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Anomalous Josephson Hall effect charge and transverse spin currents
in superconductor/ferromagnetic-insulator /superconductor junctions
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Interfacial spin-orbit coupling in Josephson junctions offers an intriguing way to combine anomalous Hall
and Josephson physics in a single device. We study theoretically how the superposition of both effects
impacts superconductor/ferromagnetic-insulator/superconductor junctions’ transport properties. Transverse-
momentum-dependent skew tunneling of Cooper pairs through the spin-active ferromagnetic-insulator interface
creates sizable transverse Hall supercurrents, to which we refer as anomalous Josephson Hall effect currents.
We generalize the Furusaki-Tsukada formula, which got initially established to quantify usual (tunneling)
Josephson current flows, to evaluate the transverse current components and demonstrate that their amplitudes
are widely adjustable by means of the spin-orbit coupling strengths or the superconducting phase difference
across the junction. As a clear spectroscopic fingerprint of Josephson junctions, well-localized subgap bound
states form around the interface. By analyzing the spectral properties of these states, we unravel an unambiguous
correlation between spin-orbit coupling-induced asymmetries in their energies and the transverse current
response, founding the currents’ microscopic origin. Moreover, skew tunneling simultaneously acts like a
transverse spin filter for spin-triplet Cooper pairs and complements the discussed charge-current phenomena
by their spin-current counterparts. The junctions’ universal spin-charge-current cross ratios provide valuable

possibilities to experimentally detect and characterize interfacial spin-orbit coupling.
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I. INTRODUCTION

Superconducting junctions offer unique possibilities to
generate and control charge and spin supercurrents, and pro-
vide the key ingredients for spintronics applications [1,2].
Particularly rich physics occurs when superconductiv-
ity is brought together with the antagonistic ferromag-
netic phase. Prominent examples cover magnetic Josephson
junctions [3—13], in which the combination of superconduc-
tivity and ferromagnetism can add intrinsic phase shifts to the
junctions’ characteristic current-phase relation and reverse the
Josephson currents’ directions.

The interplay of magnetism and superconductivity gets
even more fascinating in the presence of Rashba [14] and/or
Dresselhaus [15] spin-orbit coupling (SOC) [16,17], which
induces spin-triplet correlations [1,18-23], triggers long-
range proximity effects [24-27], and is furthermore expected
to host Majorana states in proximitized superconducting
regions [24,28-34]. Tunneling barriers invariably introduce
interfacial SOC into various types of (superconducting) tun-
nel junctions. Earlier theoretical studies concluded that skew
tunneling of spin-polarized electrons through such barriers
gives rise to (extrinsic) tunneling anomalous Hall effects
(TAHES) [35-40]. Although first experiments carried out on
granular nanojunctions [41] essentially confirmed the theoret-
ical expectations, the effect is typically weak in normal-state
junctions. More sizable TAHE conductances, coming along
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with a spontaneous transverse supercurrent response, were
predicted for superconducting junctions [42], opening several
novel perspectives, e.g., the possibility to experimentally ver-
ify superconducting magnetoelectric effects [43,44].

From that viewpoint, integrating TAHEs into Josephson
junctions could likewise attract considerable interest. The
resulting dissipationless transverse supercurrent flows might
be efficiently tuned by means of the phase difference be-
tween the superconducting junction electrodes, becoming
exploitable for a variety of spintronics applications [1,2].
However, already one of the initial works into that direc-
tion [45] demonstrated that the fundamental time-reversal
(electron-hole) symmetry in stationary Josephson junctions
acts against the spontaneous flow of (spin) Hall supercurrents.
To overcome this obstacle, one could either apply a finite-
bias voltage to the system [46] or modify the considered
junction geometry. Several proposals suggested to focus on in-
tricate magnetic multilayer configurations [39,47-61], which
break time-reversal symmetry and simultaneously facilitate a
mixture of spin-singlet and spin-triplet correlations (caused,
e.g., by strong SOC), eventually leading not only to nonzero
charge Hall supercurrents [39,53,58,62], but also to their spin
counterparts [49,50,52,55,57,59-61,63].

In this paper, we consider a ballistic superconduc-
tor (S)/ferromagnetic-insulator (F-I)/S Josephson junction,
whose magnetic (F-I) tunneling barrier introduces strong
interfacial SOC into the system. We demonstrate that
Cooper pairs skew tunnel through the spin-active interface
and spontaneously generate charge Hall supercurrents along
the transverse directions (i.e., parallel to the interface), to
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which we refer as anomalous Josephson Hall effect (AJHE)
currents.' When compared to most of the previously predicted
geometries, our system brings along the great advantage
that its physical properties can be much better controlled in
experiments. Generalizing the Green’s function-based [64]
Furusaki-Tsukada method [65], we quantify the AJHE cur-
rents for representative junction parameters and discuss their
characteristic dependence on the F-I’s magnetization orienta-
tion and the phase difference across the junction.

A clear spectroscopic fingerprint of Josephson junctions
is the formation of subgap bound states, which are strongly
localized around the nonsuperconducting link. In fact, two
distinct types of bound states play a major role in S/F-I/S
junctions [66,67]: The Andreev bound states (ABS) [68,69]
and the Yu-Shiba-Rusinov (YSR) [70-73] states. Up to now, it
remained unclear whether one can draw connections between
these states’ features and the Josephson Hall effects. To an-
swer this question, we identify our junction’s ABS and YSR
states, together with their respective energies, and formulate
an alternative approach that allows us to compute the AJHE
currents directly from the bound-state wave functions. The
additional calculations offer not only an essential crosscheck
for the Furusaki-Tsukada method, but enable us to resolve
the single-current contributions that originate from the ABS
and the YSR states. We identify SOC-induced transverse-
momentum-dependent asymmetries in the bound-state ener-
gies, most clearly apparent in the YSR branch of the spectrum,
as the microscopic origin of the AJHE.

The spin-active F-I barrier simultaneously induces interfa-
cial spin flips and converts some of the spin-singlet Cooper
pairs into triplet pairs. We extend the Cooper pair skew
tunneling picture to these spin-polarized triplet pairs and
develop a qualitative physical understanding to unravel the
most essential features of the resulting transverse spin-current
flows. We evaluate the spin-current amplitudes once from an
extended Furusaki-Tsukada spin-current formula and once
from the bound-state wave functions, comment on their dis-
tinct magnetization angle dependence when compared to their
AJHE charge-current counterparts, and eventually deduce that
the magnetization-independent spin-charge-current cross ra-
tios could be exploited to classify the interfacial SOC.

We structured the paper in the following way. In Sec. II,
we formulate the theoretical model used to investigate our
junction. After working out the qualitative skew tunneling pic-
ture, justifying the existence of nonzero AJHE currents, and
bringing along valuable physical insight, in Sec. III, we com-
pute the current components for realistic parameter config-
urations and discuss their generic properties (see Sec. IV).
Section V is dedicated to a thorough analysis of the connec-
tions between the bound states that form around the junction’s
F-I barrier and the emergent AJHE. Finally, we are concerned
with the charge currents’ spin counterparts in Sec. VI, before
closing with a short summary (Sec. VII). The Appendices con-
tain the most important technical details of our calculations.

Tn an earlier study [58], the term AJHE refers to the anomalous
Hall conductances appearing in the nonsuperconducting electrode of
magnet/triplet S junctions. Although we use the same terminology,
it shall be noted that the physics is different in our case.
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FIG. 1. (a) Sketch of the regarded S/F-I/S junction, using the
C,, principal crystallographic orientations % || [110], § || [110], and
Z || [001]; Cooper pair tunneling generates (tunneling) Josephson
currents along Z, while the AJHE currents flow transversely along
X and 9 (I, is exemplarily illustrated by the green arrow). (b) The
direction of the magnetization vector inside the F-1, r, is determined
by the angle ®.

II. THEORETICAL MODELING

We consider a ballistic three-dimensional S/F-I/S junction
grown along the Z direction, in which the two semi-infinite S
regions are separated by an ultrathin F-I (could, e.g., be a thin
layer of EuS [74], EuO [75], a GaAs/Fe slab [76], or another
thin semiconducting layer proximitized by a ferromagnet); see
Fig. 1(a).

The barrier itself introduces potential scattering and, owing
to the broken space inversion symmetry, simultaneously addi-
tional strong interfacial Rashba [14] and, for Cy,-symmetrical
interfaces, Dresselhaus [15] SOC [16,17]. Our system is mod-
eled by means of the stationary Bogoliubov—de Gennes (BdG)
Hamiltonian [77]

o [ H Ase
Hpac = [Ag(z) N ], (1

with ‘7A-{e = [—h? /2m)V? — u] 6o + Hey representing the
single-electron Hamiltonian and #, = —6y ?AK: 6y its holelike
counterpart (69 and 6; indicate the 2x2 identity and the ith
Pauli matrix). Analogously to previous studies [42,66,78-81],
the ultrathin F-I region is included into our model as an
effective potential- and SOC-dependent deltalike barrier,

Hiy = [Asc 80 + Ama (1 - &)
+a (ky 6 — k. 6,) — B (ky 6, + ki 6,)]8(z), (2)

where the first two parts describe scalar and magnetic tun-
neling with amplitudes Agc and Apa, respectively. The unit
vector along the magnetization direction in the F-I, m =
[cos @, sin D, O]T, is determined with respect to the & || [110]
reference direction [see Fig. 1(b)], while the vector 6 =
[6x, Gy, 62]T comprises the Pauli spin matrices. Finally, the
remaining contributions resemble the interfacial Rashba and
(linearized) Dresselhaus SOC with the effective strengths o
in the first and 8 in the second case; the SOC Hamiltonian is
given with respect to the C,, principal crystallographic axes
£ [110] and $ || [110]. Inside the S electrodes, the s-wave
superconducting pairing potential As(z) = |Ag| [O(—2) +
€’ ®(z)] (JAs]| is the superconductors’ isotropic energy gap,
which is taken to be the same in both electrodes, and ¢g
the phase difference across the junction) couples the BdG
Hamiltonian’s electron and hole blocks. Writing Ag in that
way is a rigid approximation as it fully neglects proximity
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effects. Nevertheless, this approach drastically simplifies the
subsequent theoretical analyses, while still yielding reliable
results for common transport calculations [82,83]. For further
simplification and without losing generality, we additionally
consider equal effective carrier masses m and the same Fermi
level u© = (hqu%)/ (2m) (g is the associated Fermi wave vec-
tor) in all junction constituents.

Assuming translational invariance parallel to the F-I inter-
face, the solutions of the BAG equation, Hpyg W(r) = E ¥(r),
can be factorized into W(r) = ¥ (z) ™™, where k| =
[ky, ky, 017 (rjy =[x, y, 0]7) is the transverse-momentum
(position) vector and ¥ (z) the BdG equation’s individual
solution for the effective one-dimensional scattering prob-
lem along Z. The latter distinguishes between the involved
quasiparticle scattering processes at the interface. Quasipar-
ticles incident from one S may, for instance, either undergo
Andreev reflection (AR) or specular reflection (SR), or may
be transmitted into the second S. The AR process contains
all the information concerning the transfer of Cooper pairs
across the barrier and is therefore the process on which we
need to focus subsequently to understand the physical origin
of transverse supercurrent flows. Putting the scattering picture
on a mathematical ground is rather technical and can be partly
found in Appendix A and in all details in the Supplemental
Material (SM) [84].

III. QUASIPARTICLE PICTURE: SKEW AR

On the quasiparticle level, the supercurrent generating
exchange of Cooper pairs between the superconductors is
mediated by the peculiar AR process. An (unpaired) electron-
like quasiparticle incident on the F-I barrier from one S gets
transmitted into the second S, pairs with another correlated
electronlike quasiparticle, and effectively transfers a Cooper
pair across the barrier. Formally, the transmission of two
correlated electronlike quasiparticles is modeled by having
the incident electronlike quasiparticle Andreev reflected as
a holelike quasiparticle with opposite spin. As long as more
Cooper pairs enter the right S than the left one (or vice
versa), net (tunneling) Josephson currents start to flow. In
the following, we will simply refer to electronlike (holelike)
quasiparticles as electrons (holes). Electrons incident on the
F-I barrier are exposed to an effective scattering potential
that combines the scalar and (spin-dependent) magnetic po-
tential terms with an additional transverse-momentum- and
spin-dependent contribution originating from the interfacial
SOC. Assuming, for simplicity, that only Rashba SOC is
present (¢ > 0 and B = 0), the F-I's magnetization points
along X (meaning ® = 0), and k, = 0, the effective scattering
potential takes the form

Vi = Asc + o Aima + oak,, 3

€

where 0 = 4 (—)1 indicates a spin parallel (antiparallel) to x;
we will equivalently use the terms spin up (spin down). How
does Vs impact the peculiar AR process at the F-1barrier? To
address this central question, Fig. 2 illustrates the dependence
of the AR coefficient [84] on the strength of V. [represented
by the dimensionless parameter Z%; = 2mVg)/ (hqu)]. We
just focus on (spin-conserving) AR since this scattering
process essentially drives the supercurrents we are predom-

0.6 1

AR coefficient

021

0.6 |

0.4

AR coeflicient

0.2

0 2 4 6 8 10

Effective dimensionless scattering potential ZZ;

FIG. 2. (a) Calculated (zero-energy) AR coefficient (determining
the AR probability) for spin-up electrons (IN) incident on the F-I in-
terface and as a function of Z% = (2mV.%)/(*qr), essentially mod-
eling the effective scattering potential in Eq. (3). The dashed black
line indicates the tunneling parameters Asc = (2migc)/(F*qr) = 2
and Aya = (2mina)/(F2gr) = 0.25, which combine to Asc + Ama
for up-spin electrons. Assuming the Rashba SOC strength ip =
(2ma)/H* = 1, incoming electrons with k, > 0 are exposed to a
raised (dashed orange line) and those with k, <0 to a lowered
(dashed violet line) effective scattering potential. AR becomes sup-
pressed at positive k, and favorable at negative k,, highlighted by the
different size of the (blue) Andreev reflected holes. This skew AR
generates a net transverse current along y (the direction of the current
is usually defined oppositely to the electron flow direction; the latter
points along —3), which flows as a dissipationless AJHE current ; in
the superconductors. (b) Same as in (a), but for incident spin-down
electrons. Skew AR causes now an AJHE current along —J. Since the
effective tunneling strength (without SOC) for down-spin electrons
is Asc — Ama. the skew AR coefficients for spin down are always
slightly greater than for spin up so that the AJHE currents originating
from both processes do not completely compensate.

inantly interested in. Earlier studies [42] showed that the
contributions of spin-flip AR, i.e., the triplet Cooper pair
currents are small within the considered limit and can be
neglected when formulating a qualitative picture.

Following Eq. (3), incident up-spin electrons with k, > 0
experience a raised effective scattering potential, while Vg

104508-3



ANDREAS COSTA AND JAROSLAV FABIAN

PHYSICAL REVIEW B 101, 104508 (2020)

gets lowered for incoming k, < 0 electrons. Since the proba-
bility to undergo AR typically decreases with increasing Vg,
up-spin electrons get predominantly Andreev reflected for
negative k,. In that way, this skew AR generates a transverse
AJHE quasiparticle current along the y direction. Although
we are solely dealing with quasiparticle currents at the mo-
ment, skew AR effectively cycles Cooper pairs across the F-I
interface and triggers a supercurrent response [42]. Therefore,
the transverse AJHE quasiparticle currents building up at the
interface are immediately converted into transverse AJHE
supercurrents inside the two superconducting electrodes (ba-
sically generated by skew tunneling Cooper pairs). Flipping
the incident electrons’ spin reverses the skew AR picture. It
is now the positive range of k, that causes preferential ARs,
leading to an AJHE current that flows along —3. If the F-I
barrier would be nonmagnetic, the net AJHE current ampli-
tudes stemming from skew ARs of incoming up-spin and
down-spin electrons would become equal and, as they flow
along reversed directions, no net AJHE currents are expected.
Already a weak exchange splitting in the F-I, however, is
sufficient that skew ARs happen more likely for incoming
down-spin than for up-spin electrons (see our explanations
to Fig. 2). The individual AJHE currents in the (weakly)
magnetic junction do then not completely cancel and nonzero
AJHE currents build up.

IV. AJHE CURRENTS

Measuring a finite AJHE supercurrent response is an un-
ambiguous experimental evidence for skew ARs at the spin-
active F-I interface. To mathematically access the interfa-
cial AJHE currents in our junction (we refer to them as I,
flowing along the 7 € {X; 9} directions), we generalize the
quasiparticle-based Furusaki-Tsukada approach [65] and end
up with [42,84]

ekBT TC
I, ~ > | As(0)| tanh (1.74,/7 — 1)

A

k

2 "
X —2/61 k) ———
2m) o /qlz:_kﬁ

CW(iw,) + DP(iwy) + A (iw,) + BD(iwy,)
\/a),% + |As(0)|? tanh? (1.74/Tc/T — 1)

“)

where e denotes the (positive) elementary charge, kg Boltz-
mann’s constant, and w, = (2n + 1)wkgT, with integer n,
indicates the fermionic Matsubara frequencies (at temperature
T and given in units of 1/4); for simplicity, we assume that
the tunneling and Hall contact areas are equal and determined
by A. All information necessary to evaluate the AJHE current
components enters via the spin-conserving AR coefficients
for incoming (from the left) up-spin (down-spin) electronlike
quasiparticles CV(iw,) [D® (iw,)], as well as the ones be-
longing to incident up-spin (down-spin) holelike quasiparti-
cles A® (iw,) [B® (iw,)]. The latter are required to properly
capture the AJHE currents originating from skew ARs of
electrons incident on the F-I interface from the right. Further

T

AR =05 =

—~
©
N
S
w»n
Il
<
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FIG. 3. (a) Calculated dependence of the AJHE current along X,
1., normalized according to (I/,e)/[Gsm|As(0)]] [e is the (positive)
elementary charge and Ggs represents Sharvin’s conductance of a
three-dimensional point contact], on the F-I's in-plane magneti-
zation angle @ and for various indicated (dimensionless) Rashba
SOC strengths Ax = (2ma)/fi%. The remaining parameters are Agc =
@misc)/(Fqr) =1, ma = 2mima)/(Fqr) = 0.005, and ip =
(2mpB)/1* = 0.5. The temperature is chosen such that T/T¢ = 0.1,
where Tc & 16 K abbreviates the superconductors’ critical tempera-
ture. The inset shows the maximal I, (i.e., for ® = 7 /2) as a function
of the superconducting phase difference ¢s. (b) Similar calculations
as in (a) for the AJHE current along 9, I,.

details on the methodology are included in Appendix A and
the SM [84].

In Fig. 3, we show the numerically extracted AJHE cur-
rents I, and I, for one representative S/F-I/S junction. For
the superconducting materials’ zero-temperature gap and their
critical temperature, we substituted realistic values for s-wave
superconductors [85], |As(0)] & 2.5 meV and T ~ 16 K.
The F-1 parameters refer, e.g., to a weakly magnetic barrier
(exchange couplings in the meV range) with a height of
about 0.75 eV and a width of about 0.40 nm (assuming gr ~
8 x 107 cm™! as a typical Fermi wave vector [86]); the cho-
sen Dresselhaus SOC, Ap = (2171,3)/}‘12 = 0.5, corresponds
to typical Dresselhaus SOC strengths of 8 ~ 1.9eV A? (for
example, AP barriers with the considered height and width
would have 8 ~ 1.7 eV A2 [17,84]), while the dimensionless
Rashba measure got varied between AR = (2moe)//‘12 =0.5
and Ag = 4.0, indicating bare Rashba SOC strengths be-
tween o ~ 1.9 eVA? and o ~ 15.2 eV A2, respectively. A
recent study [86] concluded that the Rashba SOC arising
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at Fe/MgO/V junctions’ interfaces can reach values up to
o~ 4.6eV A? (for a 1.7-nm-thick MgO barrier), which lies
well within the range we considered. Even larger Rashba
couplings were furthermore predicted to appear at BiTeBr
interfaces [87].

Let us first discuss the dependence of the AJHE currents on
the in-plane magnetization angle ® and at zero superconduct-
ing phase difference (¢s = 0). The apparent sinelike (cosine-
like) variations of I, (I,) with respect to @ are a direct con-
sequence of the intriguing interplay of ferromagnetism and
the interfacial SOC [42], and a distinct (experimental) finger-
print for the junction’s magnetoanisotropic charge transport
properties [37]. To be more specific, we deduced I, ~ —(« +
B)sin® and I, ~ (0« — B)cos® in an earlier work [42].
The latter explains the vanishing /, for o ~ Ar = 0.5 (equals
the considered Dresselhaus SOC, 8 ~ Ap = 0.5), illustrated
by the dark red curve in Fig. 3(b). In fact, inspecting the SOC
part of the single-particle barrier Hamiltonian in Eq. (2) sug-
gests that « = B completely suppresses the skew AR mech-
anism along y, which we identified as the physical origin of
nonzero AJHE currents, and thus simultaneously /,. Already
a slight change of the Rashba SOC strength (while keeping
all remaining parameters fixed) typically significantly alters
the AJHE currents’ amplitudes and offers hence an efficient
experimental way to control skew ARs. The real interplay
of all system parameters is rather intricate. This can be ob-
served, e.g., in our simulations for /,. Contrary to /,, whose
amplitudes get continuously damped with increasing Rashba
SOC, stronger Rashba SOC reverses I,’s direction (sign)
and initially even enhances its absolute amplitudes. In the
limit of strong SOC, both currents are heavily damped since
strong interfacial SOC acts like large (additional) scattering
potentials; see Eq. (3). Similar features, especially the reversal
of the ATHE current with enlarging Ag, can also appear for I,.
Reversing the AJHE currents requires a reversal of the skew
AR mechanism, depicted in Fig. 2, with respect to k;’s sign.
This may be most conveniently achieved by varying either the
scalar tunneling strength Agc or the Rashba SOC strength «,
both governing the effective scattering potential in Eq. (3)
responsible for skew ARs, in an appropriate way [42,84].
Overall, when compared to conventional anomalous Hall ef-
fects [37,41,42,88], the AJHE currents are sizable.

Next, we analyze the influence of the superconducting
phase difference ¢s on the maximal AJHE currents; see the
insets in Fig. 3. While the junction’s (tunneling) Joseph-
son current always follows the well-established sinusoidal
current-phase relation (not explicitly shown; see Ref. [66]),
the transverse AJHE currents vary with ¢s in a remarkably
different way. The greatest AJTHE currents flow at those phase
differences at which the (tunneling) Josephson current itself
vanishes, i.e., at ¢s = 0 (mod ). To develop a simple under-
standing of the AJHE currents’ phase dependence, we may
look once again into our Cooper pair skew tunneling picture
(mediated by the skew ARs as outlined in the explanations to
Fig. 2).

All supercurrent flows through the junction are essentially
generated by the tunneling of Cooper pairs from one into
the other S, each happening with certain probabilities. At
zero superconducting phase difference (¢s = 0), tunnelings

(a) (b)

M?A
=

S
Z
y

(©) (d

$s20

I t
= g

FIG. 4. (a) llustration of the electron Cooper pair tunneling from
the left into the right S across the F-I barrier (light blue), generating
the (tunneling) Josephson current /; and, owing to the skew tunneling
mechanism (illustrated by the green arrows), the transverse AJHE
current /,; the superconducting phase difference is ¢s = 0 and the
current amplitudes are proportional to the size of the violet and
orange arrows. (b) Same as in (a), but for the tunneling of hole
Cooper pairs from the left into the right S, essentially modeling
electron Cooper pair tunneling from right to left. At ¢s =0, j’s
amplitude is the same as in (a), but the current flows along the op-
posite direction (recall that hole currents enter with opposite signs).
The overall (tunneling) Josephson current vanishes. The transverse
AJHE currents (both have again the same magnitude), contrarily,
flow along the same direction and become maximal. (c), (d) Same
as in (a) and (b), but at ¢s 2 0. Finite phase introduces a “bias” so
that more electron Cooper pairs tunnel from left to right than vice
versa and the overall (tunneling) Josephson current slowly starts to
increase (the contributions no longer completely compensate, though
they are both smaller than at ¢s = 0). The decrease of the (tunneling)
Cooper pair currents simultaneously damps their contributions to the
generated AJHE current.

of Cooper pairs from the left into the right S and vice versa
become equally likely. All Cooper pairs leaving one S are
therefore fully compensated by others entering this S and no
net (tunneling) Josephson currents flow; see Figs. 4(a) and
4(b) for illustration (the tunneling of Cooper pairs from right
to left is modeled in terms of hole Cooper pairs that tunnel
from left to right). Increasing ¢s acts now as an effective
“bias”. While the probability for forward tunneling (meaning
from the left into the right S) is only barely affected, backward
tunneling (meaning from the right into the left S) becomes
much less likely. In the end, more (electron) Cooper pairs
are transferred into the right S than leave, giving rise to a
finite (tunneling) Josephson current. The imbalance (“bias”)
between forward and backward tunnelings gets more dis-
tinct with further enhancing ¢s so that simultaneously the
(tunneling) Josephson current rises. Owing to the tunneling
probabilities’ periodicity, the situation eventually reverses at
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¢s &~ w /2 (assuming ideal or dirty junctions; otherwise the
reversal happens at other values of ¢s) and the Josephson cur-
rent decreases again, finally resembling the typical sinusoidal
Josephson current-phase relation.

In sharp contrast, the AJHE current contributions stem-
ming from forward and backward tunneling of Cooper pairs
flow along the same direction and thus add up. As a conse-
quence, the largest AJHE currents appear whenever forward
and backward tunnelings become maximal (and equal in
magnitudes), i.e., precisely at ¢s = 0 (mod ), as calculated
in Fig. 3. Increasing ¢s then primarily suppresses backward
tunneling and simultaneously the total AJHE currents; see
Figs. 4(c) and 4(d) for illustration.

V. BOUND-STATE PICTURE: SOC ASYMMETRIES

The formation of interfacial subgap bound states counts
to the most distinct spectroscopic characteristics of Joseph-
son junctions. Particularly interesting is the case in which
the junctions additionally comprise magnetic components
and the bound-state spectrum splits into ABS and YSR
branches. The latter turned out to possess unique spectral
properties [66,67,89,90] already in one-dimensional point
contacts.

Those states are especially relevant to our study since all
electrical current inside the F-1 barrier is essentially carried by
single electrons, which initially formed Cooper pairs in one
of the superconductors, and now tunnel through the barrier
via the available bound states. Each bound state occupied by
an electron characteristically contributes to the (tunneling)
Josephson and the AJHE currents. Instead of dealing with
the Furusaki-Tsukada approach (see Sec. IV), one can equiv-
alently access the current components via the bound-state
wave functions. The full calculations are rather cumbersome
and can be looked up in Appendix B and the SM [84]. The
resulting interfacial ATHE currents I, read as

'y |As(0)] tanh(1.74/Tc/T — 1)

I =—
- 2E;
A hk
d*ky —[le(k: Ep)|* Ky E)|?
X (271)2/ 1=, Lleds Ep)I" + 1f (ks Ep)l

E
+ lg(ky; Ep)I* + |h(ky; Ep)|*] tanh <ﬁ) )

where Ep refers to the bound states’ energies (ABS and YSR
states), while e(k;; Eg), f(K;; Er), g(Ky; Es), and h(k; Eg)
represent the electronlike and holelike coefficients of the
underlying bound-state wave function (see Appendix B
and the SM [84] for details). The thermal occupation fac-
tor tanh[Eg/(2kgT )] ensures that only occupied states are
counted to the current. Simply speaking, the AJHE cur-
rents are given by the electrons’ transverse velocities v, =
(fiky)/m, multiplied by their charge —e and a “weighting
factor”, which is mostly determined by the bound-state energy
(via the wave-function coefficients).

As long as the interfacial SOC remains absent, the junc-
tion’s bound-state spectrum is symmetric with respect to
a reversal of k. To each electron with transverse velocity

v, = (hik,)/m, being transferred through the F-I via a bound
state at energy Ep, one finds a second electron with opposite
velocity (—v,), occupying a bound state with precisely the
same energy. Consequently, two occupied states always carry
the same amount of current along opposite directions so that
the overall AJHE currents vanish. Since SOC scales [lin-
early with the components of k| = [k, &y, 0]7, nonzero SOC
causes an asymmetry of the bound-state energies with respect
to k’s sign. Depending on the chosen SOC strength and the
magnetic tunneling parameter, the energies of the bound states
getting occupied by the propagating (with transverse velocity
v,,) and its counterpropagating (with transverse velocity —v,))
electron are no longer identical and may noticeably differ. In
contrast to the case without SOC, the current contributions
stemming from the propagating and counterpropagating states
cannot fully compensate [as the energy-dependent “weighting
factors” entering Eq. (5) differ once the Eg’s of the propagat-
ing and counterpropagating states are no longer equal], and
finite AJHE currents start to flow. Such SOC-controlled k;
asymmetries in the bound-state energies are thus the micro-
scopic physical manifestation of the AJHE.

Figure 5(a) illustrates this asymmetry for k, (keeping
k. = 0 fixed) and the same parameters as considered in Fig. 3,
except that we additionally assume ¢s = 7 /2 to stress that our
explanations are general and not restricted to zero phase dif-
ference. Since the SOC asymmetry of the bound-state energies
is rather small and hard to visualize (owing to the small Apa
used for our calculations), we focus on the absolute squares of
the bound-state wave functions (see the SM [84] for details).
Apparently, the k, asymmetry is more pronounced for the
YSR than for the ABS branch of the spectrum. Furthermore,
the SOC asymmetry impacts the ABS and the YSR states
in the opposite way. While the YSR states’ wave-function
squares are raised at k, > 0, those belonging to ABS decrease
there. Translating both observations into current flows, we
expect that the single current contributions stemming from
the two bound-state bands must flow along opposite directions
and the YSR part must be the dominant one. This is also the
deeper reason why sizable AJHE currents require not only in-
terfacial SOC, but also (at least weak) ferromagnetism. If the
latter would not be there, the bound-state bands simply merge
into the usual ABS and the k; asymmetry (and simultaneously
the AJHE) immediately disappear.

Evaluating the AJHE currents from Eq. (5) [see Fig. 5(b)]
essentially confirms all predicted features. The AJHE currents
obtained from the bound-state spectrum coincide with the
results extracted from the Furusaki-Tsukada approach. Al-
though the first method is computationally more challenging
and less general, it establishes an important crosscheck for
the second technique and brings along more physical insight.
For example, the spatial dependence of the bound-state wave-
function squares [see Fig. 5(a)] allows us to deduce the
AJHE currents’ spatial dependence, which was not covered
by the Furusaki-Tsukada formula (we computed the currents
at the interface there). Since the squares of the wave-function
coefficients directly enter the bound-state current formula [see
Eq. (5)], the AJHE currents decay in exactly the same way
with increasing distance from the interface, i.e., exponentially
over the characteristic decay length « = 1/{2Im[q, .(Ep)]},
where g o(Eg) = grll + i(|As]* — ER)'?/u — ki /qg]'/?
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FIG. 5. (a) Calculated absolute squares of the bound-state wave
functions at the F-I interface (z = 0) as a function of the transverse
momentum k, (normalized to the Fermi wave vector gr) and for the
superconducting phase difference ¢s = 7 /2; for simplicity, we set
k, = 0 and ® = 0. The Rashba SOC strength is IR = (2moz)/}‘12 =1
and all other parameters are the same as in Fig. 3. The blue curve
corresponds to ABS and the red curve to YSR states. The inset
shows the spatial dependence of the bound-state wave functions’
absolute square differences, exemplarily in the left S and for k, =
+0.99¢r, as a deeper analysis [84] suggests that the dominant current
contributions stem from states with |k;| — gg. The positive YSR
tail indicates that the wave-function squares at k, = 0.99¢r exceed
those at k, = —0.99¢r (and vice versa for the ABS). Though being
small (as expected from the small AJTHE currents), the k, asymmetry
explained in the text becomes clearly evident. (b) Dependence of I,
on ® [same normalization as in Fig. 3 and for Ax = (2ma)/ B =1],
calculated from the bound-state spectrum. The contributions of ABS
and YSR states are separately resolved; all other parameters are
the same as in Fig. 3, except ¢s = /2. As a crosscheck, the dots
show the total AJHE current evaluated from the Furusaki-Tsukada
approach.

indicates the electronlike wave vector inside the supercon-
ductors. We provide a more comprehensive discussion of the
SOC-induced k; asymmetries, with special attention on the
bound-state spectra and their correlation to the AJTHE currents,
in the SM [84].

VI. TRANSVERSE SPIN CURRENTS

Apart from the AJHE charge currents, also their spin-
current counterparts might provide indispensable ingredients
for spintronics applications. When tunneling through the spin-
active F-1 barrier, some of the spin-singlet Cooper pairs’
electrons undergo spin flips and generate spin-polarized triplet
pairs [63]. Those pairs’ spin-wave functions may be com-
posed of all possible triplet pairings [11), |{ ), and (|1]) +
L)/ V2, where [1) (]4)) denotes a single-electron up-spin
(down-spin) state with respect to the Z-spin quantization axis
(inside the superconductors). The (|1]) + |1 1))/ /2 contri-
bution is usually neglected since it decays rapidly inside real
tunneling barriers [63]. The remaining |11) and || |) pairs,
however, are also subject to the proposed skew tunneling
mechanism and may separate along the transverse directions.
From that point of view, skew tunneling acts like a transverse
Cooper pair spin filter and generates nonzero transverse spin
supercurrent flows, combining the advantages of the con-
ventional spin Hall effect (referring to pure transverse spin
currents in the absence of charge currents) [91,92] with the
dissipationless character of supercurrents.

Anyhow, earlier studies [45] demonstrated that supercon-
ductors’ fundamental time-reversal (electron-hole) symmetry
suppresses the spin Hall effect. The recent prediction of
sizable tunneling spin Hall currents in metal/insulator/metal
junctions [37], essentially triggered by interfacial skew tun-
neling just as in our study, boosted new hopes to efficiently
integrate the spin Hall effect into superconducting tunnel junc-
tion geometries. Nonetheless, replacing one of the junction’s
normal-conducting electrodes by a S will dramatically impact
the underlying physics. The resulting strong competition be-
tween skew ARs and skew SRs (being another consequence
of the electron-hole symmetry) will again heavily suppress the
tunneling spin Hall currents [84].

Before we evaluate the transverse spin-current components
that flow through our Josephson junction, we therefore need
to understand the connections between the triplet pair skew
tunneling and the generated transverse spin currents. Both su-
perconductors act as reservoirs for spin-singlet Cooper pairs,
each consisting of two electrons with opposite spin and an-
tiparallel momenta (recall that ky = [k, k,, 0]7). To be more
specific, the allowed spin and transverse momenta configura-
tions of the Cooper pairs are (k;, 1; =k, 1), (=K, {; Kk, 1),
(ky, ; =k, 1), and (=k;, 15k, |); the two parts always in-
dicate the transverse momentum and spin of the two electrons
forming a singlet pair.

Approaching the barrier, the Cooper pairs are exposed to
the aforementioned skew tunneling mechanism. As a conse-
quence, they are spatially separated along the transverse ) €
{)%,5\7} directions, i.e., if the (k“ s T; —k” s \L) and (_kH s J,; k” s T)
pairs are predominantly transmitted at n < 0, the remaining
pairs tunnel mostly at positive 1. For a further characteri-
zation, we distinguish between nonmagnetic and magnetic
junctions.

Nonmagnetic junctions. As long as the barrier is non-
magnetic, the numbers of Cooper pairs involved in the
skew tunneling processes at n < 0 and 7 > 0 are always
equal. Therefore, both channels generate the same charge-
current flows along reversed directions and no net transverse

104508-7



ANDREAS COSTA AND JAROSLAV FABIAN

PHYSICAL REVIEW B 101, 104508 (2020)

(a) nonmagnetic (b) magnetic

FIG. 6. (a) Illustration of the Cooper pair skew tunneling from
the left into the right S across the F-I barrier (light blue). Each
Cooper pair initially consists of one up-spin electron with trans-
verse momentum k, > 0 and one down-spin electron with —k,
(assuming, for simplicity, k, = 0). When tunneling through the spin-
active interface, at which the present SOC gives rise to nonzero
spin-flip probabilities, some Cooper pair electrons flip their spins,
converting spin-unpolarized singlet into spin-polarized triplet pairs.
In the absence of exchange coupling (Apa = 0), interfacial spin flips
generate, on average, the same amount of polarized |11) and || )
Cooper pairs (per transverse channel) so that eventually the overall
transverse spin current vanishes. (b) If exchange coupling is present
(Ama # 0), interfacial spin flips cause an excess of either [11) or
[4}) pairs in the skew tunneling channel along —% (and vice versa
along ¥). The result is a finite transverse spin supercurrent, denoted
by I} and highlighted by the orange arrow.

charge currents build up. Close to the barrier, the interfacial
SOC gives additionally rise to nonzero spin-flip probabili-
ties, determined by the respective spin-flip potential Vgip. In
the nonmagnetic junction (and assuming B8 = 0, as well as
k. = 0, to further simplify our considerations), we deduce
Vhip ~ akyo, where k, and o denote one Cooper pair elec-
tron’s $ component of k; and its spin [note the close analogy
with Eq. (3)]. In our case, this means that an up-spin electron

kr] C(l)(ia)n) D (iw,) _ﬂ(s)(iwn)+8(4) (iw,)

with k, > O flips its spin with the same probability as a down-
spin electron with —k,. On average, each transverse skew
tunneling channel (along £9) contains then the same amount
of |11)- and ||| )-triplet pairs, and the overall transverse
spin-current components must vanish [see Fig. 6(a) for illus-
tration]. To get the full picture, one would also need to include
the electron Cooper pairs tunneling from right to left (or hole
pairs tunneling from left to right). Since similar arguments
apply to hole Cooper pairs, this would still not lead to finite
transverse spin currents.

Magnetic junctions. The situation starts to change if the
barrier becomes (at least weakly) magnetic. The Cooper pair
electrons’ spin-flip probabilities are then governed by the
spin-flip potential Vgi, ~ (Ama sin ®)o + akyo, and become
asymmetric with respect to the electrons’ spins. A k, electron
with spin up flips its spin now with a different probability
than a —k, spin-down electron. Therefore, the skew tunneling
channel along —§ comprises an excess of either |[11) or [{])
pairs and the channel along j either more ||| ) or |11) pairs.
The result is a nonzero transverse spin current; see Fig. 6(b).
Note that, aside from the configuration involving magnetic
barriers, one could achieve similar effects, e.g., by replacing
one of the superconducting electrodes by a two-dimensional
S with strong bulk Rashba SOC [93]. Furthermore, our quali-
tative explanations suggest that a reversal of Aya’s sign must
be sufficient to reverse the direction of the spin current (since
this simultaneously reverses the sign of the spin-dependent
magnetization part of Vg;p).

To access and quantify the particle’ spin currents in
our junction, we can either generalize the Furusaki-Tsukada
technique or our bound-state approach. Within an extended
Furusaki-Tsukada formulation [47], the interfacial &,-spin
currents along the 7 direction are given by

J
. _ksT [Tc A )
In$2~T|AS(O)|tanh (174 ?—1>W/d k“ E

Wy

while the bound-state modeling yields

h Z |As(0)| tanh(1.74/Tc/T — 1) A

I, ==
) 2Eg 2n )2

Ep

E
X tanh B .
2kgT

Reasoning for the two formulas is given in Appendix C and
the SM [84].

Figure 7 presents the numerically computed [by means
of Eq. (6)] transverse spin-current components /¢, and /7,
for the same set of junction parameters considered when
evaluating the AJHE charge currents in Fig. 3. As stated

2We compute particle spin currents, which only distinguish be-
tween spin up and spin down, but do not take care of electrons’
and holes’ opposite charge. In the literature, some authors prefer to
rather calculate charge spin currents, additionally accounting for the
electron and hole charges.

(6)

\/qﬁ—kﬁ

\/w5+|AS(0)|2 tanh? (1.74/T/T—1)

ik
/ dky —lle(ky; En)l* — £ (k3 En)I” — lg(ky; Es)I* + h(ky; En)I’]

N

(

above, putting the F-I’s magnetic tunneling parameter to zero
(which basically means that the barrier becomes nonmag-
netic) would immediately lead to vanishing transverse spin
currents. In contrast, already the weak magnetic tunneling
strength assumed for our AJHE charge-current calculations is
sufficient to trigger sizable transverse spin-current responses.

Regarding the spin currents’ dependence on the F-I's in-
plane magnetization angle ®, we observe an experimentally
promising trend. While the charge currents scale accord-
ing to I, ~sin® and I, ~ cos ®, the spin currents obey
I} .~ cos®and I}, ~ sin ®. These well-distinct @ variations
come along with another particularly auspicious property.
The spin-current components become maximal precisely at
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FIG. 7. (a) Calculated dependence of the 6,-spin current along
X, I, given in units of /i/(2¢) and normalized according to
(I ;e)/[Gsm|As(0)]], on the F-I’s in-plane magnetization angle ®
and for the same parameters as considered in Fig. 3. The inset shows
the maximal I , (i.e., for ® = 0) as a function of the superconducting
phase difference ¢s. (b) Similar calculations as in (a) for the 6,-spin
current along 9, I,

those magnetization angles at which the AJHE charge-current
counterparts simultaneously vanish. As a result, tuning the
magnetization angle allows for an experimental switch be-
tween the pure AJHE charge-current and the pure transverse
spin-current regimes. Owing to its analogy with conventional
spin Hall effects, the latter phenomenon could be termed
anomalous Josephson spin Hall effect; anomalous stresses
that our junction needs to be weakly magnetic, in contrast
to the conventional spin Hall effect which occurs already
in nonmagnetic systems. Altering ® essentially modulates
the spin-flip potential, controlling the spin-flip probabilities
of Cooper pair electrons and thereby the generation rate of
triplet pairs. Particularly at ® = /2, the negative amplitudes
of I}, indicate that each transverse skew tunneling channel
along ¥ involves an excess of || | ) pairs. Moreover, the spin-
flip potential does not depend on the superconducting phase
difference ¢s. Thus, varying ¢s does not qualitatively impact
the spin-current flow (i.e., not reverse its direction, in sharp
contrast to the AJHE charge currents), but simply changes its
overall amplitudes by introducing the “bias” between the mu-
tually enhancing electron and hole Cooper pairs we encoun-
tered when analyzing the ATHE currents. At ¢s = 7, maximal
AJHE charge currents come again along with vanishing trans-
verse spin currents, which might offer another interesting pa-
rameter configuration for following experiments. As claimed

Norm. AJHE current amplitudes |7, Norm. AJHE current amplitudes |/,
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FIG. 8. (a) Calculated angular dependence of the AJHE charge-
current amplitudes along %, I, on the F-I’s in-plane magnetization
angle ®. All parameters and the normalization are the same as in
Fig. 3, except that we assume Ap = (2mB)/h* = 0 now. (b) Similar
calculations as in (a) for the AJHE charge-current amplitudes along
9, I,. (A), (B) Similar calculations as in (a) and (b), but for the
transverse 6,-spin current amplitudes /7, and [];, given in units of
li/(2e) and normalized as in Fig. 7.

earlier when investigating the generic form of the spin-flip
potential, switching the magnetic tunneling parameter’s sign
would reverse the directions of the transverse spin currents.
We also computed all AJHE charge-current and trans-
verse spin-current parts assuming that just Rashba SOC is
present and Dresselhaus SOC is absent (8 ~ Ap = 0); all
remaining parameters were not changed. This situation might
often be the experimentally more realistic one since tunneling
barriers inevitably introduce interfacial Rashba SOC due to
the broken space inversion symmetry, whereas only those
additionally lacking bulk inversion symmetry give rise to
nonzero Dresselhaus SOC. The results of our calculations are
summarized in Fig. 8. Contrary to the tunneling Josephson
(charge) current, whose magnetoanisotropy disappears if only
either interfacial Rashba or Dresselhaus SOC is considered,
the AJHE charge and spin currents still clearly reveal their
unique and well-distinct scaling with respect to the magneti-
zation angle we mentioned in the previous paragraph. Since
Iy ~ —(a+ B)sin® and I, ~ (o — B) cos ® (and adapted re-
lations hold for the spin currents), the maximal amplitudes of
the X- and y-current components become exactly equal once
Dresselhaus SOC is no longer there (i.e., when setting § = 0).
For appropriately chosen Rashba SOC strengths, the current
amplitudes can now even overcome those we extracted in
the simultaneous presence of Rashba and Dresselhaus SOC.
Measuring the currents’ angular dependencies for concrete
junction geometries and fitting the results to our modeling
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FIG. 9. Calculated (from the bound state spectrum) dependence
of the &;-spin current along §, I, given in units of /i/(2e) and
normalized as in Fig. 7, on the F T's in- plane magnetization angle
® for the Rashba SOC parameter AR = (2ma¢)/h2 =1 and the
superconducting phase difference ¢s = 7 /2; all other parameters are
the same as in Fig. 3. The individual contributions of ABS and YSR
states are separately resolved. As a crosscheck, the dots represent the
total spin current extracted from the Furusaki-Tsukada formula.

might provide valuable insight into the characteristics of the
system’s interfacial SOC.

Similarly to our analyses of the AJHE charge currents,
we finally evaluate the transverse spin currents from the
junction’s bound-state spectrum [by means of Eq. (7)].
Figure 9 illustrates the total spin current along , I, together
with its individual contributions stemming from the junction’s
ABS and YSR states, and, for comparison, the related 7,
obtained from the Furusaki-Tsukada method [using Eq. (6)]
We regarded the same junction parameters as in Fig. 7 (i.e.,
Rashba and Dresselhaus SOC are both nonzero), except that
we keep the superconducting phase difference at ¢ = /2
(as in Fig. 5 to stress that the trends are general). Analogously
to the AJHE charge currents, the transverse spin currents
are also mostly dominated by the YSR states, which con-
tribute again with an opposite sign to the overall spin current
compared to the ABS. The negative (positive) sign of the
YSR states (ABS) parts (at 0 < @ < ) actually entails that
down-spin (up-spin) electrons with transverse momenta k; =
[ky > 0, ky > 0, 0]" tunnel predominantly through the F-I
interface via the available YSR states (ABS). This observation
has its physical origin in the peculiar spin characteristics
associated with ABS and YSR states in magnetic Josephson
junctions [66]. For the considered parameters, the YSR states
(at fixed ky = [k, > 0, k, > 0, 01" correspond to down-spin
states (through which the down-spin Cooper pair electrons
tunnel) and the ABS to up-spin states (through which the
up-spin Cooper pair electrons tunnel); see the comprehen-
sive analysis of the states’ spin characteristics provided in
Ref. [66]. An excess of down-spin electrons with momentum
k; that skew tunnel through the interface yields a negative
spin current (essentially, this is then precisely the case for
the YSR states) and an excess of up-spin electrons (in the
ABS) a positively counted spin-current contribution. The
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FIG. 10. Calculated dependence of the universal spin-charge-
current cross ratios r; and r,, given in units of /i/(2e), on the
Rashba SOC strength Az = (2ma)/H>. Since the Dresselhaus SOC
parameter is Ap = 2mp )/h2 =0, r; = ry; all other parameters are
the same as in Fig. 3 (i.e., also ¢s = 0), except that the scalar
tunneling gets. gradually increased from Agc = (2mhgc)/ (R qr) =
0.5 (red) to Asc = 1 (dark green), and finally to Asc =2 (blue).
The inset shows r; (= r,) as a function of the magnetic tunneling
parameter Ama = 2mima) / (FzzqF), and for various Rashba SOC pa-
rameters Ar = (2ma)/i* [again assuming Ap = (2mB)/H* = 0 for
the Dresselhaus SOC]; Asc = (2misc)/(h2gr) = 1 is kept constant.
The dotted vertical line indicates Aya = 0.005, which we assumed
for all previous calculations and for which the r ratios become indeed
universal.

perfect agreement of the bound-state and the Furusaki-
Tsukada approach persuades that our results are reliable.

Spin-charge-current cross ratios. In weakly magnetic junc-
tions, both the AJHE charge and transverse spin currents
increase linearly with the magnetic tunneling parameter Aya.
The spin-charge-current cross ratios®

s
X2

L ®)

and rp =

turn then into universal, magnetization-independent, mea-
sures, which are uniquely determined by the interfacial SOC
strengths (keeping 2sc and ¢g constant, and restricting our-
selves to parameters for which all currents are nonzero). If
only Rashba SOC is present, both ratios become equal (r; =
r>), whereas the constructive (destructive) interferences of fi-
nite Rashba and Dresselhaus SOC impact the X and § currents
in a different manner so that generally r| # r, (as r; and 7,
basically relate & and § currents at the same time). Figure 10

3An alternative (and probably more intuitive) definition of r, and
ry might read as ry := |I},/I;| and rp := |I},/I,|. However, owing to
the distinct ® dependenc1es of I}, and I, (Is and 1), these ratios
would not become completely magnetlzatlon 1ndependent, i.e., only
the Aya dependence would drop out, but the ® dependence would
remain.
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illustrates the spin-charge-current cross ratios’ characteristic
scaling with respect to the Rashba SOC parameter Ag in the
absence of Dresselhaus SOC (Ap = 0). Extracting r; and r,
from experimental transport data and fitting the results to our
model provides one way to identify the SOC parameters of
the junction’s F-I interface, without having exact knowledge
of Apa or the magnetization orientation.

As soon as Aya Overcomes some critical value, the charge-
and spin-current parts are additionally governed by nonlinear
Jma terms and the 7 ratios are no longer universal quantities of
the system. To estimate the relevance of these nonlinearities,
the inset of Fig. 10 shows r; (r; = r, since Dresselhaus SOC
is not present) as a function of Ama and for various Rashba
SOC strengths. Apparently, the spin-charge-current cross ra-
tios remain indeed universal (magnetization independent) for
the small magnetic tunneling strengths considered in all pre-
viously discussed current calculations (i.e., for AMA R 1073)
and can therefore be used to reliably quantify the present SOC
in experiments. Nonlinear Ama terms do not affect the ATHE
charge and spin currents unless AMA gets further enhanced by
at least one order of magnitude.

Another peculiar feature becomes visible once the Rashba
SOC measure approaches the scalar tunneling strength, i.e., at
AR A Asc, as the spin-charge-current cross ratios” amplitudes
always drop into a sharp dip there. To strengthen the gener-
ality of this observation, we considered three different Asc
values in Fig. 10, essentially all causing the same behavior.
Recalling our qualitative picture formulated in Sec. III, the
AJHE charge currents are generated by skew ARs of incident
up-spin and down-spin electrons at the effective interfacial
scattering potential. The latter is stated in Eq. (3) for the
limiting case of restricting ourselves to the current along J, 1,;
similar arguments hold, nevertheless, also for the I, current.
Inspecting Eq. (3), we deduce that incoming down-spin (up-
spin) electrons are exposed to the lowest (largest) possible
interfacial scattering potential exactly when the Rashba SOC
and the scalar tunneling measures become equal. As a re-
sult, the down-spin channel carries its maximal amount of
AJHE current, while the (oppositely oriented) contribution
of the up-spin channel becomes simultaneously minimal.
The overall AJHE current I, reaches its maximal value and
even significantly overcomes the related spin currents. Our
numerical calculations discussed in Figs. 8(a)-8(d) essentially
confirm these characteristics. Note that Dresselhaus SOC is
not present; otherwise, the interference of Rashba and Dres-
selhaus terms would give rise to more intricate features. Since
the AJHE charge currents enter the spin-charge-current cross
ratios’ denominators, maximal /, (/) eventually comes along
with strongly suppressed r ratios, manifested by the r- AR re-
lations’ sharp dips at Ar = Asc. Moreover, an increase of Agc
notably damps the current cross ratios at large Rashba SOC
(AR > Asc) since strong interfacial scalar tunneling usually
suppresses the generated spin currents much faster than their
charge-current counterparts.

VII. SUMMARY

To conclude, we investigated the intriguing interplay
of SOC and ferromagnetism arising at the interface of

S/F-1/S Josephson junctions. Starting from simplified qual-
itative arguments, we understood that skew tunneling of
Cooper pairs through the spin-active interface can give rise
to spontaneous transverse AJHE charge-current flows, which
may become relevant to various superconducting spintronics
applications, especially due to their dissipationless charac-
ter and their wide tunability. We demonstrated the latter
by evaluating the AJHE current amplitudes from a gener-
alized Furusaki-Tsukada Green’s function technique and for
a variety of realistic junction parameters. The interfacial
Rashba SOC strength, which is mostly determined by the
material composition of the system, and the magnetically
adjustable phase difference between the superconductors offer
particularly auspicious possibilities to vary the AJHE cur-
rent magnitudes over several orders of magnitude. Maximal
AJHE currents can reach a few percent of the (tunneling)
Josephson current and thereby significantly exceed normal-
state TAHE conductances, which remain usually far below
1% of the respective tunneling conductances [37]. The AJHE
currents’ unique sinelike (cosinelike) variations with the mag-
netization angle inside the F-I were identified as a clear
evidence that all the fascinating physics really stems from
the combination of SOC with ferromagnetism in one single
junction.

To establish an alternative approach, which brings along
more physical insight, we connected nonzero AJHE currents
to pronounced SOC-induced asymmetries in the junctions’
ABS and YSR bound-state energies, and elucidated that the
AJHE on the one hand and these bound-state energy asym-
metries on the other hand are uniquely correlated. Resolving
the individual states’ current contributions, we convinced
ourselves that the huge AJHE current flows are predominantly
maintained by the YSR states, whose appearance counts to the
most peculiar features of magnetic Josephson junctions.

Finally, we outlined that SOC triggers interfacial spin
flips of Cooper pair electrons and produces spin-polarized
triplet pairs. Since these triplet pairs are also subject to the
skew tunneling mechanism, while carrying a net spin, we
proposed that the AJHE charge-current phenomena come
along with their transverse spin-current counterparts. We qual-
itatively unraveled the spin currents’ general properties and
computed their amplitudes once from Green’s functions and
once exploiting the bound-state asymmetries, again revealing
a great tunability by means of the Rashba SOC parameter
or the superconducting phase difference. We illustrated the
spin currents’ well-distinct magnetization angle dependence
when compared to the AJHE charge currents and character-
ized the universal (magnetization-independent) spin-charge-
current cross ratios, which might provide a valuable exper-
imental tool to probe interfacial SOC in superconducting
tunnel junctions.
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APPENDIX A: GENERALIZED
FURUSAKI-TSUKADA METHOD

Assuming translational invariance parallel to the F-I inter-
face, the solutions of the BdG equation, ﬂBdG\IJ(r) EY(r),
describing quasiparticle excitations of energy E, factorize into

U(r) = Y(z)e™m; (A1)

k) = [k, ky, 01" ) =[x,y 0]7) refers to the transverse
wave vector (vector of transverse spatial coordinates). Sub-
stituting Eq. (A1) into the BdG equation, the most general
solutions for the Z-projected scattering states inside the super-
conductors are found to read as

VO < 0) = Yiploming@ < 0)

u 0
+ A0 |0 | gz L g | U | itz
v 0
0 v
v
o) 2 eitens 4 D ] 02 (A2)
0 u
as well as
ue'?s 0
. . . . ids .
§0G 0= e0| O [gne 0| 1 |
0 v
ve'?s 0
. 0 > o vel®s »
(i) i4znz i) iqznz
+G L le + H o e
0 u
(A3)

where the electronlike and holelike wave vectors’ Z projec-
tions are given by

2m
?[M +VE? = |As]P 1= ki (A4)

qze = q:,e(kH;E) =

and

2m
?[M—\/Ez—lAsl2 — ki, (A5)

and the coherence factors u = u(E) and v = v(E) need to
satisfy

q:h = g K3 E) =

1 Agl?
u(E) = 5<1+ 1—|E52|>=\/1—v2(E). (A6)
The incoming waves wggoming differentiate  between
(1) up-spin electronlike, (2) down-spin electronlike,

(3) up-spin holelike, and (4) down-spin holelike quasiparticles
incident on the F-I from the left superconductor. Formally,
they can be written as

Ipi(n]c)oming(z < 0) = [u, O, v, O]Tei%,cz’ (A7)
Ui ming@ < 0) =10, u, 0, v] e, (A8)
1pi(r?c)oming(z < 0) = [U, 0’ u, O]Teiiqz’hz, (A9)

and

YD ine@ < 0) = [0, v, 0, ] Te 0%,

To attain the unknown reflection and transmission coefficients
entering the scattering states, we apply the interfacial (z = 0)
boundary conditions

Y (2)l=0. = ¥ (@)]:=0,

(A10)

(A11)

as well as
i d
omdz +hsc |1+ Ama@ (¥ (@)
2

Q-6 0 d
+[ 06 _(9_6)}W(Z)L=o_ = Td_z”‘/’(“|z=o+’

(A12)
with
10 0 0
o1 0 o q
™10 0o -1 o |
0 0 0 —1
[0 ¢ 0 0
@ 0 0 0
0= eo 0 0 i (A13)
0 0 & 0

to the states and numerically solve the resulting linear systems
of equations; = [(a — B)ky, —(a + B)k., 0] contains the
single-particle Hamiltonians’ Rashba and Dresselhaus SOC
parts.

After identifying the AR coefficients belonging to the four
stated quasiparticle injections, C, D, A3, and BW, the
interfacial AJHE charge currents can be evaluated from the
extended Furusaki-Tsukada formula [65]

I, ~ ekB |As(0)] tanh (1 74,/?—1)
e )2/ ”Z /7_1{2

C(l)(iwn) + D(z)(iwn) + ﬂ(s)(iwl1) + 8(4)(iwn)
\/a)ﬁ + |Ag(0)]? tanh2(1.74«/Tc/T —1)

(A14)

where e indicates the (positive) elementary charge, kg resem-
bles Boltzmann’s constant, and w, = (2n + 1)wkgT, where n
is an integer, represents the fermionic Matsubara frequencies
(at temperature T and given in units of 1//). This current
formula is essentially given as Eq. (4) in Sec. IV. To simplify
our considerations, we assumed that the junction’s tunnel-
ing and Hall contact areas are equal and denoted by A. To
account for temperature effects, we substituted the Bardeen-
Cooper-Schrieffer—type scaling of the superconducting energy
gap, i.e., |As(T # 0)| = |As(0)| tanh(1.74/Tc/T — 1), with
|As(0)] referring to the gap at absolute zero and 7¢ to the
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superconductors’ critical temperature. Further details can be
looked up in the SM [84].

APPENDIX B: BOUND-STATE TECHNIQUE

To access our junction’s characteristic ABS and YSR
bound-state energies, we revisit the general ansatz for ¥ (z),
Eqgs. (A2) and (A3), without considering incoming waves.
Restricting ourselves to positive bound-state energies, E > 0,
we can write

u(E)
(OE) e~ 19z (KsE)z
v
0
-0 -
u(E)
0
Lv(E)_]
o(EY]
0
u(E)
L 0 |
0
+d(kH’E) U(OE‘) eiqZ,h(kH;E)z

u(E)

W(Z < O;kH;E) = a(k”;E)

+ b(k” ; E) e_iq:.e (kj:E)z

+ C(k“ ; E) ei‘hh(ku E)z

B

and likewise
u(E)e'?s

iqz,e(K|3E)z

V(> 0k E) = ek ; E) e

0
v(E)
0

0
i, .
+ f(kH JE) M(Ege ° o9z K;E)z
v(E)

v(E)e'®s
+gk; E) u((;:) e~ 4=n(kE)
0
0
+h(k; E) v(Egei% e ki (B
u(E)

Requiring these states to satisfy the boundary conditions in
Egs. (A11) and (A12) yields a homogeneous system of equa-
tions, whose nontrivial solutions correspond to the bound-
state energies E = Eg, we are looking for. Owing to the
BdG Hamiltonian’s fundamental time-reversal (electron-hole)
symmetry, each of those states comes along with a second one
located at energy —Ep.

After we identified all bound-state energies, we need to
determine the unknown coefficients that appear in the bound-
state wave-function ansatz. All those coefficients depend,
in general, on the transverse wave vector k; and on the
previously computed bound-state energies E = Eg. Properly

normalizing the bound-state wave functions according to

f dz |V (K Ep))* = 1 (B3)

o0

leads to an equation which contains the (known) coherence
factors and wave vectors, as well as the (unknown) absolute
squares of all eight wave-function coefficients. Making use of
the boundary conditions in Eqs. (A11) and (A12) for another
time, we can consecutively express seven coefficients in terms
of the remaining eighth one and finally immediately invert
the equation resulting from the wave-function normalization
condition to attain this coefficient. Afterward, we go back with
the same set of equations and determine all other coefficients.
The obtained analytical expressions are rather cumbersome
and can be found in the SM [84].

Inside our junction’s F-I layer (i.e., at z = 0), all electrical
current is carried by single particles that occupy the available
bound states. At a given temperature 7', each occupied state
of energy Ep contributes on average an amount of

Jn(ky; Eg) = lim {Wz > 0 ky; Eg)e' ™1™ |
—U4

. E
vz > 0;k||§EB)e’(k”'r”)) tanh <2k;T) }

(B4)

to the electrical current density along the # direction
(7 € {&;3}), with

9
3

=

(B5)

ST
Sl

9

an

o o3> O
&l

o3 O ©
3IFO © ©

—1

corresponding to the respective electron current density oper-
ator. As before, e represents the (positive) elementary charge
and kg stands for Boltzmann’s constant. Substituting the
previously given bound-state wave-function ansatz and evalu-
ating Eq. (B4) provides an alternative way to derive the AJHE
current components directly from the junction’s bound-state
spectrum. After averaging over all transverse channels and
the distinct bound-state branches (ABS and YSR states), we
eventually arrive at

5 |As(0)] tanh(1.74/Te/T =T)
¢ 2Eg

I, = —
Ep
A

* any

hik
/ d*ky —L{le(ky; En)I” + £ (ky; E)I*

+ lg(ky; Eg)|* + [h(ky; Ep)I*] x tanh (i>; (B6)
2kgT

note that we approximated the Hall contact area again by the
tunneling contact area A and relied on the Bardeen-Cooper-
Schrieffer—type scaling of the superconducting energy gap.
We stated this current formula as Eq. (5) in Sec. V. All
ingredients required to evaluate the current, i.e., the bound-
state energies and the absolute squares of the wave-function
coefficients, can be extracted from the previously outlined
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methodology. The bound-state approach allows us to individu-
ally resolve the current contributions stemming from ABS and
YSR states, as discussed when analyzing the results presented
in Fig. 5.

APPENDIX C: TRANSVERSE SPIN-CURRENT FORMULAS

In Sec. VI, we study the transverse (interfacial) &,-spin
(super)currents I ,, resulting from the skew tunneling of
triplet Cooper pa1rs through the F-I barrier. Inspecting the
generic form of the scattering states inside the superconduc-
tors [see, e.g., Egs. (A2) and (A3)] suggests that the 6,- and
6y-spin current projections must simultaneously vanish.

Simply speaking, we can obtain /, . from the AJHE charge-
current Furusaki-Tsukada formula i 1n Eq (A14) by replacing
the electron charge —e in the equation’s prefactor by %/(2e),
and weighting all individual quasiparticle scattering processes
with proper signs depending on the quasiparticles’ (trans-
verse) propagation directions and their spins. Recall that we
are calculating particle spin currents, which count up-spin
and down-spin particles’ contributions with opposite signs,
but do not additionally differentiate between electrons’ and
holes’ different charge. To give one example, let us consider
the AR coefficient in case of an incident up-spin electronlike
quasiparticle C!" [see Eq. (A2)]. Although the retroreflected
hole has still the same spin (as the incoming electron), it
moves along the opposite transverse direction and counts
therefore negatively to the particle spin current. In the same
manner, we consistently identify the signs belonging to the
spin-current contributions caused by the remaining scattering
processes and end up with the extended Furusaki-Tsukada

spin-current formula [47]

kT T
L.~ B—|As(0)| tanh (1.74,/7C - 1)
T

CV(iw,) = D (iw,) — A (iw,) + BY (i)

\/wg + | As(0)]? tanh?(1.74/Te/T = 1)
(CDH

Alternatively, we could extract / S’ s from the bound-state AJHE
current formula in Eq. (B6). Replacing the electron charge —e
by /i/(2e), and recognizing that the up-spin (down-spin) elec-
tronlike parts, scaling with |e(kH;EB)|2 [|f(k||;EB)|2], must
enter the spin current with a positive (negative) sign, and vice
versa for the holelike parts [|g(k; Eg)|* and |h(k; Ep)|*],
which describe states that effectively propagate along the
opposite transverse directions, we obtain

. Z:|AS(0)|tanh(174./TC/T 0
T2 2Eg

Ep

A hik
* @ny fdzk” —le(ky; Ep)I* — |f (k3 En)I?
Ep
— |g(ky; Ep)I* + |h(ky; Ep)|*] x tanh <2k T)‘ (C2)

The two equivalent spin-current formulas were given as
Egs. (6) and (7) in Sec. VL.
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