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Crossover from one to two dimensions in liquid 4He in a nanopore
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Using diffusion and path-integral Monte Carlo methods, we show that liquid 4He confined in a narrow
nanopore of liquid radius R = 4 Å undergoes a crossover from a one-dimensional (1D) to a two-dimensional
(2D) fluid as a function of liquid density. At low liquid density, e.g., a linear density ρ0 = 0.15 Å−1, the liquid
energy is at a minimum when the liquid lies in a line at the center of the pore. The pair distribution function g(x),
the one-body density matrix n(x), and the superfluid fraction ρS/ρ0 all show 1D character that is well described
by Luttinger liquid (LL) predictions. As density is increased, there is a crossover to 2D with the minimum
energy configuration moving from a line at the center of the pore to a film near the pore walls. At linear density
ρ0 > 0.40 Å−1, the 4He lies predominantly in a 2D cylindrical film midway between the center and the nanopore
walls. The g(x), n(x), and ρS/ρ0 all show 2D character and the film has a low but finite transition temperature.
4He at a bulk liquid density corresponds to ρ0 = 0.6 Å−1 in the pore which lies in the 2D regime.
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I. INTRODUCTION

Dimensions play a key role in determining the behavior of
quantum systems. Initially, exotic phenomena such as Bose-
Einstein condensation (BEC), superfluidity, and superconduc-
tivity were formulated and investigated with extensive three-
dimensional (3D) systems in mind [1–7]. In 3D Bose quantum
liquids, BEC and superfluidity have a common, finite onset
temperature [7,8] Tc. Below Tc, the superfluid fraction ρS/ρ0

increases gradually [5,9,10] from zero at Tc to unity at T = 0.
Similarly, the Bose-Einstein condensate fraction, n0 = N0/N ,
increases gradually from zero at Tc to a maximum value
(n0 � 1) at T = 0 set by the degree of interboson interaction.
The corresponding one-body density matrix (OBDM) n(r)
develops a infinitely long tail below Tc, the height of the tail
being the condensate fraction.

Interest was soon extended to two-dimensional (2D) sys-
tems in which the ordered states and transitions are quite
different [11,12]. In 2D, on cooling, ρS/ρ0 jumps from zero
to a finite value at Tc [12]. It increases slowly thereafter to
ρS/ρ0 = 1 at T = 0. This discontinuous jump at Tc is rounded
in finite-area films [9,10]. At temperatures T > Tc, the long-
range asymptotic tail of the OBDM n(r) decays exponentially
with r. At T < Tc the long-range asymptotic tail decays
algebraically, reflecting long-range correlations and can be
expressed as n(r) ∼ r−η(T ). At T > Tc but close to Tc, n(r) is
also algebraic at intermediate range r, reflecting the onset of
local order near Tc. Within Kosterlitz-Thouless [11] theory, Tc

can be identified from the OBDM as the temperature at which
the exponent η(T ) reduces to η(T ) = 0.25. At T = 0, η → 0,
and the OBDM is constant as in 3D.

Today there is keen interest in one-dimensional (1D) quan-
tum systems. The low-energy properties of 1D quantum liq-
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uids (QLs) are quite unique and well described by Luttinger
liquid (LL) theory [13,14]. At finite temperature, ρS/ρ0 is
a finite-size effect only. There is no Tc. The ρS/ρ0 scales
as a product of LT , the length L of the 1D liquid times
the temperature T , rather than independently on L and T .
At high density, n(x) and the pair correlation function g(x)
develop long-range oscillations characteristic of the atomic
order imposed by 1D.

The dimension of a quantum liquid is typically set by its
confining boundaries. For example, three-dimensional QLs
are found in a container or a nearly spherical confining trap.
Two-dimensional QLs are generally created as films on sur-
faces [15,16] or in a trap where motion is possible in 2D only.
The film could be on the internal surface of a nanopore [17] in
which case the film has a cylindrical profile. A second or third
layer of film can be added which usually shows 2D character
[18–21]. One-dimensional QLs can, in principle, be created
by confining bosons in very narrow nanopores or in optical
lattices in which motion is possible in 1D only. Designing
confinement that unambiguously creates a 1D system is not
simple. Creating and investigating 1D QLs in nanopores and
optical lattices is an exciting and active field of research today,
the subject of extensive reviews [14,22,23].

Specifically, path-integral Monte Carlo (PIMC) calcula-
tions show that a freestanding 1D line of atoms has a winding
number and particle number fluctuations well described by
LL theory with minor deviations [24]. Similarly, a line of
4He atoms at the center of small radii nanopores shows [25]
correlations consistent with 1D. Superflow is observed in
larger radii nanopores where there are 2D shells or layers
of 4He in addition to the 1D line [26]. In nanopores in
which the radius of the liquid is R = 3 Å, 4He unambigu-
ously shows a 1D superfluid fraction and OBDM that is well
reproduced by LL theory [27,28]. At larger R where there are
2D layers, the ρS/ρ0, where now ρS and ρ0 are 1D densities,
and OBDM show scaling that is consistent with a 2D fluid
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FIG. 1. Density distribution of liquid 4He (blue shading) con-
fined in a nanopore of liquid radius R = 4 Å. Upper frame: Low
linear 4He density, ρ0 = N/L = 0.15 Å−1, where the liquid density
lies along a 1D line at the center of the nanopore. Lower frame:
High linear 4He density, ρ0 = 0.60 Å−1, where the liquid density
is concentrated in a 2D cylindrical shell.

[27]. Calculations find that a 1D line of 4He supports a
phonon-roton mode that has a roton energy that goes to zero
at modest and higher densities [29,30]. At finite temperature,
two sound modes are predicted [31]. A freestanding line of
parahydrogen [32,33], p-H2, and p-H2 in nanopores [32,34–
37] are similar except that superflow in any dimension has not
yet been demonstrated, the goal of many studies. Similarly,
spin-polarized H in a reduced dimension has been investigated
[38].

In this paper, our goal is to display a transition from 1D to
2D in a quantum liquid without changing the confinement.
The crossover from 1D to 2D is made solely by changing
the liquid density. Liquid helium confined in a nanopore
of radius R = 4 Å is considered. At low liquid density the
equilibrium configuration is a 1D line of atoms at the center of
the nanopore, as shown in the upper frame of Fig. 1. At higher
liquid density the equilibrium distribution crosses over to a 2D
film near the pore walls, as shown in the lower frame of Fig. 1.
At low density the liquid is well described by LL theory. The
ρS/ρ0 scales as LT and the OBDM n(x) decays algebraically
with long-range oscillations, as expected for a LL. At high

density, however, the n(x) and pair correlation function g(x)
do not show long-range oscillations. Rather, n(x) shows a
smooth algebraic tail expected for a 2D fluid and a temper-
ature dependence that indicates a finite superfluid transition
temperature Tc � 0.15–0.2 K in the fluid. The ρS/ρ0 shows
finite-size effects consistent with a 2D fluid that has the above
Tc. In short, the liquid shows 1D LL behavior at low density
and 2D film behavior at high density.

II. MODEL NANOPORES AND HELIUM DISTRIBUTIONS

In a typical nanopore, such as FSM-16 (e.g., diameter, d =
28 Å) and MCM-41, the initial 4He entering the nanopore
is deposited in layers on the pore walls. The first roughly
1.5 layers of helium (5 Å thick) are amorphous solid 4He
layers. The subsequent layers are liquid. A liquid layer may
be defined as a 2D region of high liquid density with regions
of low density on each side, as depicted in the bottom frame
of Fig. 1. In the first few liquid layers, the density at the layer
center is much greater than that between layers. After several
layers, the density becomes uniform.

The present model of a nanopore is chosen to represent
both the nanopore and the ∼5-Å-thick solid 4He layers on
the pore walls. In this way, only the liquid in the nanopore
needs to be simulated. The radius of the model nanopore
confining the liquid is chosen as R = 4 Å. Taking account of
the solid layers this would correspond to an actual nanopore
of diameter d = 18 Å. The model nanopore is described in
detail in Refs. [27,28].

In larger nanopores, at a saturated vapor pressure (SVP),
the liquid in the layers and near the center of the pore is
at 3D bulk liquid SVP density, ρ = 0.0218 Å−3 (interatomic
spacing a0 � 3.7 Å), or close to it. However, the equilibrium
density of a 1D line or 2D film of liquid 4He is significantly
less. For example, the equilibrium, zero-pressure linear den-
sity ρ0 of a freestanding line of 4He atoms is [29,30,39]
ρ0(eq) = 0.036 Å−1(a0 = 27.8 Å) with a binding energy [39]
of only 1.7 mK. The spinodal density of a 1D line [30,39]
is ρ0(sp) = 0.026 Å−1. Similarly, the equilibrium density of
a freestanding 2D 4He film [40,41] is ρ2D(eq) = 0.0432 Å2

(a0 � 5.17 Å). Thus in small pore nanopores where the 4He
has 1D or 2D character we anticipate much lower equilibrium
densities than observed in larger nanopores. A pressure must
be applied to reach densities found in bulk 3D liquid helium.

III. SIMULATIONS AND CALCULATIONS

The liquid 4He in the nanopore of radius R = 4 Å is
described by the Hamiltonian,

Ĥ = − h̄2

2m

N∑
i=1

�i +
N∑

i< j

U (ri j ) +
N∑

i=1

V (r⊥i). (1)

In Eq. (1), N is the number of 4He atoms of mass m, � is the
Laplacian, U (r) is the 4He interatomic potential represented
by the Aziz potential [42], and V (r⊥) is the confining potential
of the nanopore at a distance r⊥ from the center of the
nanopore. The nanopore potential V (r⊥) confining the liquid
represents the nanopore itself plus the layers of solid helium
on the nanopore walls. The most important feature of the
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FIG. 2. Energy of liquid 4He in a nanopore of liquid radius R =
4 Å vs liquid linear density ρ0 = N/L.

nanopore is the hard wall of the confining potential. Since
4He also has a hard core, the same potential also describes
confinement by solid 4He well. The potential V (r⊥) and the
parameters in it are exactly the same as defined and used
previously in Refs. [27,28].

The zero-temperature properties of the liquid such as
the ground-state energy were calculated using a second-
order diffusion Monte Carlo (DMC) method in which the
Schrödinger equation written in imaginary time is solved
stochastically. The details of the method are given in Ref. [43].
The guiding wave function was as usual constructed as � =∏

i< j f (ri j )φ(r⊥i ), where f (r) = exp[−(b/r)5] and φ(r⊥)
was the exact single-particle solution in the confining poten-
tial V (r⊥). Pure estimators [44] were used to calculate the pair
distribution functions and the density profiles.

Finite-temperature properties such as ρS/ρ0 and the
OBDM were calculated using the finite-temperature worm
algorithm path-integral Monte Carlo (PIMC) method [10,45].
The values of the discretized imaginary time δτ were the same
as used in Ref. [27], i.e., 0.004–0.005 K−1.

IV. RESULTS

Figure 2 shows the ground-state energy E/N versus the
liquid linear density ρ0 = N/L of liquid 4He confined in the
present R = 4 Å model nanopore. At low density, the 4He
is distributed in a line along the nanopore center. E/N has a
shallow, broad minimum at linear density ρ0(eq) = 0.15 Å−1,
the equilibrium density. This ρ0(eq) is larger but similar to that
of a freestanding line of 4He atoms quoted in Sec. II above.
The ρ0(eq) is larger in the nanopore apparently because of the
motion that is allowed perpendicular to the centerline of the
nanopore and the interaction with the pore walls. The mini-
mum energy is E/N = −95 mK/atom which is significantly
lower than that of a free line of 4He because of the interaction
with the pore walls. A larger minimum energy and equilibrium
density has been found in other quasi-1D systems, such as
4He inside (5,5) armchair carbon nanotubes [46]. The energy
curve ends at the spinodal density, ρ0(sp) = 0.083 Å−1, where
the liquid becomes unstable to droplet formation. Thus the
equilibrium density is low, not far from the spinodal density.
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FIG. 3. The density profile n(r⊥) vs the distance r⊥ from the
nanopore center of liquid 4He in a nanopore of liquid radius R = 4 Å
at linear densities 0.133 < ρ0 < 0.6 Å−1 calculated using DMC ex-
cept for the one PIMC value indicated. The profiles show a crossover
from a liquid density that has a maximum at the pore center (1D) at
low linear density to a layerlike (2D) distribution at high density. The
crossover takes place at linear density ρ0 � 0.30–0.40 Å−1.

At higher linear density, ρ0 � 0.3 Å−1, the energy in-
creases approximately linearly with ρ0, which is not expected
for the ground-state energy of a single-phase system. The
roughly linear increase of the energy with increasing ρ0

suggests that some other change such as a change in the 4He
density profile in the nanopore is taking place. This change
is shown in Fig. 3. At low density, ρ0 � 0.25 Å−1, the 4He
distribution in the nanopore peaks along the center of the
nanopore. The liquid is 1D with a distribution perpendicular
to the pore centerline. At higher density, ρ0 � 0.25 Å−1, the
peak density moves from a line to a cylindrical shell or layer
with a peak density at ρ � 1.5–2.0 Å from the pore center.
As ρ0 increases further, the density in the cylindrical shell
increases and the density at the pore center decreases. The
region of linear E/N vs ρ0 in Fig. 2 in the range 0.25 � ρ0 �
0.6 Å−1 is the region of density crossover from a 1D line to a
2D cylindrical layer of liquid in the nanopore.

Figure 4 shows the 4He - 4He pair correlation function g(x)
in the direction x along the axis of the nanopore as a function
of liquid density. At density ρ0 = 0.15 Å−1, g(x) shows the
character expected for a 1D liquid in the nanopore. The g(x)
is zero at small x over approximately a hard-core diameter
and has modest oscillations expected for a low density in 1D
liquid. The oscillations extend to somewhat larger distances
as the linear density increases (to ρ0 = 0.25 Å−1). These
long-range oscillations are characteristic of 1D at somewhat
higher density. As the linear density increases further (ρ0 �
0.35 Å−1) and the density distribution is in a 2D layer, the
corresponding g(x) is no longer nearly zero at x → 0, as it
was for a 1D line of atoms along the nanopore axis.

From the above results, we anticipate that the liquid con-
fined to the R = 4 Å nanopore will respond as a 1D liquid
at low densities, up to ρ0 � 0.25–0.30 Å−1, and as a 2D
liquid layer at higher densities. For low densities up to ρ0 =
0.25 Å−1, Fig. 5 shows the LL parameter, K ≡ (vJ/vN )1/2 =
[π2(h̄2/m)ρ3

0κ]1/2, where m is the mass and κ is the
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FIG. 4. The pair distribution function g(x) of liquid 4He along
the axis of a nanopore of radius R = 4 Å at linear densities 0.15 �
ρ0 � 0.55 Å−1. At low linear density g(x) is small out to x � 2 Å, as
expected for a 1D liquid. At high density g(x) is finite at x → 0, as
expected for 2D cylindrical filling of the pore as shown in the bottom
frame of Fig. 1.

compressibility of the 1D liquid. K shows the behavior ex-
pected for a 1D liquid, such as found previously [28] in a
narrower nanopore where the liquid is 1D at all densities.

Similarly, Fig. 6 shows PIMC calculations of the superfluid
fraction ρS/ρ0 at several densities. Also shown as a line are
fits of the Luttinger liquid expression for ρS/ρ0 to the PIMC
values. At densities up to ρ0 = 0.30 Å−1, the PIMC ρS/ρ0 are
well described by the 1D LL theory. The PIMC ρS/ρ0 scale
as LT , the product of the pore length L and temperature T , as
expected for a 1D liquid. The LL expression for ρS/ρ0 fits well
the PIMC calculations of ρS/ρ0. In the fit, the parameter vJ in
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FIG. 5. Luttinger liquid parameter K of liquid 4He in a nanopore
of radius R = 4 Å as a function of linear density ρ0 = N/L at low lin-
ear density where the liquid is 1D. K is calculated from the ground-

state energy, e = E/N , as K = (v0
J /vN )1/2 = [π 2( h̄2

m )ρ3
0κ]

1/2
, where

κ is the compressibility, κ−1 = ρ0∂[ρ2
0∂e/∂ρ0]/∂ρ0. The superfluid-

ity in the 1D liquid is expected to be robust to a periodic potential for
K > 2, robust in the presence of disorder for K > 3/2, and for K <

1/2 the 1D liquid is expected to be quasisolidlike.

LL theory [13] is treated as a free parameter. The fit has a low
χ2 and the best-fit value of vJ agrees well with the value vJ =
v0

J = π (h̄/m)ρ0 expected for a uniform 1D LL. However, at
higher densities, ρ0 � 0.33 Å−1, the 1D LL theory does not
fit the PIMC ρS/ρ0 at all well, suggesting that the liquid is
no longer 1D at higher densities. At ρ0 = 0.6 Å−1 the ρS/ρ0

clearly does not scale as LT and it is therefore not possible
to obtain a fit of the LL expression to the PIMC ρS/ρ0.
In Fig. 6 showing ρ0 = 0.6 Å−1, we have simply plotted the
LL prediction as a line, with vJ set at vJ = v0

J . Clearly the line
does not reproduce the PIMC ρS/ρ0 at all L as it should if the
system is 1D. However, it is interesting that the agreement is
better at larger L, suggesting that the 4He at high density in the
nanopore might approach 1D in the special case of L → ∞.

To further clarify the effective dimensions of the liquid
in the present R = 4 Å radius nanopore at higher density,
we compare in Fig. 7 the OBDM n(x) and pair correlation
function g(x) with those found previously in an R = 3 Å
nanopore. In the R = 3 Å nanopore the liquid is definitely 1D
at all densities investigated. We compare the two nanopores
when the 3D liquid density ρ ′ ≡ πL(R − 1)2 = 0.0212 Å−3

is the same in both nanopores and close to the bulk liquid
density ρ = 0.0218 Å−3. The upper frame of Fig. 7 shows
the OBDM. In the present R = 4 Å nanopore, n(x) has a flat
algebraic long-range tail without oscillations, as expected in a
2D fluid. In the R = 3 Å nanopore, n(x) decays more steeply
at long range and has long-range oscillations, as expected
for 1D. Similarly, in the lower frame, the g(x) in the present
R = 4 Å pore has only short-range oscillations, as expected
for a 2D fluid. In contrast, the liquid in the R = 3 Å nanopore
has long-range oscillations, as predicted by LL theory for 1D.
Thus at higher densities n(x) and g(x) of 4He in the present
R = 4 Å nanopore show 2D character.

Figure 8 shows n(x) of the liquid in the present R = 4 Å
nanopore at temperature T = 0.3 K at four liquid densities
from ρ0 = 0.20 Å−1 to ρ0 = 0.40 Å−1. We expect the liquid
to be 1D at low densities up to ρ0 � 0.30 Å−1. At low ρ0, the
n(x) in Fig. 8 has a steep algebraic tail, as anticipated for 1D. It
shows a crossover from 1D-like at ρ0 = 0.20 and 0.25 Å−1 to
2D character at 0.30 and 0.40 Å−1. At the higher densities, the
height of the tail is higher and the tail is flatter, as anticipated
for a 2D liquid.

To pursue the OBDM further, we recall that in a 2D fluid
the transition from the normal to superfluid phase is at a
finite temperature Tc. Within Kosterlitz-Thouless theory for
a 2D liquid, this Tc can be identified from the OBDM n(x)
as the temperature at which the exponent η(T ) describing
the algebraic tail of the OBDM reaches the value η = 0.25.
Figure 9 shows PIMC values of the OBDM as a function of
temperature of liquid 4He at a linear density ρ0 = 0.40 Å−1,
which is in the 2D density range. The function n(x) ∼ x−η(T )

is fitted to the PIMC values of n(x) in the range 10 � x �
25 Å. In this intermediate range of x, we anticipate that n(x)
will decay algebraically with x at temperatures above Tc but
close to Tc. The long-range part cannot be used because it is
not expected to be algebraic and is affected by the periodic
boundary conditions in the present calculations. From the
fits, we see that a best fit η = 0.25 is reached at a finite
temperature so that there is finite Tc, as expected for 2D.
A Tc � 0.15–0.20 K is indicated. This shows that there is a
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FIG. 6. Superfluid fraction ρS/ρ0 of liquid 4He in a nanopore of liquid radius R = 4 Å at linear liquid densities between ρ0 = 0.25 and
0.60 Å−1. At low densities up to ρ0 = 0.30 Å−1, the liquid is 1D-like and ρS/ρ0 is well described by LL predictions. A fit of the LL prediction
to data has a low χ 2 and ρS/ρ0 scales as L/h̄βv0

J = LT/(h̄2/kBm)πρ0. At ρ0 = 0.4 and 0.6 Å−1 the liquid is 2D-like and a fit of the LL
prediction to data has a large χ 2.

low but finite Tc, as expected for 2D liquid at density ρ0 =
0.40 Å−1. Thus the liquid at higher density has a OBDM and
a finite Tc, as expected for a 2D liquid. In contrast, the ρS/ρ0

at lower densities ρ0 � 0.30 has a OBDM and a ρS/ρ0 well
described by 1D LL theory.

In addition to the Tc above obtained from the OBDM,
Tc can also be estimated from ρS/ρ0 using scaling methods.

Following Ceperley and Pollock [40], we use the Kosterlitz-
Thouless recursion relations to obtain ρS/ρ0 for an infinitely
long (L → ∞) film from the present PIMC ρS/ρ0 calculated
for finite-length films. Essentially the KT recursion relations
are integrated up to a finite length L and fitted to the present
PIMC ρS/ρ0 for the corresponding L to obtain unknown pa-
rameters in the KT recursion relations. Given the parameters,
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FIG. 7. Comparison of liquid 4He at bulk liquid density, ρ ′ =
0.0212 Å−3, confined in a nanopore of liquid radius R = 3 and 4 Å.
In the R = 3 Å nanopore, where the 4He forms a 1D line and is 1D
at all densities, both the OBDM n(x) (top) and the pair distribution
function g(x) (bottom) show long-range oscillations characteristic
of a 1D fluid. In the R = 4 Å nanopore where the 4He forms a
cylindrical film at density ρ ′ = 0.0212 Å−3, the n(x) has a smooth
algebraic tail and g(x) has short-range oscillations characteristic of a
2D fluid.

the KT relations are used to calculate ρS/ρ0 for L → ∞. From
the ρS/ρ0 for L → ∞, Tc is determined from the universal
“jump” relation for ρS/ρ0 at Tc,

ρS (Tc)

ρ0
= 2m

h̄2

kBTc

πρ
, (2)

where ρ is the 2D density of liquid 4He in the nanopore given
below in Eq. (A3). A further description of this procedure
applied to the present films appears in the Appendix.

Figure 10 shows the PIMC superfluid fraction ρS/ρ0 ver-
sus temperature T of liquid 4He at density ρ0 = 0.4 Å−1

calculated for several lengths L of the nanopore. The solid
lines are the best fit of the ρS/ρ0 calculated using the KT
recursion relations for that L. Two parameters in the recursion
relations are adjusted at each L. The fits are good and the
parameters vary smoothly with L. The dashed line shows the
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FIG. 8. One-body density matrix (OBDM) n(x) of liquid 4He
in a nanopore of radius R = 4 Å for linear densities 0.20 < ρ0 <

0.40 Å−1 and T = 0.3 K. The height of the long-range tail of n(x)
increases with increasing linear density, indicating an increase in 2D
character of the OBDM as density increases. The inset shows n(x)
in the log-log scale for better visibility of algebraic scaling in the
intermediate range.

calculated ρS/ρ0 for L extrapolated to L → ∞. The solid line
shows (2m/h̄2)kBT/(πρ). The dashed and solid lines cross,
satisfying Eq. (2) at Tc � 0.20 K. In addition to the usual
uncertainty of this method, there is an additional uncertainty
introduced by using the KT recursion relations for a flat
film to describe the present cylindrical-shaped films [47].
Within precision, the ρS/ρ0 at ρ0 = 0.4 Å−1 is consistent
with a 2D liquid that has a low but finite Tc � 0.20 K, in

 0.05
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 0  5  10  15  20  25  30  35  40

n(
x)

x [Å]

T = 0.15 K, η = 0.246 ± 0.001
T = 0.20 K, η = 0.254 ± 0.001
T = 0.30 K, η = 0.349 ± 0.001
T = 0.40 K, η = 0.500 ± 0.001

 0.07
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 0.13

 10  15  20  25  30

FIG. 9. OBDM n(x) of liquid 4He in a nanopore of radius R =
4 Å at linear density ρ0 = 0.4 Å−1 showing the increase in the height
of the long range as temperature decreases. The aim is to identify
the temperature at which n(x) ∼ x−η with η = 0.25 fits the data.
This temperature is Tc. The fits suggest a Tc � 0.18 K in liquid 4He
at a density ρ0 = 0.4 Å−1 in the nanopore. The inset shows n(x)
in the log-log scale for better visibility of algebraic scaling in the
intermediate range.
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FIG. 10. Plot of ρS/ρ0 vs T for samples of several lengths L at
linear density ρ0 = 0.4 Å−1. The colored solid lines are fits of the
Kosterlitz-Thouless (KT) recursion relations to PIMC ρs/ρ0 (data
points). The black dashed line is ρs/ρ0 extrapolated to L → ∞ using
the KT relations. The solid line is kBT/(πρ h̄/2m) from Eq. (2). The
black lines cross at Tc � 0.20 K which is in agreement with the Tc

determined from the OBDM.

agreement with Tc = 0.15–0.20 K predicted from the OBDM
using Kosterlitz-Thouless theory.

V. DISCUSSION

We have illustrated a crossover from 1D to 2D in an
accurate model of liquid 4He confined in a nanopore of liquid
radius R = 4 Å. The nanopore wall in the model represents
the nanopore and the solid 4He layers on the nanopore walls
so that the liquid is confined to R = 4 Å. The equilibrium
configuration of the liquid is a low-density, 1D line of liquid
along the centerline of the nanopore. There is a significant
distribution of liquid around the 1D centerline at equilib-
rium. The equilibrium linear density in the nanopore is ρ0 =
0.15 Å−1, similar to that of a freestanding line of 1D 4He. As
pressure is applied, the density in the line increases and there
is a gradual crossover of 4He from a 1D line to a 2D film.
The film lies roughly midway between the centerline and the
pore wall. At higher density all of the 4He lies in the 2D film.
In this way, there is a crossover from 1D to 2D as a function
of pressure without changing the confining boundaries of the
nanopore.

The location of the 4He in the nanopore is determined
chiefly by the hard core of the 4He - 4He potential (hard-core
diameter σ � 2.5 Å) and that of the nanopore wall. The center
of a 4He atom cannot approach the nanopore wall closer than
σ/2 � 1.25 Å, as seen from the 4He distributions shown in
Fig. 3. The effective volume accessible to the liquid 4He is
V � π (R − 1)2L Å−3. The minimum energy configuration, a
dilute 1D line of 4He peaked at the pore center, minimizes
the 4He - 4He and 4He-wall contact. As pressure is applied
and the 4He - 4He spacing in the line decreases, there is a
crossover to a 2D film where the 4He - 4He spacing can
be larger. The film lies roughly 2 Å from the pore wall to
minimize hard-wall contacts.

The dimensions of the fluid were determined chiefly from
the character and scaling of the superfluid fraction ρS/ρ0,

the OBDM n(x), and the pair correlation function g(x). The
1D character at low densities is most clearly seen in ρS/ρ0

and g(x). Specifically, ρS/ρ0 was calculated using the general
relation derived by Pollock and Ceperley [48] expressing
ρS/ρ0 in terms the number W of paths winding around the
sample. For 1D this relation is

ρS

ρ0
=

(
T L

σρ0

)
〈W 2〉 = α0〈W 2〉, (3)

where T is the temperature, L is the length of the sample,
σ = h̄2/kBm = 12.1193 K Å2, and α0 ≡ (T L/σρ0). The ex-
pectation value of W was calculated using PIMC methods
[9,10,45]. The 1D expression for ρS/ρ0 was used at all
densities.

If the fluid is a 1D LL, ρS/ρ0 is again given by Eq. (3)
but the expectation value of W can be obtained from the LL
expression [24],

〈W 2〉 =
∑
W

W 2e− 1
2 αW 2

/ ∑
W

e− 1
2 αW 2

, (4)

where

α =
(

πkBT L

h̄vJ

)
= α0

(
vJ

v0
J

)−1

, (5)

and vJ is the kinetic LL parameter. For a uniform 1D Bose
liquid, as investigated in the present paper, vJ should reduce
to the uniform LL value, h̄v0

J = π (h̄2/m)ρ0.
We fitted the LL expression for ρS/ρ0 with 〈W 2〉 given by

Eq. (4) to the PIMC ρS/ρ0 calculated directly from Eq. (3)
with vJ treated as a free fit parameter. At low density, up to
ρ0 = 0.30 Å−1, the fit is good, as shown in Fig. 3. Also, the
best fit is obtained when vJ = v0

J , as predicted by LL theory.
Thus ρS/ρ0 clearly shows LL character at low density. At
higher density, ρ0 � 0.30 Å−1, the fit is not good. Similarly,
at low density, g(x) is zero, or close to zero, at small x up to
a hard-core diameter σ � 2.5 Å, as expected for a 1D line of
liquid.

At high density, both g(x) and the OBDM show 2D char-
acter. The OBDM has a long-range tail characteristic of 2D.
Both g(x) and the OBDM are smooth at long range. They
do not oscillate with x as found in a 1D LL at high density.
The 2D character at high density is most clearly seen in
the temperature dependence of the OBDM. The slope of the
long-range tail with x decreases with decreasing temperature,
as expected for 2D. The slope reaches the value predicted
for a superfluid transition in 2D at Tc � 0.15–0.20 K. The
ρS/ρ0 is consistent with this low Tc. Thus the liquid at
high density is characteristic of a 2D liquid with a low but
finite Tc.

It is interesting that although there is a distribution of 4He
around the centerline at low density, the liquid still shows 1D
LL character. For example, at ρ0 = 0.30 Å−1, where there is a
significant density distribution perpendicular to the nanopore,
the PIMC calculated ρS/ρ0 is still well fitted by the LL ρS/ρ0,
as well as at lower density (see Fig. 3). This suggests that
a distribution perpendicular to the 1D line does not destroy
the 1D character. This could be helpful in creating systems
experimentally that show 1D character. Also, a Hubbard
model of 1D places all density (particles) exactly on a line.
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The present results suggest that this approximation at least
will continue to be valid for systems that have a distribution
of density around the 1D line. It would be interesting to test
how large a distribution of atomic density perpendicular to the
1D line is possible in a system before the system loses its 1D
character. Equally, it is interesting that the crossover from 1D
to 2D is in the linear density range ρ0 = 0.30–0.40 Å−1. It
is in this range that the distribution perpendicular to the 1D
line develops a film character (see Fig. 3). Thus, apparently a
distribution characteristic of the second dimension is needed
to obtain a crossover to that dimension.

The Tc obtained above for a dilute, single 2D film is very
low, Tc � 0.15–0.20 K. In previous PIMC calculations [27]
for larger diameter pores where there were two to three layers
of liquid at higher liquid densities, we obtained significantly
higher values of Tc, e.g., Tc = 1.43 K for R = 9 Å−1, Tc =
1.21 K for R = 7.3 Å, and Tc ∼ 0.3–0.7 K for R = 6 Å. Wada
et al. [49] and Taniguchi et al. [50] report observed values of
Tc = 1.0 K and Tc = 0.9 K, respectively, for liquid at SVP
in an FSM-16 nanopore of diameter d = 28 Å (R = 9 Å).
It would be interesting to investigate both the density and
pore size dependence of Tc to determine where Tc → 0 as an
indicator of where the crossover to 1D is located in nanopores.
Equally, it would be interesting to investigate the flow [51,52]
and dynamics [53] of liquid 4He in smaller pore media to
reveal the 1D character.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Massimo Boninsegni
for providing the PIMC code used in this work and Marcus
Holzmann for valuable discussions and insights on reduced
dimensional systems and phase transitions. H.R.G. thanks the
Theory Group, Institut Laue Langevin for hospitality where
much of this paper was written. This work has been supported
in part by the Croatian Science Foundation under Project
No. IP-2014-09-2452. This research was performed using
computational clusters at the University of Delaware and the
computer cluster Isabella at the SRCE - University of Zagreb
University Computing Centre.

APPENDIX

In order to determine the superfluid transition temperature,
we have started from the KT recursion equations [40], which
were originally introduced for flat films of area L2,

dK−1(l )

dl
= 4π3y2(l ), (A1)

dy(l )

dl
= [2 − πK (l )]y(l ), (A2)

where K (l ) = h̄2ρS (l )/mkT . Equations (A1) and (A2) are
then integrated from 0 to l ≡ ln(r/d ) = ln(L/2d ), using ini-
tial values K (l = 0) = h̄2ρ/mkT , where ρ is the film density
and y(l = 0) = exp(−βEc). Since the film is cylindrical, we
have calculated its density as

ρ = ρ0

2πr
, (A3)

where ρ0 = 0.4 Å−1 is the linear density and r is estimated as
the average separation from the axis, r = 1.747 Å. KT equa-
tions are then solved numerically for different combinations
of parameters d and Ec and fitted to PIMC results. The lines
presented in Fig. 10 are obtained using d and Ec parameters
which best fit the data. They depend on L, but Ec converges as
L is increased, to 0.49 ± 0.015 K. Using this value, and taking
the limit of l → ∞ (L → ∞) we obtained ρs/ρ0 given by the
dashed line in Fig. 10. The universal jump line, determined by
Eq. (2), which is drawn from the origin, crosses the dashed
line at Tc = 0.245 K. This is also the point at which ρs/ρ0

becomes perpendicular to the x axis, demonstrating the jump
of superfluid density from zero to finite value at the transition
temperature.

Clearly, the estimations of the parameters in KT equations
are approximate and the cylindrical geometry introduces addi-
tional effects, e.g., the areal density depends on the value of r
used in Eq. (A3), and the shape of the density profile. In order
to test the sensitivity to the value of r, we have also used the
values r = 〈r⊥〉 ±

√
〈r2

⊥〉 − 〈r⊥〉2 = 1.747 ± 0.45 Å, giving
the density of ρ = 0.039 ± 0.01 Å−2. However, this resulted
in a small change of Tc, only ±0.005 K.
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[28] L. Vranješ Markić, H. Vrcan, Z. Zuhrianda, and H. R. Glyde,

Phys. Rev. B 97, 014513 (2018).
[29] E. Krotscheck and M. D. Miller, Phys. Rev. B 60, 13038 (1999).
[30] G. Bertaina, M. Motta, M. Rossi, E. Vitali, and D. E. Galli,

Phys. Rev. Lett. 116, 135302 (2016).
[31] K. A. Matveev and A. V. Andreev, Phys. Rev. Lett. 121, 026803

(2018).
[32] M. C. Gordillo and D. M. Ceperley, Phys. Rev. Lett. 85, 4735

(2000).
[33] M. Boninsegni, Phys. Rev. Lett. 111, 235303 (2013).
[34] M. Rossi and F. Ancilotto, Phys. Rev. B 94, 100502(R)

(2016).
[35] T. Omiyinka and M. Boninsegni, Phys. Rev. B 93, 104501

(2016).
[36] G. Ferré, M. C. Gordillo, and J. Boronat, Phys. Rev. B 95,

064502 (2017).

[37] A. Del Maestro and M. Boninsegni, Phys. Rev. B 95, 054517
(2017).

[38] A. J. Vidal, G. E. Astrakharchik, L. Vranješ Markić, and B.
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