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Accurate optical spectra of solids from pure time-dependent density functional theory
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We present accurate optical spectra of semiconductors and insulators within a pure Kohn-Sham time-
dependent density functional approach. In particular, we show that the onset of the absorption is well reproduced
when comparing to experiment. No empirical information nor a theory beyond Kohn-Sham density functional
theory, such as GW , is invoked to correct the Kohn-Sham gap. Our approach relies on the link between the
exchange-correlation kernel of time-dependent density functional theory and the derivative discontinuity of
ground-state density functional theory. We show explicitly how to relate these two quantities. We illustrate the
accuracy and simplicity of our approach by applying it to various semiconductors (Si, GaP, GaAs) and wide-gap
insulators (C, LiF, Ar).
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Time-dependent density functional theory (TDDFT) [1]
has become, over the years, one of the few well-established
first-principles’ approaches to describe time-dependent phe-
nomena for a large variety of systems, both in the linear-
response regime and beyond (see, e.g., Refs. [2,3], and ref-
erences therein). In the last two decades TDDFT has been
increasingly applied to solids, and in particular to the calcula-
tion of the optical absorption spectra. Optical experiments in
general are very useful tools to investigate and characterize
condensed-matter systems; it is hence desirable to develop
efficient and reliable theoretical approaches to complement
experiment.

Within TDDFT the description of optical spectra depends
crucially on the exchange-correlation (xc) kernel fxc that
relates the response of the Kohn-Sham (KS) system to a
small perturbation to the response of the true system. Thanks
to the numerical efficiency of TDDFT, it is desirable that a
simple but accurate xc kernel is available for the calculation
of optical spectra. It is well-known that traditional xc kernels,
such as the random-phase approximation (RPA), i.e., fxc = 0,
and the adiabatic local-density approximation (ALDA) [4],
fail to describe two important features of optical spectra:
(1) excitonic effects and (2) the absorption onset. While
excitonic effects can nowadays be described accurately for
various systems with a several xc kernels [5–10], the correct
description of the absorption onset within TDDFT remains an
unsolved problem.

The starting point for a TDDFT calculation is the KS
band structure. As is well known, the KS band gap is, in
general, estimated to be much smaller than the fundamental
gap, i.e., the difference between the ionization potential and
the electron affinity [11–13]. Therefore, since TDDFT should
give the exact absorption spectra, the TDDFT xc kernel has
the difficult task of ensuring that there is no absorption be-
low the optical gap even though transitions between the KS
valence and conduction bands are available. Indeed, optical

spectra obtained with all currently available xc kernels show
absorption at energies close to the KS band gap, thereby
severely underestimating the absorption onset.

The standard approach to circumvent this problem is to
add a scissors operator [14] to the KS Hamiltonian. The
shift parameter is either obtained from experiment or from a
method that goes beyond KS-DFT, such as GW [15–19], or
generalized KS-DFT with a hybrid functional, such as those
based on a screened Coulomb interaction [20–23]. The former
approach is unsatisfactory because it is empirical while the
latter approach is unsatisfactory both conceptually and numer-
ically because (i) one has to go to a theory outside of the KS-
DFT framework, i.e., GW (or a hybrid functional), in order
to obtain spectra that are comparable with those observed in
experiment, and (ii) a GW (or a hybrid functional) calculation
is much more expensive than a pure KS-DFT calculation.
Eliminating the intermediate GW step yields a fully coherent
theory. Moreover, it leads to a large speed up of calculations,
making the optical spectra of larger systems accessible. We
note that one could use an ad hoc meta-generalized gradient
approximation functional specifically constructed to obtain a
KS gap similar to the fundamental gap [see, e.g., Ref. [24]].
However, this is not in agreement with fundamental DFT
theory because the KS gap is not equal to the fundamental
gap, the difference between the two being the derivative
discontinuity.

The TDDFT xc kernel fxc can be written exactly as [25]

fxc(1, 2) = χ−1
KS (1, 2) − χ−1

0 (1, 2)︸ ︷︷ ︸
f (1)
xc

− i
∫

d345χ−1
0 (1, 5)G(5, 3)G(4, 5)

δ�(3, 4)

δρ(2)︸ ︷︷ ︸
f (2)
xc

,

(1)
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where χKS and χ0 = −iGG are the KS and independent quasi-
particle polarizability, respectively, and G(1, 2) and �(1, 2)
are the one-body Green’s function and the self-energy, respec-
tively. The collective index (1) = (x, t ) = (r, s, t ) contains
the space, spin, and time coordinates. The xc kernel written in
Eq. (1) clearly exhibits two distinct parts. The first part f (1)

xc =
χ−1

KS − χ−1
0 only involves independent (quasi-)particles, and,

therefore, is responsible for the shift of the KS band gap
to the fundamental gap, while the second part, f (2)

xc , which
includes the electron-hole interaction, accounts for the exci-
tonic effects. In general, both terms are required to guarantee
a correct onset of the absorption, unless the exciton binding
energy is small, in which case f (1)

xc is sufficient. Although
Eq. (1) clearly distinguishes these two parts, it is not useful
in practical applications since it would require the calculation
of G. From the above discussion one would expect a link
between f (1)

xc and the derivative discontinuity of ground-state
DFT [26,27], which is defined as the difference between the
fundamental gap and the KS gap. One of the goals of this work
is to make this link explicit.

In order to obtain this formal link we first generalize the
two-point KS polarizability to four points: [28]

4χKS(x1, x2, x3, x4, ω)

=
∑
i, j

( f j − fi )
φi(x1)φ j (x2)φ∗

j (x3)φ∗
i (x4)

ω − (εi − ε j ) + iη
, (2)

where φi is a KS spinorbital, εi its energy, fi its occupation
(0 and 1 for unoccupied and occupied orbitals, respectively),
and η is a positive infinitesimal that ensures causality. For
the solids we study here i and j are multi-indices composed
of a band index (comprising the spin) and a Bloch vector, k
and k′, respectively. We note that, although the final goal is
the description of optical absorption for which k′ → k, the
discussion below is completely general, i.e., k �= k′. The usual
two-point KS polarizability is retrieved from the diagonal part
of 4χKS as

χKS(x1, x2, ω) = 4χKS(x1, x2, x1, x2, ω). (3)

We can express 4χKS in the Kohn-Sham basis by using the
following basis transformation:

4χ
[n4n2]

KS[n1n3] (ω) =
∫

dx1x2x3x4
4χKS(x1, x2, x3, x4, ω)

×φ∗
n1

(x1)φ∗
n2

(x2)φn3 (x3)φn4 (x4). (4)

This yields a 2M × 2M diagonal matrix with M the number
of KS excitations. It is schematically given by [29]

4χKS(ω)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ω−ω1

. . .
1

ω−ωM − 1
ω+ω1

. . .
− 1

ω+ωM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

where ωi is a KS excitation energy, i.e., a pole of χKS(ω),
and the matrix elements are arranged in order of increas-

ing excitation energy, i.e., ω1 � ω2 � ω3, etc. Note that the
χKS(ω) matrix representation has two blocks, one represent-
ing the resonant part (excitation energies) and the other one
the antiresonant part (de-excitation energies). In particular, the
lowest KS excitation energy is given by ω1 = εCBM − εVBM,
with εCBM and εVBM the KS energy of the conduction band
minimum (CBM) and the KS energy of the valence band
maximum (VBM), respectively.

We now assume that also χ0 is diagonal in the KS basis.
This is an approximation, but it is in accordance with various
practical calculations, in particular those based on the GW
method, in which χ0 is built with KS orbitals [17,30]. We can
thus write

4χ0(ω)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ω−
1

. . .
1

ω−
M − 1
ω+
1

. . .
− 1

ω+
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

where 
i are quasiparticle energy differences, i.e., differences
of ionization potentials and electron affinities. In particular,
the lowest excitation energy is given by 
1 = I − A, where
I is the first ionization potential and A is the first electron
affinity. Here we assume that the lowest excitation energy

1 corresponds to the same matrix element as the lowest KS
excitation energy. The four-point kernel 4 f (1)

xc = 4χ−1
KS − 4χ−1

0
has hence the following simple frequency-independent matrix
representation:

4 f (1)
xc =

⎛
⎜⎜⎜⎜⎜⎝


1−ω1

. . .

M −ωM


1−ω1

. . .

M −ωM

⎞
⎟⎟⎟⎟⎟⎠

.

(7)

The absorption onset is determined by the head of the
matrix 4 f (1)

xc , which we will refer to in the following as 4 f (1)
xc,00.

It is given by
4 f (1)

xc,00 = I − A − (εCBM − εVBM). (8)

It can be shown that the ionization potential is exactly equal
to minus the KS energy at the VBM, i.e., I = −εVBM [31–33].
Since an equivalent relation holds for the N + 1 system, i.e.,
the system with one additional electron, and the fact that A
should be equal to the first ionization potential of the N + 1
system, one can deduce that A = −εN+1

VBM, where εN+1
VBM is the

KS energy at the VBM of the N + 1 system. Therefore, we
can rewrite Eq. (8) as

4f (1)
xc,00 = εN+1

VBM − εCBM. (9)

Although Eq. (9) seems a simple expression, it is not easy
to calculate in practice. The problem arises from the fact that
εN+1

VBM is difficult to evaluate in solids since they are usually
described within the thermodynamic limit, which implies an
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TABLE I. GLLB-SC values for � and fundamental gap Eg.

system � [eV] Eg [eV]

Si 0.38 1.12
GaP 0.76 2.48
GaAs 0.27 1.03
C 1.31 5.45
LiF 4.11 14.91
Ar 4.63 14.83

infinite number of electrons from the outset. However, εN+1
VBM −

εCBM is equal to �, the difference between the fundamental
gap Eg and the KS gap EKS [27,33,34]. This difference is also
known as the derivative discontinuity [26,27]. Therefore we
arrive at the following relation:

4 f (1)
xc,00 = �. (10)

This is one of the main results of this work.
Assuming a rigid shift of the conduction bands, 4 f (1)

xc can
thus be approximated by 4 f (1)

xc = � 4I , where 4I is the four-
point identity matrix in transition space. In practice, however,
we prefer to use two-point quantities for numerical efficiency.

Therefore, it might be tempting to rotate 4 f (1)
xc to a two-

point kernel. However, this would lead to a very complicated
frequency-dependent quantity and would hence be very dif-
ficult to apply in practice [35]. We will avoid this problem
by including the effect of 4 f (1)

xc on the four-point response
function in transition space and only afterwards rotating the
latter to its two-point real-space representation.
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FIG. 1. Real [ε1(ω)] and imaginary [ε2(ω)] parts of the dielec-
tric function of bulk silicon. Solid line (black): Pure functional
(Pure); Dashed line (red): RPA; Dotted line (blue): experiment from
Ref. [51].
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FIG. 2. Real [ε1(ω)] and imaginary [ε2(ω)] parts of the di-
electric function of bulk GaP. Solid line (black): Pure functional
(Pure); Dashed line (red): RPA; Dotted line (blue): experiment from
Ref. [52].

We thus introduce a modified four-point KS polarizability
4χ

(1)
KS (ω) defined by

[4χ
(1)
KS

]−1
(ω) = [4χKS]−1(ω) − � 4I, (11)

where the superscript (1) indicates that χ
(1)
KS (ω) contains �.

Using the inverse of the basis set transformation in Eq. (4),
and taking the diagonal part of the resulting expression we
obtain the following expression for the modified two-point KS
polarizability:

χ
(1)
KS (x1, x2, ω) =

∑
i, j

( f j − fi )φi(x1)φ j (x2)φ∗
j (x1)φ∗

i (x2)

ω − (εi − ε j ) − sgn(εi − ε j )� + iη
,

(12)

which can be easily applied in practice. The true response
function can then be written in terms of χ

(1)
KS as

χ (ω) = χ
(1)
KS (ω) + χ

(1)
KS (ω)

[
vc + f (2)

xc (ω)
]
χ (ω), (13)

with vc the Coulomb potential. From χ (ω) one can readily
obtain the inverse dielectric function ε−1(ω) = 1 + vcχ (ω).
The optical spectra are obtained from the imaginary part of
εM (ω), the macroscopic part of ε(ω):

εM (ω) = ε1(ω) + iε2(ω). (14)

In order to apply our approach in practice we have to use
an approximation for �. As proposed by Kuisma et al. [36]
and further discussed by Baerends [33], � can be approx-
imated in terms of simple ground-state KS-DFT quantities
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FIG. 3. Real [ε1(ω)] and imaginary [ε2(ω)] parts of the di-
electric function of bulk GaAs. Solid line (black): Pure functional
(Pure); Dashed line (red): RPA; Dotted line (blue): experiment from
Ref. [53].

according to

� = Kx

N∑
i=1

[
√

εCBM − εi − √
εVBM − εi]

×〈φCBM| |φi|2
ρ0

|φCBM〉, (15)

where φCBM is the KS spinorbital corresponding to the CBM,
ρ0 is the ground-state density, and Kx = 8

√
2

3π2 ≈ 0.382.
The expression in Eq. (15) can be obtained from the GLLB

(Gritsenko-van Leeuwen-van Lenthe-Baerends) approxima-
tion to the ground-state xc potential derived in Ref. [37].
The GLLB functional is an approximation to the response
part of the exact exchange optimized effective potential. A
detailed derivation of Eq. (15) is given by Baerends [33].
The constant Kx can be obtained from the uniform electron
gas, where the GLLB exchange response potential becomes
exact.1 Fundamental gaps calculated using the derivative dis-
continuity in Eq. (15) have been reported for a large number
of solids [33,36,38–40]. In general, the results are excellent.
We note, however, that for gapped materials for which the KS
band gap is zero, the correction in Eq. (15) is zero as well. One
finds the same problem when calculating a G0W0 band gap on
top of a KS metallic band structure.

In practice, we use a slight generalization of TDDFT,
namely TD-current-DFT (TDCDFT) [41–44]. The practical

1Note that one could consider variation of K as a way to incorporate
correlation effects (using a Kxc).
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FIG. 4. Real [ε1(ω)] and imaginary [ε2(ω)] parts of the di-
electric function of diamond. Solid line (black): Pure functional
(Pure); Dashed line (red): RPA; Dotted line (blue): experiment from
Ref. [60].

details of how we solve the KS equations within TDCDFT can
be found elsewhere [45–50]. In particular our method works
in real space with two-point quantities and we calculate the
macroscopic polarization induced by a macroscopic electric
field in terms of the macroscopic current. This allows us to
have optical spectra with the correct optical gap and excitonic
effects at the cost of an RPA calculation, i.e., O(N3) scaling
instead of the O(N6) for methods working in transition space.
We approximate f (2)

xc with the polarization functional (PF)
of Ref. [8], which accurately describes the excitonic effects
in various systems. We will refer to the full kernel, i.e.,
f (1,GLLB)
xc + f (2,PF )

xc , as the Pure kernel to highlight the fact that
it is based on pure KS theory. We implemented our approach
in a modified version of the Amsterdam density functional
(ADF) code [54–56].

We illustrate our approach by applying it to the calcula-
tion of the optical spectra of two very different classes of
solids, standard semiconductors (Si, GaP, GaAs) and wide-
gap insulators (C, Ar, LiF). We use the following lattice
parameters: 5.43 Å for Si, 5.42 Å for GaP, 5.654 Å for GaAs,
3.534 Å for diamond, 4.026 Å for LiF, and 5.26 Å for solid
argon. Moreover, we use the TZ2P (triple-ζ + 2 polarization
functions) and QZ4P (quadruple-ζ + 4 polarization functions)
basis sets provided by ADF for bulk silicon and LiF and
for GaP, GaAs, diamond, and solid argon, respectively. The
k-space integrals are done analytically using a Lehmann-Taut
tetrahedron scheme [57]. The ground-state calculations are
done with the GLLB-SC xc potential [33,36,37], which is
based on the Perdew-Burke-Ernzerhof correlation potential
revised for solids (PBEsol) [58] and uses the GLLB approx-
imation to the exchange optimized effective potential. For
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FIG. 5. Real [ε1(ω)] and imaginary [ε2(ω)] parts of the di-
electric function of bulk LiF. Solid line (black): Pure functional
(Pure); Dashed line (red): RPA; Dotted line (blue): experiment from
Ref. [61].

GaP and GaAs we also include scalar relativistic effects. The
GLLB-SC values we obtained for � and the fundamental gap
are reported in Table I. We note that the approximation f (2,PF )

xc
induces a gap renormalization [25,59]; this is clear from the
example of solid argon for which we have an optical gap of
about 11.6 eV, which is about 3 eV smaller than the (direct)
fundamental gap.

In Figs. 1, 2, and 3 we report the dielectric function of
bulk Si, GaP, and GaAs, respectively, calculated with the Pure
functional at 0 K and compare it to the RPA spectrum as well
as to the experimental spectrum obtained at 30 K for Si, 15 K
for GaP, and 22 K for GaAs.

The Pure kernel yields an absorption spectrum that is
in good agreement with the experimental measurements for
the three systems. In particular, the peak positions and the
excitonic effects are well reproduced. Also, the real part of
the dielectric function obtained with the Pure kernel com-
pares well to the experiment. Instead, the RPA spectrum
exhibits the well-known shortcomings mentioned before, i.e.,
the underestimation of the absorption onset and the absence
of excitonic effects. In the case of GaAs, the RPA spectrum
is already in overall good agreement with experiment, and
the Pure kernel only slightly improves the exciton position
and intensity. Note that the splitting of the first peak in the
experimental spectrum of GaAs is not reproduced in the
calculated spectrum, because it is due to spin-orbit coupling,
which is neglected in our calculations. We note that the
theoretical spectra have more structure than the experimental
spectra because they are calculated at 0 K and no broadening
parameter is used to simulate temperature effects. In Figs. 4, 5,
and 6 we show the dielectric function of diamond, LiF, and
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FIG. 6. Real [ε1(ω)] and imaginary [ε2(ω)] parts of the dielec-
tric function of solid argon. Solid line (black): pure functional
(Pure); Dashed line (red): RPA; Dotted line (blue): experiment from
Ref. [62].

solid argon, respectively, calculated with the Pure kernel at
0 K and compare it to the RPA spectrum as well as to the
experimental spectrum obtained at room temperature. We see
that the onset of the absorption is well-reproduced as is the
full spectrum, except for an overestimation of the intensity
of the bound exciton in LiF and solid Ar. We note that
this overestimation is common to similar kernels derived to
describe excitonic effetcs [5,7]. Unfortunately, to the best of
our knowledge, there is no experimental data on the ε1(ω) of
solid Ar.

In conclusion, we have made explicit the link between the
derivative discontinuity of ground-state DFT and the xc kernel
of TDDFT. Using this link we proposed the Pure kernel, which
combines the derivative discontinuity and the polarization
functional, to describe optical spectra. We showed that it
yields optical spectra in good agreement with experiment
for typical examples of standard semiconductors and wide-
gap insulators. The central issue here is that these results
were obtained within a pure KS approach without resorting
to empirical data or approaches that go beyond TDDFT.
Finally we note that the kernel we propose in this work is
an approximation to the TDDFT kernel fxc, it hence can
in principle be used to calculate all the properties TDDFT
can access. In particular, it could be useful in total energy
calculations.
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