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The localization tensor is a measure of distinguishability between insulators and metals. This tensor is related
to the quantum metric tensor associated with the occupied bands in momentum space. In two dimensions and in
the thermodynamic limit, it defines a flat Riemannian metric over the twist-angle space, topologically a torus,
which endows this space with a complex structure, described by a complex parameter τ . It is shown that the latter
is a physical observable related to the anisotropy of the system. The quantity τ and the Riemannian volume of the
twist-angle space provide an invariant way to parametrize the flat quantum metric obtained in the thermodynamic
limit. Moreover, if, by changing the couplings of the theory, the system undergoes quantum phase transitions in
which the gap closes, the complex structure τ is still well defined, although the metric diverges (metallic state),
and it is fixed by the form of the Hamiltonian near the gap closing points. The Riemannian volume is responsible
for the divergence of the metric at the phase transition.
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I. INTRODUCTION

Condensed-matter theory has been going through a
paradigm shift. The notion of topological phases has been
largely responsible for it. Systems of gapped free fermions
that were thought to be completely understood from the tra-
ditional point of view, solvable through a Bogoliubov-Valatin
transformation, have shown to be far from trivial and have a
rich topological character. The integer quantum Hall effect is
a paradigmatic example of the types of phenomena occurring
in topological phases, the explanation of which is ultimately
related to the topological nontriviality of a vector bundle
describing the twist of the occupied Bloch bands. Haldane’s
seminal paper [1] provided the first instance of a Chern
insulator, in which a quantized and topologically protected
(provided the gap is maintained) transverse conductivity ap-
pears even though there is no net magnetic field. Topology is
also responsible for the stability of the gapless edge modes
appearing at the boundary of topological insulators and su-
perconductors [2–4]. Topological phases cannot be described
through the Landau-Ginzburg theory associated with some
local order parameter. Instead, they are effectively described
through topological invariants, such as integrals of Chern
classes of a vector bundle over a torus, an example of which is
the Thouless–Kohomoto–Nightingale–den Nijs invariant [5],
or the holonomy of a flat connection, such as the Zak phase
describing the polarization of a one-dimensional insulator
[6,7]. The classification of symmetry-protected topological
phases of gapped free fermions [8–11] can be described in
terms of homotopy groups or K-theory [12]. This shows how
sophisticated ideas from mathematics find a natural home in
the study of phases of matter.

Finer properties of insulating states refer to their geometry
and not just the topology [13,14]. The momentum space
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quantum metric is related to the overlap between Bloch states
between adjacent momenta [13–15]. It turns out that the inte-
gral over the momentum of this metric (see the Supplemental
Material of Ref. [16] for a derivation) is naturally associated
with the spread functional and the localization tensor of the
material [15,17–20]. The localization tensor encodes how the
electronic degrees of freedom are spatially organized, and it
allows us to distinguish between insulators and metals. In
particular, the localization tensor is naturally related to the
conductivity of the material through fluctuation-dissipation
relations [13]. Numerous proposals for extracting the quantum
metric have been presented (see Refs. [21–27]). The first suc-
cessful measurement of the quantum metric and, actually, the
full quantum geometric tensor, whose real part is the quantum
metric and whose imaginary part is the Berry curvature, was
performed using nitrogen vacancy centers in diamond (see
Ref. [28]). Later, using tunable superconducting circuits, the
quantum metric was also measured [29]. A method on how
to measure the localization tensor through spectroscopy in
synthetic quantum matter (such as ultracold atomic gases or
trapped ions), relying on the fluctuation-dissipation theorem,
was recently proposed in Ref. [16].

In the present paper, in the spirit of the geometrization of
the theory of the insulating state of matter, we introduce a
complex quantity τ which measures the anisotropy in local-
ization of two-dimensional insulators. This quantity provides,
as we will see, together with the Riemannian volume of
the twist-angle space, an invariant way to parametrize the
flat quantum metric obtained in the thermodynamic limit.
Moreover, τ defines a complex structure in the torus of twist
angles; that is, it gives it the structure of a complex one-
dimensional manifold. Two different τ ’s related by modular
transformations define isomorphic complex manifolds, and
this will be shown to be related to choosing different lattice
bases in real space; hence, they differ by a gauge choice and
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should be identified. If by changing the couplings, the system
undergoes a phase transition, going through a metallic state
by closing the gap, then the quantity τ , unlike the volume, is
still well defined in the thermodynamic limit. Moreover, we
will see that its behavior is tied to the low-energy theory near
the gap closing points. The invariant description obtained is
relevant to be able to compare different measurements since it
makes no reference to gauge choices.

The paper is organized as follows. In Sec. II, we discuss
the geometry of threading a flux through the system in the
case of band insulators. Afterwards, in Sec. III, we consider
the quantum metric in twist-angle space, relate it to the local-
ization tensor, introduce the complex structure τ and discuss
gauge invariance. In Sec. IV, we discuss the relation of τ to
the low energy theory near a quantum phase transition, discuss
the geometric character of τ , comparing its behavior to that of
the Berry curvature in twist-angle space which is topological
in character. Subsequently, in Sec. V, we provide the example
of a modified massive Dirac model, which allows to explore
all possible values of τ , and the paradigmatic Haldane model.
Finally, in Sec. VI, we present the conclusions and outlook.

II. THE GEOMETERY OF THREADING A FLUX
THROUGH THE SYSTEM IN THE CASE

OF BAND INSULATORS

Within a tight-binding model of an insulator in two spatial
dimensions, in the presence of translation invariance, the
Hamiltonian is described by an n × n matrix H (k) depending
smoothly on the quasimomentum k in the Brillouin zone (BZ),
topologically a two-torus. Here n is the number of internal
degrees of freedom, such as orbitals or pseudospin. In the
presence of a gap below the Fermi level EF , the projector
onto the valence bands, assuming we have r < n such bands,
P(k) = �(EF − H (k)) (� is the Heaviside step function) is
smooth and, up to adiabatic deformation and in the absence of
generic symmetries other than charge symmetry, determines
the topology of the insulator. One can take a finite system
with N × N sites and periodic boundary conditions. When
one goes to momentum space, this amounts to sampling the
matrix H (k) at points of the form k = (2π/N )m, with m ∈
{0, . . . , N − 1}2. The ground state of the insulator is obtained
by occupying all the valence bands.

Threading a flux through the finite system with periodic
boundary conditions means that the fermions will acquire
phases exp(−iφ1) and exp(−iφ2) when they are moved adi-
abatically around the fundamental loops in position space.
This corresponds to placing the system on a torus with
twisted boundary conditions. For this reason the angles φ1

and φ2 are referred to as twist angles [16,30,31]. In momen-
tum space, threading a flux through the finite system with
periodic boundary conditions corresponds to sampling the
matrix H (k) at points of the form k = (2π/N )m + φ/N , with
m ∈ {0, . . . , N − 1}2. In Fock space, this produces a smooth
family of ground states parametrized by the twist angles: a line
bundle L over the twist-angle torus T 2. The Berry curvature
of this family has the form (see Ref. [31])

F (φ) = 1

N2

∑
m

tr

[
F12

(
2πm

N
+ φ

N

)]
dφ1 ∧ dφ2,

where F12(k) = P(k)[ ∂P
∂k1

(k), ∂P
∂k2

(k)]P(k) is the Berry curva-
ture of the occupied Bloch vector bundle E → BZ, whose
fiber at k ∈ BZ is the image of the projector P(k). In the
thermodynamic limit N → ∞, noticing that the previous ex-
pression is a Riemann sum, the Berry curvature is flat, i.e.,
independent of φ:∫

BZ

d2k
(2π )2

tr[F12(k)]dφ1 ∧ dφ2 = ch1

2π i
dφ1 ∧ dφ2, (1)

where ch1 is the first Chern number of the Bloch bundle
of occupied states. In fact (see [30–33]), ie2F12(φ) ≡ σHall

is the Hall conductivity of the insulator, where e is the
charge of the fermions. It follows that

∫
T 2 iF/2π = ch1 =∫

BZ∼=T 2 tr(iF )/2π , which is the well-known result of Ref. [30].
See also Witten’s description of the microscopic and macro-
scopic Berry connections, corresponding to the momentum
space and twist-angle space Berry connections, in Secs. 2.4
and 2.5 of Ref. [34] and the note in [35].

III. THE QUANTUM METRIC IN TWIST-ANGLE SPACE,
THE LOCALIZATION TENSOR AND THE COMPLEX

STRUCTURE τ

We now consider the quantum metric in twist-angle space.
It can be defined as the first nontrivial term in the expansion of
the absolute value of the overlap between ground states with
infinitesimally close twisted periodic boundary conditions.
Formally, it is the pullback to the twist-angle torus of the
Fubini-Study metric. In a similar fashion to what happened
in the case of Berry curvatures in twist-angle and momentum
spaces, the quantum metric in twist-angle space is related to
the quantum metric in momentum space by

G(φ) = Gμν (φ)dφμdφν

= 1

N2

∑
m

gμν

(
2πm

N
+ φ

N

)
dφμdφν, (2)

with g(k) = tr(PdPdP) = gμν (k)dkμdkν being the momen-
tum space metric. In the thermodynamic limit N → ∞, we
obtain a flat metric on the twist-angle torus

G(φ) =
∫

BZ

d2k
(2π )2

gμν (k)dφμdφν. (3)

Moreover, this metric is nothing but the localization tensor
describing the spread in real space of the ground state wave
function [13,15,16]:

〈X μX ν〉 − 〈X μ〉〈X ν〉 =
∫

BZ

d2k
(2π )2

gμν (k) ≡ Gμν, (4)

where X μ is the position operator. This also justifies our
choice for contravariant indices on the metric tensor according
to Einstein’s conventions in position space. In fact, this makes
explicit the covariance of G with respect to lattice gauge trans-
formations. Namely, when we prescribe position operators
X μ on the lattice, we have explicitly made an identification
of the lattice with Z2 with a specific choice of a basis eμ,
such that a lattice point is written as X = X μeμ for X μ ∈ Z,
μ = 1, 2. This choice provides periodic (angular) coordinates
on the Brillouin zone kμ and on the twist-angle torus φμ

by writing k = kμeμ and φ = φμeμ, both modulo reciprocal
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lattice vectors 2πZe1 ⊕ 2πZe2, where eμ form a dual basis
for eμ, i.e., eμ(eν ) = δμ

ν . It is now clear that we should identify
quantum metrics over twist-angle space which differ by the
action of GL(2;Z) (invertible matrices of integers) since this
would correspond to two observers that have chosen different
basis vectors for the lattice and the physics should be “gauge”
invariant. This action is simply, if we write G̃ = [Gμν]1�μ,ν�2,

G̃ �→ AG̃At (5)

for A ∈ GL(2;Z). Every metric on the torus T 2 is conformal
to a flat metric like G. This a consequence of the uniformiza-
tion theorem and the fact that conformal classes of metrics on
T 2 are in one-to-one correspondence with complex structures
(see, for example, Sec. 2.1. and Theorem 1.7 of Ref. [36]).
The last statement is related to the fact that a conformal class
specifies a way to measure angles between tangent vectors and
hence, in two dimensions, uniquely specifies a 90◦ rotation on
the tangent spaces, i.e., a complex structure. So, in principle,
by changing the insulator, we would be able to move around
the space of conformal classes of metrics or, equivalently,
the space of complex structures. By a conformal class, we
mean an equivalence class of metrics under the equivalence
relation of conformal mappings (see Ref. [36]). To recover
the conformal class of a flat metric we need also to identify
flat metrics that differ by a scale transformation. Defining

τ = G12

G11
+ i

√
det G̃

G11
∈ H = {τ ∈ C : Im(τ ) > 0}, (6)

the complex structure on T 2 is determined by the complex
coordinate z = φ1 + τφ2. The complex quantity τ together
with the volume V = ∫

T 2

√
det(G)dφ1dφ2 provides an invari-

ant parametrization of all flat metrics in the twist-angle torus
T 2, namely,

G(φ) = V

(2π )2Im(τ )

[
dφ2

1 + 2Re(τ )dφ1dφ2 + |τ |2dφ2
2

]
.

(7)

The twist-angle space endowed with the flat quantum metric
G becomes a complex one-dimensional manifold, i.e., a Rie-
mann surface [37,38]. Moreover, we have to identify those τ ’s
that differ by the induced action of SL(2;Z) (since we fixed
an orientation) by modular transformations,

τ �→ c + dτ

a + bτ
,

[
a b
c d

]
∈ SL(2;Z), (8)

as these correspond to isomorphic complex manifolds (The-
orem 1.1 of Ref. [36]). The quotient space H/SL(2;Z)
has a fundamental domain given by D = {τ ∈ H : |τ | �
1 and Re(z) � 1/2}. The points τ, τ ′ ∈ D with Re(τ ) = ±1/2
and τ ′ = τ ± 1 or |τ | = 1 and τ ′ = −1/τ are the same in the
quotient space. Notice that the resulting complex twist-angle
tori are to be understood as C/2π (Z ⊕ τZ). The choice of
a basis on the lattice gave us a preferred dual basis and
identified our torus with R2/2πZ2. The natural thing to do
would then be to take τ = i and take a complex coordinate to
be z = φ1 + iφ2. However, the quantum metric can choose a
different complex manifold structure on the twist-angle torus,
and this structure is associated with the anisotropic spread of
the ground state wave function in real space.

The localization tensor, or, equivalently, the quantum met-
ric in twist-angle space G, is finite for an insulator, and it
diverges when the system undergoes a quantum phase tran-
sition and becomes metallic [13]. The complex structure τ

associated with G, however, is finite in both cases. Moreover,
at the critical point, we will show it is determined uniquely by
the low-energy properties of the theory and it is a measure of
localization anisotropy of the system.

IV. RELATION TO THE LOW-ENERGY THEORY NEAR A
QUANTUM PHASE TRANSITION AND THE GEOMETRIC

CHARACTER OF τ

Suppose we are given a single-particle Hamiltonian and
that two levels cross generically at a critical momentum kc

by tuning a parameter M of the system to a value Mc. By a
shift of the variables we can assume kc = 0 and Mc = 0. The
two-level crossing can be described, in a neighbourhood of
(k, M ) = 0, by a 2 × 2 low-energy Hamiltonian of the form

H (k, M ) ≈ (ak1 + bk2)σ1 + (ck1 + dk2)σ2 + Mσ3, (9)

with a, b, c, d real parameters, with ad − bc �= 0, and σμ,
μ = 1, 2, 3, being the Pauli matrices. The new momentum
variables q = (q1, q2) given by[

q1

q2

]
=

[
a b
c d

][
k1

k2

]
(10)

render this block an isotropic Dirac Hamiltonian,

q1σ1 + q2σ2 + Mσ3. (11)

Notice that by making this change of variables with arbitrary
real parameters we are explicitly violating the dual basis
provided initially; that is, the new coordinates are not periodic
coordinates on the torus except when

A =
[

a b
c d

]
∈ GL(2;Z).

In these new coordinates, the momentum space quantum
metric receives a contribution of the form⎡⎣ q2

1+M2

(q2
1+q2

2+M2 )2 − q1q2

(q2
1+q2

2+M2 )2

− q1q2

(q2
1+q2

2+M2 )2

q2
2+M2

(q2
1+q2

2+M2 )2

⎤⎦ + regular, (12)

where regular means possible additional terms which are
smooth in the limit M → 0.

Notice that as q → 0 and M → 0, the contribution is
singular since it goes as (1/M2)I2, where I2 is the 2 × 2
identity matrix. We can then assume that as M → 0, the main
contribution to the quantum metric is given by an arbitrarily
small neighborhood of the critical point q = 0. The quantity
of interest is therefore the integral∫

{q:|q|<
}

d2q
(2π )2

⎡⎣ q2
1+M2

(q2
1+q2

2+M2 )2 − q1q2

(q2
1+q2

2+M2 )2

− q1q2

(q2
1+q2

2+M2 )2

q2
y +M2

(q2
x +q2

y +M2 )2

⎤⎦ (13)

for some cutoff 
 > 0. This integral can be evaluated explic-
itly, yielding

1

8π

[

2

M2 + 
2
+ ln

(
M2 + 
2

M2

)]
I2. (14)
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The first term is regular, but the second provides a logarithmic
divergence. This is expected because the system becomes
metallic as M → 0. Had we performed the integration on
the original k coordinates, since the transformation is linear,
we would simply get, modulo multiplication by a positive
constant, the matrix

1

8π
ln

(
M2 + 
2

M2

)
At A + regular

= 1

8π
ln

(
M2 + 
2

M2

)[
a2 + c2 ab + cd
ab + cd b2 + d2

]
+ regular.

(15)

This means that the quantum metric G, or, equivalently, the
associated matrix G̃, reads

G̃ = C ln

(
M2 + 
2

M2

)[
a2 + c2 ab + cd
ab + cd b2 + d2

]
+ regular

(16)

for some constant C > 0. Since τ is a ratio of matrix elements
of G̃, the regular part does not contribute as it can be made
zero in the limit of M → 0 by a conformal transformation.
Thus, the singular part determines τ :

τ = ab + cd + i| det A|
a2 + c2

. (17)

Notice that τ is just a function of A, which determines
the anisotropy of the low-energy Dirac Hamiltonian. The
columns of the matrix A determine basis elements for the
lattice corresponding to the complex manifold determined
by τ . Actually, assuming det A > 0, if we write ω1 = a + ic
and ω2 = b + id , then τ = ω2/ω1. We also remark that the
volume goes as V ∼ ln [(M2 + 
2)/M2]. Therefore, it is V
that is responsible for the singularity in the localization tensor
in the thermodynamic limit.

Notice that if A = I2, the isotropic Dirac Hamiltonian, then
τ = i, and z = φ1 + iφ2, i.e., the usual complex structure as
determined by the canonical basis. Moreover, if A ∈ SL(2;Z),
then τ ∼ i, so it is isomorphic to the isotropic case. This
means that the q coordinates are again periodic coordinates
on the torus.

The situation described above is generic since the variety of
Hermitian matrices with at least one repeated eigenvalue has
codimension 3 in the manifold of n × n Hermitian matrices
[39,40]. One could imagine, for example, having a quadratic
band crossing, but this situation, in the absence of any partic-
ular symmetry enforcing it, is adiabatically connected to the
previous case with two gap closing points, and the resulting
τ can be calculated by summing the two contributions and
taking the limit in which the two gap points collapse into a
single one.

The same type of argument is used to prove that the
change in the Chern number at a band crossing depends
uniquely on the details of the low-energy Dirac theory near
the critical point (see Refs. [40–42]). If there is more than
a single critical kc for which the gap closes (and this has
to happen for a finite number of them since the torus is a
compact two-dimensional manifold), then we have to sum
the individual contributions from each critical momentum to
the quantum metric. Additionally, if we remain close to Mc,

τ will be close to the one determined from the low-energy
theory.

We remark that since τ is geometric and not topological, it
is insensitive to gap inversions, i.e., to transitions in which
the gap changes sign. This can be shown explicitly as fol-
lows. By looking at Eq. (11), the situation of gap inversion
corresponds to M changing sign. From Eq. (16), we see that
since the singular part of G̃ is insensitive to M → −M, so
is τ . The same does not happen for the Berry curvature.
Indeed, the contribution at momentum q = (q1, q2) to the
integral yielding the Berry curvature in twist-angle space
is

− i

2

M

(M2 + q2)3/2
,

which is odd under M → −M. This equation is to be com-
pared with the analogous one for the quantum metric in twist-
angle space, namely, Eq. (12).

We would like to point out that the space of complex
structures on the torus is an orbifold with orbifold points τ = i
and τ = ei2π/3. These values of τ correspond to metrics with
larger isometry groups. Generically, for a given τ , the only
nontrivial isometry allowed is z �→ −z, yielding a group Z2.
However, τ = i is fixed when we take τ �→ −1/τ , yielding a
Z4 isometry group. Similar reasoning for τ = e2π i/3 yields a
Z6 isometry group. These two situations correspond to

τ = i ←→ G̃ ∼
[

1 0
0 1

]
,

τ = e2π i/3 ←→ G̃ ∼
[

1 −1/2
−1/2 1

]
. (18)

The first case, as we will see below, is captured by the fully
isotropic Dirac low-energy Hamiltonian, which in terms of
the localization tensor implies that the x and y directions
decouple since the off-diagonal terms are zero. The second
case corresponds to a case where the x and y directions are
cross correlated. This cross correlation is maximal in the sense
that this corresponds to a boundary point of the fundamental
domain D with maximal Re(τ ) ∝ G12. The isotropic case at
the point of phase transition is very common in the models
found in the literature, such as the massive Dirac model for a
Chern insulator (see, for example, Ref. [15]) and the Haldane
model [1], as shown below.

V. EXAMPLES

A. Modified massive Dirac model

A slight modification of the massive Dirac model given by

H (k, M ) = [sin(k1) + a sin(k2)]σ1 + b sin(k2)σ2

+ [M − cos(k1) − cos(k2)]σ3, (19)

with a ∈ R and b > 0, will allow us to explore the space
of complex structures of the twist-angle torus. Notice that
the usual fully isotropic massive Dirac model is recovered
for a = 0 and b = 1. The phase diagram stays identical;
namely, there are phase transitions at M = −2, 0,+2. The
first Chern number of the Bloch bundle is 0 for |M| > 2, +1
for −2 < M < 0, and −1 for 0 < M < 2. The gap closes at
inversion-symmetric points, i.e., k = −k modulo reciprocal
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lattice vectors. The low-energy theories are given by the
following:

(i) Near kc = (0, 0),

H (k, M ) = (k1 + ak2)σ1 + bk2σ2 + (M − 2)σ3. (20)

(ii) Near kc = (0, π ),

H (k, M ) = (k1 − ak2)σ1 − bk2σ2 + Mσ3. (21)

(iii) Near kc = (π, 0),

H (k, M ) = (−k1 + ak2)σ1 + bk2σ2 + Mσ3. (22)

(iv) Near kc = (π, π ),

H (k, M ) = (−k1 − ak2)σ1 − bk2σ2 + (M + 2)σ3. (23)

In the above equations, k1 and k2 are understood as k1 −
k1,c and k2 − k2,c, respectively. From the prescription given
before we have τ = a + ib for Mc = ±2 and τ = −a + ib
for Mc = 0 (both critical momenta contribute the same to the
metric in this case). Notice that the usual Dirac model, i.e.,
for a = 0 and b = 1, has τ = i for all critical points. We see
that the modified massive Dirac model allows us to explore all
possible values of τ .

B. Haldane model

For the Haldane model, one can show that the low-energy
theory near the points K and K′ has the following form:

(i) Near kc = K,

H (k) = − 3

2
t1

(√
3

2
k1 + 1

2
k2

)
σ1

+ 3

2
t1

(
1

2
k1 −

√
3

2
k2

)
σ2 + M(K)σ3. (24)

(ii) Near kc = K′,

H (k) = 3

2
t1

(√
3

2
k1 + 1

2
k2

)
σ1

+ 3

2
t1

(
1

2
k1 −

√
3

2
k2

)
σ2 + M(K′)σ3. (25)

In the previous formulas t1 is a hopping amplitude, and
M(K) and M(K′) are constant mass terms which depend on

other couplings of the model. Since A = [−
√

3
2 − 1

2
1
2 −

√
3

2

] is a

rotation matrix, it follows that τ = i at the critical points.

VI. CONCLUSIONS AND OUTLOOK

Finally, we would like to point out that τ is a geometric
quantity and not topological. Because of this, it is sensitive

to adiabatic perturbations. However, at the critical points
of phase transition it is determined, as shown above, by
the low-energy theory. Since symmetries constrain the low-
energy theory, they also constrain τ . In this sense, a future
possible direction is to study the dependence of τ on generic
symmetries. We remark that τ can be defined in the presence
of interactions, provided some gap condition exists and we
are given a nontrivial family of ground states of a problem
parametrized by the two-torus of twist angles (more generally,
any two-torus would do, but different physical interpretations
for τ will appear). The family cannot be trivial since if it
were trivial, i.e., constant, the metric would be automatically
degenerate. Notice, however, that in the interacting case G will
not, generically, be flat. The procedure to determine τ is to
determine a flat metric in the conformal class of G, which in-
volves solving a differential equation for the conformal factor
which enforces the Ricci scalar to be zero (see, for example,
Sec. 1.3.2 of Ref. [43]). Note also that τ and V will no longer,
in general, completely specify the localization tensor since it
will not be flat. In the presence of translation invariance, this
can also be seen as a measure of how interacting the system
is. Namely, the failure of describing the localization tensor
completely through τ and V measures the fluctuations from a
quasi-free-fermion description.

In summary, we have shown how in two dimensions the
anisotropy of the localization tensor for band insulators is
related to a complex structure over the twist-angle torus and
that this quantity is finite, even when undergoing a phase
transition in which a generic gap closing occurs, and thus
going through a metallic state and intimately related to the
anisotropy of the low-energy Dirac theory near the critical
points. The complex structure τ and the Riemannian volume
V are physically sensible gauge-invariant observables which
completely characterize the localization tensor. The latter can
be measured by means of spectroscopy in engineered quantum
systems as proposed in Ref. [16].
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