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Photon drag of superconducting fluctuations in two-dimensional systems
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The theory of photon drag of superconducting fluctuations in two-dimensional electron gas is developed. It
is shown that the frequency dependence of the induced current is qualitatively similar to the case of photon
drag of conventional two-dimensional degenerate electron gas. With decreasing temperature the magnitude of
the effect increases dramatically and the current of superconducting fluctuations carries an additional power of
reduced temperature in comparison with the Aslamazov-Larkin contribution. The developed effect is expected
to be sufficient to be visible against the conventional photocurrent background.
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I. INTRODUCTION

Light absorption by condensed matter is accompanied by
the transfer of the momentum of photons, besides their energy,
to charged excitations. Such transfer results in the occurrence
of the electric current in the system and this effect is called
photon drag. The magnitude and direction of photocurrent
depend on many factors, such as light polarization, inci-
dent angle, and frequency. Moreover, the transport features
of carriers in condensed matter and the microscopic mech-
anism of interaction between light and carriers drastically
influence the photon drag. That is why this effect is widely
used in the study of numerous systems: semiconductors
[1,2], two-dimensional (2D) electron gas [3–5], graphene [6],
topological insulators [7], metal-semiconductor nanocom-
posite [8], two-dimensional exciton gas [9–11], and metal
films [12,13].

At the same time, investigation of superconductivity in
two-dimensional systems plays a large role in condensed-
matter physics. Starting from thin metallic films, the sam-
ples fabrication technologies and experimental tools become
suitable for the study of highly crystalline superconductors
possessing extremely small thicknesses down to a monolayer
[14]. Among atomically thin superconductors, systems based
on transition metal dichalcogenides (TMD), e.g., MoS2, have
aroused interest in recent years [15–19]. The remarkable
feature of such systems is the use of ionic liquid gate for
creating a large density of electrons, reaching values up to
3 × 1014 cm−2.

To date, the transition of TMD and main-group metal
dichalcogenide flakes from the normal (resistive) to the super-
conductive phase have been studied in experiments [20–28].
However, in the range of temperature close to the phase
transition, T � Tc, the behavior of TMD flakes in the elec-
tromagnetic (EM) field has not been completely studied ex-
perimentally as well as theoretically. In this direction, it was
observed that the superconductive fluctuations in the normal
phase make the effect of magnetochiral anisotropy noticeably
more distinct [29].

By now, the investigations of fluctuation phenomena in
superconductors have opened comprehensive facilities in

identification of fundamental properties of superconductors
[30]. In the present work, we suggest the photon drag effect
as an additional approach to the investigations of transport
features of 2D superconductors in the fluctuating regime. We
explore the classical limit of this effect. It means that no
transition between subbands happens. In other words, it is
supposed that the incident EM-wave frequency is much less
than any energy gap in the systems. In this case, the physical
mechanism of photon drag just consists in the momentum
transfer from the EM wave to fluctuations.

To develop the theory, the Ginsburg-Landau (GL) approach
is used [31]. Although the microscopic treatment is more
exact, it is simultaneously more difficult and cumbersome
than the GL one. Since our aim is to achieve a qualitative
picture, the GL theory seems to be appropriate as a good
approximation.

II. MODEL

Let us consider the 2D superconductor being in the normal
phase and irradiated by an electromagnetic wave with an
electric field amplitude E0, wave vector K, and frequency �

(Fig. 1). In present work we consider a purely 2D system.
Thus, the electron motion in the z direction is neglected and
the superconducting fluctuations respond to the projection of
EM-wave amplitude E on a superconductor surface only. For
later computations, it is convenient to define E in the complex
form:

E(R, t ) = Eei(kR−�t ) + E∗e−i(kR−�t ), (1)

where E and E∗ are complex amplitudes of electromagnetic
wave and k is a projection of K to the superconductor plane.
We focus on the stationary and homogenous part of the elec-
tric current, which does not vanish after the averaging in space
and time. Thus, in the lowest order of the wave amplitude, the
photon drag current corresponds to the second-order response:

jα = σαβγ (k,�)EβE∗
γ , (2)

because any odd term of expansion will give zero contribution
after averaging. In Eq. (2) σ is the second-order conductivity
and the subscripts denote components in the Cartesian axes.
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FIG. 1. System sketch. The EM wave illuminates the 2D su-
perconductor, which lies in the (x, y) plane, at some angle � and
produces the electric current in the x and y directions. Here K is the
wave vector of the EM wave, E0 is the electric field amplitude, while
E is its projection to the (x, y) plane.

For convenience, let k be oriented along the x axis (Fig. 1).
Then the system is symmetric under reflection y → −y and,
therefore, only σxxx, σxyy, σyxy, σyyx are nonzero. After sepa-
rating σ to symmetric and antisymmetric parts in accordance
with σαβγ = σ s

αγβ − σ a
αγβ , the current reads

(
jx
jy

)
=

[
σ s

xxx|Ex|2 + σ s
xyy|Ey|2

σ s
yxy(ExE∗

y + E∗
x Ey) − iσ a

yxy(ExE∗
y − E∗

x Ey)

]
, (3)

where the imaginary unit in the second line is introduced to
make σ a

yxy real.
Equations (3) are just a general form of the second-order

response. However, the explicit expressions for conductivity
are the goal. To succeed in it, we start from the definition of
an electric current in the form of the variational derivative [we
will omit variables (R, t ) for brevity]:

j = −δF[	]

δA
, (4)

where the GL free energy has the form [31]

F[	] = αTc

∫
dV

{
ε|	|2 + ξ 2|(p̂2 − 2eA)	|2}, (5)

where 	 is the order parameter, A is the EM-wave vector
potential, α = (4mTcξ

2)−1 is the GL expansion coefficient,
m is the electron mass, Tc is the temperature of transition to
the superconductive state, ξ is the coherent length, p̂ = −i∇,
and ε = ln(T/Tc) ≈ (T − Tc)/Tc is the reduced temperature.
In writing (5) it is supposed that the EM field does not
change the coefficients in the GL free-energy expansion and is
just included via the minimal coupling −i∇ → −i∇ − 2eA.
Combining (4) and (5) we can see that, as usual, the current
proves to be a sum of dia- and paramagnetic terms:

jD = −8e2αTcξ
2A|	|2, (6a)

jP = 4eαTcξ
2Re[	∗p̂	]. (6b)

In (6) the order parameter is still undefined. To proceed,
let us note that including the vector potential to the GL free
energy makes the order parameter dependent on it, 	 = 	(A).

To obtain the explicit expression of this dependence, we ex-
plore the time-dependent Ginzburg-Landau (TDGL) equation
[31]:(

γ
∂

∂t
+ αTc

{
ε + ξ 2[p̂ − 2eA(R, t )]2

})
	(R, t ) = f (R, t ),

(7)
where parameter γ has both real and imaginary parts, γ =
γ ′ + iγ ′′. The real part is proportional to the lifetime of
fluctuating Cooper pair, γ ′ = αTcετGL [31]. The lifetime τGL

goes to infinity near the critical point and, in the BCS theory,
it has the form τGL = π/8(T − Tc). Thus, γ ′ = πα/8. The
appearance of the imaginary term, γ ′′ = −αTc

2 ∂ ln(Tc)/∂EF ,
in the TDGL is shown to be a consequence of the gauge
invariance of GL theory [32]. From the microscopic point of
view, the origin of γ ′′ can arise from either the electron-hole
asymmetry [33] or the topological structure of the Fermi
surface [34]. The quantity γ ′′ plays the crucial role in some
effect, for instance, in the fluctuation Hall conductivity [30].
Further, it is assumed that γ ′′/γ ′ � 1. In Eq. (7), f is a
Langevin random force, which defines the white noise in the
system and is completely uncorrelated:

〈 f ∗(R, t ) f (R′, t ′)〉 = 2T γ ′δ(R − R′)δ(t − t ′). (8)

Here the angle brackets designation 〈...〉 means fluctuations
averaging. In writing the TDGL equation, we choose the
gauge of EM wave with zero scalar potential that means
the connection E = −∂t A. Assuming the vector potential to
be a perturbation, let us utilize the method of progressive
approximation, i.e., we will find the solution of (7) in the form
of expansion in the powers of A:

	 = 	0 + 	1 + 	2 . . . , (9)

where 	i ∝ Ai. Since the second order response is needed, we
should keep the terms ∝ A2 after the substitution of expansion
(9) to (6) yielding:

〈jD〉 ≈ −8e2αTcξ
2A(〈	∗

0 	1〉 + 〈	∗
1 	0〉), (10a)

〈jP〉 ≈ 4eαTcξ
2Re[〈	∗

0 p̂	2〉
+ 〈	∗

1 p̂	1〉 + 〈	∗
2 p̂	0〉]. (10b)

For the next step the explicit form of the approximate
solution is required. To derive it, we rewrite (7) in terms of
operators:

{L̂−1 − M̂1 − M̂2}	(R, t ) = f (R, t ), (11)

where

L̂−1 = γ
∂

∂t
+ αTc[ε + ξ 2p2], (12a)

M̂1 = αTcξ
22e(p̂A + Ap̂), (12b)

M̂2 = −αTcξ
2(2e)2A2. (12c)

Thus, the formal solution of (11) can be obtained by mul-
tiplying (11) by L̂ from the left. So we find the following
expressions for the terms in expansion (9):

	0(R, t ) = L̂ f (R, t ), (13a)

	1(R, t ) = L̂M̂1L̂ f (R, t ), (13b)

	2(R, t ) = (L̂M̂1L̂M̂1 + L̂M̂2)L̂ f (R, t ). (13c)
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Returning to Eq. (12) we can see that operator (12a) is diagonal in the plane-wave basis and has the eigenvalue:

Lqω = 1

εq − iγ
, (14)

where

εq = αTc[ε + ξ 2q2]. (15)

So it is convenient to deal with Fourier-transformed functions, 	(R, t ) = ∑
qω 	qωei(qR−ωt ) and f (R, t ) = ∑

qω fqωei(qR−ωt ).
Substituting (13) to (10), performing Fourier transformation, and assuming γ ′′ � γ ′, after some computations, we arrive at the
following expressions:

〈jD〉 = −8e3T (αTcξ
2)2

∑
p

1

ε−

{
Re[A(pA∗)]γ ′′�

(ε− + ε+)2 + γ ′2�2

[
1 + 2(ε− − ε+)(ε− + ε+)

(ε− + ε+)2 + γ ′2�2

]
+ 2Im[A(pA∗)]γ ′γ ′′�2(ε− − ε+)

[(ε− + ε+)2 + γ ′2�2]2

}
(16a)

〈jP〉 = 8e3T (αTcξ
2)3

∑
p

{
(p − k)|pA|2

ε2−

γ ′′�
(ε− + ε+)2 + γ ′2�2

[
1 + (ε− − ε+)(ε− + ε+)

(ε− + ε+)2 + γ ′2�2

]

+ (p + k)|pA|2
ε−ε+

γ ′′�(ε− − ε+)(ε− + ε+)

[(ε− + ε+)2 + γ ′2�2]2

}
(16b)

where ε± = ε(p±k)/2 and A is a complex amplitude of vector
potential A(R, t ) = Aei(kR−�t ) + c.c. The full integration of
expressions (16) is quite difficult but the polar angle in-
tegration can be performed. To ensure that the text is not
overloaded, we set the cumbersome integrals to the Appendix
section and produce the second-order conductivity in the
following form:

σ s
αβγ (T̃ , �̃,�) = γ ′′

γ ′
e3T̃ ξ 2Is

αβγ (T̃ , �̃,�)

h̄2cT̃c�̃4 cos3(�)
, (17a)

σ a
yxy(T̃ , �̃,�) = −πγ ′′

2γ ′
e3T̃ ξ 2Ia

yxy(T̃ , �̃,�)

h̄2cT̃ 2
c �̃5 cos5(�)

, (17b)

where dimensionless factors Is
αβγ and Ia

yxy are given in the Ap-
pendix, �̃ = �ξ/c, T̃(c) = kBT(c)ξ/h̄c, and the relation |k| =
cos(�)�/c has been used.

III. RESULTS AND DISCUSSION

The qualitative dependence of (17a) on dimensionless
frequency �̃ is shown in Fig. 2. It is proved that the ab-
solute value of each component of the symmetrical part
of the second-order conductivity monotonically increases,
while the frequency decreases, and furthermore, it converges
to the constant value at � = 0. The numerical computation
shows that, in fact, no all components are independent and the
following equality is obeyed:

σ s
xxx − σ s

xyy = 2σ s
yxy, (18)

where we omit arguments (T̃ , �̃,�). This relation is not
accidental and is a result of the system symmetry with re-
gard to the rotation around the z axis. Usually, the wave
vector of the EM wave is the smallest in comparison with
a wave vector of any excitation in a solid. With this as-
sumption, we would expand the second-order conductivity
in powers of k: σαβγ (k) ≈ σαβγ (0) + Dαδβγ kδ , where Dαδβγ

is a fourth-rank tensor. Due to the presence of the inversion
symmetry in the system, the first term of expansion vanishes,

σαβγ (0) = 0. Then the requirement of invariance under the
rotation at an arbitrary angle around the z axis produces the
relation Dxxxx − Dxxyy = 2Dyxxy that gives the formula (18).
But in deriving (16), the smallness of k is not used explicitly
and that is clear from the dependence of ε± on k. However,
we can still represent the second-order conductivity in the
form σαβγ (k) = Dαδβγ kδ , which will be rotational invariant.
For example, let us consider the first term in (16b) and rewrite
it in the form:

jP,1
α =

∑
p

f (ε±)(p − k)|pA|2

=
∑

p

f (ε±)Mαδ pβ pγ kδAβA∗
γ

= D(|k|)αδβγ kδAβA∗
γ , (19)

where Mαδ is the matrix transforming k to p − k. Further it
is not difficult to check that (19) does not change under the
rotation in the (x, y) plane. In practice, the light polarization
is often defined by Stokes parameters. So it is convenient to

FIG. 2. The frequency dependence of symmetric part of the
second-order conductivity calculated by Eq. (17a).
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FIG. 3. The frequency dependence of σ s
yxy at different tempera-

tures: T/Tc = 1.06, 1.08, 1.1 for orange solid, blue dash-dotted, and
olive dashed curves respectively. Inset: The temperature dependence
of the same at different frequency: �̃ = 5 × 10−3, 2.5 × 10−3, 0.1 ×
10−3 for orange solid, blue dash-dotted, and olive dashed curves,
respectively.

rewrite the first line of (3) in the corresponding form:

jx = σxxx + σxyy

2
(|Ex|2 + |Ey|2) + σyxy(|Ex|2 − |Ey|2). (20)

Further, the dependence of drag current magnitude on
temperature arouses great interest. But, to begin with, it is
necessary to confine the temperature range of applicability of
the theory. First, the inequality ε ≈ (T − Tc)/Tc � 1 should
be obeyed because the GL free energy (5) is derived under this
condition. Second, the presented theory does not include the
effects of interaction between superconductive fluctuations
because we omit the term |	|4 in the GL free energy. At an es-
sentially small ε the fluctuations become strong and this con-
tribution cannot be neglected. The analysis [31] produces the
so-called Ginsburg-Levanyuk parameter Gi ≈ Tc/EF which
characterizes the temperature range of strong fluctuations. Our
theory is correct for the case of weak fluctuations only, i.e.,
under the condition ε 
 Gi.

The temperature dependence of symmetrical part of the
second-order conductivity is similar for each component. So
it is enough to show the qualitative results for one component
only, for instance, for the σ s

yxy component (Fig. 3). It is proved
that the current substantially increases when the temperature
is close to its critical value. To obtain the obvious temperature
dependence, let us consider the range of small frequency. For
that purpose, the frequency should be turned to zero and that
allows us to perform the integration in (A6) explicitly. After
some computations we obtain the simple expression:

σ s
yxy(� → 0) = γ ′′

γ ′
e3T ξ 2 cos(�)

48h̄2cTcε2
. (21)

We can see that the reduced temperature dependence at zero
frequency, σ s ∝ 1/ε2, is rather dramatic and includes an ad-
ditional power of ε in comparison with the Aslamazov-Larkin
conductivity.

The frequency dependence of (17b) is nonmonotonic and
possesses its extremum at a small value of �̃ (Fig. 4). With

FIG. 4. The frequency dependence of antisymmetric part of the
second-order conductivity calculated by Eq. (17b).

the decreasing temperature the extremum depth increases and
moves toward zero frequency. Note that the current, defined
by the asymmetric component of conductivity, is nonzero in
response to the circular-polarized EM wave only, which is
characterized by the direction of vector E rotation. Thus, the
switching from the clockwise polarization to the reverse one
changes the sign of ExE∗

y − E∗
x Ey as well as the direction of

current y projection.
The important feature of the obtained frequency depen-

dence of the second-order conductivity consists in that its
qualitative behavior is the same as for the case of photon
drag effect in conventional systems, for example, based on
graphene [35,36]. Apparently, the reason of such similarity
lies in a certain affinity of the TDGL equation and the
Boltzmann one, which is widely used for analyzing the non-
linear response of 2D electron gas.

At the end of this subsection, we discuss the magnitude
of the examined effect. For this purpose, let us compare the
contribution of superconducting fluctuations with the one of
normal electron gas. For the estimation, it is enough to use the
simplest classical expression for the photon drag current in 2D
systems, which has the following form [37]:

jn = 2e3n

�m2

τ 2

1 + (�τ )2
|E |2k, (22)

where n is the electron gas density and τ is the momentum
relaxation time. Utilizing Eqs. (21) and (22), the ratio of
two contributions in the zero-frequency limit can be easily
composed:

js

jn
= 8

3

γ ′′

γ ′
T nξ 2

Tc

(
σAL

σn

)2

, (23)

where σn = (e2/h)kF l is the Drude conductivity and σAL =
e2/16h̄ε is the Aslamazov-Larkin conductivity for the 2D
system. Equation (23) is convenient to be considered piece-
meal. First, the ratio T/Tc ≈ 1 and it does not play any
role. Second, to estimate the ratio (σAL/σn)2, we take the
typical values of normal conductivity σn = 10−3–10−2 �−1,
which gives (σAL/σn)2 ∼ 10−4–10−2 at ε = 0.1. Further, the
quantity |γ ′′/γ ′| was supposed to be much less then unity.
For instance, in tantalum nitride thin films, it takes the value
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∼10−3 [38]. For TMD superconductors, the measurements
of |γ ′′/γ ′| have not been performed yet. However, we can
estimate it assuming the power dependence of Tc on EF , which
gives |γ ′′/γ ′| ∝ |∂Tc/∂EF | ∝ Tc/EF ∼ 10−3 at Tc = 9 K and
n = 1014 cm−2 for MoS2. The above arguments give an idea
that the ratio (23) possesses a small magnitude. However,
the rest dimensionless factor nξ 2 is often very large. In TaN
films nξ 2 ≈ 3 × 104, while, in MoS2, nξ 2 ≈ nξ0l ≈ 5 × 103

(where ξ0 is the BCS coherent length at T = 0 K and l is mean
free path). Finally, the estimation becomes js/ jn ∼ 10−3–1
and points to the possibility of experimental observation of
this effect.

IV. CONCLUSION

In the presented work we developed the theory of photon
drag of the superconducting fluctuations based on using the
TDGL equation. The calculation showed that the magnitude
of the photodrag current strongly grows when the temperature
comes down to the critical point. In the low-frequency domain
the drag current is proportional to the squared Aslamazov-

Larkin conductivity, which was not evident from the
beginning. We emphasize that the induced current is propor-
tional to the imaginary part of the γ parameter as it has a place
in the Hall effect and, consequently, the presented effect can
be treated as an additional approach in the fluctuation spec-
troscopy. It is interesting to note that in thin superconducting
films with three-dimensional electrons and a simple electron
spectrum, parameter γ ′′ is negative. Thus, the photon drag
of fluctuations will compensate the photocurrent of normal
electrons. Taking into account the commensurability of these
currents, as shown by the estimation above, the reduction of
the full photocurrent near Tc can be considerable.
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APPENDIX: EXPLICIT EXPRESSIONS FOR INTEGRALS Iαβγ

Let us introduce for brevity the following notations:

a = a(T̃ , �̃,�) = 4ε

�̃2 cos2(�)
, (A1)

b = b(�̃,�) =
[

π

4T̃c�̃ cos2(�)

]2

. (A2)

Then the dimensionless factors from the resulting expressions (17) have the form:

Ia
yxy(T̃ , �̃,�) =

∫ ∞

1+a
dy

1

(y2 + b)2

y[y −
√

(y − 2)2 + 4a]√
(y − 2)2 + 4a

, (A3)

Is
xxx(T̃ , �̃,�) = 2

∫ ∞

1+a
dy

1

(y2 + b)2

{
[y2 + b(2y − 1)]

[
1 − y√

(y − 2)2 + 4a

]
+ 4by(y − 2)(y − 1 − a)

[(y − 2)2 + 4a]3/2

}
, (A4)

Is
xyy(T̃ , �̃,�) = −4

∫ ∞

1+a
dy

1

(y2 + b)2

{
[y2 + b(y − 1)]

[
1 − y√

(y − 2)2 + 4a

]
+ 2(y − 1 − a)(b + 2y)√

(y − 2)2 + 4a

}
, (A5)

Is
yxy(T̃ , �̃,�) = −

∫ ∞

1+a
dy

1

(y2 + b)2

{
[y2 + b(4y − 1)]

[
1 − y√

(y − 2)2 + 4a

]
+ 8b(y − 1 − a)√

(y − 2)2 + 4a

}
, (A6)
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