrAρc
A〈c| log σ |c〉 (A8)

= −
∑

c

pctrAρc
A〈c|

(∑
a,c′

∣∣s(c′ )
a

〉〈
s(c′ )

a | ⊗ ∣∣c′〉〈c′| log
(
pc′s(c′ )

a

))|c〉 (A9)

= −
∑

c

pctrAρc
A

∑
a

log
(
pcs(c)

a

)∣∣s(c)
a

〉〈
s(c)

a

∣∣
︸ ︷︷ ︸

=log(pc )+log ρc
A

(A10)

= −
∑

c

pctrAρc
A log ρc

A −
∑

c

pc log pc trρc
A︸︷︷︸

=1

(A11)

=
∑

c

pcS
(
ρc

A

) + H (p). (A12)

Combining the three terms in (A4) we have

S(A|C) � A − H (p) − A +
∑

c

pcS
(
ρc

A

) + H (p) (A13)

=
∑

c

pcS
(
ρc

A

) = SXC (A). (A14)

APPENDIX B: CONDITIONAL MUTUAL INFORMATION
IN THE HUBBARD MODEL

The CMI between regions A and B conditioned on C is

I (A : B|C) = S(AC) + S(BC) − S(ABC) − S(C).

In this expression, S(A) refers to the entanglement entropy of
spins only in region A, and S(AB) is the total entanglement
between spins and charge. In general, the CMI is a difference

of conditional entropies

I (A : B|C) = S(AC) − S(C) − (S(ABC) − S(BC))

= S(A|C) − S(AB|C) (B1)

and in this sense, our discussion here is not independent from
the analysis of conditional entropy in the main text. In the case
where ABC is the whole system [so ABC is a pure state and

A
C

Bcharge
spin C

BA

FIG. 12. Entanglement entropy and CMI measurements I (A : B|C) on a one-dimensional Hubbard model as a function of the location of
the bipartioning cut at couplings U = 4, V = 3/4. The chain is periodic and has L = 12 sites, the particle number is at half filling, and the
magnetization is zero. Left: Ground state. Middle: A generic state in the charge band. Right: A state in the spin band. Bottom: CMI (c|s) refers
to CMI with the choice of subsystems indicated. CMI (s|c) reverses the roles of spin and charge.
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S(AC) = S(B) etc.], the CMI reduces to I (A : B|C) = I (A :
B), the ordinary mutual information between A and B.

Expectations for the CMI can be found for ergodic and
QDL states as in Sec. I B for various choices of A, B,C. Of the
configurations we have explored, the one which distinguishes
them most effectively is the arrangement shown in Fig. 3,
where A = C, B = D, A < B. With this arrangement, in an
ergodic state

I (A : B|C) = S(AC) − S(C) − S(AD) + S(D)

∼ (A + C) − C − (D + A) + D = 2A. (B2)

In a QDL state, we find

I (A : B|C) = S(AC) − S(C) − S(AD) + S(D)

∼ C − C − (D + A) + D = A. (B3)

The key effect is the missing A from S(AC) ∼ C in the QDL
case, which happens since only the entanglement with C
thermalizes A. This is precisely why conditional entropy dis-
tinguishes QDL from ergodic states, as described in Sec. I B.

So with this arrangement, both QDL and ergodic states give
volume-law behavior of CMI but with distinct slopes. Taking
advantage of this effect to compare different states would
require a quantitative understanding of the coefficient of the
volume law. This slope depends on S(T ), the entropy at the
effective temperature of the state, which can be extracted from
the von Neumann entropy of subsystems. However, since the
effect is in any case not independent of the behavior of the
conditional entropy, we choose not to pursue this direction
further.

Results for CMI are presented in Fig. 12 for the partic-
ular arrangement of A, B,C indicated. We calculate CMIs

I (cl : cr |s), I (sl : sr |c) as well as the bipartite von Neumann
entropy S for the following three states obtained by exact
diagonalization of 2.1: the ground state, a generic state taken
from the middle of the spectrum, and a state belonging to the
‘spin band,’ i.e., a scar state.

There is indeed a visible difference in the behavior of
the CMI between QDL states and ergodic states. However,
a quantitative comparison with general expectations for the
behavior of the CMI with the above arrangement of ABC is
problematic for the following reason. Given a partition of a
Hilbert space ABC where HAB is the same size as HC , a finite
energy density ergodic eigenstate should have I (A : B) ∼√

LA + LB after cancellation of the volume law terms [53,54].5

This represents an area law as a function of LA, while keeping

5The results of Refs. [53,54] follow from an ansatz [5,55] for the
bipartition of an ergodic state in terms of a wave function which is
a random matrix, which includes no information about the nature
of the bipartition, such as locality. (Reference [53] matched these
results to spatial bipartitions of a nonintegrable chain of hardcore
bosons.) The conclusions depend only on the sizes of Hilbert spaces
of subsystems with fixed charge. In particular, Ref. [54] generalizes
the calculation to include several conserved quantities (the relevant
conserved quantities here being spin, charge, and energy). As a
result, we expect them to apply to our nonlocal bipartition of an
eigenstate of a local Hamiltonian. The same conclusions about the
leading terms would be obtained from a Haar-random pure state [16].
LA + LB fixed (as we do in Fig. 12). The calculation of Sec. I B
shows that in a QDL state the CMI for this arrangement is
also area law (the extensive terms cancel). So we attribute the
different behavior seen in Fig. 12 to nonuniversal differences
in the coefficient of the area law.
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