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Quantum critical scaling of gapped phases in nodal-line semimetals
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We study the effect of short-range interactions in three-dimensional nodal-line semimetals with linear band
crossings. We analyze the Yukawa theories for gapped instabilities in the charge, spin, and superconducting
channels using the Wilsonian renormalization group framework, employing a large number of fermion flavors
Nf for analytical control. We obtain stable nontrivial fixed points and provide a unified description of the critical
exponents for the ordering transitions in terms of the number of order parameter components Nb systematically
to order 1/Nf . We show that in all cases, the dynamical exponent z = 1 in one loop, whereas 1/Nf corrections to
various exponents follow from the anomalous dimension of the bosonic fields only.
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I. INTRODUCTION

Three-dimensional (3D) nodal-line semimetals describe
an interesting class of fermionic systems where the va-
lence and conduction bands touch along manifolds of co-
dimension dc = 2. Rather than forming around points, such
as in graphene [1] or in Dirac and Weyl semimetals [2,3],
the quasiparticles can appear around closed lines in the 3D
Brillouin zone, which are protected by symmetries of the
Hamiltonian [4–8]. Nodal-line semimetals have been origi-
nally predicted in a variety of different contexts [9–16] and
were more recently observed in different materials [17–22],
in photonic crystals [23], and also in cold atom systems [24].

In general, electron-electron interactions open up a myriad
of new possibilities for non-Fermi liquid behavior and various
broken symmetry phases in materials with nodal points or
lines. Long-range Coulomb interactions in Dirac and Weyl
semimetals have been shown to be isotropic, marginal, and
lead to logarithmic corrections to physical quantities at low
energies [25–30]. In anisotropic systems, Coulomb interac-
tions may lead to non-Fermi liquid behavior over a wide
range of energy scales [31–33], or else be irrelevant in the
perturbative regime [34–36]. Short-range interactions, on the
other hand, can lead to continuous quantum phase transitions
resulting in spontaneously ordered phases. For instance, in the
case of Dirac fermions in the honeycomb lattice, the critical
behavior was shown to belong to the Gross-Neveu-Yukawa
universality class [37,38]. Two-dimensional (2D) semi-Dirac
fermions, which exist at a topological phase transition be-
tween a semimetallic and a gapped phase, where two Dirac
cones merge [39], have unconventional quantum criticality
[40–42]. They show correlation lengths that diverge along
different directions with distinct exponents, which may result
in novel exotic superconductivity with smectic order [43].
In Weyl semimetals, short-range interactions lead either to a
first-order phase transition into a band insulator or else to a
continuous transition into a symmetry breaking phase [44].

We contribute to this endeavor by investigating the effect
of short-range interactions on 3D nodal-line semimetals with

linear band crossings. We address the relatively general case
where the nodal line forms a closed ring or loop centered at the
3D Brillouin zone, as depicted in Fig. 1. Due to the vanishing
density of states at the nodal line, the expected many-body
instabilities occur through a quantum phase transition sep-
arating the semimetallic regime from spontaneously broken
symmetry phases [45,46]. We investigate the universal quan-
tum critical scaling for instabilities in the spin, charge, and
superconducting channels that produce fully gapped states.

Using a Wilson momentum shell renormalization group
(RG) in the Yukawa language, we analyze the interacting fixed
points for the different channels. We augment the action with
a large number of fermionic flavors Nf for analytical control
and derive their corresponding critical exponents in leading
1/Nf order. In one loop we show that the mean-field results
are exact in the s-wave superconducting (SC) channel, where
vertex corrections vanish, whereas in both the charge density
wave (CDW) and spin density wave (SDW) orders we obtain
finite 1/Nf corrections. In all cases, the dynamical exponent

z = 1 + O
(
N−2

f

)
(1)

in the regime where the radius of the nodal line is large
compared to all other energy scales. The critical exponents are
summarized in a table, which is the main result of the paper.

As the outline of the paper, we introduce the Yukawa action
of the problem in Sec. II. In Sec. III we discuss the Wilson
RG scheme for nodal-line semimetals, where we derive the
RG equations for contact interactions in the various channels.
We then calculate the fixed points and their respective critical
exponents to leading order in 1/Nf . Finally, in Sec. IV we
present our conclusions.

II. MODEL

We consider the simplest noninteracting low energy Hamil-
tonian for a nodal-line semimetal, which supports an isolated
closed circular loop of Fermi points with radius kF . The nodal
line is centered around the origin of the Brillouin zone in the
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FIG. 1. Ring of nodal points in the kz = 0 plane resulting from
the spectrum of the free Hamiltonian (2). The light blue shaded
region represents the plane of the nodal line. Nodal loop of radius
kF is shown in red.

kx-ky plane,

H0 = k2
x + k2

y − k2
F

2m
τ0 ⊗ σy + vzkzτ0 ⊗ σx, (2)

where τi and σi are Pauli matrices acting on the spin and
orbital/sublattice degrees of freedom. The four-component
spinor basis is defined as ψT

k ≡ (ϕ1,↑,k, ϕ2,↑,k, ϕ1,↓,k, ϕ2,↓,k ),
where 1,2 denote pseudospin and ↑,↓ spin quantum numbers.
Lattice realizations of this model have been proposed in
different contexts, including hyperhoneycomb lattices [13],
graphene networks [14], and cubic crystals [46]. Near the
nodal loop,

k2
x + k2

y − k2
F

2m
� vr k̃r,

where k̃r =
√

k2
x + k2

y − kF and vr = kF
m is the radial Fermi

velocity. Thus the quasiparticles disperse linearly in all di-
rections that are normal to the nodal line. The action for the
noninteracting part is therefore given by

Sψ =
Nf∑

n=1

∫
dk ψ̄n,k[−ik0 + H0]ψn,k, (3)

where k = (k0, kx, ky, kz ) is the four-momentum vector
in 3+1 dimensions, with k0 the frequency and

∫
dk ≡

(2π )−4
∫

dk0dkxdkydkz. ψn,k represents the fermion field car-
rying a flavor index n, with Nf the number of fermionic
flavors, which are treated as a degeneracy.

To study the quantum critical behavior of the nodal-loop
system, we use a Hubbard-Stratanovich decomposition of the
four-fermion interaction into appropriate channels and study
the resulting Gross-Neveau-Yukawa theories. Short-range in-
teractions can lead to mass terms of the form

∑Nb
i=1 Mi�i,

where �i are all possible 4 × 4 matrices that anticommute
with the noninteracting Hamiltonian (2). In this class of phase
transitions, the mass term describes the spontaneous chiral
symmetry breaking of the system across a quantum critical
point into a gapped phase. The Yukawa coupling term in the
action can then be generically written as

Sφψ = g
Nf∑

n=1

Nb∑
j

∫
dkdq φ j

q (ψ̄n,k� jψn,k−q ), (4)

where

� j = τ j ⊗ σ3, (5)

with j = 0, 1, 2, 3 are the only four possible mass terms that
lead to gapped phases in the considered Hilbert space.

CDW and SDW instabilities correspond to staggered pat-
terns of charge and spin in the pseudospin space. The effective
single particle interaction Hamiltonian that describes those
instabilities is of the form

HCDW = φ0τ0 ⊗ σ3 (6)

and

HSDW = φ · τ ⊗ σ3, (7)

respectively, where φ = (φ1, φ2, φ3) is a vector order
parameter and τ = (τ1, τ2, τ3). Clearly these terms
anticommute with the noninteracting Hamiltonian
(2), leading to gaps in the spectrum. To identify
the vertex of the s-wave superconducting case, it is
convenient to double the size of the Hilbert space and
introduce the eight-component Nambu spinor basis 	T

k =
(ϕ1,↑,k, ϕ2,↑,k, ϕ1,↓,k, ϕ2,↓,k,ϕ

†
1,↓,−k, ϕ

†
2,↓,−k,ϕ

†
1,↑,−k, ϕ

†
2,↑,−k ).

In this basis, the noninteracting part of the Hamiltonian can
be written as

H0 = k2
x + k2

y − k2
F

2m
η0 ⊗ τ0 ⊗ σy + vzkzη0 ⊗ τ0 ⊗ σx, (8)

where the Pauli matrices ηi (i = 0, 1, 2, 3) act in the Nambu
space. The fully gapped s-wave pairing term that anticom-
mutes with (8) has the form HSC = φ · η⊥ ⊗ τ0 ⊗ σ3 where
φ = (φ1, φ2) is a vector whose components are defined in
terms of the real and imaginary parts of the order param-
eter, and η⊥ = (η1, η2). One can see that the spin space is
redundant in this basis, as it corresponds to two identical
4 × 4 copies of the Hamiltonian. Therefore, we drop for
convenience the τ0 matrices in H0 and HSC and absorb the
spin as a degeneracy. In that case, the pairing term has the
form

HSC = φ · η⊥ ⊗ σ3. (9)

The Yukawa vertex that follows from this term has the same
form of Eq. (5) for j = 1, 2 if one performs the substitution
ηi ↔ τi. As expected, the pairing term is dual to the antiferro-
magnetic XY model.

In all cases we can identify the different mass terms that
correspond to distinct channels of instabilities in the charge,
spin, and s-wave superconducting states with a Yukawa vertex
of the form (5) written in some appropriate basis. The different
ordered states encoded in the generic Yukawa coupling (5) are

j =
⎧⎨
⎩

0, CDW,

1, 2, SC,

1, 2, 3, SDW.

(10)

Here Nb = 1, 2, 3 describes, respectively, the number of
bosonic field components in the CDW, SC, and SDW cases,
respectively.

Other possible emergent mass terms leading to fully
gapped states are allowed if one enlarges the size of the Hilbert
space. For instance, in 2D Dirac fermions on the honeycomb

115123-2



QUANTUM CRITICAL SCALING OF GAPPED PHASES IN … PHYSICAL REVIEW B 101, 115123 (2020)

lattice, an anomalous quantum Hall (AQH) state is in principle
allowed [47,48] when one reverses the sign of the mass term
across opposite valleys. In nodal-line semimetals, where the
concept of valleys is ill defined, the reversal of the sign
of the mass in the AQH state happens continuously along
the nodal line. Due to particle-hole symmetry, which keeps
the mass purely imaginary and hence topological, this state
does not produce a fully gapped state, but rather a Weyl
semimetal, with Fermi arcs connecting a discrete number of
gapless points of the nodal line, where the mass term changes
sign [49]. Although this is an interesting state, it is highly
dependent on the microscopic details of the lattice model,
such as the number of nodes of the mass along the nodal
line [49,50], and will be considered elsewhere. Here we will
restrict our analysis to isotropic instabilities in the considered
Hilbert space that fully gap the nodal line.

The free part of the bosonic action can be written as

Sφ =
Nb∑
j=1

∫
dqφ

j
−q

[
c2

0q2
0 + c2

1(q2
x + q2

y ) + c2
2q2

z + m2
φ

]
φ j

q,

(11)

in which we have also included the gradient terms that will
be generated in the ultraviolet (UV) through the RG process.
Therefore the action for the field theory describing the prob-
lem of interest is given by

S = Sψ + Sφ + Sφψ . (12)

We now proceed with the momentum shell RG accounting for
both the fermionic and bosonic fields.

III. RENORMALIZATION GROUP

In this section we perform one loop RG calculations of
the Yukawa action and derive the flow equations for var-
ious coupling constants in the action. As pointed out in
Refs. [34,35], the presence of the nodal ring requires that
the fermionic and bosonic momenta be treated differently.
While fermionic momenta should be rescaled towards to the
nodal ring, bosonic momenta is rescaled towards the origin of
momentum space. This has important implications for the tree
level scaling analysis.

For fermionic momenta, we take the tree level scaling
dimensions to be

[k0] = z, [k̃r] = 1, [kz] = z1, (13)

where z1 is introduced for computational convenience and
will be set to unity later. The scaling dimension of the 3D
fermionic integral [

∫
dk] = 2 due to the fact that the radius

of the nodal ring kF does not run [34,35]. Tree level scaling
invariance of the fermionic part of the action hence requires
that [ψ] = − 1

2 (2z + z1 + 1), setting the scaling dimensions of
velocities as [vr] = z − 1 and [vr] = z − z1. For the bosonic
part,

[q0] = z, [qx] = [qy] = [qz] = 1.

Since [
∫

dq] = 3, this implies that the scaling dimension of
the bosonic fields is [φ] = − 3

2 (z + 1), whereas the coupling
constants c0, c1, and c2 remain marginal at the tree level. This
saves us from unphysical infrared divergences of the bosonic

propagator [40]. In our analysis, we assume that important
contributions arise when momenta q is small compared to the
radius of the ring kF , and hence correspond to processes with
small momentum transfer near the nodal line. In that spirit, we
ignore corrections of the order of ∼|q|/kF , as is appropriate
when the nodal loop has a large radius compared to all other
energy scales.

To be consistent with this approximation, we have to ensure
that one of the momenta (q) in Eq. (4) is bosonic, and the other
(k) fermionic. With this, one can see that the Yukawa coupling
has scaling dimensions

[g] = 3
2 (z − 1), (14)

and is therefore marginal at the tree level.
Different implementations of the momentum shell integra-

tion have been employed in the study of nodal-line semimet-
als. A cylindrical momentum shell integration scheme was
used in Ref. [34], whereas a more symmetric mode elimina-
tion in a toroidal geometry was used in Ref. [51]. With the
understanding that physical quantities do not depend on the
renormalization scheme, we employ a different one in which
frequency and momenta are treated on the same footing.
For fermionic momenta, we perform mode elimination by
integrating out fast modes that lie in a thin shell around the
nodal line,

�e−zd� <

√
k2

0 + E2
k < �, (15)

where E2
k = v2

r k̃2
r + v2

z k2
z .

For bosonic momenta, we integrate out modes that lie in a
thin shell defined by

�e−zd� <

√
q2

0 + q2
x + q2

y + q2
z < �. (16)

In either case, we assume that the UV energy cutoff � is
small compared to the radius of the nodal ring, �/vrkF � 1.
Another important distinction that is specific to nodal-line
semimetals is the fact that in keeping the radius of the nodal
line kF fixed, the UV cutoff has a finite scaling dimension
[�] = −z, which is incorporated in the RG flow detailed
below.

A. One loop calculations

At one loop level, corrections to the different coupling
constants in Eq. (12) come from three diagrams: the bosonic
polarization bubble, the fermionic self-energy, and vertex
corrections, as shown in Fig. 2. The bosonic polarization
depicted in Fig. 2(a) is given by

i j (q) = g2 tr
∫

>

dk �iGψ (k)� jGψ (k + q), (17)

where G−1
ψ (k) = −ik0 + H0(k) is the bare fermion propagator

Gψ (k) = −ik0 + vr k̃rτ0 ⊗ σy + vzkzτ0 ⊗ σx

k2
0 + E2

k

, (18)

“tr” is the trace and
∫
>

refers to the shell integration defined
in Eq. (15). In all cases, i j (q) = δi j(q) is diagonal and has
the same form for any of the Yukawa vertices considered in
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(a)

(c)

(b)

FIG. 2. Feynman diagrams at the one loop level. Solid lines
represent the fermionic propagator and wavy lines the bosonic prop-
agator. (a) Polarization diagram, describing the bosonic self-energy,
(b) fermionic self-energy, and (c) vertex corrections.

Eq. (5). To proceed with the integration, it is convenient to
parametrize the fermionic momenta as

k0 = ε cos θ,

vrkr = ε sin θ cos φ, (19)

vzkz = ε sin θ sin φ,

with θ ∈ [0, π ] and φ ∈ [0, 2π ] and ε ≡
√

k2
0 + E2

k defined
within the UV shell ε ∈ [e−zd��,�] around the nodal line. As
previously stated in the last section, we ignore terms propor-
tional to qr/kF in the denominator of the fermionic propaga-
tor, namely (|kr + qr |2 − k2

F )/2m ≈ vr (k̃r + qr cos θ ), with θ

the angle between the vectors kr and qr . Expanding to second
order in q0, qr , and qz and integrating over k, we find that

(q) = 0
(
q2

0 + 1
2v2

r q2
r + v2

z q2
z

)
zd�, (20)

where

0 = 4Nf g2kF

3πvrvz�(�)
. (21)

Hence, under the RG process the bosonic action (11) is
renormalized as

d
(
c2

0

) = 0zd� = d
(
c2

2

)
, (22)

d
(
c2

1

) = 1
20zd�, (23)

whereas the mass term mφ is not renormalized and can be set
to zero at the fixed point, which corresponds to a quantum
phase transition.

We also note that the polarization bubble in the CDW,
SC, and SDW channels has explicit frequency dependence,
and is distinct from earlier works that studied the effect of
Coulomb interactions in the Yukawa language by decompos-
ing the four fermion interaction in the Hartree channel [34,51].
In the Coulomb case, the bosonic propagator is frequency
independent, implying in the absence of renormalization of
the fermionic wave function. This in turn implies that vertex
corrections vanish due to Ward identities that follow from the

local gauge invariance of the Yukawa theory [52]. The present
Yukawa theory is not locally gauge invariant, and therefore
has an intrinsically different RG structure, with distinct fixed
points.

The fermionic self-energy in Fig. 2(b) gives corrections to
the velocities vr and vz:

�̂(k) = −g2
Nb∑
j=1

∫
>

dq �iGψ (k − q)�iGφ (q), (24)

where

G−1
φ (q) = c2

0q2
0 + c2

1

(
q2

x + q2
y

) + c2
2q2

z (25)

is the bosonic propagator in the disordered phase, and here
∫
>

refers to the shell integration as defined in Eq. (16). Expanding
to linear order in k0, k̃r , and kz,

�̂(k) = τ0 ⊗ (−�0ik0σ0 + �rvr k̃rσy + �zvzkzσx )zd�,

where

�0 = Nb

Nf

�

vrkF
F1

(
g2

0, g2
1, g2

2

) = �z, (26)

�r = Nb

Nf

�

vrkF
F2

(
g2

0, g2
1, g2

2

)
. (27)

The functions F1 and F2 are special functions,

F1(a, b, c) =
∫ π

0
dφ

∫ π

0
dθ

(2π )−3 cos 2θ csc φ
1
b + 1

c cot2 φ + 1
a cot2 θ csc2 φ

,

F2(a, b, c) =
∫ π

0
dφ

∫ π

0
dθ

(2π )−3(cos 2θ + cot2 φ) sin φ
1
b + 1

c cot2 φ + 1
a cot2 θ csc2 φ

,

with

g2
n ≡ Nf g2kF

vrvzc2
n�(�)

, (n = 0, 1, 2) (28)

defining a set of three dimensionless couplings.
Lastly, the diagram in Fig. 2(c) describes the corrections to

the Yukawa vertex,

ϒ j = g3
Nb∑

i=1

∫
>

dk Gφ (−k)�iGψ (k + p)� jGψ (k + q)�i,

(29)
where

∫
>

describes a fermionic momentum shell integration,
as defined in Eq. (15). We set the external fermionic mo-
menta of the vertex p = q to be at the nodal line, and ig-
nore terms proportional to kr/kF in the fermionic propagator,
G−1

ψ (k+p) ≈ −ik0+vrkrτ0 ⊗ σy+vzkzτ0 ⊗ σx, where (kr, kz)
is the momentum vector away from the Fermi surface. This
prescription is consistent with a construction where the Fermi
surface (nodal-line) is sliced into patches and only the low
energy fermionic excitations that have momentum perpendic-
ular to it in a given patch are incorporated into the fermonic
propagator [53]. The calculation of this diagram yields

ϒ j = − (Nb − 2)

Nf
g� j F3

(
g2

0, g2
1, g2

2

)
zd�, (30)

where

F3(a, b, c) =
∫ 2π

0
dφ

∫ π

0
dθ

(2π )−3 csc θ(
1
b cot2 θ + 1

c sin2 φ + 1
a cos2 φ

) .
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Due to the symmetry of the integrals around the nodal line
that follow from linearly dispersing quasiparticles, no new
couplings are generated in the RG flow. With those results,
one can proceed to write down the RG equations of the
problem.

B. RG equations

Absorbing the renormalizations in the bosonic propagator
(25) in the form of an anomalous dimension of the bosonic
field φ,

ηφ = 2g2
0

3π
z, (31)

the c0 coefficient becomes marginal, whereas c1 and c2 renor-
malize as

d ln c2
1

d�
= 2

3π
g2

0z

(
2c2

0 − c2
1

c2
1

)
(32)

and
d ln c2

2

d�
= 4

3π
g2

0z

(
c2

0 − c2
2

c2
2

)
. (33)

Regardless of the flow of the dimensionless coupling g2
0, it is

clear that {c2
0, c2

1, c2
2} flow towards the values {c2

0, 2c2
0, c2

0} at
the fixed point, where d ln c2

1/d� = d ln c2
0/d� = 0, provided

that g2
0 remains finite. From Eq. (28), the ratio between the

dimensionless couplings at the fixed point is

g2
1

g2
0

= 1

2
,

g2
2

g2
0

= 1. (34)

Since the nature of the interacting fixed point does not depend
on the starting point of the RG flow, we are then allowed to
fix the ratio between g0, g1, and g2 at their fixed point values
in the RG equations from the start [54],

g2
0 = 2g2

1 = g2
2 ≡ g̃2. (35)

With this restriction in place, we define the special functions

Fm

(
g̃2,

g̃2

2
, g̃2

)
:= αm(g̃2), (36)

with m = 1, 2, 3. Those functions are linear in the dimension-
less coupling g̃2 defined above.

Similarly, one can absorb the RG corrections to the
fermionic propagator by defining the anomalous dimension
for the fermionic field ψ ,

ηψ = Nb

Nf

�

vrkF
z α1(g̃2), (37)

in such a way that dvz/d� = vz(z − z1) = 0 is marginal if
we set z1 = z. The remaining RG equation for the other
velocity is

dvr

d�
= vr (z − 1) − vrηψ + zvr�r (g̃2). (38)

The velocity vr can be kept fixed in the RG flow by renormal-
izing the dynamical exponent,

z = 1 + ηψ − Nb

Nf

�

vrkF
α2(g̃2) + O

(
1/N2

f

)
. (39)

Ignoring terms that are proportional to �/vrkF � 1,
consistently with prior assumptions about the fermionic

propagator in Eq. (20), we have that ηψ = 0 while the dy-
namical exponent z = z1 = 1 remains similarly unchanged at
one loop level. From the preceding analysis, even though g2 is
marginal, the tree level scaling dimension of g̃2 is

[g̃2] = 4z − 3 = 1. (40)

This leads to the one loop RG equation for the dimensionless
Yukawa coupling,

dg̃2

d�
= g̃2

[
1 − 2(Nb − 2)

Nf
α3(̃g2) − 2

3π
g̃2

]
, (41)

which determines the nature of the interacting fixed point in
the RG flow.

C. Fixed point and critical exponents

After a quick inspection, the RG equation (41) flows to-
ward a stable fixed point, where dg̃/d� = 0. In the Nf → ∞
limit, the fixed point is at

g̃2
∞ = 3π

2
. (42)

Proceeding in leading 1/Nf order, the fixed point is

g̃2
∗

g̃2∞
= 1 − 2(Nb − 2)

Nf
α3

(
g̃2

∞
)
, (43)

where α3(g̃2
∞) ≈ 0.1487. To compute the correlation length

exponent ν, we write down the RG equations for the gapping
mass term,

dm2
φ

d�
= (2 − ηφ )m2

φ, (44)

which gives as a result

ν = 1

2 − ηφ

= 1 − 2(Nb − 2)

Nf
α3

(
g̃2

∞
)
. (45)

Once two exponents are known, the others can be obtained
from hyperscaling relations. The quantum version of the
hyperscaling relation for the specific heat exponent gives

α = 2 − ν(2 + z) = −1 + 2(Nb − 2)

Nf
α3

(
g̃2

∞
)
, (46)

where we have set d = 2 in the general expression α = 2 −
ν(d + z), since the fermions are scaled in only two spatial
directions around the nodal line. Moreover, d = 2 gives the
correct large Nf behavior, as we show below from the mean-
field analysis.

Fisher’s and Widom’s equality are the same as in the
classical case. Fisher’s equality gives the exponent

γ = (2 − ηφ )ν = 1 + O
(
1/N2

f

)
. (47)

Essam-Fisher relation α + 2β + γ = 2 gives the order param-
eter exponent in one loop

β = 1 − (Nb − 2)

Nf
α3

(
g̃2

∞
)
. (48)

Finally, Widom’s equality gives the field exponent

δ = 1 + γ

β
= 2 + (Nb − 2)

Nf
α3

(
g̃2

∞
)
. (49)
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TABLE I. List of critical exponents for nodal-line semimetals
including 1/Nf corrections, with Nf the number of fermionic flavors
and Nb the number of components of the bosonic fields. Nb = 1:
Charge density wave order; Nb = 2: superconductivity; Nb = 3: spin
density wave.

Exponent Value

z 1
ηφ 1 − 0.2975 (Nb−2)

Nf

ηψ 0

α −1 + 0.2975 (Nb−2)
Nf

β 1 − 0.1487 (Nb−2)
Nf

γ 1

δ 2 + 0.1487 (Nb−2)
Nf

ν 1 − 0.2975 (Nb−2)
Nf

The set of exponents for the three different gapped in-
stabilities and their numerical values is listed in Table I. In
nodal line semimetals, where the existence of a Fermi surface
leads the anomalous dimension of the fermions ηψ to vanish
in one loop, the only source of renormalization comes from
the vertex correction, which is zero when Nb = 2. It is clear
that in the SC case, where the order parameter is complex
(Nb = 2), all one loop corrections vanish, implying that the
mean-field results are exact up to O(N−2

f ) terms. In both
the CDW (Nb = 1) and SDW (Nb = 3) order, the one loop
corrections are finite and have opposite signs.

As a consistency check, one can explicitly verify that the
mean-field exponents are correctly recovered in the Nf → ∞
limit. Taking the bosonic fields at their mean-field value φ0

and integrating out the fermions, the mean-field free energy
for a generic gapped phase at the nodal line is

FMF(φ0) = φ2
0

g
−

∫
k̃2

r +k2
z <�

d�k
√

k̃2
r + k2

z + φ2
0 , (50)

where �k are the spatial components of the momentum away
from the nodal line, after conveniently absorbing the velocities
vr and vz in their definition. We proceed by expanding (50) in
powers of the order parameter φ0 and also in terms of long-
wavelength spatial modulations that couple to momenta as
gauge fields. The corresponding Ginzburg-Landau free energy
for nodal-line semimetals has the usual form expected for
conventional Dirac fermions in 2D [55],

FGL(φ0) = q̃2
r |φ0| + q2

z |φ0| + a0

(
gc − g

g

)
|φ0|2 + b|φ0|3,

(51)

where a0 and b are positive numbers, and gc is the critical
coupling of the mean-field theory. Minimization of the free
energy in the order parameter |φ0| implies that |φ0| ∼ |gc − g|
giving β = 1 at the mean-field level. At the same time, by
dimensional analysis

ξ−2|φ0| ∼= δg|φ0|2, (52)

and hence the correlation length ξ ∼ (δg)−1 diverges with the
mean-field exponent ν = 1. Using hyperscaling relations, all
other mean-field exponents can be recovered and found to be
in agreement with the large Nf results in the Nf → ∞ limit,
indicating that hyperscaling relations are fulfilled.

IV. CONCLUSIONS

In summary, we performed a Wilson momentum shell RG
calculation and computed the scaling exponents describing
the universal quantum critical behavior for 3D nodal-line
semimetals with linear band crossings. We considered states
that lead to fully gapped instabilities in the charge, spin,
and s-wave superconducting channels, and calculated their
exponents in a unified manner.

A few comments about the RG literature in nodal-line
semimetals is in order. Previous perturbative RG calcula-
tions in Refs. [34,35] examined the problem of Coulomb
interactions within the Yukawa method for a nodal line. In
those works, a noninteracting fixed point was found in the
clean case, with logarithmic corrections to scaling, indicating
that Coulomb interactions are marginally irrelevant, as in
graphene [25].

In the strong coupling regime, Ref. [51] addressed the
problem of broken symmetry states for a nodal line both in the
superconducting and in the particle-hole channels. That work
considered the effect of short-range interactions through an ε

expansion in the fermionic language. In that approach, short-
range interactions are irrelevant operators in the perturbative
regime, but flow towards an interacting fixed point when they
are sufficiently strong. The fermionic language is particularly
suitable to address the competition between different channels
of instability, but not so convenient to address the univer-
sal quantum critical scaling of the phases. Here we used a
nonperturbative Gross-Neveau-Yukawa theory involving or-
der parameter bosonic fields to examine the quantum critical
scaling of various gapped phases in nodal-line semimetals.
After deriving the interacting fixed points of this theory, we
extracted the full set of quantum critical exponents. Those
exponents reduce to their mean-field values in the Nf → ∞
limit, suggesting that hyperscaling is satisfied.

The RG calculations were performed in one loop in the
number of fermionic flavors Nf , which were added for an-
alytic control. We found that in the SC state, where vertex
corrections are absent, the mean-field exponents are exact
within one loop, whereas the CDW and SDW states have
finite 1/Nf corrections with opposite signs. In all cases,
the dynamical exponent z = 1 in leading order, whereas the
one loop corrections to various exponents follow directly from
the bosonic anomalous dimension ηφ . This study comple-
ments current efforts in the literature to account for the effect
of electronic correlations in nodal systems and addresses a
timely class of materials with topological nodal lines.
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