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Hourglasslike band structures protected by nonsymmorphic space group symmetries can appear along the
high-symmetry lines or on the high-symmetry surfaces of the Brillouin zone. In this work, from symmetry
analysis, we demonstrate that n-hourglasslike band structures, a generalization of hourglasslike band structures,
are enforced along screw-invariant lines in nonmagnetic materials with an N-fold screw axis when spin-orbit
coupling is finite, where n, a nonunity factor of N , denotes the degree of the screw-invariant line. The n-hourglass
has a minimum of n − 1 crossings, which are Weyl points with monopole charge ±1. Using compatibility
relations, we identify all the space groups that host n-hourglasslike band structures induced by screw symmetries,
with n = 2, 3, 4. For N = 3 we find Weyl points that are indirectly enforced by symmetries. We construct an
effective model, from which we see how the n-hourglasses appear when spin-orbit coupling is turned on. As
examples, BiPd, the cinnabar phase of HgTe, and the high-temperature phase of Tl3PbBr5 are shown from
first-principles calculations to exhibit n-hourglasslike band structures, with N = 2, 3, 4, respectively, which
confirms our symmetry analysis. For N = 3 and 4, there are minimally two particle and two hole Fermi pockets
enclosing Weyl points at proper fillings, where submanifold nesting may lead to topological density waves.

DOI: 10.1103/PhysRevB.101.115110

I. INTRODUCTION

The interplay between symmetry and topology has been
a hot topic in condensed matter physics in recent years,
stimulated by the discovery of topological insulators [1,2].
Topological insulators have been classified in the tenfold way
according to whether they respect time-reversal symmetry
(TRS), particle-hole symmetry, and chiral symmetry [3,4].
The discovery of topological crystalline insulators [5] has led
to the realization that crystalline symmetries can vastly enrich
topological phases. For crystalline solids with topological
degeneracies, by digging into the 230 space groups (SGs),
fermions beyond the Weyl-Dirac-Majorana classification have
been found [6], and the filling constraints of semimetals in
each SG have been presented [7].

Nonsymmorphic SG symmetries play a special role in the
study of topological phases. For gapped systems, nonsymmor-
phic topological insulators and superconductors are classified
according to their nonsymmorphic symmetries [8]. In partic-
ular, the surface states of nonsymmorphic topological insu-
lators show hourglasslike dispersions [9]. The hourglasslike
dispersions also appear in the bulk Brillouin zone (BZ) of
nonsymmorphic materials with glide planes or twofold screw
axes [10], and may result in nodal points [11,12], nodal
lines [11,13,14], nodal chains [15,16], nodal nets [17,18], and
nodal surfaces [19]. However, the topological degeneracies in
systems which have a screw axis with degrees more than two
have not been well explored yet.
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In this work we investigate the spin-orbit coupled crys-
talline solids which have an N-fold screw axis and respects
TRS. By symmetry analysis, we find that the symmetries en-
force n-hourglasslike dispersion along screw-invariant lines,
which is a generalization of the hourglasslike dispersion.
The integer n is a nonunity factor of N . An n-hourglass
has at least n − 1 symmetry-enforced band crossings, which
are Weyl points (WPs). In this language, the conventional
hourglass is a 2-hourglass, and 3-, 4-, and 6-hourglass can
also appear in systems with screw symmetries. We notice
that the n = 6 case has been considered in Ref. [20]. Here
we identify all SGs with screw axes that host n-hourglasses
with n = 2, 3, 4. An effective model is presented to produce
the n-hourglasslike dispersion for an arbitrary n. Moreover,
we perform first-principles band structure calculations on
materials with screw symmetries, showing results consistent
with our symmetry analysis. Specifically for N = 3, we iden-
tify symmetry-indirectly-enforced WPs, which are neither
accidental degeneracies nor degeneracies directly enforced by
symmetries. Possible physical effects are discussed.

II. SYMMETRY ANALYSIS

We study nonmagnetic crystalline systems with an N-
fold screw axis (N = 2, 3, 4) and sizable spin-orbit coupling
(SOC). We use a shorthand notation C̃ p

N to denote the screw
operation {CNz| p

N ẑ}, where p = 1, 2, . . . , N − 1. The screw
axis is assumed to be along z direction and the lattice constant
is set to be 1.

We first focus on systems invariant under screw rotation
C̃1

N . In the BZ there are high symmetry lines left invariant
by an n-fold screw C̃1

n [see Figs. 1(a)–1(c)], where 1 <

n � N is a factor of N . Along a screw-invariant line, the
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FIG. 1. (a-)–(c) The BZ of SG P21 (a), P31 (b), and P41 (c),
which belong to the primitive monoclinic, hexagonal, and primitive
tetragonal Bravais lattice, respectively. (d) Eigenvalues of the screw
rotation C̃1

4 at k = 0 and π shown in the complex plane. They are
rotated by π/4 when k goes from 0 to π . (e) Schematic of how
the n-hourglass results from different patterns of Kramers pairing at
k = 0 and π , for n = 3 and n = 4.

bands can be labeled by screw eigenvalues. Consider an n-
fold screw-invariant line in the BZ ended with time-reversal
invariant momenta (TRIM). Since n times of C̃1

n translate
the system by a unit cell along the screw axis, we have
(C̃1

n )n = −eik in Bloch wave basis, where k is the wave vector
in z direction, and the minus sign accounts for the rotation
of spin-1/2. Therefore, the eigenvalues of C̃1

n are Cn,m(k) =
e

i(k+π )+i2πm
n , with m = 0, 1, . . . , n − 1. They are rotated by π

n
in the complex plane when k goes from 0 to π , as shown in
Fig. 1(d) for n = 4. TRS imposes Kramers degeneracies at
TRIM, where states with screw eigenvalues conjugate with
each other to form Kramers pairs. Therefore, at k = 0, a
state with screw eigenvalue Cn,m pairs with another one with
Cn,n−m−1, while at k = π , a state with Cn,m pairs with another
with Cn,n−m−2. The switching of Kramers partners results in
the band structures illustrated in Fig. 1(e) for n = 3 and 4,
which we call n-hourglasslike band structures, where 2n bands
stick together with at least n − 1 symmetry-enforced band

crossings. In Appendix A we show how the n-hourglasslike
band structures are formed for a generic n. The same results
can also be derived from the compatibility relations between
the irreducible representations of the little group of different
wave vectors, see Appendix C for details. If the symmetry
operation of a system is C̃N−1

N , similar analysis again shows
that n-hourglasses appear along n-fold screw-invariant lines.
But for C̃2

4 , only 2-hourglasses appear.
Note that all crossings in the n-hourglass are WPs [21] in

three-dimensional systems. The Kramers pairs at k = 0 are
also WPs, but those at k = π are WPs only if N is odd. For
an even N , double degeneracy occurs in the whole k = π

plane due to the antiunitary symmetry T (C̃1
N )N/2 which leaves

a generic point in the plane invariant and squares to −1,
resulting in a nodal surface.

The SGs with the only symmetry operation C̃1
N or C̃N−1

N
are P21, P31, and P32, and P41 and P43 for N = 2, 3, 4, re-
spectively. Their BZs are shown in Figs. 1(a)–1(c), where the
high symmetry points and lines are highlighted. The screw-
invariant lines ended with TRIM are shaded, along which
n-hourglasses are enforced. Note that for N = 4 which has
two nonunity factors, there are both fourfold screw-invariant
lines (�Z and MA) along which 4-hourglasses appear and a
twofold screw-invariant line (XR) along which 2-hourglasses
appear. For N = 3, KH (K ′H ′) is screw-invariant, but K (K ′)
and H (H ′) are not TRIM, so crossings seem not guaranteed.
However, we will show later that band crossings are indirectly
enforced by symmetries along KH (K ′H ′) as well as inside
the BZ.

To figure out whether the n-hourglasslike dispersions sur-
vive if other symmetry elements besides the N-fold screw axis
are present, we examine the compatibility relations between
the irreducible representations of little groups of different
wave vectors. We find that if there are twofold rotation or
twofold screw axes perpendicular to the N-fold screw axis,
the n-hourglasses will be preserved; if there are mirror or
glide planes whose normal is perpendicular to the N-fold
screw axis, the n-hourglasses will disappear along certain or
all screw-invariant lines. The SGs hosting n-hourglasses with
n = 2, 3, 4 are listed in Table I.

III. SYMMETRY-INDIRECTLY-ENFORCED WEYL POINTS

Band crossings can usually be divided into two classes,
accidental ones or symmetry-enforced ones. Now we show
that band crossings that are neither accidental nor directly
enforced by symmetries exist in systems with a threefold
screw axis. For N = 3, there is only one screw-invariant line
�A ended with two TRIM. Therefore, there is minimally one
symmetry-enforced WP along �A as the crossing between,
for example, the second and the third highest band in a
3-hourglass. (Only the upper half of the BZ is considered,
since the lower half is related by TRS.) Due to the fermion
doubling theorem [23], there must exist an odd number of
other WPs for the cancellation of the total monopole charge.
The threefold symmetry tells us that WPs could triply appear
with the same charge if located inside the BZ, which cannot
make the total charge vanish. If the WPs are located at the
surface of the BZ, a triple set contributes charge ±3/2, which
is also unsatisfactory. Therefore, the only possibility is that
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TABLE I. List of SGs that host n-hourglasslike dispersions, with the screw-invariant lines given. The SGs are classified by symmetry
elements in addition to the N-fold screw axis: twofold rotation axes (⊥ 2) or twofold screw axes (⊥ 21) perpendicular to the N-fold screw axis,
a mirror/glide plane whose normal is perpendicular to it (m), or none of them (None). The high symmetry points for the Brillouin zone are
given in Ref. [22].

n None ⊥ 2 ⊥ 21 m

2 P21(�Z, XA,Y D,CE ), P2221(�Z, XU,Y T, SR), P21212(�X, ZU , �Y, ZT ), Pca21(XU, SR),
P42(�Z, XR, MA), P4212(�X ), P212121(�X, �Y, �Z ), Pmn21(XU, SR),
P63(�A), I41(�Z ) P4222(�Z, MA), P42212(�Z, �X ), P213(�X ), Pna21(XU,Y T ), P42nm(XR),

P6322(�A), P4232(�X ), F4132(�X ), P42bc(MA), P421m(�X ),
C2221(�Z,Y T, SR), I4132(�H ), P4132(�X ), P4332(�X ) P421c(�X ), Cmc21(SR)
I4122(�Z )

3 P31(�A), P32(�A), P3112(�A), P3121(�A),
P62(�A), P64(�A) P3212(�A), P3221(�A),

P6222(�A), P6422(�A)

4 P41(�Z, MA), P4122(�Z, MA), P41212(�Z ), P43212(�Z )
P43(�Z, MA) P4322(�Z, MA)

the other(s) is at another screw-invariant line KH or K ′H ′, or
both. Then there are two possible cases: (i) One other WP
is located at KH or K ′H ′, which we call the 1 + 1 case.
(ii) Two other WPs are located at KH and K ′H ′, and then there
must be a triple set of WPs inside the BZ to cancel out the
total charge, which we call the 3 + 3 case. The two cases are
indicated by the stars and dots in Fig. 1(b), colored differently
for opposite charges. Different from symmetry-enforced WPs
in an n-hourglass and accidental WPs, the WPs at KH/K ′H ′
and inside the BZ are indirectly enforced by symmetries.

The 1 + 1 case can also occur in SG P41 and P43, as
indicated by the stars in Fig. 1(c). The symmetry-enforced
WPs between the fourth and the fifth highest band in a
4-hourglass are located at �Z and MA, but not at XR. The two
WPs can carry opposite charges, leaving a zero net charge as
required.

IV. EFFECTIVE MODEL FOR THE
n-HOURGLASSLIKE DISPERSION

We develop an effective model for the n-hourglasslike
dispersion for an arbitrary n, which reads

Hn(k) = Sn(k) + S†
n (k) + λi[Sn(k) − S†

n (k)]σz, (1)

where σi denotes the Pauli matrices acting on spin, λ is a
parameter characterizing the strength of SOC, and Sn is an
n-dimensional matrix representing the n-fold screw rotation,

Sn =

⎛⎜⎜⎜⎝
0 0 . . . eik

1 0 . . . 0

0
. . . 0 0

0 . . . 1 0

⎞⎟⎟⎟⎠. (2)

Hn(k) constructed in this way respects TRS and n-fold screw
symmetry. In Fig. 2 we show how the n-hourglasses emerge
for n = 2, 3, 4, upon the tuning of the SOC from zero to
finiteness using this model. In Appendix E we present a tight-
binding model, which at screw-invariant lines ended with
TRIM agrees with the effective model.

V. MATERIALS REALIZATION

We perform first-principles band structure calculations on
BiPd, the cinnabar phase of HgTe, and the high temperature
phase of Tl3PbBr5, which belong to SG P21, P3121, and P41,
respectively. For details see Appendix B, including methods
of calculations and the crystal structures and band structures
of each material, and see Appendix D for band structures with-
out SOC. In Fig. 3 we show the band structures of the three
materials along screw-invariant lines, where n-hourglasses
are seen with n = 2, 3, 4. In particular, we find symmetry-
indirectly-enforced band crossings for HgTe, labeled by the
blue dot in Fig. 3(b), accompanying the symmetry-enforced
one labeled by the red dot.

To further confirm our analysis, we find all the crossings
between the second and third highest bands below Fermi level
for HgTe in cinnabar phase. The monopole charge of each
crossing is found to be ±1, so they are all WPs. We show their
projection to the kz = 0 plane in Fig. 4(a). There are totally
96 WPs in the BZ, and we reproduce the ones in the upper
half BZ in Fig. 4(b), colored orange for monopole charge 1
and purple for −1. The three WPs projected to �, K , and
K ′ carry charge 1, which have to be canceled out by a triple
set of WPs with charge −1 inside the BZ, realizing the 3 + 3

FIG. 2. Schematic of how n-hourglasses emerge for n = 2, 3, 4
when the SOC is turned on. α = 0 in the upper plots and α = 0.2 in
the lower plots.
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FIG. 3. The n-hourglasslike band structures near the Fermi en-
ergy along the screw-invariant lines for (a) BiPd, (b) HgTe, and (c)
Tl3PbBr5. The blue dot labels a symmetry-indirectly-enforced WP,
accompanying the symmetry-enforced one labeled by the red dot.

case discussed earlier. Other WPs are accidental degeneracies,
the number of which (42) being a multiple of 6, due to the
threefold symmetry and fermion doubling.

VI. PHYSICAL EFFECTS

Consider a system with a threefold screw symmetry at 1/3
or 2/3 filling, such that the Fermi energy is tuned to be near a
crossing of the 3-hourglass along �A. We focus on the 1 + 1
case and assume there are no accidental degeneracies. Since
the two WPs are not related by symmetries, they are not at the
same energy [24–26]. Therefore, the Fermi level is between
the energies of the WPs, resulting in a particle and a hole
Fermi pocket. The cross section of a Fermi pocket at a specific
kz has a threefold symmetry. But if the Fermi pocket is small,
the trigonal warping can be neglected and the cross section is
approximately a circle (like in graphene, see, e.g., Ref. [27]),

FIG. 4. (a) All 96 WPs as band crossings between the second
and third highest bands of HgTe below Fermi level, projected to the
kz = 0 plane. Red ones are in the upper half BZ and blue ones in the
lower half. (b) The 48 WPs in the upper half BZ, orange ones with
monopole charge +1 and purple ones with −1.

FIG. 5. (a) Two Fermi pockets, one electronlike and one holelike,
at the two screw-invariant lines. Each pocket encloses a WP. (b) The
projection of the two Fermi pockets on the plane perpendicular to
the kz axis at two different energies. The cross sections of the Fermi
pockets have threefold rotational symmetry, but become circular if
the Fermi pockets are small. (c) Schematic of how the nesting of
Fermi surface submanifolds occurs. The green arrow in (a) indicate
the nesting vector, whose projection is shown in (c), together with
the projection of the nested Fermi surface submanifolds.

resulting in an ellipsoidal Fermi pocket, as shown in Figs. 5(a)
and 5(b). Although there is not perfect nesting between the
two ellipsoids, there must be nesting between submanifolds
of them, as shown in Fig. 5(c), since the cross sections of the
two Fermi pockets can be of the same size. When a repulsive
interaction V is present, the effective interaction is Veff =
V/[1 − V �(q)], where �(q) is the polarization operator. The
divergence of Veff leads to density-wave instabilities. With
perfect nesting, �(Q) has a logarithmic divergence where Q
is the nesting vector, and an arbitrarily small V can induce
density waves. Here, with only submanifold nesting, V has to
be larger than a critical value Vc for instabilities to occur. The
maximum of �(q) determines Vc and the wave vector Q of
the resulting density wave. Detailed calculations of �(q) are
beyond the scope of the present work and we give intuitive
arguments here. In calculating �(q), the in-plane integral
gives N2D ln A/�, where A and � are respectively the high
energy and low energy cutoff, and N2D is the 2D density of
states at the cross section. The integration over kz kills the
divergence. Intuitively, when the cross section is the largest,
we have the largest N2D and the system could be the most
susceptible, from which Q (indicated by the green arrows in
Fig. 5) is found. The density wave obtained has topological
nature [28]. Although in general the ellipsoids are deformed
since the Weyl cone is tilted in the z direction, the cross sec-
tions are still approximately circular and the above argument
works. Similar arguments apply to the 1 + 1 case for N = 4.

The materials in the SGs considered here preserve TRS
and break inversion symmetry, thus cannot have the linear
Hall effect. However, the tilted Weyl cones generate Berry
curvature dipoles, which can lead to the quantum nonlinear
Hall effect [29,30]. This effect should be readily observed in
the materials with n-hourglass Weyl fermions.
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VII. DISCUSSION

Although the three representative materials we have dis-
cussed host n-hourglass Weyl fermions, they are not filling-
enforced semimetals [7]. To experimentally find the physical
effects discussed, physical or chemical doping can be used
to shift the Fermi energy towards the WPs, and searching
for filling-enforced semimetals in the SGs specified is highly
desired.

A future direction is to investigate the possible general-
izations of the n-hourglasses to magnetic SGs, including the
fermionic quasiparticle spectrum as well as the bosonic col-
lective modes, magnons. As Weyl magnons have been found
[31], magnons with n-hourglasslike dispersion may appear in
certain magnetic SGs. Metamaterials such as photonic crystals
[32] have proved to be a wonderful playground to realize
topological phases, where we expect the n-hourglass WPs
may also be engineered.

Note added—Recently, a work on symmetry-enforced
band crossings in trigonal materials [33] appeared, with some
results similar to our N = 3 case.
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APPENDIX A: THE FORMATION OF n-HOURGLASSLIKE
BAND STRUCTURES FOR A GENERIC n: GRAPH

THEORETICAL DESCRIPTION

Graph theory has been applied to study the connectivity
in band theory [34,35]. Here we present a graph-theoretical
description on how the n-hourglasslike band structures are
formed. Consider the screw rotation C̃1

n , a rotation by 2π/n
about the screw axis combined with a translation 1/n parallel
to the screw axis, where the lattice constant along the screw
axis is assumed to be 1. Although n can only be 2, 3, 4, or
6 in a three-dimensional (3D) crystal, it can be any integer
larger than 1 in a one-dimensional (1D) system, so we assume
a generic n > 1. We use Cn,m to label the eigenvalues of C̃1

n .
Since n times of the screw operation translate the system by a
unit cell along the screw axis, we have (C̃1

n )n = −eik where
k is the wave vector in that direction, and the minus sign
accounts for the rotation of spin-1/2. Therefore, the eigenval-
ues of C̃1

n are Cn,m(k) = e
i(k+π )+i2πm

n , with m = 0, 1, . . . , n − 1.
Due to time-reversal symmetry (TRS), time-reversal operation
pairs the states with eigenvalues conjugate to each other at
the time-reversal invariant momenta (TRIM). At k = 0, one
state with screw eigenvalue Cn,m(0) pairs with another with
Cn,n−m−1(0); while at k = π , one with Cn,m(π ) pairs with
another with Cn,n−m−2(π ). This is illustrated in the left panel
of Fig. 6, where Cn,m(k) is written as Cm for short and m
is equivalent to m(mod n). The dashed lines indicate the 0
pairing while the solid lines π pairing, where k pairing means
the Kramers pairing at k. In graph theory, the lines are called
edges and the points are called vertices. The two possibilities

FIG. 6. Schematic of how the n-hourglass results from different
patterns of Kramers pairing at k = 0 and π , for both n even and n
odd. Cm means the m (mod n)th eigenvalue of C̃1

n , Cn,m(k).

how the graph ends are shown, depending on whether n is even
or odd. The sum of m of the two eigenvalues is −1(mod n) if
the vertices are connected by dashed lines, and −2(mod n)
by solid lines. Such pairing relations result in the dispersion
shown in the right panel of Fig. 6 in the following way. Each
vertex in the left panel is transformed into an edge in the right
panel, with its color kept; and a dashed edge is transformed
into a vertex at k = 0 while a solid edge is transformed into
a vertex at k = π . This is like the edge-to-vertex dual (or the
line graph) in graph theory, but with the constraint that the
crossings of the original graph are not considered as vertices.
We call the dual graph where 2n bands stick together the
n-hourglasslike dispersion.

In graph-theoretical language, the n-hourglass is a (2,2)-
biregular graph [36], i.e., the vertices are divided into two
subsets with an equal cardinality n, and each vertex of both
subsets has two incident edges. In the simplest case, the
n-hourglass has n − 1 crossings, all of which are Weyl points
in 3D systems. Along the screw-invariant lines which connect
two TRIM, we call the TRIM near the center of the Brillouin
zone (BZ) the inner edge of the n-hourglass, whereas the
TRIM farther the outer edge. The n vertices at the inner edge
of the n-hourglass are also Weyl points. However, the outer
edge may not host Weyl points, depending on the value of
n. For n = 2, it has been shown that the degeneracies at the
outer edge reside on a nodal surface [11]. This also happens
for n = 4. However, for n = 3, the degeneracies at the outer
edge are Weyl points. Permutations of the vertices at the edges
and curving the bands can introduce more Weyl points.

By similar reasoning, one can deduce that the screw
symmetry C̃n−1

n results in the same n-hourglasslike
dispersions as C̃1

n .

APPENDIX B: THE FULL BAND STRUCTURES AND
METHODS OF CALCULATION

Our first-principles calculations have been performed on
BiPd, the cinnabar phase of HgTe, and the high temperature
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FIG. 7. (a) Crystal structure of BiPd in SG P21. (b) The first BZ
and the high symmetry points and lines. The screw-invariant lines
are highlighted by glowing orange. (c) Band structure of BiPd (with
SOC). A 2-hourglass along CE is enlarged and shown on the right.

phase of Tl3PbBr5, which possess an N-fold screw axis with
N = 2, 3, 4, respectively, as well as TRS. The spin-orbit cou-
pling (SOC) is expected to be sizable in these materials.

BiPd is a monoclinic crystal with 16 atoms in the unit cell.
It becomes superconducting below 3.8 K [37] and a Dirac
cone surface state exists on the (010) surface [38]. The band
structure shows metallic behavior, with 12 bands crossing the
Fermi energy. The SOC causes band splitting except at the
eight TRIM where Kramers degeneracy appears. According
to our symmetry analysis, the bands along the screw-invariant
lines must show 2-hourglasslike dispersion. In Fig. 7 we show
the full band structure of BiPd, and that along CE , a twofold
screw-invariant line. It should be mentioned that all the bands,
from the bottom valence bands to the top conduction bands,
show similar behavior—every four bands form a 2-hourglass
if the SOC is large enough.

HgTe is a IIB-VI semiconductor in zinc-blende (ZB) struc-
ture at ambient pressure, and turns into cinnabar phase at
1.4 GPa and further into rocksalt phase at 8 GPa [39–42].
Similar to BiPd, 3-hourglasslike dispersions are observed for
the bands along the TRIM-ended screw-invariant line �A, as
shown in Fig. 8. As discussed in the main text, in half of the
BZ, the number of Weyl points as the crossings of the second
and the third highest band below the Fermi energy realizes the
3 + 3 case. The band structure calculations show that HgTe in
cinnabar phase is a compensated semimetal, in which effects
of the Weyl points should be observable.

Tl3PbBr5 can achieve effective doping of rare-earth ele-
ment and can be applied as nonlinear optical devices [43].
Two phases are identified, the low-temperature orthorhombic
phase [space group (SG) P212121] and the high-temperature

FIG. 8. (a) Crystal structure of HgTe in SG P3121. (b) The first
BZ and the high symmetry points and lines. The screw-invariant
line ended with two TRIM is highlighted. (c) Band structure of
HgTe (with SOC). The valence bands near Fermi energy showing
3-hourglass band crossings are enlarged and shown on the right.

tetragonal phase (SG P41) [44], with transition temperature
about 239 ◦C. For the high-temperature phase there are 36
atoms per unit cell. As shown in Fig. 9, 4-hourglasslike disper-
sions along the fourfold screw-invariant lines �Z and MA, and
2-hourglasslike dispersions along the twofold screw-invariant
line XR, are observed. Since Tl3PbBr5 is an insulator, the
underlying Weyl points can only be revealed upon physical
or chemical doping.

Band structure calculations were performed by density
functional theory using the Vienna ab initio simulation pack-
age (VASP) [45]. The projector augmented-wave (PAW) [46]
pseudopotentials were used and the generalized gradient ap-
proximation of the PBE type functional [47] was used de-
scribing the exchange-correlation energy. A cutoff energy of
700 eV (500 eV for Tl3PbBr5) was used for the plane wave
expansion to ensure the convergence of total energy to be less
than 1 meV. The Monkhorst-Pack grid [48] for BZ sampling
was set to 7 × 7 × 7, 15 × 15 × 9, and 7 × 7 × 5 for BiPd,
HgTe, and Tl3PbBr5, respectively. The structures were fully
optimized with experimental lattice constants used, until the
forces were smaller than 0.01 eV/Å.

APPENDIX C: COMPATIBILITY RELATIONS

The n-hourglasslike band structures in nonsymmorphic
SGs can also be derived by considering the compatibility
relations [20] between irreducible representations at different
high symmetry points and lines. We derive the compatibil-
ity relations for P41 and P31 below. We will see that the
n-hourglasses are automatically generated as a rigorous result
of the symmetry requirement.
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FIG. 9. (a) Crystal structure of Tl3PbBr5 in SG P41. (b) The first
BZ and high symmetry points and lines. The fourfold and twofold
screw-invariant lines are highlighted by orange and blue, respec-
tively. (c) Band structure of Tl3PbBr5 (with SOC). The conduction
and valence bands near the Fermi energy showing 4- and 2-hourglass
band crossings are enlarged and shown on the right.

Consider SG P41 first. For nonsymmorphic SGs, the
SG representation D({α|�τ + �t}) can be obtained from the
corresponding point group representations �({α|0}) by
D({α|�τ + �t}) = ei�k·�τ ei�k·�t�({α|0}). For �(0, 0, 0), 
(0, 0, ω),
and Z (0, 0, 0.5) in the BZ, the corresponding point groups—
or the group of the �k vectors are the same, being {E , {C2z| 1

2
�t3},

{C4z| 1
4
�t3}, and {C−1

4z | 3
4
�t3}}. Since SOC is considered, the sym-

metry of bands are described by the double-valued representa-
tion [49] of the double SG. The corresponding character table
for the double-valued representations of the group of wave
vectors at �, 
, and Z are shown in Table II.

From the character table it is obvious that the representa-
tions at � and Z are both doubly degenerate. This results in

TABLE II. The double-valued irreducible representations of SG
P41, for the group of wave vectors at �, Z , and 
. The degeneracy
due to TRS for each representation is added at the end of each row,
with a and b meaning doubly degenerate and c nondegenerate [50].
Here 0 < ω < 0.5. For ω = 0, 
 becomes � and for ω = 0.5, 


becomes Z .

Repres. E {C2z| 1
2
�t3} {C4z| 1

4
�t3} {C−1

4z | 3
4
�t3} T. I.

�5 1 −i ei 3
4 π e−i 3

4 π b
�6 1 −i e−i 1

4 π ei 1
4 π b

�7 1 i e−i 3
4 π ei 3

4 π b
�8 1 i ei 1

4 π e−i 1
4 π b

Z5 1 1 −1 1 a
Z6 1 1 1 −1 a
Z7 1 −1 −i −i b
Z8 1 −1 i i b


5 1 −ieiπω ei 3
4 π ei 1

2 πω e−i 3
4 π ei 3

2 πω c

6 1 −ieiπω e−i 1

4 π ei 1
2 πω ei 1

4 π ei 3
2 πω c


7 1 ieiπω e−i 3
4 π ei 1

2 πω ei 3
4 π ei 3

2 πω c

8 1 ieiπω ei 1

4 π ei 1
2 πω e−i 1

4 π ei 3
2 πω c

the double degeneracy of the bands at � and Z , which are
both TRIM. Along 
, the representations are nondegenerate.
By comparing the characters of each representation, it is easy
to get the following compatibility relations between � and 
,

�5�7 → 
5 + 
7,

�6�8 → 
6 + 
8,
(C1)

and the compatibility relations between Z and 
,

Z5Z5 → 
5 + 
5,

Z6Z6 → 
6 + 
6,

Z7Z8 → 
7 + 
8. (C2)

The compatibility relations can be schematically shown in
Fig. 10(a), which result in the band structure similar to that
obtained in the main text by symmetry analysis. We see that
each representation has to appear twice to make the set of
bands closed, i.e., separated from another set. In Fig. 10(a)
they are arranged in such a way to result in a standard
4-hourglass band structure with three crossings along 
. By
tuning the sequence of the representations at � or Z we can
get a variant of the standard 4-hourglass with more crossings.

Similarly, the double-valued irreducible representations of
SG P31 for the group of wave vectors at �, �, and A are shown
in Table III, from which we have the compatibility relations
between � and �,

�4�4 → �4 + �4,

�5�6 → �5 + �6,
(C3)

and the compatibility relation between A and �,

A4A6 → �4 + �6,

A5A5 → �5 + �5. (C4)

The compatibility relations are shown schematically in
Fig. 10(b), with minimally two crossings along �.
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FIG. 10. (a) The compatibility relations between bands at �, 
,
and Z of crystals with P41 SG symmetry. (b) The compatibility
relations between bands at �, �, and A of crystals with P31 SG
symmetry.

APPENDIX D: BAND STRUCTURES WITHOUT SOC

The n-hourglasslike band structures appear in the presence
of SOC. In the main text we have pointed out that when SOC
is ignored, the n-hourglasslike structures turn into V -like, N-
like, and W -like structures for n = 2, 3, 4, respectively, using
our effective model. Here we give the band structures without
SOC and show that the V -, N-, and W -like band structures can
also be understood from the compatibility relations between
the single-valued irreducible representations of the group of
wave vectors.

For SG P41, the groups of wave vectors at �, Z , and 


are the same with that in Appendix C. The only difference is
that now we are concerned with the single-valued irreducible
representations [51], which describe the symmetry of bands
when the Hamiltonian contains no spin-dependent terms. The
results are shown in Table IV, from which we can derive the
compatibility relations between irreducible representations of

TABLE III. Double-valued irreducible representations of SG
P31 for the group of wave vectors at �(0, 0, 0), A(0, 0, 0.5), and
�(0, 0, ω) with 0 < ω < 0.5. The degeneracy due to TRS for each
representation is added at the end of each row, with a and b meaning
doubly degenerate and c nondegenerate.

Repres. E {C3z| 1
3
�t3} {C−1

3z | 2
3
�t3} T. I.

�4 1 −1 −1 a
�5 1 e−i 1

3 π ei 1
3 π b

�6 1 ei 1
3 π e−i 1

3 π b

A4 1 e−i 2
3 π e−i 1

3 π b
A5 1 1 −1 a
A6 1 ei 2

3 π ei 1
3 π b

�4 1 −ei 2
3 πω −ei 4

3 πω c
�5 1 e−i 1

3 π ei 2
3 πω ei 1

3 π ei 4
3 πω c

�6 1 ei 1
3 π ei 2

3 πω e−i 1
3 π ei 4

3 πω c

TABLE IV. The single-valued irreducible representations of SG
P41, for the group of wave vectors at �, Z , and 
. The degeneracy
due to TRS for each representation is added at the end of each
row, with a meaning nondegenerate and b and c doubly degenerate.
Here 0 < ω < 0.5. For ω = 0, 
 becomes � and for ω = 0.5, 


becomes Z .

Repres. E {C2z| 1
2
�t3} {C4z| 1

4
�t3} {C−1

4z | 3
4
�t3} T. I.

�1 1 1 1 1 a
�2 1 1 −1 −1 a
�3 1 −1 i −i b
�4 1 −1 −i i b

Z1 1 i ei 1
4 π ei 3

4 π b
Z2 1 i e−i 3

4 π e−i 1
4 π b

Z3 1 −i e−i 1
4 π e−i 3

4 π b
Z4 1 −i ei 3

4 π ei 1
4 π b


1 1 eiπω ei 1
2 πω ei 3

2 πω a

2 1 eiπω −ei 1

2 πω −ei 3
2 πω a


3 1 −eiπω −iei 1
2 πω iei 3

2 πω a

4 1 −eiπω iei 1

2 πω −iei 3
2 πω a

the group of wave vectors at � and 
,

�1 → 
1,

�2 → 
2, (D1)

�3�4 → 
3 + 
4,

and the compatibility relations between the irreducible repre-
sentation at Z and 
,

Z1Z3 → 
1 + 
3,

Z2Z4 → 
2 + 
4. (D2)

From the compatibility relations, the W -like band structure
along �Z can be deduced and is shown schematically in
Fig. 13(a).

In a similar way we can obtain the single-valued irreducible
representation of crystals with P31 SG symmetry, as shown in
Table V, from which the compatibility relations between �

TABLE V. Single-valued irreducible representations of SG P31

for the group of wave vectors at �(0, 0, 0), A(0, 0, 0.5), and
�(0, 0, ω), with 0 < ω < 0.5. The degeneracy due to TRS for each
representation is added at the end of each row, with a meaning
nondegenerate and b and c doubly degenerate.

Repres. E {C3z| 1
3
�t3} {C−1

3z | 2
3
�t3} T. I.

�1 1 1 1 a
�2 1 ei 2

3 π e−i 2
3 π b

�3 1 e−i 2
3 π ei 2

3 π b

A1 1 ei 1
3 π ei 2

3 π b
A2 1 −1 1 a
A3 1 e−i 1

3 π e−i 2
3 π b

�1 1 ei 2
3 πω ei 4

3 πω a
�2 1 ei 2

3 π ei 2
3 πω e−i 2

3 π ei 4
3 πω a

�3 1 e−i 2
3 π ei 2

3 πω ei 2
3 π ei 4

3 πω a
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FIG. 11. Band structure of HgTe without SOC. The valence
bands near Fermi energy showing N-like dispersions are enlarged
and shown on the right.

FIG. 12. Band structure of Tl3PbBr5 without SOC. The conduc-
tion and valence bands near Fermi energy showing W -like disper-
sions are enlarged and shown on the right of each screw-invariant
path.

FIG. 13. (a) The compatibility relations between bands at �, 
,
and Z of crystals with P41 SG, ignoring SOC. (b) Compatibility
relation for bands at �, �, and A of crystals with P31 SG, also
ignoring SOC.

and �,

�1 → �1,
(D3)

�2�3 → �2 + �3,

and the compatibility relations between A and �,

A1A3 → �1 + �3,
(D4)

A2 → �2,

are obtained. The N-like band structures along �A can be
deduced, as shown in Fig. 13(b).

The band structures of HgTe and Tl3PbBr5 without SOC
are shown in Figs. 11 and 12, respectively. For HgTe, along
the screw-invariant line (�A), the band structure shows N-like
dispersion, similar to that shown in Fig. 13(b). The shape can
vary due to permutations of the vertices at � and A as well as
curving. Similarly, for Tl3PbBr5, along �Z and MA, the band
structure show W -like dispersions as in Fig. 13(a). Along XR,
which is a twofold screw-invariant line, the bands show V -
like dispersion. In the whole plane ZRA the bands are doubly
degenerate, due to the presence of a twofold screw axis [11].

APPENDIX E: TIGHT-BINDING MODEL WITH A
THREEFOLD SCREW AXIS

In this Appendix we write a tight-binding model with
a threefold screw symmetry and TRS, which at the screw-
invariant lines reduces to the effective model presented in
the main text. We start with a quasi-1D spinless system
with a threefold screw symmetry shown in Fig. 14(a), which
resides on a helix. There are three sites in each unit cell,
with the z-direction coordinate mc, (m + 1

3 )c, and (m + 2
3 )c,

respectively, where m is an integer and c is the lattice constant
in z direction. Their projections onto the xy plane form an
equilateral triangle. We repeat the 1D system to generate the
3D lattice, of which the projection on the xy plane is shown
in Fig. 14(b). There are three sublattices indicated by three
different colors. Each sublattice has a layered structure, with
each layer being a triangle lattice. Let the lattice constant

115110-9



YIJIE ZENG, LUYANG WANG, AND DAO-XIN YAO PHYSICAL REVIEW B 101, 115110 (2020)

FIG. 14. (a) A quasi-1D system with a threefold screw symme-
try. All the dots are regarded as the same atoms, while different colors
indicate different sublattices. The system lies on a helix which has
a continuous screw symmetry. The screw axis is indicated by the
dashed line. (b) The tight-binding lattice composed of the quasi-1D
system (a). All hopping processes considered are illustrated for one
site. The purple solid lines represent the hopping t0 and the associated
SOC λ0, the black dashed lines t1 and λ1 and λ2, and the orange
solid lines t2 and λ0β. (c)–(e) The band structure along �A, KH , and
K ′H ′, respectively. The tight-binding parameters are t0 = 1, t2 = 0.5,
λ0 = 0.8, λ1 = 0.3, λ2 = 0.1, and β = 0.2.

in the xy plane be a, then the primitive vectors are a1 =
(
√

3
2 a,− 1

2 a, 0), a2 = (
√

3
2 a, 1

2 a, 0), and a3 = (0, 0, c), and the

reciprocal primitive vectors are b1 = 2π
a (

√
3

3 ,−1, 0), b2 =
2π
a (

√
3

3 , 1, 0), and b3 = 2π
c (0, 0, 1). We include three types of

hopping in our tight-binding model, indicated by the three
types of lines in Fig. 14(b): purple solid lines for out-of-plane
nearest-neighbor hopping t0, black dashed lines for in-plane
nearest-neighbor hopping t1, and orange solid lines for out-
of-plane next-nearest-neighbor hopping t2. The tight-binding
Hamiltonian without SOC H0(k) has elements

(H0)diag = 2t1

3∑
i=1

cos k · δi,

(H0)12 = t0 + t2(eik·δ2 + e−ik·δ3 ),

(H0)13 = t0eikzc + t2eikzc(e−ik·δ1 + eik·δ2 ),

(H0)23 = t0 + t2(e−ik·δ1 + eik·δ3 ), (E1)

where δi’s are defined as δ1 = a1, δ2 = a2 − a1, and δ3 =
−a2. The diagonal terms (H0)diag do not affect the band
crossings, so we will set t1 = 0 for simplicity. Other nonzero
elements are determined by the Hermitian condition. The
time-reversal operator is T = K where K represents the com-
plex conjugation. The TRS is expressed as

T H0(k)T −1 = H0(−k), (E2)

and the eight TRIM are 1
2

∑3
i=1(nibi ) with ni = 0 or 1. The

screw operation is represented by

S3 =
⎛⎝0 0 eikzc

1 0 0
0 1 0

⎞⎠. (E3)

H0 has the screw symmetry

S3H0(k)S†
3 = H0

[
Rz

(
2π

3

)
k
]
, (E4)

where Rz(θ ) represents rotation about the z axis by θ clock-
wise, and Rz( 2π

3 )k = (− 1
2 kx +

√
3

2 ky,−
√

3
2 kx − 1

2 ky, kz ).
When spin is taken into account, the time-reversal oper-

ation becomes T = iσyK and the screw operation becomes
S′

3 = S3 ⊗ ei π
3 σz . The SOC term must satisfy

T HSO(k)T −1 = HSO(−k) (E5)

and

S′
3HSO(k)S′†

3 = HSO

[
Rz

(
2π

3

)
k
]
. (E6)

The term associated with the out-of-plane nearest-neighbor
and next-nearest-neighbor hopping is given by

H (1)
SO = λ0i(A − A†) ⊗ σz, (E7)

where the nonzero elements of A are

A13 = eikzc[1 + β(e−ik·δ1 + eik·δ2 )],

A21 = 1 + β(e−ik·δ2 + eik·δ3 ),

A32 = 1 + β(eik·δ1 + e−ik·δ3 ). (E8)

Along screw-invariant lines, H (1)
SO reduces to the SOC term

of the effective model in the main text. This term combined
with H0 gives rise to the 3-hourglass band structure along
the kz axis, but the crossings reside on nodal lines. To get
Weyl points, we need more symmetry-allowed terms to break
those additional degeneracies. We include two SOC terms
associated with the in-plane nearest-neighbor hopping,

H (2)
SO = λ1

(∑
i

sin k · δi

)
I3 ⊗ σz (E9)

and

H (3)
SO = λ2

(∑
i

sin k · δi

)⎛⎝Mθ

Mθ− 2π
3

Mθ+ 2π
3

⎞⎠, (E10)

where Mθ = σx cos θ + σy sin θ which satisfies

ei π
3 σz Mθe−i π

3 σz = Mθ− 2π
3
. (E11)

The k-dependent factor is invariant under threefold screw
rotation. H (2)

SO and H (3)
SO preserve both screw symmetry and
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TRS. We may include more symmetry-allowed hopping
and SOC terms, but for the purpose of finding the Weyl
points it is enough to have these terms. The band struc-
ture is plotted along �A, KH , and K ′H ′ in Figs. 14(c),
14(d), and 14(e), respectively. Along �A, the bands form a
3-hourglass. We focus on the crossings between the second

and the third highest band. The symmetry-enforced crossing
along �A is labeled by a red circle, and the symmetry-
indirectly-enforced crossings along KH and K ′H ′ by blue
circles. This realizes the 3 + 3 case discussed in the main
text, and coincides with the case of HgTe in cinnabar
phase.
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M. Soljačić, Science 349, 622 (2015).

[33] Y. H. Chan, B. Kilic, M. M. Hirschmann, C.-K. Chiu, L. M.
Schoop, D. G. Joshi, and A. P. Schnyder, Phys. Rev. Mater. 3,
124204 (2019).

[34] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang,
C. Felser, M. I. Aroyo, and B. A. Bernevig, Nature (London)
547, 298 (2017).

[35] M. G. Vergniory, L. Elcoro, Z. Wang, J. Cano, C. Felser, M. I.
Aroyo, B. A. Bernevig, and B. Bradlyn, Phys. Rev. E 96,
023310 (2017).

[36] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory
(John Wiley & Sons, New York, 2008).

[37] B. Joshi, A. Thamizhavel, and S. Ramakrishnan, Phys. Rev. B
84, 064518 (2011).

[38] Z. Sun, M. Enayat, A. Maldonado, C. Lithgow, E. Yelland,
D. C. Peets, A. Yaresko, A. P. Schnyder, and P. Wahl, Nat.
Commun. 6, 6633 (2015).

[39] A. Werner, H. D. Hochheimer, K. Strössner, and A. Jayaraman,
Phys. Rev. B 28, 3330 (1983).

[40] N. G. Wright, M. I. McMahon, R. J. Nelmes, and A. San-
Miguel, Phys. Rev. B 48, 13111 (1993).

[41] T.-J. Hu, X.-Y. Cui, X.-F. Li, J.-S. Wang, X.-M. Lv, L.-S.
Wang, J.-H. Yang, and C.-X. Gao, Chin. Phys. B 24, 116401
(2015).

[42] S. Radescu, A. Mujica, J. López-Solano, and R. J. Needs, Phys.
Rev. B 83, 094107 (2011).

[43] O. Khyzhun, V. Bekenev, O. Parasyuk, S. Danylchuk,
N. Denysyuk, A. Fedorchuk, N. AlZayed, and I. Kityk, Opt.
Mater. 35, 1081 (2013).

[44] N. Denysyuk, V. Bekenev, M. Karpets, O. Parasyuk,
S. Danylchuk, and O. Khyzhun, J. Alloys Compd. 576, 271
(2013).

[45] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[46] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[47] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[48] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[49] L. Elcoro, B. Bradlyn, Z. Wang, M. G. Vergniory, J. Cano,

C. Felser, B. A. Bernevig, D. Orobengoa, G. de la Flor, and
M. I. Aroyo, J. Appl. Crystallogr. 50, 1457 (2017).

[50] C. Herring, Phys. Rev. 52, 361 (1937).
[51] M. Tinkham, Group Theory and Quantum Mechanics (Dover,

New York, 2003).

115110-11

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1103/PhysRevB.96.075110
https://doi.org/10.1103/PhysRevB.96.075110
https://doi.org/10.1103/PhysRevB.96.075110
https://doi.org/10.1103/PhysRevB.96.075110
https://doi.org/10.1016/j.scib.2017.05.014
https://doi.org/10.1016/j.scib.2017.05.014
https://doi.org/10.1016/j.scib.2017.05.014
https://doi.org/10.1016/j.scib.2017.05.014
https://doi.org/10.1103/PhysRevB.93.155140
https://doi.org/10.1103/PhysRevB.93.155140
https://doi.org/10.1103/PhysRevB.93.155140
https://doi.org/10.1103/PhysRevB.93.155140
https://doi.org/10.1103/PhysRevB.96.155206
https://doi.org/10.1103/PhysRevB.96.155206
https://doi.org/10.1103/PhysRevB.96.155206
https://doi.org/10.1103/PhysRevB.96.155206
https://doi.org/10.1038/nature19099
https://doi.org/10.1038/nature19099
https://doi.org/10.1038/nature19099
https://doi.org/10.1038/nature19099
https://doi.org/10.1038/s41467-017-01986-3
https://doi.org/10.1038/s41467-017-01986-3
https://doi.org/10.1038/s41467-017-01986-3
https://doi.org/10.1038/s41467-017-01986-3
https://doi.org/10.1103/PhysRevLett.121.226401
https://doi.org/10.1103/PhysRevLett.121.226401
https://doi.org/10.1103/PhysRevLett.121.226401
https://doi.org/10.1103/PhysRevLett.121.226401
https://doi.org/10.1103/PhysRevB.98.075146
https://doi.org/10.1103/PhysRevB.98.075146
https://doi.org/10.1103/PhysRevB.98.075146
https://doi.org/10.1103/PhysRevB.98.075146
https://doi.org/10.1103/PhysRevB.97.115125
https://doi.org/10.1103/PhysRevB.97.115125
https://doi.org/10.1103/PhysRevB.97.115125
https://doi.org/10.1103/PhysRevB.97.115125
https://doi.org/10.1103/PhysRevMaterials.2.074201
https://doi.org/10.1103/PhysRevMaterials.2.074201
https://doi.org/10.1103/PhysRevMaterials.2.074201
https://doi.org/10.1103/PhysRevMaterials.2.074201
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevA.93.061801
https://doi.org/10.1103/PhysRevA.93.061801
https://doi.org/10.1103/PhysRevA.93.061801
https://doi.org/10.1103/PhysRevA.93.061801
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevB.94.075115
https://doi.org/10.1103/PhysRevB.94.075115
https://doi.org/10.1103/PhysRevB.94.075115
https://doi.org/10.1103/PhysRevB.94.075115
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/ncomms12691
https://doi.org/10.1038/ncomms12691
https://doi.org/10.1038/ncomms12691
https://doi.org/10.1038/ncomms12691
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1103/PhysRevMaterials.3.124204
https://doi.org/10.1103/PhysRevMaterials.3.124204
https://doi.org/10.1103/PhysRevMaterials.3.124204
https://doi.org/10.1103/PhysRevMaterials.3.124204
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1103/PhysRevE.96.023310
https://doi.org/10.1103/PhysRevE.96.023310
https://doi.org/10.1103/PhysRevE.96.023310
https://doi.org/10.1103/PhysRevE.96.023310
https://doi.org/10.1103/PhysRevB.84.064518
https://doi.org/10.1103/PhysRevB.84.064518
https://doi.org/10.1103/PhysRevB.84.064518
https://doi.org/10.1103/PhysRevB.84.064518
https://doi.org/10.1038/ncomms7633
https://doi.org/10.1038/ncomms7633
https://doi.org/10.1038/ncomms7633
https://doi.org/10.1038/ncomms7633
https://doi.org/10.1103/PhysRevB.28.3330
https://doi.org/10.1103/PhysRevB.28.3330
https://doi.org/10.1103/PhysRevB.28.3330
https://doi.org/10.1103/PhysRevB.28.3330
https://doi.org/10.1103/PhysRevB.48.13111
https://doi.org/10.1103/PhysRevB.48.13111
https://doi.org/10.1103/PhysRevB.48.13111
https://doi.org/10.1103/PhysRevB.48.13111
https://doi.org/10.1088/1674-1056/24/11/116401
https://doi.org/10.1088/1674-1056/24/11/116401
https://doi.org/10.1088/1674-1056/24/11/116401
https://doi.org/10.1088/1674-1056/24/11/116401
https://doi.org/10.1103/PhysRevB.83.094107
https://doi.org/10.1103/PhysRevB.83.094107
https://doi.org/10.1103/PhysRevB.83.094107
https://doi.org/10.1103/PhysRevB.83.094107
https://doi.org/10.1016/j.optmat.2012.12.008
https://doi.org/10.1016/j.optmat.2012.12.008
https://doi.org/10.1016/j.optmat.2012.12.008
https://doi.org/10.1016/j.optmat.2012.12.008
https://doi.org/10.1016/j.jallcom.2013.04.162
https://doi.org/10.1016/j.jallcom.2013.04.162
https://doi.org/10.1016/j.jallcom.2013.04.162
https://doi.org/10.1016/j.jallcom.2013.04.162
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1107/S1600576717011712
https://doi.org/10.1107/S1600576717011712
https://doi.org/10.1107/S1600576717011712
https://doi.org/10.1107/S1600576717011712
https://doi.org/10.1103/PhysRev.52.361
https://doi.org/10.1103/PhysRev.52.361
https://doi.org/10.1103/PhysRev.52.361
https://doi.org/10.1103/PhysRev.52.361

