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Enhanced phase-coherent multifractal two-dimensional superconductivity
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We study the interplay of superconductivity and disorder by solving numerically the Bogoliubov–de Gennes
equations in a two-dimensional lattice of size 80 × 80, which makes investigating the weak-coupling limit
possible. In contrast with results in the strong-coupling region, we observe enhancement of superconductivity
and intriguing multifractal-like features such as a broad log-normal spatial distribution of the order parameter, a
parabolic singularity spectrum, and level statistics consistent with those of a disordered metal at the Anderson
transition. The calculation of the superfluid density, including small phase fluctuations, reveals that, despite this
intricate spatial structure, phase coherence still holds for sufficiently weak disorder. It breaks down only for
stronger disorder but before the insulating transition takes place.
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I. INTRODUCTION

Disorder in low dimensions amplifies wavelike aspects of
quantum matter. For instance, Anderson localization, caused
by quantum interference, stops classical diffusion in two-
dimensional disordered systems [1,2]. The interplay between
quantum coherence phenomena and interactions is not yet
well understood. In the case of superconductivity, it was
believed [3,4] for many years that disorder was not impor-
tant even in low spatial dimensions because in the presence
of elastic scattering by impurities Cooper pairs could still
have approximately zero net momentum. Furthermore, results
from a mean-field BCS approach [5,6] suggested that pairing
could survive even in the insulator phase. However, BCS
or phenomenological Ginzburg-Landau approaches oversim-
plify many aspects of the rich phenomenology of quantum
coherence effects in interacting systems. Moreover, these
quantum effects are observed experimentally mostly in low
dimensions and very low temperatures beyond the range that
could be reached experimentally at that time.

Indeed, more quantitative numerical studies [7–10] re-
vealed a rather different picture. Even in the limit of strong
electron-phonon coupling, disorder was found to cause sub-
stantial spatial inhomogeneities and an emergent granular-
ity [9] in the spatial distribution of the superconducting or-
der parameter in two dimensions. Recent experimental re-
sults [10–15] have indeed confirmed that in low dimensions
even a relatively weak disorder can lead to a highly inhomoge-
neous superconducting state with an intricate spatial structure.

Theoretical studies [16,17] have also linked the exper-
imental observation of a collective Goldstone mode as
a subgap excitation with the existence of a highly in-
homogeneous superconducting state. The critical tempera-
ture at the metal-insulator transition, characterized by spa-
tially multifractal eigenstates [18,19], was predicted to be
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dramatically enhanced with respect to the homogeneous limit
in both three [20,21] and two dimensions [22]. However, such
massive enhancement has never been observed experimen-
tally. In the weak-disorder and weak-coupling limit, it was
found [23–25] that the superconducting gap has a broad log-
normal spatial distribution and that the critical temperature is
enhanced modestly but only for sufficiently weak electron-
phonon interactions. These results are also consistent with
previous reports of enhancement of phase coherence [26] in
one-dimensional superconductors at zero temperature close to
the superconductor-insulator transition. Experimental results
in granular Al [17,27–29] and in one-layer NbSe2 [14,15], a
weakly coupled superconductor, have indeed confirmed the
theoretical prediction of Ref. [23] with respect to the enhance-
ment of superconductivity and the log-normal distribution of
the superconducting gap.

Despite these advances, we are still far from a full under-
standing of the effect of disorder in low-dimensional super-
conductors. Analytical results [20,21,23] are mostly based on
a BCS approach where the spatial inhomogeneity of the order
parameter is directly borrowed from that of the one-body
problem, thus missing any many-body effects. For instance,
the BCS formalism for disordered superconductors is not
fully self-consistent. By contrast, the Bogoliubov–de Gennes
(BdG) equations, although still a mean-field approach, yield
fully self-consistent solutions for the order parameter, and
therefore, they are especially suited to investigate the interplay
of disorder and superconductivity.

Previous numerical findings based on the Bogoliubov–de
Gennes equations [7,8] in two dimensions, which yield fully
self-consistent solutions, were typically carried out in the
limit of very strong electron-phonon coupling constant and no
Debye energy so that the system size was much larger than the
superconducting coherence length. Quantitative comparisons
with experiments are, in principle, not possible.

Here, we carry out an extensive numerical investigation
of a two-dimensional disordered superconductor by solving
numerically the BdG equations and also including the effect
of small phase fluctuations. We study the comparatively large
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lattice size of 80 × 80, which allows us to employ a finite
Debye energy and a relatively weak electron-phonon coupling
|U | ∼ 1. This range of parameters is closer to the one believed
to describe many two-dimensional superconducting materials.

Indeed, we found qualitative differences with the strong-
coupling results of Refs. [7,8] that we now summarize: only
in the weak-coupling limit is the spatial distribution of the
order parameter well described by a log-normal distribution.
The analysis of the singularity spectrum related to the order
parameter spatial distribution is broad and parabolic only in
this weak-coupling limit. This is the prediction for a weakly
multifractal measure. We have also observed that, also in
stark contrast to the strong-coupling results, both the spectral
gap and spatial average of the order parameter of disordered
superconductors are enhanced by disorder. This feature has
its origins in the fact that, as disorder increases, the number
of strongly overlapping eigenstates of the BdG model close to
the Fermi energy grows as well. The level statistics of eigen-
values of the BdG Hamiltonian in the intermediate-disorder
region is between Wigner-Dyson and Poisson statistics and
strikingly similar to those found in systems [30–34] at the
Anderson metal-insulator transition. Likewise, the superfluid
density, which includes the effect of phase fluctuations to
leading order, is still finite. This is an indication that phase
coherence still holds despite strong spatial fluctuations in-
duced by disorder. For sufficiently strong disorder, the su-
perfluid stiffness vanishes, but the amplitude of the order
parameter is still finite, which hints at the possibility of an in-
termediate metallic state before the superconductor insulator
transition occurs.

Our results point to a rich phenomenology of weakly
disordered superconductors in low dimensions of potential
relevance for many two-dimensional materials. They could
also shed light on long-standing problems in the field such as
the existence and characterization of an intermediate metallic
state in the low-temperature limit, which has been observed
in several two- and quasi-two-dimensional systems [35–49],
and the surprising enhancement of superconductivity ob-
served in some materials as the two-dimensional limit is
approached [27,43,50,51]. We start our analysis with a brief
introduction of the BdG formalism.

II. DISORDERED BOGOLIUBOV–DE GENNES
EQUATIONS AND THEIR SOLUTIONS

The BdG equations [8,52,53], obtained from the saddle
point solution of the path integral of a two-dimensional
fermionic tight-binding model in a square lattice with short-
range attractive interactions, are defined as follows:(

K̂ �̂

�̂∗ −K̂∗

)(
un(ri )
vn(ri )

)
= En

(
un(ri )
vn(ri )

)
, (1)

where

K̂un(ri ) = −t
∑

δ

un(ri + δ) + (Vi − μi )un(ri ), (2)

δ stands for the nearest-neighboring sites, t is the hopping
strength, Vi is strength of the random potential at site i,
extracted from a uniform distribution [−V,V ], μi = μ +
|U |n(ri )/2 incorporates the site-dependent Hartree shift, μ is

the chemical potential, and �̂un(ri) = �(ri )un(ri ). The same
definition applies to vn(ri ). The BdG equations are completed
by the self-consistency conditions for the site-dependent order
parameter �(ri) and the density n(ri),

�(ri ) = |U |
∑

n

un(ri )v
∗
n (ri ) (3)

and

n(ri) = 2
∑

n

|vn(ri)|2, (4)

where U is the pairing interaction. We solve these equations
for a square lattice of N = L × L sites, where L is the side
length of the sample and it is in units of the lattice constant.
In order to minimize finite-size effects, we employ periodic
boundary conditions. We employ a standard iterative algo-
rithm. Starting with an initial seed for the order parameter,
we solve Eq. (1) numerically and obtain the eigenvalues En

and the corresponding eigenvectors {un(ri), vn(ri )}. We then
use the self-consistent condition, Eqs. (3) and (4), to get the
new values of �(ri) and μi. We repeat the process until the
absolute error of �(ri ) is smaller than 10−6 or the relative
error is smaller than 10−4. For convenience, all the parameters
are in units of t = 1. The numerical diagonalization was
carried out on two workstations with 256 GB of RAM each
and recent Intel Xeon multicore processors. With this config-
uration, we could go to a maximum size of about 150 × 150
sites. However, the calculation of the superfluid density is
especially time-consuming, which prevents us from reaching
this limit.

In the case of a finite Debye energy ωD = 0.15 (in units of
t) we have found that, especially for large V , some disorder
realizations do not converge because there are very few states
inside the Debye energy window. It may be that this simply
means that the only solution is the trivial one �(ri) = 0, but
we could not rule out that a nontrivial solution may exist. But
it may require a very large convergence time. For this reason
we consider only a disorder strength V � 3. We will see that
this restriction does not impact the main results of the paper.

The average density 〈n〉 = ∑
i n(ri)/N is determined by the

chemical potential μ. Here, we fixed the chemical potential at
μ = 0. In the strong-coupling system, the states are more con-
densed. As shown in Fig. 1, if we fix μ, the electron density
〈n〉 would be smaller than in the weak-coupling system. By
increasing disorder, the electron gets more localized, which
results in the increasing of 〈n〉 for a fixed μ.

One of the main motivations of the paper is to study
whether the strong-coupling results of the seminal papers [7,8]
are substantially modified for a sufficiently weak electron-
phonon coupling and a finite Debye energy. This situation is
closer to the experimental situation of many two-dimensional
superconducting materials. Obviously, for our results to be
meaningful L � ξ , with ξ being the superconducting coher-
ence length, which applies for all V considered. We compute
ξ from

ξ 2 =
∫ ∣∣∑

En�ωD
un(r)vn(0)

∣∣2
r2dr∫ ∣∣∑

En�ωD
un(r)vn(0)

∣∣2
dr

(5)

and compare results from sizes of 50 × 50 and 80 × 80 in
order to estimate finite-size effects (see Fig. 2). As expected,
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FIG. 1. The electron density 〈n〉 at a fixed chemical potential for
different disorder strengths. As disorder increases, density fluctua-
tions become larger. Fixing the chemical potential, the density is
higher for stronger disorder. The system size is 80 × 80, and the
chemical potential μ = 0.

the coherence length decreases with disorder. For V � 1, the
coherence length is almost size independent and much smaller
than the system size. For 80 × 80, the coherence length is
still much smaller than the system size provided that V � 0.5.
That limits the range of disorder we consider to 0.5 � V � 3.

As an illustration of the type of spatial inhomogeneities
induced by disorder, we show in Fig. 3 the spatial

FIG. 2. The superconducting coherence length ξ , Eq. (5), in units
of the lattice spacing for different disorder strengths, two lattice
sizes, Debye energy ωD = 0.15, coupling constant U = −1, and
chemical potential μ = 0, all in units of t . As was expected, the
coherence length becomes smaller as disorder increases. Given the
maximum lattice size we can reach numerically, L ∼ 150, our results
are meaningful only for V � 0.5, where ξ � L, with L being the
typical size of the system.

dependence of the order parameter amplitude �(ri). By in-
creasing disorder, the order parameter �(ri ) becomes increas-
ingly inhomogeneous. However, there are qualitative differ-
ences between the weak-coupling and strong-coupling limits.
For the same disorder, the system looks less inhomogeneous
in the strong-coupling limit because its coherence length is
smaller. Especially in Fig. 3(f), we observe many small super-
conductor islands distributed in a more or less homogeneous
way. By contrast, likely as a result of a much larger coherence
length, spatial structure in the weak-coupling region looks
much more intricate. Indeed, there are sizable spots where the
order parameter is several times larger than in the no-disorder
limit. In the coming sections we provide more quantitative
differences between these two limits.

III. SPATIAL AVERAGE AND PROBABILITY
DISTRIBUTION OF THE ORDER

PARAMETER AMPLITUDE

We first compute the energy gap Egap and the spatial
average of the order parameter amplitude �̄, which coincide
in the nondisordered limit. In the strong-coupling limit, it
was found that [8] the amplitude of the order parameter
decreases with disorder monotonously, while Egap decreases
for weak disorder, has a minimum, and then increases for
sufficiently strong disorder. This increase is not related to
an enhancement of superconductivity, but rather to Anderson
localization effects that increase the mean level spacing in an
insulator. Our results, depicted in Fig. 4(b), for larger lattices
fully agree with this picture.

However, the results for weak coupling, shown in Fig. 4(a),
are qualitatively different. �̄ increases with disorder in the
range that we test numerically, but we expect that it would
finally decreases for sufficiently stronger disorder. This is full
agreement with the analytical prediction of Ref. [24] obtained
from a simpler BCS formalism and the Tc enhancement in
previous numerical results [25]. The energy gap Egap agrees
with �̄ for weak disorder and then increases faster, likely
due to similar localization effects. These results suppose an
encouraging indication that disorder may enhance supercon-
ductivity, at least for sufficiently weak disorder. The calcu-
lation of the superfluid density later in the paper will place
further constraints on the conditions for an enhancement of
superconductivity. However, a conclusive answer to this ques-
tion would ultimately require the calculation of the critical
temperature.

A. The probability distribution of the order parameter

As mentioned in the Introduction, according to
Refs. [14,23], a distinctive feature of multifractal eigenstates
is a log-normal distribution of the amplitude of the order
parameter �(ri ). However, these results were obtained within
a BCS formalism, which is not fully self-consistent and
only in the limit of weak disorder and weak coupling. Here,
we will show that similar findings are obtained in a fully
self-consistent BdG formalism. Moreover, we compute the
f (α) spectrum (an indicator of multifractality), related to
the spatial dependence of the order parameter, to better
understand to what extent the order parameter amplitude
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(a) (b) (c)

(d) (e) (f)

FIG. 3. The spatial distribution of the order parameter �(ri ) for an 80 × 80 lattice. (a)–(c) Debye energy ωD = 0.15 (in units of t), coupling
constant U = −1 (weak coupling). (d)–(f) ωD → ∞, U = −2 (strong coupling). The chemical potential is μ = 0 in both cases. The disorder
strength is V = 0.25, 1, and 3 from left to right. The order parameter amplitude �(ri ) is normalized by �0, its value in the clean limit. As was
expected, inhomogeneities increase with disorder, although much more visibly in the weak-coupling limit.

inherits the eigenstate multifractality [18,19] observed in the
noninteracting limit.

The spatial probability distribution of the order parameter
P( �(r)

�̄
) is plotted in Fig. 5 as a function of disorder. In

the BCS limit, assuming that the eigenfunction correlation
in the noninteracting limit is multifractal, it was found [23]
that the probability distribution of the order parameter in the
weak-coupling limit is log normal,

P

(
�(r)

�̄

)
= �̄

�(r)
√

2πσ
exp

(
−

[
ln

(
�(r)
�̄

) − μ
]2

2σ 2

)
. (6)

In the weak-coupling limit, we observe very good agree-
ment with this log-normal distribution, using the standard de-
viation σ and average μ as fitting parameters and the numeri-
cal results. When disorder is small, the distribution is narrow
and centered on the mean gap �̄. As the strength of disor-
der increases, the distribution of �(r)

�̄
becomes increasingly

broader and asymmetric. Interestingly, in the strong-coupling
limit, the results are qualitatively different. A log-normal

distribution is never a good fit of the data, which suggests
that multifractality plays a role only in the weak-coupling
limit. Finally, we note that in the strong-disorder limit the
probability distribution is closer to the Poisson distribution for
both weak and strong coupling. We shall show that in this limit
phase coherence is lost but the system is still in the metallic
phase.

B. Singularity spectrum of the order parameter amplitude

In order to have a more quantitative understanding of
the role of multifractality in our system, we compute the
f (α) spectrum (see [54] for a definition and details of its
calculation), also called the singularity spectrum, of �(ri) that
provides information about its range of scaling exponents. In
the limit of weak disorder, it was found that the f (α) spectrum
of the density of probability of isolated eigenstates of the
two-dimensional Anderson model for sizes much smaller than
the localization length was parabolic, which is a feature of
a multifractal measure. Indeed, �(ri ) is given by the self-
consistent condition, Eqs. (3) and (4), which is a weighted
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(a) (b)

FIG. 4. The spatial average of the order parameter �̄ and the spectral gap Egap, obtained from the solution of the BdG equations, as
a function of disorder for a size of 80 × 80. (a) Weak-coupling limit with Debye energy ωD = 0.15 (in units of t) and coupling constant
U = −1. (b) Strong-coupling limit with Debye energy ωD → ∞ and coupling constant U = −2. The chemical potential is fixed at μ = 0.
The data are normalized by the value of the order parameter at V = 0. In agreement with the analytical prediction of Ref. [23], based on a
simpler BCS approach, the average order parameter increases with disorder, which suggests that disorder can enhance superconductivity.

average over the eigenstates un(ri ) and vn(ri) of the BdG
equations. At least for clean nanograins [55], it was found
that un(ri ) and vn(ri ) are proportional to the eigenstates of
the one-body problem 	n(ri ) for sufficiently weak coupling.
Therefore, it seems plausible, especially if the weighted sum
defining �(ri ) does not contain many eigenstates, that some
of the anomalous scaling features of the eigenstates of the
one-body problem may also be present in the order parameter.
More specifically, we define |P(ri )|2 = �(ri )∑

j=1 �(r j )
and compute

the f (α) spectrum of |P(ri )|2 following the method introduced
in Ref. [54].

In Fig. 6, we present results for f (α) for the parame-
ters employed in Fig. 3. We find that in the weak-disorder,
weak-coupling region, the singularity spectrum f (α) is well
approximated by f (α) = 2 − (α−α0 )2

4(α0−2) , with α0 = 2 + 1/g and
g being the dimensionless conductance. This is the ana-
lytical prediction for the density of probability related to
weakly multifractal eigenstates [56] in two dimensions. In
our case α0 is a fitting parameter. As disorder increases, α0

increases as well, and the parabolic curve becomes broader,
which means the spatial distribution of the order parame-
ter is increasingly inhomogeneous. This is another indica-
tion that the spatial distribution of the order parameter has
an intricate spatial structure reminiscent of a multifractal
measure.

The situation is different in the strong-coupling limit. The
fitting to a parabola is, in general, worse. Moreover, the fitted
values of α0 are very close to 2, and the f (α) spectrum is
much narrower than in the weak-coupling region. This is an
indication of a much more homogeneous distribution which
is not really multifractal. In summary, multifractality is a
feature attached to only weakly coupled, weakly disordered
superconductors. We now investigate in more detail this issue
by looking directly at the eigenvectors un(ri ) and vn(ri ) in
order to determine how the order parameter is constructed
from them.

C. Overlap between un(r) and vn(r)

In order to gain a more quantitative understanding of
the relation between �(r) and eigenfunctions of the BdG
equation {un(r), vn(r)}, we study

Puv =
∑

r

∣∣u2
n(r) − v2

n (r)
∣∣. (7)

When un and vn overlap strongly, then Puv ≈ 0, while if un and
vn are completely decoupled, then Puv ≈ 1 since

∑
r[u2

n(r) +
v2

n (r)] = 1. We note that the self-consistent condition (3)
dictates that only eigenstates un and vn that overlap strongly
contribute substantially to �(r).

In the weak-coupling limit (see Fig. 7), we observe that
only for a few states near E = 0, a number much less than
the total number of states contained in the Debye window, is
Puv close to zero, while for the rest, Puv ≈ 1. Interestingly, as
disorder increases, the number of strongly coupled eigenstates
Puv ≈ 0 increases as well. Taking into account that �(ri )
is also defined through the overlap of un(ri ) and vn(ri), the
previous result that disorder enhances the spatial average
of �(ri ) is not surprising. Effectively, as disorder increases,
more eigenstates contribute to the formation of the order
parameter, which likely helps its enhancement. More quan-
titatively, about 100 states are strongly coupled when disorder
V = 2 and 3 [see Figs. 7(c) and 7(d)], while such strong
correlation is restricted to no more than ten eigenvectors
for V = 0.5.

Results for the strong-coupling limit are quite different. As
observed in Fig. 7, a majority of states are strongly coupled
(Puv � 1). The coupling between un(r) and vn(r) diminishes
as the energy increases. Unlike the weak-coupling limit, it
seems the coupling between un(r) and vn(r) is weaker as
disorder increases, which would explain why the order param-
eter decreases with disorder. We therefore expect that, in this
limit, disorder always suppresses superconducting properties.
Eigenstates near the edge of the spectrum are localized in
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FIG. 5. The probability distribution of the order parameter �(ri ) normalized by its spatial average �̄. The upper plots are fitted (solid
lines) by the theoretical prediction [23], a log-normal distribution, Eq. (4), that depends on two fitting parameters σ , the standard deviation,
and μ, the average. We find very good agreement between the analytical expression and numerical results. The lower plots correspond to the
strong-coupling limit. As disorder increases, the distribution broadens as well but in a qualitatively different way. Therefore, a log-normal
distribution applies only in the weak-coupling limit.

space, so they cannot be strongly coupled, and Puv ≈ 1 for
both weak and strong coupling.

IV. LEVEL STATISTICS OF THE BOGOLIUBOV–DE
GENNES SPECTRUM

The study of spectral correlations is a powerful tool to char-
acterize the quantum dynamics of many-body systems. It is
especially suited to detect metal-insulator transitions induced
by disorder. In a disordered metal, the level statistics agrees
with the prediction of the random matrix theory, also called
Wigner-Dyson statistics, characterized by level repulsion for
short-range correlations and level rigidity for correlations in-
volving more distant eigenvalues. By contrast, in an Anderson
insulator, spectral correlation is given by Poisson statistics,
characterized by the absence of correlations among eigenval-
ues at all scales. At the Anderson transition, characterized by
multifractal eigenstates, level statistics [30,31,57] also have

distinct features: scale invariance, level repulsion for short-
range correlators as in a metal, and substantial weakening of
level rigidity as in an insulator.

In this section we carry out an analysis of the level statistics
for the eigenvalues of the BdG equations. We restrict our-
selves to the spectral region inside the Debye energy window
since our main interest is to characterize the dynamics of the
superconducting state. Before we proceed, it is important to
note that the BdG equations have eigenvalues coming from
eigenvectors un(r) and vn(r), representing a Cooper pair. In
the limit of no disorder, it is easy to see from the structure
of the Hamiltonian (1) that the eigenvalues of un(r) and
vn(r) are twofold degenerate. By turning on disorder, this
degeneracy is lifted, but for sufficiently weak disorder there
is almost no mixing with neighboring eigenvalues, so that ef-
fectively, the full spectrum is the superposition of two spectra
corresponding to weakly disordered metals. For sufficiently
strong disorder, neighboring eigenvalues get mixed, and the
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FIG. 6. Singularity spectrum f (α) related to the order parameter �(ri ) for the parameters of Fig. 3. In the weak-coupling limit (top row), it
agrees well with the parabolic prediction (solid line) corresponding to weakly multifractal eigenstates. Also in agreement with the theoretical
prediction, the parabolic curve becomes broader, and its maximum shifts to larger values as disorder increases. In the strong-coupling limit
(bottom row), multifractal effects are much harder to observe. The distribution is rather narrow, and the agreement with a parabola is worse,
which suggests that, at least in the studied disorder range, the singularity spectrum has no multifractal-like features.

spectrum is no longer a superposition of two independent
spectra.

Results depicted in Fig. 8 fully confirm this picture. In
the weak-disorder, weak-coupling limit, spectral correlations,
both short and long range, agree well with the theoretical
prediction for the superposition of two spectra with Wigner-
Dyson statistics. The prediction for the level spacing distri-
bution, namely, the probability of having two consecutive
eigenvalues at a distance s in units of the mean level spac-
ing, is [58] P(s) = π

16 s[1 − erf (
√

πs/4)] exp(−πs2/16) +
1
2 exp(−πs2/8), where erf (s) is the error function. Likewise,
the number variance 
2(L) is the variance in the number
of eigenvalues in a spectral window in units of the mean
level spacing. For sufficiently large L, 
2(L) = 4

π2 [ln(πL) +
γ + 1 − π2

8 ], where γ is Euler’s constant and L is a spectral
window containing, after unfolding, L eigenvalues on average.

Our main motivation in this section is to determine
whether, in the range of disorder strength V � 3 that we
investigate, the system is still in the metallic phase or a
metal-insulator transition in the weak-coupling limit occurs at
V = Vc < 3. Although only a calculation of the conductivity
or other transport properties can conclusively answer this
question, the study of the level statistics is typically very
reliable and technically much less demanding.

In Fig. 8(b), we show results for the level spacing dis-
tribution P(s) for V = 2, where we expect that the spec-
trum is sufficiently mixed. Indeed, level statistics are very
close to those describing the metal-insulator transition in

disordered and quantum chaotic systems: clear level repulsion
is observed in P(s) for s � 1, while the decay for larger s is
exponential as in Poisson statistics but with a different decay
exponent. Similarly, the number variance is linear but with a
slope smaller than the prediction of Poisson statistics typical
of an insulator. This is another indication that multifractality
may play a role as this intermediate level statistics has been
observed in different types of systems [30,31,33,57,59] with
multifractal eigenstates.

Finally, we also investigate spectral correlations in the
strong-coupling limit (see Fig. 9). Because of the stronger in-
teraction, there is stronger mixing. As a consequence, the full
spectrum is never a superposition of two independent spec-
tra, and Wigner-Dyson statistics applies. Even for stronger
disorder V � 3, we do not observe a transition to Poisson
statistics. The level statistics has metallic features such as a
clear level repulsion even for the strongest disorder. Indeed,
it is qualitatively similar to that in the weak-coupling case.
It seems to also describe a system close to the transition,
although a finite-size scaling analysis would be necessary to
confirm this point.

V. ROBUSTNESS OF PHASE COHERENCE AND
SUPERCONDUCTOR-METAL-INSULATOR TRANSITION

So far we have restricted our analysis to the amplitude
of the order parameter. However, defining features of super-
conductivity such as zero resistance and phase coherence are
related to the phase of the order parameter. In this section,
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FIG. 7. 1 − Puv [Eq. (7)] in the weak- (top row) and strong- (bottom row) coupling limits for different disorder strengths V = 0.5, 1, 2,
and 3, from left to right. Eigenfunctions corresponding to the lowest eigenvalues (whose energy is closest to E = 0) are almost identical,
and therefore, 1 − Puv ≈ 1 in both the weak- and strong-coupling limits. However, in the weak-coupling limit, there are very few eigenstates
with such a strong correlation, a number much smaller than those in the Debye window (vertical red line). The number of strongly correlated
eigenstates increases with disorder. By contrast, in the strong-coupling limit, the coupling between un and vn is strong close to the Fermi
energy for any disorder and decreases rather slowly for higher energies. That could explain why disorder enhances superconductivity only in
the weak-coupling limit.

we study the latter by computing the superfluid stiffness,
including phase fluctuations to leading order. We will show
that phase coherence likely holds for intermediate disorder
strength V ∼ 1, where the order parameter has multifractal-
like features and its spatial average is enhanced. At the dis-
order strength in which the stiffness vanishes, the spectrum
and eigenfunction still have metallic features, which indicates
that phase coherence is lost while the system is still in the
metallic phase. This is suggestive of an intermediate dirty
Bose metal phase in this system.

Phase coherence, a defining feature of a superconductor,
occurs if the superfluid stiffness is finite. In order to make
an estimate of the disorder strength at which phase coherence
is lost, we first use the two-dimensional quantum XY model
with the effective Hamiltonian [7,60] Hθ = −(κ/8)

∑
j θ̇

2
j +

D0
s /4

∑
i j cos(θi − θ j ), where κ = dn/dμ is the compress-

ibility, D0
s /π = 〈−kx〉 − �xx(qx = 0, qy → 0, ω = 0) is the

mean-field phase stiffness [61], 〈−kx〉 is the kinetic energy,
and �xx is the transverse current-current correlation function.
Phase fluctuations are considered by using the self-consistent
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(b)
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L

0
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1

1.5
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2.5

2
(L

)

V = 0.5 V = 1 V = 1.5
V = 2 V = 2.5 V = 3
 Two GOE  GOE Poisson

(c)

FIG. 8. Level spacing distribution P(s) and number variance 
2(L) in the weak-coupling limit U = −1, ωD = 0.15 (in units of t). Only
eigenvalues within the Debye energy window are taken into consideration. (a) Weak disorder V = 0.5. We find excellent agreement with the
prediction for two superimposed spectra with Wigner-Dyson statistics. (b) Strong disorder V = 2. Degeneracy is lifted, level repulsion is robust,
and the decay for larger spacing is exponential. These spectral features are shared with systems at the metal-insulator transition [31,33,57].
(c) Number variance for different disorder strengths. Results are consistent with those of P(s). For weak disorder, the number variance agrees
well with that corresponding to the superposition of two spectra each following Wigner-Dyson statistics. For stronger disorder, it becomes
linear but with a slope less than 1, which is consistent with the prediction for a system close to an Anderson metal-insulator transition.
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FIG. 9. The level spacing distribution P(s) and the number variance 
2(L) in the strong-coupling limit, ωD = ∞, U = −2, and chemical
potential μ = 0. (a) V = 0.5, spectral correlations are close to Wigner-Dyson statistics. (b) V = 3: level repulsion is observed, but the
asymptotic decay is exponential as in an insulator. (c) Only the first 200 eigenvalues are taken into consideration for the number variance in
order to mimic the Debye cutoff energy in the weak-coupling limit. We observe that although spectral fluctuations deviate from Wigner-Dyson
statistics, they are still very different from Poisson statistics, which characterizes the insulating region. For V ∼ 1.5, spectral correlations are
similar to those of a system close to an Anderson metal-insulator transition [31].

Gaussian approximation [8,62,63], leading to a renormalized
superfluid stiffness,

Ds = D0
s exp

( − 〈
θ2

i j

〉
0

/
2
)
, (8)

where 〈θ2
i j〉0 is the mean-square fluctuation of the nearest-

neighbor phase difference 〈θ2
i j〉0 = 2

Nξ

∑
q

√
( εq

Dsκ
) and εq =

2[2 − cos(qx ) − cos(qy)]. Therefore, it remains to compute
D0

s , the coherence length ξ , and the compressibility κ .
We focus on the region of intermediate disorder as our

main aim to find out whether superconductivity, as defined
by a finite Ds, is robust to the strong spatial fluctuations of the
order parameter amplitude. The answer is mostly affirmative.
As is observed in Fig. 10, the transition is located around
V = Vc ≈ 1, provided that, following Refs. [7,8], the chosen
coherence length is the largest one that it is still much smaller
than the system size.

As shown previously, for V ∼ 1, the averaged order pa-
rameter �̄ is enhanced by disorder, its spatial distribution is
log normal, and the singularity spectrum f (α) is parabolic.
All these are typical features in systems where multifractality
plays a role. However, it is important to stress that Ds is
very sensitive to the choice of coherence length. Theoretically,
there is some ambiguity in the derivation of Eq. (8). It is

assumed that the superconducting coherence length does not
depend on disorder. According to Refs. [7,8], our choice, at
least in the strong-coupling limit, is consistent with Monte
Carlo simulations. Another point worth mentioning is that the
numerical calculation is rather demanding due to the large
lattice size of 80 × 80. For this reason, only one disorder
realization is considered. Results for smaller sizes indicate
that ensemble fluctuations are very small, and therefore, one
disorder is, in principle, enough.

In summary, superconductivity, even in the two-
dimensional limit, is robust to strong quantum coherence
effects induced by a relatively weak disorder. We note that the
results for larger lattices may shift the transition to a slightly
stronger disorder because finite-size effects enhance phase
fluctuations.

VI. CONCLUSION AND OUTLOOK

We have studied two-dimensional, weakly disordered,
weakly coupled superconductors by solving numerically the
Bogoliubov–de Gennes equations. The effect of small phase
fluctuations has also been taken into account. We have found
that, unlike strongly coupled superconductors, the spatial
distribution of the order parameter amplitude is log normal

(a) (b) (c)

FIG. 10. The mean-field superfluid stiffness D0
s /π and the full superfluid stiffness Ds/π (8) in units of t , including phase fluctuations, as a

function of disorder. The chemical potential is μ = 0, the system size is 80 × 80, ωD = 0.15, and U = −1. As is observed, results are rather
sensitive to the coherence length. (a) Coherence length is that of Fig. 2. (b) Using previous choices in the literature [7,8], which in our case
corresponds to ξ ≈ 15.727, the coherence length for V = 0.5. (c) Coherence length ξ0 ≈ 100 is that of the clean limit, which leads to Ds ≈ D0

s .
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and the average gap and order parameter amplitude increase
with disorder. These results are in rough agreement with
analytical findings based on a simpler, not fully self-consistent
BCS formalism [23]. The analysis of the f (α) spectrum
revealed that the probability measure related to the order
parameter is closer to parabolic, which is the prediction for
weakly multifractal eigenstates. Level statistics for interme-
diate disorder are consistent with those of a critical system
at the Anderson metal-insulator transition. Therefore, our
results suggest that enhancement of superconductivity and
some approximated form of multifractality may be generic
features of two-dimensional weakly disordered, weakly cou-
pled superconductors. A natural question to ask is why mul-
tifractality may play any role as this concept is associated
with systems with no scales and we expect that the super-
conducting coherence length is still a typical length in our
problem. Indeed, in the strong-coupling limit, this length is
clearly observed in the spatial dependence of the gap. It is
possible this would also be the case in the weak-coupling
limit, although much longer lattice sizes would be necessary
to observe it. A finite-size scaling analysis may shed light
on this issue. Even if it does, multifractality would still be
relevant in a broad range of lengths, which could impact trans-
port and other properties of two-dimensional superconducting
materials.

The calculation of the superfluid density, computed while
including the effect of phase fluctuations, for intermediate
disorder V ∼ 1 reveals that phase coherence coexists with
the intricate spatial distribution of the order parameter. The
vanishing of the density occurs for larger disorder, although
the order parameter amplitude is still finite and level statistics
are far from those of an insulator. This is reminiscent of a dirty
Bose metal phase, although further research, likely involving
the study of transport properties like the conductivity, is
required to test the reach of this similarity.

It would be interesting to investigate finite temperature
and magnetic field effects that could shed light on long-
standing problems in low-dimensional superconductivity such
as the conditions for enhancement of the critical temperature,
the nature of the dirty Bose metal, and the inhomogeneous
Kosterlitz-Thouless transition. In the latter, the spatial distri-
bution of vortices, likely very inhomogeneous, can modify
qualitatively the transition. We are currently investigating
some of these problems.
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