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Seebeck coefficient in low-dimensional fluctuating charge density wave systems
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We study the role of charge density wave fluctuations on the temperature dependence of Seebeck coefficient
in quasi-one-dimensional conductors with a Peierls instability. The description of low-dimensional incommen-
surate charge density wave fluctuations as obtained by a generalized Ginzburg-Landau approach for arrays of
weakly coupled chains is embodied in the numerical solution of the semiclassical Boltzmann transport equation.
The energy and temperature dependence of the scattering time of electrons on fluctuations can then be extracted
and its influence on the Seebeck coefficient calculated. The connection between theory and experiments carried
out on molecular conductors is presented and critically discussed.
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I. INTRODUCTION

In recent years, the understanding of the role played by
fluctuations on transport properties has held particular interest
in the study of correlated low-dimensional electron systems.
This is the case of the considerable attention devoted to the
part played by fluctuations in the origin of linear temperature
resistivity which is found, for instance, in the metallic phase
of many unconventional superconductors near their quantum
critical point [1–5].

Although examined with less sustained attention, the ther-
mopower or the Seebeck coefficient (SC) to which this work
is devoted is another transport observable known to be influ-
enced by fluctuations. When coupled to electron degrees of
freedom, fluctuations can introduce significant corrections to
the free electron gas—linear in temperature T —prediction of
the SC [6–13]. According to the well known Mott SC formula
[14,15], one difficulty with this quantity is that it is influenced
by both thermodynamics and effects linked to the energetic
of collisions along the Fermi surface [14,16]. Their respective
contributions are not easily disentangled and require a precise
knowledge of fluctuations involved and how they couple with
electrons.

In the framework of a spin-fermion model [6] and variant
of it [8], nearly critical two-dimensional antiferromagnetic
fluctuations on thermodynamics was shown to lead to a log-
arithmic or power law enhancement of specific heat. This
was in turn shown to introduce similar temperature dependent
corrections to the thermodynamic SC component. A loga-
rithmic enhancement was found compatible with experiments
in some heavy fermions near a magnetic quantum critical
point [17]. As for the influence of the energy and momentum
dependence of inelastic scattering time on SC, it has also
been analyzed in different correlated systems. In the case of
the single band repulsive Hubbard model in two dimensions,
for instance, the combination of linearized Boltzmann theory
and the renormalization group method has made it possible
to calculate the electron-electron Umklapp scattering time,

which contributes distinctively from thermodynamics to the
deviations from a linear-T SC [9,10], as they can be found
in cuprates and pnictides as a function of doping [18,19]. The
same combination of techniques has been used to calculate the
impact of enhanced Umklapp scattering by antiferromagnetic
fluctuations on the SC of quasi-one-dimensional organic met-
als near a quantum critical point that connects a spin-density-
wave state to superconductivity under pressure [13].

In order to further assess the part played by the collision
dynamics in the temperature profile of SC, it would be of
primary interest to examine the problem in well character-
ized electron systems known to be among the simplest ones
dominated by quasicritical fluctuations. This is the case of
low-dimensional metals undergoing a Peierls instability. It
corresponds to the formation of a lattice distortion that is
adiabatically connected with a charge density wave (CDW)
superstructure. In Peierls systems, the coupling between elec-
trons and low energy CDW fluctuations takes its origin in the
electron-phonon interaction, a connection which is well un-
derstood. An additional simplification resides in the fact that
for many of them the Fermi surface is found to be particularly
simple, reducing essentially to a plain—one-dimensional—
pointlike structure.

The organic charge transfer salt TTF-TCNQ is a well
known example of such Peierls systems characterized by a
broad temperature domain of CDW fluctuations [20]. As a sig-
nature of their one-dimensional character, these fluctuations
emerge well above the temperature scale of true long-range
order, which is ultimately triggered by small but finite inter-
chain coupling [21–23]. The temperature dependence of the
SC for this compound in various pressure conditions is well
documented [24,25] and will be compared to the theoretical
results developed below.

For this purpose, we proceed to the numerical integration
of the linearized Boltzmann equation fed by collisions of
electrons on low energy quasi-1D CDW fluctuations. The
1D features of fluctuations can be calculated accurately by
the functional integral method. The energy profile of the
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quasiparticles lifetime across the Fermi level can thus be
computed and its contribution to the SC obtained as a function
of temperature. A connection between theory and experiments
in TTF-TCNQ can be qualitatively established, indicating that
the influence of CDW fluctuations on the energy dependence
of electron scattering can be a determinant factor in the
corrections made to the linear temperature dependence of the
Seebeck coefficient of quasi-1D Peierls systems.

In Sec. II the properties of low energy fluctuations for
the weakly coupled CDW chains problem are reviewed using
the functional integral method. In Sec. III the SC is derived
in the framework of the linearized Boltzmann theory and in
the presence of CDW fluctuations. In Sec. IV the numerical
solution of the Boltzmann equation is carried out and the
calculated Seebeck coefficient is critically compared with the
available data for TTF-TCNQ. We conclude this work in
Sec. V.

II. FLUCTUATIONS OF THE PEIERLS INSTABILITY

We consider the following standard minimal Hamiltonian
that captures the CDW phase transition for a set of N⊥ weakly
coupled chains of length L

H = N⊥
∑

q

h̄ωq
(
b†qbq + 1

2

) +
∑
i,k,σ

εk c†i,k,σ
ci,k,σ

× 1√
L

∑
i,k,q,σ

gc†i,k+q,σ
ci,k,σ (bq + b†−q ) + H⊥. (1)

The first term describes free phonons where h̄ωq is the acous-
tic phonons spectrum of each chain and b†q (bq) is the creation
(destruction) operator of phonon of wave vector q along the
chains. The second term corresponds to the noninteracting
electron part of each chain i where c†i,k,σ

(ci,k,σ ) is the creation
(destruction) electron operator of wave vector k and spin σ .
We shall consider the tight-binding electron spectrum

εk = −2t‖ cos kd, (2)

which is appropriate for the acceptor TCNQ chains of TTF-
TCNQ [26]. Here t‖ is the longitudinal hopping and d is
the lattice constant along the chains (L = Nd). The third
term corresponds to the interaction between electrons and
phonons whose electron-phonon matrix element g will be
considered momentum independent for simplicity. In spite of
a purely one-dimensional electron structure in the model, the
possibility of three-dimensional CDW order can be assured by
an interchain part H⊥ for the repulsive electron-electron (back
scattering) interaction between nearest-neighbor chains i and
j. It can be written in the form

H⊥ = g⊥
∑
〈i, j〉

∑
Q

Oi(Q)†Oj (Q), (3)

where g⊥ > 0. This repulsive term favors antiphase CDW
ordering in the directions perpendicular to the chains; it is
expressed in terms of the chain CDW operator

Oi(Q) = 1/
√

L
∑

k>0,σ

c†i,k−2kF −Q,σ
ci,k,σ .

For the partition function Z = Tr e−β(H−μN ), the partial trace
over the harmonic phonon degrees of freedom in H generates
a retarded effective interaction between electrons. Together
with the transverse part H⊥, both terms can be convert as a
coupling to auxiliary CDW fields via a Hubbard-Stratonovich
transformation [27,28]. By carrying out the remaining trace
over electronic degrees of freedom, the partition function can
be put in the following functional integral form

Z →
∫∫

[D�∗D�]e−H[�∗,�], (4)

where H[�∗,�] is the Landau-Ginzburg Wilson free energy
density functional of the CDW field �(∗). Up to quartic order
at low (Matsubara) frequency ωm = 2πmkBT/h̄, small wave
vector deviations Q from 2kF , and weak interchain coupling
g⊥, the functional can be written in the form

H[�∗,�]

=
∑
i,Q̄

N (εF )
[

ln T/T 0
c + ξ 2

0 Q2 + 	0|ωm|]|�i(Q̄)|2

+ kBT

L
b

∑
i,{Q̄}

�∗
i (Q̄1)�∗

i (Q̄2)�i(Q̄3)�i(Q̄4)δQ̄1+2=Q̄3+4

+ v⊥
∑
〈i, j〉

∑
Q̄

�∗
i (Q̄)� j (Q̄) (5)

≡ H‖[�∗,�] + H⊥[�∗,�]. (6)

The first two terms of (5) define H‖, the intrachain part of
the functional, whereas the last term describing the interchain
Coulomb interaction between CDW corresponds to the trans-
verse contribution H⊥. The functional parameters are given by

T 0
c = 1.13εF e−1/λ (λ = 2|ḡ|2/h̄ω2kF ), (7)

ξ0 =
√

7ζ (3)

16

h̄vF

πkBT 0
c

, (8)

	0 = π h̄

8kBT 0
c

, (9)

b = 7ζ (3)

16π2

N (εF )

(kBT 0
c )2

, (10)

v⊥ = N (εF )
ḡ⊥
λ2

, (11)

which in order stand for the mean field transition temperature
T 0

c , which fixes the scale of fluctuations of isolated chains, the
coherence length ξ0 of 2kF electron-hole pairs, the damping
constant 	0 of short-range CDW fluctuations, the mode-mode
coupling constant b, and finally the reduced interchain
coupling v⊥, expressed as a ratio between interchain and in-
trachain couplings. Here Q̄ = (Q, ωm), |ḡ|2 = |g|2N (εF ) and
ḡ⊥ = g⊥N (εF ), N (εF ) = (h̄πvF )−1 being the density of states
at the Fermi level with the Fermi velocity vF = 1

h̄∇kεk|kF .
Since v⊥ is small, a perturbative RPA summation for the

quasi-1D dynamic CDW susceptibility after analytic continu-
ation to real frequency (iωm → ω) leads to:

G(Q + 2kF , Q⊥ + q⊥0, ω) = 〈�∗(Q, Q⊥, ω)�(Q, Q⊥, ω)〉

= G‖(Q + 2kF , ω)

1 + v⊥(Q⊥)G‖(Q + 2kF , ω)
,

(12)
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where

v⊥(Q⊥) = −2v⊥(cos Q⊥yd⊥ + cos Q⊥zd⊥) (13)

is the Fourier transform of interchain coupling with the wave
vector Q⊥ = (Q⊥y, Q⊥z ) as deviations with respect to the
transverse staggered CDW ordering at q⊥0 = (π/d⊥, π/d⊥),
and

G‖(Q + 2kF , ω) = 〈�∗(Q, ω)�(Q, ω)〉‖
is the 1D dynamic CDW susceptibility. We observe that in the
static limit, the RPA summation is equivalent to a molecular
field approximation of interchain coupling [29].

To proceed to the evaluation of G‖, we first consider the
static part

G‖(Q + 2kF , ω = 0) = 1

kBT

∫
〈�∗(x)�(0)〉‖ e−iQxdx, (14)

which involves the 1D spatial CDW correlation function

〈�∗(x)�(0)〉‖ = 1

Z‖

∫∫
[D�∗D�] �∗(x)�(0) e−βF‖[�∗,�]

(15)

of a complex CDW order parameter �(x) = |�(x)|eiϕ(x) with
amplitude and phase degrees of freedom. In the static limit for
H‖ in (6), this correlator is calculated using the static Landau-
Ginzburg free energy functional

F‖[�∗,�] =
∫ L

0
dx

[
a(T )|�(x)|2 + c

∣∣∣d�

dx

∣∣∣2
+ b|�(x)|4

]
.

(16)

The parameters of the functional are a(T ) = a′ ln T/

T 0
c � a′(T − T 0

c )/T 0
c , a′ = N (εF ), c = N (εF )ξ 2

0 , and b is
given by (10). The statistical mechanics of the CDW
Ginzburg-Landau functional can be done accurately by the
transfer matrix method [30,31] with the result

〈�∗(x)�(0)〉‖ = (
kBT 0

c

)2〈 |�̄|2〉‖ e−x/ξ‖ , (17)

where 〈 |�̄|2〉‖ is the mean square of CDW amplitude in the
ground state of the transfer matrix Hamiltonian describing
a particle moving in the temperature dependent anharmonic
Ginzburg-Landau potential well of (16). Here �̄ = �/kBT 0

c
is the normalized CDW order parameter. The CDW static
correlations with respect to the wave vector 2kF decay ex-
ponentially as a function of distance with the characteristic
length scale ξ‖, corresponding to the 1D CDW correlation
length. The transfer matrix results for 〈 |�̄|2〉‖ and ξ‖ for the
present Peierls problem are summarized in Fig. 1. The corre-
lation length ξ‖ first grows like (T − T 0∗

c )−1/2 for temperature
T < 2T 0

c down to a seeming ordering scale T 0∗
c ∼ T 0

c /5. This
scale stands as an effective mean-field temperature that is
renormalized downward by amplitude and phase CDW fluctu-
ations. The singularity, however, is preempted from occurring
by gapped amplitude modes and dominant gapless phase
fluctuations. At T < T 0∗

c , these introduce a crossover toward a
ξ‖ ∼ 1/T singularity, a characteristic of the absence of CDW
long-range order at finite temperature in one dimension. As
for the temperature dependence of 〈 |�̄|2〉‖ displayed in Fig. 1,

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

t=T/T
c
0
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/
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2

3

<
|

|2 >
||

FIG. 1. The results of the transfer matrix method for the tempera-
ture dependence of the inverse of CDW correlation length (left scale)
and the mean square fluctuations of the normalized order parameter
in the ground state of the transfer matrix Hamiltonian (right scale).

it is finite at all temperatures and shows a regular drop down to
T ∼ T 0∗

c , to finally rise at lower temperature in order to reach
the saturation mean-field (Landau) value (kBT 0

c )2〈 |�̄|2〉‖ ∼
a′/2b at zero temperature.

The Fourier transform of (17) leads to the static 1D suscep-
tibility (14), which can be written in the form

G‖(Q + 2kF , 0) = 2kBT 0
c

〈 |�̄|2〉‖
t

ξ 2
0

ξ‖
ξ 2

0

ξ 2
‖

+ ξ 2
0 Q2

, (18)

where t = T/T 0
c is the reduced temperature. Above the renor-

malized mean-field temperature T 0∗
c , the static 1D suscepti-

bility G‖(2kF ) follows the behavior of ξ‖ ∼ (T − T 0∗
c )−1/2.

This is followed by a crossover toward a G‖(2kF ) ∼ T −2

temperature dependence below T 0∗
c , a zero temperature singu-

larity characteristic of gapless low energy phase modes whose
frequency varies linearly with the wave vector [32].

The denominator of the expression (18) shows the same
Q development initially obtained for the quadratic part of the
1D functional H‖ in (5). So, this suggests that a generaliza-
tion leading to the frequency dependent expression G‖(Q +
2kF , ω) can be obtained by simply adding the damping term
−i	0ω to the denominator of (18), with the result

G‖(Q + 2kF , ω) = 2kBT 0
c

〈 |�̄|2〉‖
t

ξ‖
1 + ξ 2

‖ Q2 − i	‖ω
, (19)

where the 	‖ = 	0ξ
2
0 /ξ 2

‖ is the damping constant for CDW
correlations of size ξ‖.

III. LINEARIZED BOLTZMANN APPROACH TO THE
SEEBECK COEFFICIENT

We approach the problem of scattering of one-dimensional
carriers of charge e on quasi-1D CDW fluctuations in terms
of the Boltzmann equation. In the presence of the electric
field E set up by the thermal gradient ∇xT parallel to chains,
the stationary form of the transport equation for the Fermi
distribution fk reads[

∂ fk

∂t

]
coll

= eE ∇h̄k fk − (εk − μ)

T
∇xT ∇h̄k fk, (20)

where e is the electron charge and μ is the chemical potential.
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We seek a solution for fk � f 0
k + f 0

k [1 − f 0
k ]φk that is lin-

ear in the deviations φk from the free equilibrium distribution
f 0
k = (eβ(εk−μ) + 1)−1. For the collision term we shall con-

sider exclusively the inelastic scattering of electrons on low
energy charge CDW fluctuations near 2kF . The much weaker
contribution of regular scattering of electrons on impurities
and defects on both the amplitude of the scattering time and
its energy profile can be safely ignored [33].

In this scheme, the Fermi golden rule for the collision term
for CDW on the left hand side of (20) can be written in the
linear form[

∂φk

∂t

]
coll

= −2

h̄
|g|2

∑
k′

1 − f 0
k′

1 − f 0
k

(1 − δkk′ )φk′

×
∫ +∞

−∞
n(ω)�mχ (k′ − k, ω)δ(εk′ − εk − h̄ω),

(21)

where n(ω) = (eβ h̄ω − 1)−1 is the Bose factor and �mχ (k′ −
k, ω) is the imaginary part of the retarded phonon Green
function. The latter can be connected to the CDW retarded

response by replacing the phonon operators by their CDW
macroscopic configurations, namely b(†) → �(∗)/(2g). Thus
from the fluctuation-dissipation theorem, the imaginary part
of intrachain CDW response can be related to the strength of
fluctuations obtained from (12). At low frequency, one finds

�mχ (Q + 2kF , ω) = β h̄ω

2|g|2

× 1

N2
⊥

∑
Q⊥

�e G(Q + 2kF , Q⊥+ q0
⊥, ω),

(22)

which is strongly peaked at h̄ω ∼ εk′ − εk . Performing the fre-
quency integration in (21), the linearized Boltzmann equation
can be written in the following integral form[

∂φk

∂t

]
coll

= kBβ2vk (εk − μ)∇xT − eβEvk

= − Lφk = −
∑

k′
Lkk′φk′ , (23)

from which we define the collision operator

Lkk′ = 2

t2

1

LN2
⊥

∑
k′,Q⊥

1 − f 0
k′

1 − f 0
k

h̄−1(εk′ − εk )n[(εk′ − εk )/h̄]〈 |�̄|2〉‖ξ‖

×
(

1 + ξ 2
‖ (k′ − k)2 − Y⊥(Q⊥)[

1 + ξ 2
‖ (k′ − k)2 − Y⊥(Q⊥)

]2 + (	‖/h̄2)(εk′ − εk )2

)
(1 − δkk′ ). (24)

The transverse part is given by

Y⊥(Q⊥) = 4α

t
〈 |�̄|2〉‖ ḡ⊥ξ‖

λ2ξ0
(cos(Q⊥yd⊥) + cos(Q⊥yd⊥))

(25)
and α � 2.9.

It is convenient to write the solution for φk as the sum of
two terms

φk = − L−1kBβ2vk (εk − μ)∇xT + L−1eβEvk

≡ − φT
k + φE

k (26)

where L−1 is the inverse of the collision operator. The parame-
ters entering in the collision operator are those of the spectrum
in (2); together with the scale T 0

c , these fix the Ginzburg-
Landau parameters (7)–(10) for 1D fluctuations leading to ξ‖
and 〈 |�̄|2〉‖. The small interchain coupling (11) in (25) is
fixed in order to get the desired true Tc � T 0

c .

Seebeck coefficient

To obtain the expression for the Seebeck coefficient, we
start from the relation of the 1D electric current density along
the chains, which to linear order in φ reads

j‖ = 2e

L

∑
k

vk fk � 2e

L

∑
k

vk f 0
k

(
1 − f 0

k

)(
φE

k − φT
k

)
. (27)

Using the normalized quantities

φ̄T
k = φT

k

kBβ2vk (εk − μ)∇xT

and

φ̄E
k = φE

k

eβvkE
.

The longitudinal current density can then be written in the
form

j‖ = K11E − K12∇xT . (28)

For open circuit conditions, j‖ = 0, and the expression for the
SC follows,

Q = E
∇xT

= K12

K11

= 2eL−1 ∑
k kBβ2v2

k (εk − μ) f 0
k

(
1 − f 0

k

)
φ̄k

2e2L−1
∑

k βv2
k f 0

k

(
1 − f 0

k

)
φ̄k

, (29)

where φ̄E,T (≡ φ̄k ) obeys the single equation

Lφ̄k =
∑

k′
Lkk′ φ̄k′ = 1, (30)

whose solutions can be considered as the scattering time
of carriers as a function of k or the energy εk . Since at
low temperature the product of Fermi distribution factors in
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(29) is strongly peaked at the Fermi level μ, a Sommerfeld
development leads to the Boltzmann type of expression

Q = π2

3

k2
BT

e

[
d ln N (εk )

dεk

∣∣∣
μ

+ 2
d ln vk

dεk

∣∣∣
μ

+ d ln φ̄k

dεk

∣∣∣
μ

]

= Q0 + Qc. (31)

Here Q0 stands as the band or thermodynamic contribution to
the SC, which corresponds to the sum of the first two terms
of (31). From the form of spectrum in (2), one recovers the
known result

Q0 = −π2

3

kB

|e|
εF

4t2
‖ − ε2

F

kBT (32)

for the tight-binding electrons in one dimension, where εF =
|εkF |.

The last term Qc is linked to the dynamics of collisions at
the Fermi level; it is computed from the numerical solution
of (30) using the expression (24) for the collision operator
[34]. This will lead to the energy or momentum profile of the
collision time across the Fermi level.

IV. NUMERICAL RESULTS

A. One dimension

It is instructive to first consider the results of the above
equations for the Seebeck coefficient in the purely 1D limit
where Y⊥ = 0, namely when the interchain Coulomb term g⊥
is put to zero. The parameters used in the calculations are
those typically found for the TCNQ chains of TTF-TCNQ
in normal pressure conditions [20,22,26], namely ρ = 0.59
for the incommensurate electron concentration taken at low
temperature, t‖ = 0.11 eV for the hopping along the chains
and a set of T 0

c for the scale of 1D CDW fluctuations. The
temperature interval for all calculations is fixed to t � 2,
namely where ξ‖ � ξ0 and short-range CDW order can be
considered as relevant.

In Fig. 2 we show the k > 0 dependence of the collision
time φ̄k near the Fermi point kF (t ) for different reduced
temperatures t . The small variation of kF (t ) with temperature
is taken into account from the corresponding shift of the
chemical potential μ(t ), which is linked by the relation, ρ =
2/N

∑
k f 0

k , between the electron concentration ρ and the
fermi distribution factor. From the figure, we observe at all
t the existence of a minimum in the collision time close to
kF (t ), indicating enhanced scattering by CDW fluctuations
between k and k − 2kF states. The minimum deepens as t
decreases and fluctuations effects increase. However, the true
minimum of φ̄k is slightly shifted downward from kF (t ),
which reflects the electron-hole asymmetry normally expected
for electron carriers for which the collision time increases
with energy. This asymmetry introduces a finite positive slope
of ∂φ̄k/∂k|kF (t ) (≡ h̄vk∂φ̄k/∂εk|μ(t )), which according to (31)
will yield corrections to the linear-T prediction Q0 for the SC.

The resulting temperature profile of the 1D SC (31) is
shown in Fig. 3 for different scales of T 0

c . We observe that in
all cases a sublinear temperature dependence in the high tem-
perature domain where amplitude fluctuations are important;
it becomes more pronounced with the size of T 0

c . A change of
regime is found below t ∼ 1, where phase fluctuations of the
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c
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FIG. 2. Collision time as a function of the wave vector k in the
neighborhood of the Fermi point kF (t ) at different reduced temper-
atures t = T/T 0

c in (a) the one-dimensional case for T 0
c = 150 K

and (b) for coupled chains at T 0
c = 200 K. The location of kF (t )

as a function of temperature is indicated by vertical lines and the
minimum by points.

CDW order parameter emerge; it evolves toward an effective
but enhanced T -linear behavior that follows the empirical
form [16]

Q ≈ Q0(1 + ζ ) (33)

with the constant ζ > 0 that increases the slope of Q with
T 0

c . Following Refs. [14,16], this is compatible with a power
law dependence φ̄k ∼ |εk|−ζ of the collision time upon the
tight-binding energy, which increases as εk grows (or vk in-
creases). At very low temperature where t � 1, ξ‖ and phase
correlations become very large which deepen the minimum in
φ̄k , resulting in an upturn of the SC.
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FIG. 4. Calculated three-dimensional Seebeck coefficient as a
function of the reduced temperature t = T/T 0

c for different fluctu-
ation scales T 0

c and band parameters t‖.

B. Quasi one-dimensional case

We now turn to the situation where the interchain coupling
g⊥ is finite and long-range CDW ordering emerges at Tc �
T 0

c . According to the RPA expression (12), when evaluated
at q0 = (2kF , π/d⊥, π/d⊥), g⊥ can be fixed in order to give
a singularity at tc = Tc/T 0

c � 0.36 (0.27) for T 0
c = 150 K

(200 K) and t‖ = 0.11 eV, which corresponds to the Tc �
54 K typically found for TCNQ chains, using the known
low temperature incommensurate electron concentration ρ =
0.59 in normal pressure conditions [20]. With these sets of
parameters, the variation of the collision time as a function
of k across the Fermi point kF (t ) is shown in Fig. 2(b) at
different temperatures above tc for T 0

c = 200 K. From the
figure, we observe that for temperatures not too close to
tc, the φ̄k and positive slopes at kF (t ) essentially coincide
with those found in the 1D case for the same T 0

c , indicating
that in this temperature domain the influence of interchain
coupling is weak and collisions are primarily governed by 1D
fluctuations. As for the dependence on the temperature scale
for fluctuations, there is an overall downward shift of φ̄k with
T 0

c and an increase in slope at kF (t ).
The temperature dependence of the SC is shown in Fig. 4

for different T 0
c and band parameters t‖. At t‖ = 0.11 eV,

we verify that for both values of T 0
c , the Q temperature

dependencies for coupled chains display a sublinear variation
that increases with T 0

c above t ∼ 1 and an enhanced linear-T
behavior below. Both features essentially coincide with those
found in Fig. 3 for the 1D case, and this over a large part of
the temperature interval. It is only at the approach of tc where
CDW correlations are singular that an upturn in the absolute
value of SC is found.

Also shown in the figure is the influence of an increase of
the band parameter t‖. We observe that as t‖ grows, all the
above features for Q soften. According to (32), an increase
in the electron bandwidth will decrease the slope of Q0, as
normally expected; it will also reduce the collision term Qc in
(31) through an increase of the Fermi velocity or equivalently
a decrease in the density of states at the Fermi level.

We close the section by examining the combined influence
of varying both t‖ and the electron concentration ρ following
the relation δ ln ρ � 0.36 δ ln t‖, which correlates the average
variations of electron concentration (δ ln ρ/δP � 0.9%/kbar)
and hopping (δ ln t‖/δP � 2.5%/kbar) found in a compress-
ible system like TTF-TCNQ, namely when pressure is applied
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FIG. 5. Calculated three-dimensional Seebeck coefficient as a
function of the reduced temperature t = T/T 0

c for different electron
concentrations ρ, band parameters t‖, and scales T 0

c for fluctuations.

and temperature is lowered [20]. This is displayed in Fig. 5
for different T 0

c compatible with x-ray data [21–23]. Thus an
increase of electron concentration ρ in the electron carrier sec-
tor ρ < 1 for the spectrum (2) produces a decrease of the SC,
which adds to that of t‖ shown previously in Fig. 4. As ρ grows
from its initial average value of 0.57 at ambient pressure, the
Fermi point kF is shifted upward and with it the size of the
Fermi velocity. The resulting decrease of the density of states
at the Fermi level weakens both Q0 and Qc contributions. Thus
as ρ and t‖ grow, the sublinear T dependence of the Seebeck
coefficient is then gradually suppressed; it is replaced by a
linear temperature variation with a reduced slope congruent
with the empirical expression (33), but with a small ζ . This
indicates that at sufficiently large ρ and t‖ corrections coming
from the collision term become relatively small. This holds
outside the critical domain of the transition where fluctuations
become large and produce an upturn in |Q| which is more
pronounced with increasing ρ (see also Ref. [35]).

V. CONNECTION WITH EXPERIMENTS IN TTF-TCNQ

We now compare the above theoretical results to existing
experimental data for the SC in TTF-TCNQ. Although this
two-chain charge transfer salt has both electron- and holelike
type of carriers pertaining to TCNQ and TTF chains, respec-
tively, the conductivity of TCNQ chains (σTCNQ) is known to
largely dominate that of TTF (σTTF) [20,25]. Following the
expression of the Seebeck coefficient for two type of carriers,

Q = QTCNQσTCNQ + QTTFσTTF

σTCNQ + σTTF
,

as weighted by the respective conductivities of the chains.
Since σTCNQ � σTTF holds [25], it will be assumed to be so
for the SC, namely that Q ≈ QTCNQ in the whole temperature
range Tc < T < 2T 0

c considered in the present calculations.
We reproduce in Fig. 6 the SC temperature dependence in

the chain direction for TTF-TCNQ, as obtained by Chaikin
et al. [24] at ambient pressure (black dots, P = 1bar) and for
temperature down to Tc. We first see that the range of −30μ ·
V/K reached by the observed Q at ambient temperature is
congruent with the one found at t ∼ 2 in the calculations
of Figs. 4 and 5 using the t‖ = 0.11 eV and the interval
of electron concentration ρ = 0.57–0.59 and the x-ray scale
T 0

c = 150–200 K for the TCNQ chains at ambient pressure
[21–23]. Considering the size of the band contribution Q0
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FIG. 6. Seebeck coefficient data as a function of temperature in
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reproduced down to the close proximity of Tc for the TCNQ chains.
After Refs. [24,25].

in Fig. 3, this is compatible with relatively small but finite
corrections coming from the collision term. The data show
a change of behavior for T ∼ 150 K below which a more
rapid decrease of Q is observed. The progressive increase in
the slope of Q as temperature is lowered is however more
pronounced than found in the calculations of Figs. 3–5 at t <

1. Experiments rather reveal that Q evolves toward a change
of sign as Tc is approached from above, whereas calculations
show an enhanced linear-T behavior before an upturn in |Q|
at the approach of tc. The difference may take its origin in
a shift of the position of the Fermi level as temperature is
lowered and fluctuations become large; this would change the
sign of ∂φ̄k/∂k|kF (t ) at the Fermi level and makes the collision
dynamics holelike instead of electronlike (see Ref. [35]).
One may also be tempted to attribute the emergence of a
positive Q to the contribution of hole carriers coming from the
TTF chains, as fluctuations and the onset of a pseudogap on
TCNQ chains grow. However, other transport measurements
on TTF-TCNQ have shown that at ambient pressure the Hall
coefficient becomes more negative in the same temperature
range, pointing to the still dominant contribution of electron
carriers of TCNQ chains [20,36].

We can now look in Fig. 6 at the temperature dependence
of Seebeck coefficient for TTF-TCNQ under pressure, as
obtained by Weyl et al. [25] up to 12.5 kbar. From the figure
we see that pressure steadily decreases the amplitude and
the slope of the Seebeck coefficient in the high temperature
region, where it appears only weakly temperature dependent
at high pressure values. Following the example of the situ-
ation found at ambient pressure, a more rapid decrease of
the amplitude of the Seebeck coefficient is observed at all
pressures below T ∼ 150 K, which evolves toward a change
of sign of Q at the approach of the critical temperature Tc. This
incursion into the positive region becomes less pronounced
with pressure and gives way to a sharp upturn back to high
negative values close to Tc.

For the comparison with the present calculations, we first
note that in this pressure range, the critical temperature Tc

observed for TCNQ chains varies little under pressure and
remains relatively close to the ambient pressure value of 54 K
[25,37]; Tc has then been kept approximately constant in the
calculations. Regarding the fluctuations scale T 0

c , there is no
available data concerning its pressure evolution. However,
given the empirical relation Tc ∼ T 0

c /3, which is found in

practice when both temperature scales are accessible, T 0
c will

then be taken to fall in the same range T 0
c ∼ 150–200 K used

at ambient pressure and in Figs. 4 and 5. The comparison must
also go through a readjustment of the electron concentration ρ

and the longitudinal hopping t‖ with pressure. Both quantities
increase following the modification of the charge transfer
and intermolecular distances under pressure and lowering
temperature due to the high compressibility of a system
like TTF-TCNQ [20,23,26,38]. As discussed in Sec. IV B,
in our constant-volume calculations, we will consider their
average variations under pressure and temperature which are
congruent with the relation δ ln ρ � 0.36 δ ln t‖ established for
TTF-TCNQ [25,38,39]. This is the variation used in Fig. 5 and
which cover about 13 kbar of pressure.

Under pressure the observed decline in the amplitude and
slope of Q are relatively well caught by the calculations of
Fig. 5 in the high temperature domain, although at the highest
pressures the experimental temperature dependence shown
in Fig. 6 becomes rather weak, making hard the distinction,
within experimental accuracy, between a nearly constant be-
havior and T linearity with a strongly reduced slope. As for
the change of regime in the Seebeck coefficient observed for
all pressures below 150 K or so, it is only apparent in the
calculations of Fig. 5 up to intermediate values of ρ and t‖,
above which the contribution of collisions is predicted to be
small, excepted sufficiently close to Tc.

Regarding the change of sign of Q observed above the
true Tc under pressure, it is not reproduced by the present
calculations, at least along the line ρ(t‖) of the (ρ, t‖) plane
used in the calculations of Fig. 5 (see also Ref. [35]). A
possible explanation for this discrepancy may reside in the
appreciable temperature variation of the electron concentra-
tion in a compressible system like TTF-TCNQ, which is not
properly taken into account in constant volume calculations.
Such a variation could introduce a continuous drift in the
position of the Fermi points toward the position for the
minimum of the scattering time as a function of k (see Fig. 2),
which would induce a change of sign in the collision term
Qc. In the present framework, this would indicate that in
practice Qc remains sufficiently important when approaching
the critical temperature region. Finally, as pressure increases,
the sharpening of the upturn of |Q| due to critical scattering
close to Tc is fairly well reproduced by calculations of Fig. 5.

VI. CONCLUDING REMARKS

In this work the temperature dependence of the See-
beck coefficient has been calculated for correlated quasi-
one-dimensional metals dominated by charge density wave
fluctuations. A functional integral method was used for the de-
scription of low energy CDW fluctuations ascribed to the pre-
cursors of the Peierls superstructure. As the source of inelastic
scattering for carriers, these fluctuations were embodied in
the numerical solution of the linearized Boltzmann equation
which governs the dynamics of scattering time near the Fermi
surface. The related corrections to the linear-T dependence of
the SC could thus be obtained and assessed as a function of
the strength of fluctuations. The analysis was carried out for
typical parameters of low-dimensional organic metals, like the
two-chain compound TTF-TCNQ, for which the negatively
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charge carriers of TCNQ chains undergo a Peierls instability
against the formation of a CDW superstructure.

The calculations show that the size of SC corrections linked
to the scattering dynamics are congruent with those seen in
experiments for TTF-TCNQ, reproducing certain experimen-
tal features in the temperature dependent SC at ambient and
finite pressures. However, calculations fail to reproduce the
incursion of SC towards positive values at the approach of the
critical CDW temperature, at least for the model parameters
that most realistically fit to TTF-TCNQ [35].

As to the origin of the change of sign, one can invoke
the possibility that CDW fluctuations also affect the thermo-
dynamic term Q0 of the SC in (31). Such corrections were
ignored in the present work. Fluctuations can modify the
energy dependence of the density of states and carrier velocity
near the Fermi level and then transform an electronlike band
into a holelike one. However, although the presence of an
electron pseudogap induced by fluctuations is visible on the
TCNQ chains, as shown by the corresponding Knight shift
spin susceptibility [40], it is likely to be too small an effect
to lead the needed modifications in the energy dependence of
electron velocity that would yield an effective change in the
sign of the carriers. This is borne out by measurements of the
Hall coefficient, which still displays strongly negative values
in the temperature domain where SC becomes positive [36].
This brings us back to the energy dependent scattering time
considered throughout this work as the most plausible cause of

this change of sign. Remember that for compressible molecu-
lar compounds such as TTF-TCNQ, both electron bandwidth
and band filling evolve with decreasing temperature [20].
These variations cannot be taken into account accurately
in constant-volume calculations like those developed above.
Such variations may be responsible for the small shift of the
Fermi point needed to transform electron type scattering into
hole one.

The applicability of the present theory of the Seebeck
coefficient to other quasi-1D fluctuating Peierls systems is
rather straightforward, requiring only modifications of elec-
tronic band and fluctuations scales. Among them, let’s men-
tion for instance the two-chain Peierls compounds TMTSF-
DMTCNQ [41] and TTF[Ni(dmit)2]2 [42,43], for which the
temperature and pressure dependence of the Seebeck coeffi-
cient in the fluctuating metallic phase presents similar features
to those discussed in the present work for TTF-TCNQ.
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