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XFe4Ge2 (X = Y, Lu) and Mn3Pt: Filling-enforced magnetic topological metals
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Magnetism, coupled with nontrivial band topology, can bring about many interesting and exotic phenomena,
so that magnetic topological materials have attracted persistent research interest. However, compared with
nonmagnetic topological materials (TMs), the magnetic TMs are less studied, since their magnetic structures
and topological phase transitions are usually complex and the first-principles predictions are usually sensitive on
the effect of Coulomb interaction. In this work we present a comprehensive investigation of XFe4Ge2 (X = Y,
Lu) and Mn3Pt, and find these materials to be filling-enforced magnetic topological metals. Our first-principles
calculations show that XFe4Ge2 (X = Y, Lu) host Dirac points near the Fermi level at high symmetry point S.
These Dirac points are protected by PT symmetry (P and T are inversion and time-reversal transformations,
respectively) and a twofold screw rotation symmetry. Moreover, through breaking PT symmetry, the Dirac
points would split into Weyl nodes. Mn3Pt is found to host fourfold degenerate band crossings in the whole
high symmetry path of A–Z . We also utilize the GGA + U scheme to take into account the effect of Coulomb
repulsion and find that the filling-enforced topological properties are naturally insensitive on U .
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I. INTRODUCTION

The topological nature of electronic bands has attracted
tremendous attention in condensed matter physics since the
birth of the topological insulator [1,2]. During the past decade,
a variety of topological materials have been discovered, in-
cluding topological insulators [1–5], Dirac semimetals [6–10],
Weyl semimetals [11–13], node-line semimetals [14–18],
topological crystalline insulators [19,20], and various other
topological phases [21–27]. It is well known that the non-
trivial band topology is usually protected by time-reversal
(T ) symmetry or other spatial symmetries such as mirror
symmetry, glide symmetry, etc. [26]. Furthermore, symmetry
and band topology are intertwined with each other, and as
a result symmetry information can be used to diagnose the
band topology in a highly efficient manner. Nowadays the
time-reversal-invariant topological materials (TMs) have been
extensively studied in both theories and experiments. Re-
cently, symmetry-based methods for the efficient discovery of
topological materials were developed [28–31], and thousands
of nonmagnetic TM candidates have been proposed [32–34].

Compared to the time-reversal-invariant topological ma-
terials, magnetic topological materials are also expected to
show rich exotic phenomena [35], such as axion insula-
tors [36–43], antiferromagnetic topological insulator [40–47],
magnetic Dirac semimetal [48–51], and magnetic Weyl
semimetals [11,52]. However, the predictions on magnetic
TMs are relatively rare and very few of them have been
realized in experiments up to now [35]. This limitation is orig-
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inated from the fact that the topological properties are usually
accompanied by significant spin-orbit coupling (SOC), while
SOC typically leads to complex magnetic structures which
are difficult to characterize experimentally and theoretically.
Moreover, unlike nonmagnetic systems, Coulomb interaction
is of substantial importance in most magnetic systems, and the
Coulomb repulsion is usually incorporated by the parameter U
in first-principles calculations. Therefore, the first-principles
predictions for magnetic topological materials usually
depends on the value of U [11,38,52].

Recently, the filling constraint for a band insulator has
been established to discover topological semimetals [53,54].
This method enables the efficient search for filling-enforced
topological materials solely on their space group (SG) and the
filling electron number. The central logic is that there is a tight
bound for fillings of a band insulator in a SG [53]. Once a
material crystallizing in this SG owns the number of valence
electrons per unit cell out of the tight bound, it cannot be
an insulator. Based on the filling-constraint method [53,54],
one can readily calculate the filling constraint νBS for a
material according to its SG, where ν represents the filling
number of occupied electrons per unit cell. If ν /∈ νBS · Z
(here Z represents any integer), this material has an electron
filling incompatible with any band insulator, and it must
have symmetry-protected gaplessness near the Fermi energy
(unless a further symmetry-breaking or correlated phase is re-
alized). This type of material is referred to as filling-enforced
(semi)metals [53,54]. Moreover, the filling-constraint method
has been extended to magnetic materials based on their mag-
netic space group (MSG) symmetries [55]. Note that the
filling-constraint method is based on the interplay between
electron filling and (magnetic) space group symmetries, and
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therefore it is insensitive to the precise value of U so long as
the relevant symmetries are preserved.

In this work, by applying the filling-constraint
method [53–55], we find several magnetic topological metals:
XFe 4Ge2 (X = Y, Lu) and Mn3Pt. We display detailed
analysis for the topological features of XFe4Ge2, where Dirac
points are located at S point near the Fermi energy. Moreover,
the calculations show that the Dirac points would split into
Weyl nodes by a small perturbation. We also perform the
first-principles calculations for the high-temperature phase
of Mn3Pt, where the bands along the A–Z path are fourfold
degenerate. The results show that the essential properties
and our conclusions do not depend on the value of U as we
expected.

II. METHOD

The calculations of electronic band structure and den-
sity of states have been carried out as implemented in
the Vienna ab initio simulation package (VASP) [57–59].
The Perdew–Burke–Ernzerhof (PBE) of generalized gradient
approximation (GGA) is chosen as the exchange-correlation
functional [60]. 6 × 6 × 12 and 16 × 16 × 8 k-point meshes
are used for the Brillouin zone (BZ) integral in XFe4Ge2 (X
= Y, Lu) and Mn3Pt system, respectively. The self-consistent
calculations are considered to be converged when the dif-
ference in the total energy of the crystal does not exceed
0.01 mRy. The effect of spin-orbit coupling (SOC) [61] is
considered self-consistently in all the calculations. We also
utilize the GGA + U scheme [62] to take into account the
effect of Coulomb repulsion in 3d orbital and the value of
parameter U is varied between 0 and 4 eV.

III. RESULTS

YFe4Ge2 was previously reported to crystallize in the
ZrFe4Ge2 type of structure with the space group P42/mnm at
room temperature [63]. In this tetragonal structure, YFe4Ge2

has two formula units in the primitive unit cell [63]. In 2001,
Schobinger-Papamantellos et al. [56] measured the neutron
diffraction and magnetic properties of YFe4Ge2, and found
a magnetostructural (ferroelastic and antiferromagnetic) tran-
sition, where the magnetic transition at TN = 43.5 K is
accompanied by a first-order phase transition from tetragonal
structure (P42/mnm) to orthorhombic structure (Pnnm). The
magnetic structure below TN is noncollinear antiferromag-
netic with the type-III magnetic space group Pn′n′m′ (58.399
in the Belov-Neronova-Smirnova (BNS) settings [64]), as
shown in Fig. 1. Note that the magnetic moments on two
sites related by the inversion symmetry (P) point in opposite
directions, thus YFe4Ge2 is invariant under PT symmetry
(T is the time-reversal transformation). The magnetic mo-
ments of Fe ions at two sites are measured to be 0.63 μB per Fe
ion equally at 1.5 K. Similar to YFe4Ge2, LuFe4Ge2 has the
first-order magnetoelastic transition at TN = 32 K from non-
magnetic tetragonal structure to antiferromagnetic orthorhom-
bic structure, while the Fe moment value is 0.45 μB [65].
These materials are suggested to be filling-enforced topologi-
cal materials [55], as we show in the following.

FIG. 1. Crystal structure of YFe4Ge2. The green, blue, and pur-
ple balls represent the Y, Fe, and Ge ions, respectively. The arrows
denote the ground magnetic order measured by Ref. [56].

Based on the noncollinear antiferromagnetic configuration
suggested by neutron diffraction experiment [56] as shown
in Fig. 1, we perform the first-principles calculations for
YFe4Ge2. The density of states and the band structures are
shown in Fig. 2(a) and Figs. 3(a)–3(c), respectively. It should
be noted that, due to PT symmetry, the electronic bands in
the whole BZ are doubly degenerate, as shown in Fig. 3. The
bands in the energy range from −10.0 to −8.0 eV are mainly
contributed by Ge-4s states, while Y bands appear mainly
above 3.0 eV. The 3d states of Fe ions are mainly located from
−6.0 to 2.0 eV, while Ge-4p states appear mainly between
−6.0 and −2.0 eV, implying strong hybridization between Fe
and Ge states, as shown in Fig. 2(a). Due to hybridization
between Fe and Ge states, the Ge ion has a small calculated
magnetic moment (∼0.05 μB), but the major magnetic mo-
ment is still located at the Fe site. Our calculated magnetic
moments of Fe ions at two Fe sites are 1.86 and 1.70 μB,
which is larger than the experimental value. Though GGA
calculations often underestimate the magnetic moments [66],
in certain cases the magnetic moments could be overesti-
mated. Similar discrepancy has also been reported in the
calculations for other Fe-based intermetallic compounds [67].
For the YFe4Ge2 system, the filling constraint νBS for its MSG
58.399 is 4 [53–55]. Meanwhile, the number of electrons

FIG. 2. Partial density of states (PDOS) of YFe4Ge2 (left) and
LuFe4Ge2 (right) from GGA calculation with noncollinear antiferro-
magnetic configuration. The Fermi energy is set to zero.
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FIG. 3. Band structures of XFe4Ge2 (X = Y, Lu) with experimental magnetic configuration [56]. (a)–(c) Band structures of YFe4Ge2

from GGA, GGA + U (U = 2 eV) and GGA + U (U = 4 eV) calculations, respectively. (d)–(f) Band structures of LuFe4Ge2 from GGA,
GGA + U (U = 2 eV) and GGA + U (U = 4 eV) calculations, respectively. The Fermi energy is set to zero. The Dirac points near the Fermi
level are marked with red circle.

per unit cell for YFe4Ge2 is to ν = 414, thus ν /∈ νBS · Z,
indicating that YFe4Ge2 must be a filling-enforced material.
It should be noted that our calculated magnetic moments of
Fe ions incorporates all the symmetry restrictions, and the
filling-enforced properties predicted in this work are robust
as long as the relevant symmetries are preserved.

However, the filling-constraint method does not provide
the detailed topological properties. As shown in the symmetry
analysis at S point in the next section, only a four-dimensional
irreducible representation is allowed, thus all the states at
the S point must be grouped into Dirac points. While this
conclusion holds for all materials in the same magnetic space
group, the filling of YFe4Ge2 implies these Dirac points are
naturally close to the Fermi energy. As shown in Fig. 3(a),
there is a Dirac point at only 56 meV above the Fermi level
at S point, while the Dirac point below the Fermi level is
relatively far away (at about −120 meV). We also take into
account the effect of Coulomb repulsion in Fe-3d orbital
by performing the GGA + U calculations. The value of U
around 2 eV is commonly used in the Fe-based intermetallic
compound [68,69]. We have varied the value of U from 0 to
4.0 eV (U = 0 eV represents GGA calculation without U ),
and the calculations show that the position of the Dirac point is
kept at the S point with slightly varying energy near the Fermi
level, as shown in Figs. 3(a)–3(c). As mentioned above, the
filling-constraint method depends only on electron filling and
magnetic space group symmetries, thus the filling-enforced
topology is not sensitive to the calculation details.

We also perform the first-principles calculations of
LuFe4Ge2 whose the band structures and the density of states
are shown in Figs. 3(d)—3(f) and Fig. 2(b), respectively.

Except for Lu-4 f states which are located around −5 eV,
the electronic properties of LuFe4Ge2 are very similar to
YFe4Ge2, as shown in Figs. 2(b) and 2(a). The filling number
of electrons per unit cell is found to be ν = 478, thus ν /∈
νBS · Z, also identifying LuFe4Ge2 as featuring Dirac points
pinned at S point near the Fermi level.

As mentioned above, YFe4Ge2 exhibits an antiferromag-
netic order with opposite spins related by inversion, and so
PT symmetry is present and the electronic bands are doubly
degenerate everywhere. Upon breaking the PT symmetry, the
Dirac cone may split into Weyl nodes [70]. Note that with
the PT symmetry and the twofold rotation {2001|0} symme-
try coexisting in this system, the z-direction component of
Fe magnetic moment mz should be zero, and the magnetic
moments are lying in the xy plane. By a small perturbation
such as external field, the magnetic configuration may have
a nonzero z-direction component with PT symmetry broken
while {2001|0} is preserved, and the Dirac cone may split into
Weyl nodes. Accordingly, we perform the GGA calculations
with the magnetic state where the magnetic moments have
the deflection angle about 2◦ from the xy plane. As shown
in Fig. 4, at S point, all the Dirac points indeed split into Weyl
points, while the splitting energies of the upper and lower
Dirac points around Fermi level are 6 and 40 meV, respec-
tively. In addition, there is also a symmetry-protected band
crossing in the path X -S, as shown in Fig. 4. As discussed
in the symmetry analysis below, the hybridization between
the red and blue bands in the set of Fig. 4 is forbidden and
there is an unavoidable crossing point located at X -S line.
Similarly, the first-principles results show that there is also an
unavoidable band crossing point along the path Y -S, as shown
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FIG. 4. Band structures of YFe4Ge2 from GGA calculation with
the magnetic configuration that is slightly deviated from the ground
state. The Fermi energy is set to zero. The inset is the detailed struc-
ture around S point. The red and blue line represent the eigenstates
of {2010|1/2, 1/2, 1/2} with the eigenvalues −ie−iπky and +ie−iπky ,
respectively. The Weyl points along X -S line and Y -S line are marked
with black circle.

in Fig. 4. As shown in Fig. 4, the splitting of Weyl points is
very weak due to our small deflection angle, thus the Fermi
arc may be short and easy to be buried in bulk states.

We also find the high-temperature phase of a cubic antifer-
romagnetic intermetallic compound Mn3Pt as another filling-
enforced topological material. Experiment reveals that Mn3Pt
crystallizes in a cubic crystal structure (space group Pm-3m)
at room temperature and has a long-range antiferromagnetic
order with TN = 475 K [71–73]. Neutron diffraction experi-
ments show a first-order magnetic transition in Mn3Pt system
at about 365 K, between a low-temperature noncollinear
antiferromagnetic state and a high-temperature collinear an-
tiferromagnetic state [71–73]. The high-temperature phase of
Mn3Pt is collinear antiferromagnetic with the magnetic space
group Pc42/mcm (132.456), where the Mn atoms in the xy
plane couple antiferromagnetically, and the Mn atoms along z
direction also have opposite spin orientations. Very recently,
Liu et al. [74] reported the observation of the anomalous
Hall effect in thin films of the low-temperature phase for
Mn3Pt. They also show that the anomalous Hall effect can
be turned on and off by applying a small electric field at
a temperature around 360 K and the Mn3Pt is close to the
phase transition [74]. Therefore exploring the possible exotic
properties of the high-temperature phase for Mn3Pt is also an
interesting problem.

Similarly, we perform the first-principles calculations
based on the high-temperature phase of Mn3Pt and the band
structures are shown in Fig. 5. The high-temperature phase
of Mn3Pt also has PT symmetry like YFe4Ge2, thus the
electronic band structures are symmetry-protected doubly de-
generate in whole BZ. The calculated magnetic moment at
the Mn site is 2.9 μB per Mn ion, which is in reasonable
agreement with the experiment value 3.4 μB [71–73]. The
Pt-5d states are mainly located from −6.0 to −3.0 eV. The
3d states of Mn ions appear mainly from −3.0 to 2.0 eV.

FIG. 5. Band structures of Mn3Pt with high-temperature
collinear antiferromagnetic configuration from GGA calculation.
The Fermi energy is set to zero.

For Mn3Pt, the filling number of electrons per unit cell is
306 while the νBS for its MSG (132.456) is also 4, thus ν

/∈ νBS · Z, indicating that there is a half-occupied fourfold
energy level near Fermi energy. As shown in Fig. 5, the bands
are fourfold degenerate in the path of A–Z , which is protected
by the symmetry operations of magnetic structure, as shown
in the detailed symmetry analysis in the next section. We also
vary the value of U from 0 to 4.0 eV and find that the fourfold
energy level always exists.

IV. SYMMETRY ANALYSIS

In this section we show the detailed symmetry analysis for
the Dirac band crossings. We will first focus on the S point in
XFe4Ge2 (X = Y, Lu), followed by a corresponding discus-
sion for Mn3Pt. For the S point (1/2, 1/2, 0), eight symmetry
operations are generated by three symmetries: the PT sym-
metry {−1′|0}, a twofold screw rotation {2100|1/2, 1/2, 1/2},
and a twofold rotation {2001|0}, where the left part represents
the rotation and the right part means the lattice translation.
Note that −1 above denotes the inversion symmetry and the
superscript prime means an additional time-reversal operation
T here. Since {2100|1/2, 1/2, 1/2}2 = −{1|1, 0, 0}, where the
minus sign originates from the spin rotation, the momentum
phase factor equals −1 for a Bloch state at the S point.
Thus, the eigenvalues for {2100|1/2, 1/2, 1/2} is ±1. We
can then choose the eigenstates ψ±

nS of {2100|1/2, 1/2, 1/2}
at S point, where the superscript denotes the eigenvalue
of {2100|1/2, 1/2, 1/2} and n is the band index. Because
[{−1′|0}, {2100|1/2, 1/2, 1/2}] = 0 when acting on the Bloch
states at S, operation of {−1′|0} will preserve the eigen-
value of {2100|1/2, 1/2, 1/2} and result in the other state in
the Kramers doublet: i.e., {−1′|0}ψ+

nS is orthogonal to ψ+
nS

but with the same eigenvalues of {2100|1/2, 1/2, 1/2}. Be-
sides, it should be noted that {2100|1/2, 1/2, 1/2}{2001|0} =
−{2001|0}{2100|1/2, 1/2, 1/2}, thus {2001|0}ψ±

nS reverses the
eigenvalue of {2100|1/2, 1/2, 1/2}. So the four orthogonal
states ψ+

nS, {−1′|0}ψ+
nS, {2001|0}ψ+

nS, {2001|0}{−1′|0}ψ+
nS are
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degenerate, constituting the basis of the four-dimensional
irreducible representation. Therefore, in XFe4Ge2 system,
the S point (1/2, 1/2, 0) only allows for four-dimensional
irreducible representation.

Based on the k · p method, we build the effective Hamilto-
nian by using the four relevant states as basis vectors, in the
order of ψ+

nS, {−1′|0}ψ+
nS, {2001|0}ψ+

nS, {2001|0}{−1′|0}ψ+
nS . To

the lowest order in q, the Hamiltonian can be written as

⎡
⎢⎢⎢⎢⎢⎣

qxC5 0 −iqzC1−qyC2√
2

qz (iC3−C4 )√
2

0 qxC5
qz (iC3+C4 )√

2

iqzC1−qyC2√
2

iqzC1−qyC2√
2

qz (−iC3+C4 )√
2

−qxC5 0
qz (−iC3−C4 )√

2

−iqzC1−qyC2√
2

0 −qxC5

⎤
⎥⎥⎥⎥⎥⎦, (1)

where q = k − S, and Ci (i = 1, 2, . . . , 5) are parameters.
The effective Hamiltonian suggests a linear dispersion in
the neighborhood of S. It is worth mentioning that there is
also only one four-dimensional irreducible representation in
Z point (0, 0, 1/2), and the dispersion around Z point is also
linear.

When PT symmetry is broken, there are only four
symmetry operations for the S point (1/2, 1/2, 0) generated
by {2100|1/2, 1/2, 1/2} and {2001|0}. As mentioned before,
for the eigenstates ψ±

nS of {2100|1/2, 1/2, 1/2} at S point,
{2001|0}ψ±

nS reverses the eigenvalue of {2100|1/2, 1/2, 1/2}.
So ψ+

nS and {2001|0}ψ+
nS own the same energy and they are

orthogonal with each other, constituting the basis of the
two-dimensional irreducible representation. Therefore all the
states at the S point must be grouped pairwise. Meanwhile, for
the k point (1/2, ky, 0) in the path X (1/2, 0, 0)-S(1/2, 1/2, 0),
only a twofold screw rotation {2010|1/2, 1/2, 1/2} is pre-
served. Note that {2010|1/2, 1/2, 1/2}2 = −{1|0, 1, 0}, for
k point (1/2, ky, 0), the eigenvalues should be ±ie−iπky .
As shown in Fig. 4, the first-principles results show that
two bands along this line belong to the eigenstates of
{2010|1/2, 1/2, 1/2} with different eigenvalues. Thus the hy-
bridization between these two bands is forbidden and the
band crossing is symmetry protected, as shown in Fig. 4.
Using these two eigenstates with eigenvalues of ±ie−iπky

as basis vectors, we also build the effective Hamiltonian of
band crossing along X -S based on the k · p method, and the
Hamiltonian to the lowest order in q can be written as

[
qyD6 qz(−iD1 + D3) + qx(−iD2 + D4)

qz(iD1 + D3) + qx(iD2 + D4) qyD5

]
, (2)

where Di (i = 1, 2,..., 6) are parameters, and q = k −
W (W is the position of band crossing). The effective
Hamiltonian could be expanded to H(q) = ∑

i=x,y,z ciqiI +∑
i, j=x,y,z vi jqiσ j , where I is the identity matrix while

σ is the Pauli matrix. Here vi j (i, j = x, y, z) could be
written as

⎡
⎢⎣

D4 0 D3

D2 0 D1

0 1
2 (−D5 + D6) 0

⎤
⎥⎦, (3)

Therefore the Chern number of the band crossing can
be quantified by the value sgn[det(vi j )] = sgn[ 1

2 (D2D3 −
D1D4)(−D5 + D6)] [11]. By fitting the calculated band dis-
persion, we obtain det(vi j ) �= 0, thus the Chern numbers of
the band crossings are suggested to be ±1. Similarly, for the
k point (kx, 1/2, 0) in the path Y (0, 1/2, 0)-S(1/2, 1/2, 0),
{2100|1/2, 1/2, 1/2} is preserved and the first-principles re-
sults show that there is also a Weyl point along the Y -S
path.

In Mn3Pt, similar to the discussion above, we study
the symmetry operations of this magnetic structure and
find that there is only one four-dimensional irreducible
representation along A–Z path in the BZ: For the path
of A(1/2, 1/2, 1/2)-Z (0, 0, 1/2), eight symmetry opera-
tions are generated by three symmetries: the PT sym-
metry {−1′|0}, a twofold screw rotation {2110|0, 0, 1/2},
and a mirror operation {m1−10|0}. Since {2110|0, 0, 1/2}2 =
−{1|0, 0, 0} (the minus sign is coming from the electron
spin), the eigenvalues for {2110|0, 0, 1/2} is ±i. We can

then choose the eigenstates ψ±
nA–Z of {2110|0, 0, 1/2} in A–Z

path, where the superscript denotes the eigenvalue of ±i
and n is the band index. Note that {−1′|0}{2110|0, 0, 1/2} =
−{2110|0, 0, 1/2}{−1′|0}, indicating that {−1′|0}ψ+

nA–Z is
orthogonal to ψ+

nA–Z but with the same eigenvalues
of {2110|0, 0, 1/2}. Besides, it should be noted that
{2110|0, 0, 1/2}{m1−10|0} = −{m1−10|0}{2110|0, 0, 1/2}, thus
{m1−10|0}ψ±

nA–Z reverses the eigenvalue of {2110|0, 0, 1/2}. So
ψ+

nA–Z , {−1′|0}ψ+
nA–Z , {m1−10|0}ψ+

nA–Z , {m1−10|0}{−1′|0}ψ+
nA–Z

are again orthogonal and degenerate, constituting the basis of
the four-dimensional irreducible representation. Therefore, in
a Mn3Pt system, only a four-dimensional irreducible repre-
sentation is allowed along the A(1/2, 1/2, 1/2)-Z (0, 0, 1/2)
path.

V. CONCLUSION

In conclusion, by applying the filling constraints, we dis-
cover several magnetic topological metals: XFe4Ge2 (X = Y,
Lu) and Mn3Pt. The first-principles calculations show that
YFe4Ge2 is a metal with a Dirac cone located at S point
near the Fermi level, which is protected by the symmetry
operations of magnetic structure. We have varied the value of
U from 0 to 4.0 eV, and the results show that Dirac point al-
ways exists, since the topological property is filling-enforced
and independent on U . When the magnetic moments have a
small nonzero z-direction component, the Dirac point would
split into Weyl nodes around the S point. We also perform
the first-principles calculations based on the high-temperature
collinear antiferromagnetic configuration of Mn3Pt. The
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calculation results and symmetry analysis show that it is also
a topological material. Even though there are lots of bands
around the Fermi level in these materials, we believe that the
Dirac points in XFe4Ge2 (X = Y, Lu) can still be detected
experimentally [75–77]. Meanwhile, since the Weyl points
can be regarded as a magnetic monopole in the momentum
space with an important contribution to the Berry curvature,
the topological properties of Weyl nodes may also be observed
experimentally [78–80]. Note that the first-principles predic-
tions on magnetic topological materials are relatively rare and
usually depend on the value of U . Correspondingly, these
filling-enforced topological properties are robust and could be
better suited for ideally low-consumption device applications,
such as spintronics, quantum computation, and many other
potential device applications.

ACKNOWLEDGMENTS

D.W., F.T., and X.W. were supported by the NSFC (Grants
No. 11834006, No. 11525417, No. 51721001, and No.
11790311), National Key R&D Program of China (Grants
No. 2018YFA0305704 and No. 2017YFA0303203), and the
excellent programme in Nanjing University. X.W. also ac-
knowledges the support from the Tencent Foundation through
the XPLORER PRIZE. A.V. was supported by a Simons
Investigator Award and by the Center for Advancement of
Topological Semimetals, an Energy Frontier Research Center
funded by the US Department of Energy Office of Science,
Office of Basic Energy Sciences, through the Ames Labo-
ratory under its Contract No. DE-AC02-07CH11358. H.C.P.
was supported by a Pappalardo Fellowship at MIT and a
Croucher Foundation Fellowship.

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C.
Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3

with a single Dirac cone on the surface, Nat. Phys. 5, 438
(2009).

[4] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D.
Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of
a large-gap topological-insulator class with a single Dirac cone
on the surface, Nat. Phys. 5, 398 (2009).

[5] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X.-L.
Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang et al., Experimental
realization of a three-dimensional topological insulator, Bi2Te3,
Science 325, 178 (2009).

[6] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Dirac Semimetal in Three Dimensions, Phys.
Rev. Lett. 108, 140405 (2012).

[7] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng,
X. Dai, and Z. Fang, Dirac semimetal and topological phase
transitions in A3Bi (A = Na, K, Rb), Phys. Rev. B 85, 195320
(2012).

[8] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-
dimensional Dirac semimetal and quantum transport in Cd3As2,
Phys. Rev. B 88, 125427 (2013).

[9] Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M.
Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Three-
dimensional Dirac semimetals: Design principles and predic-
tions of new materials, Phys. Rev. B 91, 205128 (2015).

[10] Y. Du, B. Wan, D. Wang, L. Sheng, C.-G. Duan, and X. Wan,
Dirac and Weyl Semimetal in XYBi (X = Ba, Eu; Y = Cu, Ag
and Au), Sci. Rep. 5, 14423 (2015).

[11] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Topological semimetal and Fermi-arc surface states in the elec-
tronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101
(2011).

[12] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai,
Weyl Semimetal Phase in Noncentrosymmetric Transition-
Metal Monophosphides, Phys. Rev. X 5, 011029 (2015).

[13] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia,
A. Bansil, H. Lin, and M. Z. Hasan, A Weyl Fermion
semimetal with surface Fermi arcs in the transition
metal monopnictide TaAs class, Nat. Commun. 6, 7373
(2015).

[14] A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal
semimetals, Phys. Rev. B 84, 235126 (2011).

[15] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai,
and Y. Kawazoe, Topological node-line semimetal in three-
dimensional graphene networks, Phys. Rev. B 92, 045108
(2015).

[16] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological Node-
Line Semimetal and Dirac Semimetal State in Antiperovskite
Cu3PdN, Phys. Rev. Lett. 115, 036807 (2015).

[17] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac Line
Nodes in Inversion-Symmetric Crystals, Phys. Rev. Lett. 115,
036806 (2015).

[18] Y. Du, F. Tang, D. Wang, L. Sheng, E.-j. Kan, C.-G. Duan, S. Y.
Savrasov, and X. Wan, CaTe: A new topological node-line and
Dirac semimetal, npj Quant. Mater. 2, 3 (2017).

[19] L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett. 106,
106802 (2011).

[20] Y. Ando and L. Fu, Topological crystalline insulators and topo-
logical superconductors: From concepts to materials, Annu.
Rev. Condens. Matter Phys. 6, 361 (2015).

[21] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A.
Bernevig, Hourglass fermions, Nature (London) 532, 189
(2016).

[22] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Reflection-Symmetric Second-Order Topological In-
sulators and Superconductors, Phys. Rev. Lett. 119, 246401
(2017).

[23] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[24] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topologi-
cal insulators, Sci. Adv. 4, eaat0346 (2018).

115122-6

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1274
https://doi.org/10.1038/nphys1274
https://doi.org/10.1038/nphys1274
https://doi.org/10.1038/nphys1274
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.91.205128
https://doi.org/10.1103/PhysRevB.91.205128
https://doi.org/10.1103/PhysRevB.91.205128
https://doi.org/10.1103/PhysRevB.91.205128
https://doi.org/10.1038/srep14423
https://doi.org/10.1038/srep14423
https://doi.org/10.1038/srep14423
https://doi.org/10.1038/srep14423
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1038/s41535-016-0005-4
https://doi.org/10.1038/s41535-016-0005-4
https://doi.org/10.1038/s41535-016-0005-4
https://doi.org/10.1038/s41535-016-0005-4
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346


XFe4Ge2 (X = Y, LU) AND … PHYSICAL REVIEW B 101, 115122 (2020)

[25] Z. Song, Z. Fang, and C. Fang, (d − 2)-Dimensional Edge
States of Rotation Symmetry Protected Topological States,
Phys. Rev. Lett. 119, 246402 (2017).

[26] A. Bansil, H. Lin, and T. Das, Colloquium: Topological band
theory, Rev. Mod. Phys. 88, 021004 (2016).

[27] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[28] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-based
indicators of band topology in the 230 space groups, Nat.
Commun. 8, 50 (2017).

[29] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Efficient
topological materials discovery using symmetry indicators, Nat.
Phys. 15, 470 (2019).

[30] Z. Song, T. Zhang, Z. Fang, and C. Fang, Quantitative mappings
between symmetry and topology in solids, Nat. Commun. 9,
3530 (2018).

[31] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature (London) 547, 298 (2017).

[32] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng,
and C. Fang, Catalogue of topological electronic materials,
Nature (London) 566, 475 (2019).

[33] M. G. Vergniory, L. Elcoro, C. Felser, B. A. Bernevig, and Z.
Wang, The (high quality) topological materials in the world,
Nature (London) 566, 480 (2019).

[34] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Towards ideal
topological materials: Comprehensive database searches using
symmetry indicators, Nature (London) 566, 486 (2019).

[35] Y. Tokura, K. Yasuda, and A. Tsukazaki, Magnetic topological
insulators, Nat. Rev. Phys. 1, 126 (2019).

[36] R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Dynamical axion
field in topological magnetic insulators, Nat. Phys. 6, 284
(2010).

[37] A. M. Essin, J. E. Moore, and D. Vanderbilt, Magnetoelectric
Polarizability and Axion Electrodynamics in Crystalline Insu-
lators, Phys. Rev. Lett. 102, 146805 (2009).

[38] X. Wan, A. Vishwanath, and S. Y. Savrasov, Computational
Design of Axion Insulators Based on 5d Spinel Compounds,
Phys. Rev. Lett. 108, 146601 (2012).

[39] Y. Xu, Z. Song, Z. Wang, H. Weng, and X. Dai, Higher-Order
Topology of Axion Insulator EuIn2As2, Phys. Rev. Lett. 122,
256402 (2019).

[40] D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang,
Topological Axion States in the Magnetic Insulator MnBi2Te4

with the Quantized Magnetoelectric Effect, Phys. Rev. Lett.
122, 206401 (2019).

[41] Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang,
L. Gu, L. Tang, X. Feng et al., Experimental realization of an
intrinsic magnetic topological insulator, Chin. Phys. Lett. 36,
076801 (2019).

[42] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W.
Duan, and Y. Xu, Intrinsic magnetic topological insulators in
van der Waals layered MnBi2Te4-family materials, Sci. Adv. 5,
eaaw5685 (2019).

[43] J. Zhang, D. Wang, M. Shi, T. Zhu, H. Zhang, and J. Wang,
Dynamical magnetoelectric effect in antiferromagnetic insula-
tor Mn2Bi2Te5, arXiv:1906.07891.

[44] R. S. K. Mong, A. M. Essin, and J. E. Moore, Antiferromagnetic
topological insulators, Phys. Rev. B 81, 245209 (2010).

[45] S. Chowdhury, K. F Garrity, and F. Tavazza, Prediction of Weyl
semimetal and antiferromagnetic topological insulator phases in
Bi2MnSe4, npj Comput. Mater. 5, 33 (2019).

[46] X. Gui, I. Pletikosic, H. Cao, H.-J. Tien, X. Xu, R. Zhong,
G. Wang, T.-R. Chang, S. Jia, T. Valla et al., A new
magnetic topological quantum material candidate by design,
arXiv:1903.03888.

[47] Y. Deng, Y. Yu, M. Z. Shi, J. Wang, X. H. Chen, and
Y. Zhang, Magnetic-field-induced quantized anomalous Hall
effect in intrinsic magnetic topological insulator MnBi2Te4,
arXiv:1904.11468.

[48] P. Tang, Q. Zhou, G. Xu, and S.-C. Zhang, Dirac fermions in an
antiferromagnetic semimetal, Nat. Phys. 12, 1100 (2016).

[49] G. Hua, S. Nie, Z. Song, R. Yu, G. Xu, and K. Yao, Dirac
semimetal in type-IV magnetic space groups, Phys. Rev. B 98,
201116(R) (2018).

[50] L. Šmejkal, J. Železný, J. Sinova, and T. Jungwirth, Electric
Control of Dirac Quasiparticles by Spin-Orbit Torque in an
Antiferromagnet, Phys. Rev. Lett. 118, 106402 (2017).

[51] S. M. Young and B. J. Wieder, Filling-Enforced Magnetic Dirac
Semimetals in Two Dimensions, Phys. Rev. Lett. 118, 186401
(2017).

[52] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern
Semimetal and the Quantized Anomalous Hall Effect in
HgCr2Se4, Phys. Rev. Lett. 107, 186806 (2011).

[53] H. Watanabe, H. C. Po, M. P. Zaletel, and A. Vishwanath,
Filling-Enforced Gaplessness in Band Structures of the 230
Space Groups, Phys. Rev. Lett. 117, 096404 (2016).

[54] R. Chen, H. C. Po, J. B. Neaton, and A. Vishwanath, Topolog-
ical materials discovery using electron filling constraints, Nat.
Phys. 14, 55 (2018).

[55] H. Watanabe, H. C. Po, and A. Vishwanath, Structure and
topology of band structures in the 1651 magnetic space groups,
Sci. Adv. 4, eaat8685 (2018).

[56] P. Schobinger-Papamantellos, J. Rodrıguez-Carvajal, G. André,
N. P. Duong, K. H. J. Buschow, and P. Tolédano, Simultaneous
structural and magnetic transitions in YFe4Ge2 studied by neu-
tron diffraction and magnetic measurements, J. Magn. Magn.
Mater. 236, 14 (2001).

[57] G. Kresse and J. Furthmüller, Efficiency of ab-initio total en-
ergy calculations for metals and semiconductors using a plane-
wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[58] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[59] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[60] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[61] D. D. Koelling and B. N. Harmon, A technique for relativistic
spin-polarised calculations, J. Phys. C 10, 3107 (1977).

[62] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, First-
principles calculations of the electronic structure and spectra
of strongly correlated systems: the LDA+U method, J. Phys.
Condens. Matter 9, 767 (1997).

[63] Ya. P. Yarmoluk, L. A. Lysenko, and E. I. Gladyshevski, Zirco-
nium iron silicide (ZrFe4Si2) structure as a new structural type
of ternary transition metal silicides, Dopov. Akad. Nauk Ukr.
RSR, Ser. A 37, 279 (1975).

115122-7

https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41567-019-0418-7
https://doi.org/10.1038/s41567-019-0418-7
https://doi.org/10.1038/s41567-019-0418-7
https://doi.org/10.1038/s41567-019-0418-7
https://doi.org/10.1038/s41467-018-06010-w
https://doi.org/10.1038/s41467-018-06010-w
https://doi.org/10.1038/s41467-018-06010-w
https://doi.org/10.1038/s41467-018-06010-w
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/s41586-019-0944-6
https://doi.org/10.1038/s41586-019-0944-6
https://doi.org/10.1038/s41586-019-0944-6
https://doi.org/10.1038/s41586-019-0944-6
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41586-019-0937-5
https://doi.org/10.1038/s41586-019-0937-5
https://doi.org/10.1038/s41586-019-0937-5
https://doi.org/10.1038/s41586-019-0937-5
https://doi.org/10.1038/s42254-018-0011-5
https://doi.org/10.1038/s42254-018-0011-5
https://doi.org/10.1038/s42254-018-0011-5
https://doi.org/10.1038/s42254-018-0011-5
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/nphys1534
https://doi.org/10.1103/PhysRevLett.102.146805
https://doi.org/10.1103/PhysRevLett.102.146805
https://doi.org/10.1103/PhysRevLett.102.146805
https://doi.org/10.1103/PhysRevLett.102.146805
https://doi.org/10.1103/PhysRevLett.108.146601
https://doi.org/10.1103/PhysRevLett.108.146601
https://doi.org/10.1103/PhysRevLett.108.146601
https://doi.org/10.1103/PhysRevLett.108.146601
https://doi.org/10.1103/PhysRevLett.122.256402
https://doi.org/10.1103/PhysRevLett.122.256402
https://doi.org/10.1103/PhysRevLett.122.256402
https://doi.org/10.1103/PhysRevLett.122.256402
https://doi.org/10.1103/PhysRevLett.122.206401
https://doi.org/10.1103/PhysRevLett.122.206401
https://doi.org/10.1103/PhysRevLett.122.206401
https://doi.org/10.1103/PhysRevLett.122.206401
https://doi.org/10.1088/0256-307X/36/7/076801
https://doi.org/10.1088/0256-307X/36/7/076801
https://doi.org/10.1088/0256-307X/36/7/076801
https://doi.org/10.1088/0256-307X/36/7/076801
https://doi.org/10.1126/sciadv.aaw5685
https://doi.org/10.1126/sciadv.aaw5685
https://doi.org/10.1126/sciadv.aaw5685
https://doi.org/10.1126/sciadv.aaw5685
http://arxiv.org/abs/arXiv:1906.07891
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1038/s41524-019-0168-1
https://doi.org/10.1038/s41524-019-0168-1
https://doi.org/10.1038/s41524-019-0168-1
https://doi.org/10.1038/s41524-019-0168-1
http://arxiv.org/abs/arXiv:1903.03888
http://arxiv.org/abs/arXiv:1904.11468
https://doi.org/10.1038/nphys3839
https://doi.org/10.1038/nphys3839
https://doi.org/10.1038/nphys3839
https://doi.org/10.1038/nphys3839
https://doi.org/10.1103/PhysRevB.98.201116
https://doi.org/10.1103/PhysRevB.98.201116
https://doi.org/10.1103/PhysRevB.98.201116
https://doi.org/10.1103/PhysRevB.98.201116
https://doi.org/10.1103/PhysRevLett.118.106402
https://doi.org/10.1103/PhysRevLett.118.106402
https://doi.org/10.1103/PhysRevLett.118.106402
https://doi.org/10.1103/PhysRevLett.118.106402
https://doi.org/10.1103/PhysRevLett.118.186401
https://doi.org/10.1103/PhysRevLett.118.186401
https://doi.org/10.1103/PhysRevLett.118.186401
https://doi.org/10.1103/PhysRevLett.118.186401
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1038/nphys4277
https://doi.org/10.1038/nphys4277
https://doi.org/10.1038/nphys4277
https://doi.org/10.1038/nphys4277
https://doi.org/10.1126/sciadv.aat8685
https://doi.org/10.1126/sciadv.aat8685
https://doi.org/10.1126/sciadv.aat8685
https://doi.org/10.1126/sciadv.aat8685
https://doi.org/10.1016/S0304-8853(01)00442-5
https://doi.org/10.1016/S0304-8853(01)00442-5
https://doi.org/10.1016/S0304-8853(01)00442-5
https://doi.org/10.1016/S0304-8853(01)00442-5
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1088/0022-3719/10/16/019
https://doi.org/10.1088/0022-3719/10/16/019
https://doi.org/10.1088/0022-3719/10/16/019
https://doi.org/10.1088/0022-3719/10/16/019
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002


WANG, TANG, PO, VISHWANATH, AND WAN PHYSICAL REVIEW B 101, 115122 (2020)

[64] N. V. Belov, N. N. Neronova, and T. S. Smirnova, Shubnikov
groups, Sov. Phys. Crystallogr. 2, 311 (1957).

[65] P. Schobinger-Papamantellos, K. H. J. Buschow, and J.
Rodríguez-Carvajal, Magnetoelastic phase transitions in the
LuFe4Ge2 and YFe4Si2 compounds: A neutron diffraction
study, J. Magn. Magn. Mater. 324, 3709 (2012).

[66] X. Feng, Electronic structure of MnO and CoO from the B3LYP
hybrid density functional method, Phys. Rev. B 69, 155107
(2004).

[67] F. Ma, W. Ji, J. Hu, Z.-Y. Lu, and T. Xiang, First-Principles Cal-
culations of the Electronic Structure of Tetragonal α-FeTe and
α-FeSe Crystals: Evidence for a Bicollinear Antiferromagnetic
Order, Phys. Rev. Lett. 102, 177003 (2009).

[68] H. C. Kandpal, G. H. Fecher, and C. Felser, Calculated elec-
tronic and magnetic properties of the half-metallic, transition
metal based Heusler compounds, J. Phys. D 40, 1507 (2007).

[69] B. Balke, G. H. Fecher, H. C. Kandpal, C. Felser, K. Kobayashi,
E. Ikenaga, J.-J. Kim, and S. Ueda, Properties of the quaternary
half-metal-type Heusler alloy Co2Mn1−xFexSi, Phys. Rev. B 74,
104405 (2006).

[70] S. Murakami and S.-I. Kuga, Universal phase diagrams for the
quantum spin Hall systems, Phys. Rev. B 78, 165313 (2008).

[71] E. Krén, G. Kádár, L. Pál, J. Sólyom, and P. Szabó, Magnetic
structures and magnetic transformations in ordered Mn3(Rh, Pt)
alloys, Phys. Lett. 20, 331 (1966).

[72] E. Krén, G. Kádár, L. Pál, and P. Szabó, Investigation of the
first-order magnetic transformation in Mn3Pt, J. Appl. Phys. 38,
1265 (1967).

[73] E. Krén, G. Kádár, L. Pál, J. Sólyom, P. Szabó, and T. Tarnóczi,
Magnetic structures and exchange interactions in the Mn-Pt
system, Phys. Rev. 171, 574 (1968).

[74] Z. Q. Liu, H. Chen, J. M. Wang, J. H. Liu, K. Wang, Z. X.
Feng, H. Yan, X. R. Wang, C. B. Jiang, J. M. D. Coey et al.,
Electrical switching of the topological anomalous Hall effect in
a non-collinear antiferromagnet above room temperature, Nat.
Electron. 1, 172 (2018).

[75] F. Fei, X. Bo, R. Wang, B. Wu, J. Jiang, D. Fu, M. Gao, H.
Zheng, Y. Chen, X. Wang, H. Bu, F. Song, X. Wan, B. Wang,
and G. Wang, Nontrivial Berry phase and type-II Dirac transport
in the layered material PdTe2, Phys. Rev. B 96, 041201(R)
(2017).

[76] H.-J. Noh, J. Jeong, E.-J. Cho, K. Kim, B. I. Min, and
B.-G. Park, Experimental Realization of Type-II Dirac
Fermions in a PdTe2 Superconductor, Phys. Rev. Lett. 119,
016401 (2017).

[77] M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G.
Wan, H. Zhang, M. Arita, H. Yang et al., Lorentz-violating type-
II Dirac fermions in transition metal dichalcogenide PtTe2, Nat.
Commun. 8, 257 (2017).

[78] D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakamura,
H. Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim
et al., Observation of Chiral Fermions with a Large Topological
Charge and Associated Fermi-Arc Surface States in CoSi, Phys.
Rev. Lett. 122, 076402 (2019).

[79] Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen,
H. Weng, S. Wang, and H. Lei, Large intrinsic anomalous Hall
effect in half-metallic ferromagnet Co3Sn2S2 with magnetic
Weyl fermions, Nat. Commun. 9, 3681 (2018).

[80] Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M.
Wang, K. Xu, Z. Huang et al., Gate-tunable negative longitudi-
nal magnetoresistance in the predicted type-II Weyl semimetal
WTe2, Nat. Commun. 7, 13142 (2016).

115122-8

https://doi.org/10.1016/j.jmmm.2012.05.058
https://doi.org/10.1016/j.jmmm.2012.05.058
https://doi.org/10.1016/j.jmmm.2012.05.058
https://doi.org/10.1016/j.jmmm.2012.05.058
https://doi.org/10.1103/PhysRevB.69.155107
https://doi.org/10.1103/PhysRevB.69.155107
https://doi.org/10.1103/PhysRevB.69.155107
https://doi.org/10.1103/PhysRevB.69.155107
https://doi.org/10.1103/PhysRevLett.102.177003
https://doi.org/10.1103/PhysRevLett.102.177003
https://doi.org/10.1103/PhysRevLett.102.177003
https://doi.org/10.1103/PhysRevLett.102.177003
https://doi.org/10.1088/0022-3727/40/6/S01
https://doi.org/10.1088/0022-3727/40/6/S01
https://doi.org/10.1088/0022-3727/40/6/S01
https://doi.org/10.1088/0022-3727/40/6/S01
https://doi.org/10.1103/PhysRevB.74.104405
https://doi.org/10.1103/PhysRevB.74.104405
https://doi.org/10.1103/PhysRevB.74.104405
https://doi.org/10.1103/PhysRevB.74.104405
https://doi.org/10.1103/PhysRevB.78.165313
https://doi.org/10.1103/PhysRevB.78.165313
https://doi.org/10.1103/PhysRevB.78.165313
https://doi.org/10.1103/PhysRevB.78.165313
https://doi.org/10.1016/0031-9163(66)90724-4
https://doi.org/10.1016/0031-9163(66)90724-4
https://doi.org/10.1016/0031-9163(66)90724-4
https://doi.org/10.1016/0031-9163(66)90724-4
https://doi.org/10.1063/1.1709571
https://doi.org/10.1063/1.1709571
https://doi.org/10.1063/1.1709571
https://doi.org/10.1063/1.1709571
https://doi.org/10.1103/PhysRev.171.574
https://doi.org/10.1103/PhysRev.171.574
https://doi.org/10.1103/PhysRev.171.574
https://doi.org/10.1103/PhysRev.171.574
https://doi.org/10.1038/s41928-018-0040-1
https://doi.org/10.1038/s41928-018-0040-1
https://doi.org/10.1038/s41928-018-0040-1
https://doi.org/10.1038/s41928-018-0040-1
https://doi.org/10.1103/PhysRevB.96.041201
https://doi.org/10.1103/PhysRevB.96.041201
https://doi.org/10.1103/PhysRevB.96.041201
https://doi.org/10.1103/PhysRevB.96.041201
https://doi.org/10.1103/PhysRevLett.119.016401
https://doi.org/10.1103/PhysRevLett.119.016401
https://doi.org/10.1103/PhysRevLett.119.016401
https://doi.org/10.1103/PhysRevLett.119.016401
https://doi.org/10.1038/s41467-017-00280-6
https://doi.org/10.1038/s41467-017-00280-6
https://doi.org/10.1038/s41467-017-00280-6
https://doi.org/10.1038/s41467-017-00280-6
https://doi.org/10.1103/PhysRevLett.122.076402
https://doi.org/10.1103/PhysRevLett.122.076402
https://doi.org/10.1103/PhysRevLett.122.076402
https://doi.org/10.1103/PhysRevLett.122.076402
https://doi.org/10.1038/s41467-018-06088-2
https://doi.org/10.1038/s41467-018-06088-2
https://doi.org/10.1038/s41467-018-06088-2
https://doi.org/10.1038/s41467-018-06088-2
https://doi.org/10.1038/ncomms13142
https://doi.org/10.1038/ncomms13142
https://doi.org/10.1038/ncomms13142
https://doi.org/10.1038/ncomms13142

