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Dynamical density response and collective modes of topological-insulator ultrathin films

Moslem Mir 1,2 and Saeed H. Abedinpour 1,3,*

1Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
2Faculty of Science, University of Zabol (UOZ), Zabol 98615-538, Iran

3Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan 45137-66731, Iran

(Received 5 November 2019; revised manuscript received 14 February 2020; accepted 20 February 2020;
published 6 March 2020)

We analytically calculate the intra- and intersurface dynamical density-density linear responses of ultrathin
topological insulator films with finite tunneling between their top and bottom surfaces in both metallic and
insulating regimes. Employing the random phase approximation we investigate the dispersions of in-phase and
out-of-phase collective density modes of this system in the metallic regime. We find that in contrast to the bilayers
of the conventional two-dimensional electron gas, where finite tunneling gaps out the out-of-phase mode, in
topological insulator thin films, this mode remains linear at long wavelengths. Depending on different system
parameters, the velocity of out-of-phase mode can be tuned to be larger or substantially smaller than the Fermi
velocity of electrons on the isolated surfaces of the topological insulator. Finite tunneling generally reduces the
energy of collective modes, making them more confined in space.
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I. INTRODUCTION

Plasmons are collective charge density excitations originat-
ing from the long-range nature of the Coulomb interaction.
Recently, collective modes of two-dimensional Dirac materi-
als have attracted a lot of interest [1–10]. Plasmons in these
materials are tunable through gate voltage which controls
the carrier concentration and usually have higher lifetimes
due to the high mobility of host materials. Plasmons have
interesting features in topological insulators, due to the strong
spin-orbit coupling [11]. They have long propagation lengths
and resonance frequencies in the mid-infrared and terahertz
spectral regions that can be tuned via the Fermi energy [12].
Density oscillations in topological insulators are accompa-
nied by transverse spin oscillations (i.e., spin plasmons) as
a result of spin-orbit coupling [13]. These peculiar features
suggest that the collective modes of topological materials
have the potential for novel applications in plasmonics and
spintronics. Due to the quantum confinement, the bulk band
gap of topological insulator thin film (TITF) is larger than the
bulk topological insulator [14]. This is a useful feature as it
provides a larger range of available chemical potentials for
the surface states, within the gap of bulk states. Nanoscale
structures of the topological insulators, such as thin films,
multilayers, and nanoribbons have large surface-to-volume
ratios, so the contribution of surface states in their different
physical properties are enormously enhanced. It has been
experimentally observed [15,16] that for Bi2Se3 topological
insulator thin films when the film thickness becomes less than
six quintuple layers (∼6 nm), a finite hybridization between
two surfaces opens a gap in the excitation spectrum of surface
states. In the following by ultrathin films, we mean the regime
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where the tunneling between two surfaces is not negligible.
Note that a finite gap in the spectrum of surface states of TITF
could be induced by other means such as strain [17,18] and
magnetic field [19,20].

Plasmons have been extensively studied in different double
layer structures [21–32]. The collective density modes of
topological insulator thin films in the absence of hybridiza-
tion between their surface states have been investigated re-
cently [30–32]. Electrons in uncoupled TITF behave like
massless Dirac fermions, therefore, their dynamical density
response function is similar to the one of graphene [33].
Within the random phase approximation (RPA), it was shown
that uncoupled TITF has two collective modes, optical and
acoustic modes, respectively, with the usual ω ∝ √

q and ω ∝
q long-wavelength dispersions [31].

In this paper, we study the dynamical density-density
response and the collective density modes of a topological
insulator ultrathin film, in the regime where the surface elec-
tronic states are hybridized due to finite intersurface tunneling.
Electrons in tunnel-coupled TITF behave like massive Dirac
fermions so their total density response at low doping is
similar to the density response of massive Dirac fermions [9],
such as in gapped graphene [3] and other buckled honeycomb
lattices [7]. However, in topological insulator thin films it
is possible to probe surface-resolved density responses and
therefore two distinct collective modes corresponding to the
in-phase and out-of-phase oscillation of electrons in two
surfaces is expected. Collective density modes of topological
insulator films and double-layer graphene, in the absence
of tunneling, have been theoretically investigated by several
groups [6,28,30–32]. Here we look at the effects of hybridiza-
tion between the surface states of topological insulators in the
ultrathin limit. The static density response and screening of
this system have been explored by Liu et al. [34].
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The rest of this paper is organized as follows. In Sec. II
we introduce our effective low-energy model Hamiltonian for
topological insulator thin film, obtain its intra- and intersur-
face density response functions, and discuss their behavior in
different regimes. In Sec. III we discuss the dispersions of
collective density modes of TITF and investigate their long-
wavelength behavior. Section IV summarizes our main find-
ings. Finally, the full analytic forms of the dynamical density
response functions in different regimes and their asymptotic
behavior are presented in Appendix.

II. MODEL HAMILTONIAN AND LINEAR
DENSITY-DENSITY RESPONSES

The effective low-energy single-particle Hamiltonian of a
TITF is given by [34–38]

Ĥk = h̄vFτz ⊗ [σ · (k × ẑ)] + tτx ⊗ σ0, (1)

where vF is the Fermi velocity of the surface states, τ and
σ are the Pauli matrices acting in the layer and real spin
spaces, respectively, and their zero components are 2 × 2
identity matrices in the corresponding space, t is the tunneling
between top and bottom surfaces, and ẑ is a unit vector in the
direction perpendicular to the surfaces. Note that the first term
on the right-hand side of Eq. (1) describes the Dirac fermions
on two surfaces of a topological insulator while the second
term is the hybridization of two surfaces due to the tunneling
of electrons in ultrathin films. This tunneling is responsible for
the gap opening in the dispersion of surface states. We should
note that the surface states of a tunnel coupled topological
insulator thin film may acquire a nontrivial Chern number
showing quantum spin Hall effect [15,39–41]. The inclusion
of at least quadratic terms in momentum in the Hamiltonian
of TITF is necessary to capture such topological effects.
Our main focus in this work, however, is on the collective
modes of the surface electrons in the regime where the Fermi
energy resides above the tunneling induced gap of the surface
states. The edge states are not expected to have a significant
effect on the surface collective modes. Therefore, here we
resort to the minimal effective model given by Eq. (1) which
captures the main low energy features of the surface states
of a TITF and at the same time is simple enough to make
the analytical treatment of dynamical responses and collective
modes feasible.

Diagonalizing the effective 4 × 4 Hamiltonian (1), one
obtains the dispersions of valence and conduction bands

εkλ = λ

√
h̄2v2

F k2 + t2, (2)

where λ = −1(+1) refers to two spin-degenerate valence
(conduction) bands. The corresponding normalized eigen-
states in the ψ = (ψ1,↑, ψ1,↓, ψ2,↑, ψ2,↓)T basis, where two
indices specify the layer and spin orientation of electrons,
read [34]

�
(1)
kλ

= 1√
2

(λ,−i cos αkeiθk , sin αk, 0)T ,

�
(2)
kλ

= 1√
2

(0, sin αk,−i cos αke−iθk , λ)T , (3)

FIG. 1. Schematic picture of an ultrathin film of topological
insulator with thickness d and dielectric constant εTI, surrounded by
different mediums on top (with the dielectric constant εT) and bottom
(with the dielectric constant εB).

with T referring to the transpose of a vector, and αk ≡
tan−1(t/h̄vFk) and θk ≡ tan−1(ky/kx ) are defined for nota-
tional convenience.

The density fluctuations δρl (q, ω) induced in the top (l =
1) or bottom (l = 2) surface in the linear response regime are
given by [42]

δρl (q, ω) =
∑

l ′
χll ′ (q, ω)V ext

l ′ (q, ω), (4)

where χll ′ (q, ω) is the surface-resolved linear density-density
response function and V ext

l ′ (q, ω) is the external potential
applied to surface l ′. Within the random phase approximation
the interacting linear density-density response function could
be written in the matrix form as

χRPA(q, ω) = [1 − �(q, ω)V (q)]−1�(q, ω), (5)

where

�(q, ω) =
(

�11(q, ω) �12(q, ω)
�21(q, ω) �22(q, ω)

)
(6)

and

V (q) =
(

V11(q) V12(q)
V21(q) V22(q)

)
(7)

are the matrices of noninteracting density-density response
function and Coulomb interaction [29], respectively. If we
assume that a thin slab of topological insulator with the
thickness of d and the dielectric constant of εTI is sandwiched
between different dielectric media, on the top and bottom with
the dielectric constants εT and εB, respectively (see Fig. 1),
the Coulomb interaction between electrons in the top surface
would be given by [30]

V11(q) = εTI cosh(qd ) + εB sinh(qd )

D(q)
vq, (8)

and the intersurface Coulomb interaction reads

V12(q) = V21(q) = εTI

D(q)
vq, (9)

and the Coulomb interaction in the bottom surface V22(q)
is obtained from interchanging εT ↔ εB in Eq. (8). Here,
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vq = 2πe2/q and

D(q) = εTI(εT + εB) cosh(qd ) + (
εTεB + ε2

TI

)
sinh(qd )

2
.

(10)
Note that, in the uniform, i.e., εTI = εT = εB = 1 limit, we
recover the familiar expressions V11(q) = V22(q) = vq, and
V12(q) = vqe−qd , for the intrasurface and intersurface interac-
tions, respectively.

The components of the surface-resolved noninteracting
density response functions are given by

�ll ′ (q, ω) = 1

S

∑
k,λ,λ′

F ll ′
λλ′ (k, k′)[ f (εkλ) − f (εk′λ′ )]

h̄ω + εkλ − εk′λ′ + i0+ , (11)

where S is the surface area, k′ ≡ k + q, f (ε) is the Fermi
distribution function, and the form factors are

F ll ′
λλ′ (k, k′) =

∑
i, j

〈
�

(i)
kλ

∣∣ρ l
∣∣� ( j)

k′λ′
〉〈
�

( j)
k′λ′

∣∣ρ l ′ ∣∣� (i)
kλ

〉
, (12)

with the surface-resolved density operators of TITF defined
as ρ l ≡ [τ 0 − (−1)lτ z] ⊗ σ 0/2. It is straightforward to show
that

F ll
λλ′ (k, k′) = 1

2

(
1 + λλ′ h̄2v2

Fk · k′

εkεk′

)
, (13)

and

F 12
λλ′ (k, k′) = F 21

λλ′ (k, k′) = 1

2

λλ′t2

εkεk′
. (14)

Here, εk ≡ |εkλ| is introduced for notational convenience. We
should note that the total density response function

�(q, ω) =
∑
l,l ′

�ll ′ (q, ω)

= 1

S

∑
k,λ,λ′

f (εkλ) − f (εk′λ′ )

h̄ω + εkλ − εk′λ′ + i0+

×
(

1 + λλ′ h̄2v2
Fk · k′ + t2

εkεk′

)
, (15)

apart from a trivial degeneracy factor, is identical to the
dynamical density response function of two-dimensional mas-
sive Dirac fermions [3,9,43]. It is possible to find analytic
expressions for the real and imaginary parts of the layer-
resolved density-density response functions for arbitrary fre-
quency and wave vector (cf. Appendix). As the total density
response function �(q, ω) is analytically known [3], we have
simply presented the analytic expressions for the intersurface
component of the density response function �12(q, ω) in
Appendix. The intrasurface component of the density re-
sponse function could be readily obtained from �11(q, ω) =
�(q, ω)/2 − �12(q, ω). The behavior of dynamical density
response function versus frequency at two representative wave
vectors is illustrated in Fig. 2. The imaginary parts of both
intrasurface and intersurface density responses are nonzero
inside the intraband and interband electron-hole excitation
continuum, where the dissipation due to single particle exci-
tations is allowed. Sharp changes in both real and imaginary
parts of the response functions characterize the boundaries of

FIG. 2. The real (top) and imaginary (bottom) parts of intrasur-
face (left) and intersurface (right) components of the noninteracting
density-density response function of a topological insulator ultrathin
film versus frequency for two fixed values of the wave vector. The
tunneling between two surfaces is set equal to t = 0.7 μ, where μ is
the chemical potential.

the electron-hole continuum in the (q, ω) plane (cf. Fig. 8 for
an illustration of different regions).

A. The static limit

The static density-density response functions are obtained
from the ω → 0 limit of the dynamical responses. In the
electron doped metallic regime i.e., μ > t , where μ is the
chemical potential of system, we find

�11(q) = − μ

2π h̄2v2
F

⎧⎨
⎩1 − �(q − 2kF)

⎡
⎣

√
q2 − 4k2

F

2q

− h̄vFq

4μ
arctan

⎛
⎝ h̄vF

√
q2 − 4k2

F

2μ

⎞
⎠

⎤
⎦

⎫⎬
⎭, (16)

and

�12(q) = t2�(q − 2kF)

2π h̄3v3
Fq

arctan

⎛
⎝ h̄vF

√
q2 − 4k2

F

2μ

⎞
⎠, (17)

where kF =
√

μ2 − t2/(h̄vF) is the Fermi wave vector in the
conduction band and �(x) is the Heaviside step function. If
the chemical potential lies inside the band gap, i.e., |μ| < t ,
the system at zero temperature behaves like an insulator and
we get

�11(q) = − t

4π h̄2v2
F

− q

16π h̄vF
arccos

(
4t2 − h̄2v2

F q2

4t2 + h̄2v2
F q2

)
,

(18)
and

�12(q) = t2

4π h̄3v3
Fq

arccos

(
4t2 − h̄2v2

F q2

4t2 + h̄2v2
F q2

)
, (19)
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FIG. 3. Top: the intrasurface (left) and intersurface (right) com-
ponents of the noninteracting static density-density response function
of an electron doped topological insulator ultrathin film versus wave
vector for t = 0.7 μ (solid red curves). Results in the vanishing tun-
neling limit (dashed black curves) are also presented for comparison.
Bottom: same as the top panels but for the case when the chemical
potential lies inside the band gap i.e., |μ| < t .

which are clearly independent of the chemical potential.
The behavior of the intersurface and intrasurface compo-
nents of the static noninteracting density-density response
function of a TITF in the static regime is illustrated in
Fig. 3. In the metallic regime (Fig. 3, top panels), the static
intersurface response vanishes for q < 2kF, where kF is the
Fermi wave vector. The intrasurface response is constant in
the same regime, typical behavior of two-dimensional sys-
tems [42]. Restoration of the backscattering gives rise to
the suppression of both intrasurface and intersurface static
density-density response functions for q > 2kF [34]. At large
wave vectors, the intersurface response vanishes but the ab-
solute value of the intrasurface response linearly increases
with q. This linear dependence of the static density re-
sponse function on the wave vector is similar to other two-
dimensional Dirac materials and originates from the interband
transitions [1]. Combined with the 1/q behavior of the bare
Coulomb interaction, this gives rise to the enhancement of
the effective dielectric constant of the medium. When the
chemical potential lies inside the band gap (Fig. 3, bottom
panels), the total density response vanishes in the long-
wavelength limit, as expected for an insulator, however, the
surface resolved responses are finite. We should note that
these behaviors have been already investigated for the inter-
band and intraband components of the static density-density
response function of TITF by Liu et al. [34].

B. The dynamical responses in the q = 0 limit

In the vanishing wave vector limit, only the interband tran-
sitions contribute to the dynamical density-density response
functions and for an electron doped metallic system (i.e.,
μ > t) we obtain

�e �11(0, ω) = − t2

4π h̄3v2
Fω

ln

(∣∣∣∣2μ + h̄ω

2μ − h̄ω

∣∣∣∣
)

, (20)

and


m �11(0, ω) = − t2

4h̄3v2
Fω

�(h̄ω − 2μ), (21)

for the real and imaginary parts of the intrasurface density-
density response functions, respectively. Also note that
we have �12(0, ω) = −�11(0, ω), and the total dynamical
density-density response function vanishes for q = 0. In the
|μ| < t limit, replacing the chemical potential μ in Eqs. (20)
and (21) with the tunneling t , we find the corresponding
dynamical density-density response functions in the insulating
regime.

III. COLLECTIVE MODES

Collective density oscillations could be obtained from the
poles of the interacting density response function (5), which
is equivalent to the solutions of the following equation

[1 − λ+(q, ω)][1 − λ−(q, ω)] = 0, (22)

with

λ± = V+�+ + V−�−
2

±
√(

V+�+− V−�−
2

)2

+ V 2
a �+�−,

(23)
where �± = �11 ± �12, V± = (V11 + V22)/2 ± V12, and
Va = (V11 − V22)/2. Note that for εB = εT, we have V11 = V22,
then Eq. (22) simplifies to

[1 − V+(q)�+(q, ω)][1 − V−(q)�−(q, ω)] = 0, (24)

and the symmetric and asymmetric modes become totally de-
coupled. The solutions of Eq. (22) result in two collective den-
sity mode branches ω+(q) and ω−(q), corresponding, respec-
tively, to the optical and acoustic density modes. Undamped
collective modes occur in the regions of the (q, ω) plane
where the imaginary parts of the density response functions
are zero, i.e., outside the electron-hole continuum (EHC). The
analytic expressions for the noninteracting density response
functions �ll ′ (q, ω) are provided in Appendix. The imaginary
parts of the density response functions are nonzero only in
regions 3A, 4A, 1B, and 5B [see, Eq. (A5) and Fig. 8 for
the definitions]. Note that at zero temperature no collective
density oscillation could be excited in the insulating regime
(i.e., |μ| < t). Therefore, in the following, we discuss the
dispersions of collective modes in the metallic regime.

A. Analytic results in the long-wavelength limit

We begin with the presentation of our analytic results for
the dispersions of collective modes in the long wavelength,
i.e., q → 0 limit. For the optical mode ω+(q) in the long wave-
length limit, upon substituting the dynamical long wavelength
limit behaviors of density response functions from Eqs. (A8)
and (A9), together with the long wavelength behaviors of the
Coulomb interactions from Eqs. (A12) and (A13), into the first
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square bracket on the left-hand side of Eq. (22), we obtain

h̄ω+(q → 0)

μ
�

√
1 − t̄2

√
2αeeh̄vFq

(εT + εB)μ
+ O(q3/2), (25)

which has the expected
√

q dependance of the plasmon dis-
persion in two dimensions [42]. Here, t̄ = t/μ < 1 is the
dimensionless tunneling parameter, and αee = e2/(h̄vF) is the
dimensionless coupling constant of massless Dirac electrons.
This expression is valid for small wave vectors, i.e., qd �
(εT + εB)/εTI, and it is interesting to note that the long-
wavelength behavior of the optical mode is not sensitive
to the dielectric constant of the topological insulator. For
intermediate values of q, it is possible to find the leading order
quantum correction to the mode dispersion [25,31]

h̄ω+(q → 0)

μ
�

√
1 − t̄2

√
2αeeh̄vFq

(εT + εB)μ

(
1 + qdεTI

εT + εB

)−1

,

(26)

which is valid for qd � 1.
To obtain the acoustic mode ω−(q) in the q → 0 limit, the

long wavelength behaviors of the density response functions
in the acoustic limit from Eqs. (A10) and (A11), together with
the long wavelength limits of the Coulomb interactions should
be substituted into the second square bracket on the left-hand
side of Eq. (22) to give

ω−(q → 0) � vsq =
√

1 − t̄2

g(γ , t̄ )
vFq, (27)

with

g(γ , t̄ ) =
√

1 −
(

1 − t̄2

1 + √
1 − t̄2/γ

)2

, (28)

and γ = αeekFd/εTI. As expected, the out-of-phase oscillation
of electrons in two surfaces is influenced by the dielectric
constant of the TITF through γ . Note that the border between
4A and 2A regions (cf., Fig. 8) at the long wavelength limit
is given by ω = √

1 − t̄2vFq. As g(γ , t̄ ) is always smaller
than one, we have vs >

√
1 − t̄2vF, and the acoustic mode

is always undamped at long wavelengths. For vs > vF this
mode lies in region 5B, whereas for

√
1 − t̄2vF < vs < vF

it resides in region 4A. As we have illustrated in Fig. 4,
depending on different system parameters, the velocity of
acoustic mode vs can be larger or substantially smaller than
the Fermi velocity of isolated surface states vF. In the absence
of intersurface hybridization, i.e., t = 0, we have μ = h̄vFkF,
and Eqs. (25), (26), and (27) all reduce to the standard results
obtained for double layer graphene and topological insulator
thin films in the absence of tunneling [30,31].

B. Numerical results on the dispersions of collective modes

The dispersions of the collective modes for arbitrary wave
vectors could be obtained from the numerical solution of
Eq. (22). The system parameters we have used in our numeri-
cal calculations are t ≈ 126 meV and vF ≈ 4.71 × 105 ms−1,
which results in h̄vF ≈ 3.1 eV Å and αee ≈ 4.65. These values

FIG. 4. The sound velocity vs (in the units of Fermi velocity vF)
versus interlayer tunneling parameter for fixed values of γ (left) and
versus coupling parameter γ for fixed values of tunneling (right).

correspond to an ultrathin film of Bi2Se3 with the thickness
of two quintuple layers d ≈ 20 Å, whose electronic structure
has been explored experimentally through the angel resolved
photoemission spectroscopy [15]. Unless otherwise stated,
we are going to use εTI = 30 for the dielectric constant of
the Bi2Se3 thin film, which is smaller than its bulk value
(i.e., εBulk ≈ 100) [44]. We also take εT = 1 and εB = 10,

FIG. 5. The full dispersion of the optical mode (solid red) of a
topological insulator ultrathin film is compared to its analytic long
wavelength solutions obtained from Eqs. (25) (dotted black) and (26)
(dash-dotted black). The chemical potential μ = 252 meV and the
tunneling t = 126 meV has been used here. The full dispersion in the
absence of tunneling (dashed black) is also plotted for comparison.
For the dielectric constants we have used εTI = 30, εT = 1, and
εB = 10. Thin solid black lines separate different regions in the
(q, ω) plane, as introduced in Appendix, and the gray area refers
to the electron-hole continuum where the imaginary part of the
noninteracting density response functions are nonzero.
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FIG. 6. Full dispersion of the acoustic collective mode (solid
red) of a topological insulator ultrathin film is compared to its
analytic long wavelength solution from Eq. (27) (dotted black). The
chemical potential μ = 252 meV has been used here together with
t = 126 meV. The full dispersion of the acoustic mode in the absence
of tunneling (dashed black) is also plotted for comparison. For the
dielectric constants we have used εTI = 2, εT = 1, and εB = 10. Thin
solid black lines separate different regions in the (q, ω) plane, as
introduced in Appendix, and the gray area refers to the electron-hole
continuum where the imaginary part of the noninteracting density
response functions are nonzero.

corresponding to the dielectric constants of air and sapphire
substrate Al2O3, respectively [31].

In Fig. 5 the dispersion of optical collective mode ω+(q)
is illustrated. The full numerical results are compared with
the analytical expressions in Eqs. (25) and (26). Note that
the dispersion of optical mode from Eq. (26) gives a
plateau at large wave vectors, while such a feature is ab-
sent in the full numerical dispersion. It is also evident that
the finite tunneling reduces the energy of the symmetric
mode.

The full dispersion of the acoustic mode is shown in Fig. 6.
Here, for better visibility, we have used a much smaller value
for the dielectric constant of the topological insulator thin film
(i.e., εTI = 2) as the mode dispersion for εTI = 30 lies too
close to the boundary of EHC. Again, it is evident that finite
tunneling lowers the energy of the collective mode. Notice
that in the presence of a finite tunneling between two surfaces,
undamped collective modes can also propagate in region 4A,
where ω±(q) < vFq.

A better insight into the dispersions of collective modes
and their Landau damping inside the EHC could be
gained from the imaginary parts of the inverse dielectric
functions


m

[
1

εRPA± (q, ω)

]
= 
m

[
1

1 − λ±(q, ω)

]
, (29)

which represent the spectral weights of the collective modes.
The imaginary parts of the inverse dielectric functions have
Dirac delta form at ω = ω±(q) outside the EHC and acquire

FIG. 7. Top: density plot of the symmetric component of the
inverse dielectric function −
m[1/εRPA

+ (q, ω)] versus wave vector q
and frequency ω. In producing this plot we have used μ = 252 meV,
t = 126 meV and εTI = 30, εT = 1, and εB = 10 for the dielectric
constants of different regions. The Dirac delta peak outside the
EHC has been broadened by 7 × 10−3 for better visibility. Dashed
lines show the boundaries between different regions in the (q, ω)
plane as introduced in Appendix. Bottom: same as the top panel
but for the asymmetric components of the inverse dielectric func-
tion −
m[1/εRPA

− (q, ω)], with εTI = 2 and the broadening factor
of 3 × 10−2.

finite width inside the continuum due to the Landau damping
of the collective modes [42].

Imaginary parts of the symmetric and asymmetric com-
ponents of the inverse dielectric functions are illustrated in
Fig. 7. The dispersions of collective modes as well as their
broadening due to Landau damping inside the EHC are easily
recognizable.
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IV. SUMMARY

We have obtained analytic expressions for the surface
resolved dynamical linear density-density response functions
of a topological insulator ultrathin film with finite tunneling
between its top and bottom surfaces. The full dispersions of
the collective density modes and their analytic form at the
long-wavelength limit are also investigated. The velocity of
acoustic mode and the Drude weight of the optical mode is
tunable through different system parameters. The energy of
both optical and acoustic modes are suppressed due to the
intersurface tunneling. This means that for a given energy,
the collective mode is shifted to large wave vectors, making
them more confined in space. Moreover, the tunneling induced
finite gap in the spectrum of surface states makes it possible to
switch on or off the plasmon modes through the gate voltage
which tunes the chemical potential. Similar behavior has been
observed in tunnel coupled double-layer graphene [45]. These
features are expected to be useful for practical implementation
in future plasmonic circuitry.

Finally, we note that topological insulator thin films are
very interesting systems for the study of different many-
body phenomena such as the Coulomb drag effect [46] and
excitonic condensation [47]. Finite tunneling between the two
surfaces of a TITF reduces the lifetime of excitons and also
makes the detection of Drag current very difficult. However, a
double-layer structure consisting of two tunnel coupled topo-
logical insulator thin films separated by a thin semiconducting
layer which prevents tunneling between two films might be
an interesting setup for the investigation of such many-body
effects.
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APPENDIX: ANALYTIC RESULTS FOR THE
NONINTERACTING DENSITY-DENSITY RESPONSE

FUNCTION OF TITF

In this Appendix we calculate the surface resolved non-
interacting density-density response functions of a topolog-
ical insulator ultrathin film as defined through Eq. (11).
As the total density-density response function �(q, ω) =∑

l,l ′ �ll ′ (q, ω) of a TITF is identical to the density-density
response function of 2D massive Dirac fermions, whose
full analytic expressions are available in the literature [3,9],
here we will simply present the analytic expressions for
the intersurface density-density response function �12(q, ω).
The intrasurface components could be readily obtained us-
ing �11(q, ω) = �(q, ω)/2 − �12(q, ω). From Eqs. (11)
and (14) we find

�12(q, ω) = 1

2S

∑
k,λ,λ′

(
λλ′t2

εkεk′

)
f (εkλ) − f (εk′λ′ )

h̄ω + εk,λ − εk′,λ′ + i0+ ,

(A1)

where k′ ≡ k + q. Assuming μ > t and ω > 0, and following
similar procedures as Refs. [3,9], at the zero temperature
we find

�e �12(q, ω) = f (q, ω)x2
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1A

arccos
( 2μ−h̄ω

h̄vFqx0

)
2A

arccos
( 2μ+h̄ω

h̄vFqx0

) + arccos
( 2μ−h̄ω

h̄vFqx0

)
3A

arccos
( 2μ−h̄ω

h̄vFqx0

) − arccos
( 2μ+h̄ω

h̄vFqx0

)
4A

arccosh
( 2μ+h̄ω

h̄vFqx0

) − arccosh
( 2μ−h̄ω

h̄vFqx0

)
1B

arccosh
( 2μ+h̄ω

h̄vFqx0

)
2B

arccosh
( 2μ+h̄ω

h̄vFqx0

) − arccosh
( h̄ω−2μ

h̄vFqx0

)
3B

arccosh
( h̄ω−2μ

h̄vFqx0

) + arccosh
( 2μ+h̄ω

h̄vFqx0

)
4B

arcsinh
( 2μ+h̄ω

h̄vFq
√

−x2
0

) − arcsinh
( 2μ−h̄ω

h̄vFq
√

−x2
0

)
5B

,

(A2)

and


m �12(q, ω) = f (q, ω)x2
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arccosh
( 2μ−h̄ω

h̄vFqx0

) − arccosh
( 2μ+h̄ω

h̄vFqx0

)
1A

− arccosh
( 2μ+h̄ω

h̄vFqx0

)
2A

0 3A

0 4A

0 1B

arccos
( 2μ−h̄ω

h̄vFqx0

)
2B

π 3B

π 4B

0 5B

, (A3)
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FIG. 8. Regions with different expressions for the density-
density response function. Here we have used t = 0.7μ.

for the real and imaginary parts of the intersurface density-
density response function, respectively. Here, we have defined
x0 =

√
1 + 4t2/(h̄2v2

Fq2 − h̄2ω2), x1 = 2t/(h̄vFq), and

f (q, ω) = q2

16π

√∣∣h̄2v2
F q2 − h̄2ω2

∣∣ . (A4)

Different regions in the (q, ω) plane are introduced according
to the arguments of the Dirac delta functions in the imaginary
part of the density-density response function [3,9]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1A : h̄ω < μ −
√

h̄2v2
F (q − kF)2 + t2

2A : ±μ ∓
√

h̄2v2
F(q − kF )2 + t2 < h̄ω

< −μ +
√

h̄2v2
F(q + kF)2 + t2

3A : h̄ω < −μ +
√

h̄2v2
F(q − kF)2 + t2

4A : −μ +
√

h̄2v2
F(q + kF)2 + t2 < h̄ω < h̄vFq

1B : q < 2kF ,

√
h̄2v2

Fq2 + 4t2 < h̄ω

< μ +
√

h̄2v2
F(q − kF)2 + t2

2B : μ +
√

h̄2v2
F(q − kF)2 + t2 < h̄ω

< μ +
√

h̄2v2
F(q + kF)2 + t2

3B : h̄ω > μ +
√

h̄2v2
F(q + kF)2 + t2

4B : q > 2kF ,

√
h̄2v2

Fq2 + 4t2 < h̄ω

< μ +
√

h̄2v2
F(q − kF)2 + t2

5B : h̄vFq < h̄ω <

√
h̄2v2

Fq2 + 4t2

, (A5)

and are also illustrated in Fig. 8.

1. Results in |μ| < t limit

When the chemical potential lies inside the band gap,
only the interband transitions contribute to the density-density

response function, and we find

�e �0
12(q, ω)

= t2

4π h̄3v2
F

(
v2

F q2 − ω2
)

|v2
F q2 − ω2|3/2

×
{
�(vF q − ω) arccos

(
v2

F q2 − ω2 − 4t2/h̄2

ω2 − v2
F q2 − 4t2/h̄2

)

− �(ω − vF q) ln

⎛
⎝ (2t/h̄ +

√
ω2 − v2

F q2)2

|ω2 − v2
F q2 − 4t2/h̄2|

⎞
⎠

⎫⎬
⎭,

(A6)

and


m �12(q, ω) = t2

4h̄3v2
F

√
ω2 − v2

Fq2

×�(h̄2ω2 − h̄2v2
Fq2 − 4t2), (A7)

respectively, for the real and imaginary parts of the intersur-
face density-density response functions.

2. The long-wavelength behaviors

To obtain the long-wavelength behavior of the collective
modes, we investigate the vanishing q limit of the intrasurface
and intersurface density-density response functions, in the
dynamical and acoustic limits [42], from the full analytic
results we have just presented for the μ > t regime. The
long-wavelength behavior of the optical mode is obtained
from the long-wavelength behaviors of �ll ′ (q, ω) taken in
the dynamical limit. For μ > t , taking the q → 0 and ω → 0
limits such that ω2/q = c = constant, one finds

�11(q, ω) ≈ μ

8π h̄2 (1 − t̄2)(2 − t̄2)
q

c
, (A8)

and

�12(q, ω) ≈ μ

8π h̄2 (1 − t̄2)t̄2 q

c
, (A9)

where t̄ = t/μ. To obtain the long wavelength behavior of the
acoustic mode, the long wavelength behavior of �ll ′ (q, ω) in
the acoustic (i.e., ω/q = y = constant) limit

�11(q → 0, y) ≈ μ

4π h̄2v2
F

⎡
⎣ y(2 − t̄2)√

y2 − v2
F(1 − t̄2)

− 2

⎤
⎦,

(A10)
and

�12(q → 0, y) ≈ μ

4π h̄2v2
F

⎡
⎣ yt̄2√

y2 − v2
F(1 − t̄2)

⎤
⎦, (A11)

are required.
The elements of the Coulomb interaction matrix Eq. (7) in

the long wavelength limit read

V11(q → 0) ≈ 4πe2

(εT + εB)q
− 4πe2d (ε2

TI − ε2
B)

εTI(εT + εB)2
, (A12)
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and

V12(q → 0) ≈ 4πe2

(εT + εB)q
− 4πe2d (ε2

TI + εTεB)

εTI
(
εT + εB

)2 . (A13)

The long wavelength behavior of V22(q) could be obtained
from Eq. (A12) upon interchanging εT ↔ εB.
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