
PHYSICAL REVIEW B 101, 104503 (2020)

Microscopic theory of the friction force exerted on a quantum impurity in
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We study the motion of a slow quantum impurity in one-dimensional environments focusing on systems of
strongly interacting bosons and weakly interacting fermions. While at zero temperature the impurity motion is
frictionless, at low temperatures finite friction appears. The dominant process is the scattering of the impurity
off two fermionic quasiparticles. We evaluate the friction force and show that, at low temperatures, it scales
either as the fourth or the sixth power of temperature, depending on the system parameters. This is a result of the
scattering of the impurity off two fermionic quasiparticles that are situated around different Fermi points. It is
the dominant process at low temperatures. We also evaluate the contribution to the friction force originating from
the scattering of the impurity off two fermionic quasiparticles that are situated around different Fermi points. It
behaves as the tenth power of temperature.
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I. INTRODUCTION

Understanding the motion of a quantum particle through a
medium is a fundamental problem relevant for a large class of
systems [1–3]. Substantial experimental progress in control-
ling and fabricating distinguishable particles (impurities) in
quantum liquids offers new perspectives and provides an ideal
playground for this problem [4–20]. One-dimensional liquids
are a particularly interesting environment due to pronounced
effects of quantum fluctuations and correlations [21–47].

At zero temperature, a slow mobile impurity in a one-
dimensional liquid experiences frictionless motion [1,25].
At low temperatures, a finite-friction force appears due to
impurity scattering off thermally excited quasiparticles of the
liquid. An early study of Castro Neto and Fisher [25] showed
that the resulting friction force scales as the fourth power
of temperature. This scaling is valid both for bosonic and
fermionic liquids. Later, using a phenomenological approach
the prefactor of this T 4 law was expressed in terms of the
chemical potential of the liquid, the chemical potential of the
impurity, and effective impurity mass and their derivatives
with respect to the liquid density [31,32]. However, the deter-
mination of the chemical potentials and the effective impurity
mass is a difficult task in a general case.

Recently, in Ref. [37] the friction force was examined in
detail for the system of weakly interacting one-dimensional
bosons in a wide range of temperatures. At low temperatures,
it was found that by tuning the system parameters the co-
efficient in front of the T 4 law can vanish resulting in T 8

dependence of the friction force. For temperatures above the
chemical potential of the Bose gas, the linear dependence
on temperature was found. The analytic expression for the
friction force was obtained in the crossover region between
the low-temperature and high-temperature regimes [37].

Usually low-energy properties of one-dimensional systems
are studied within the Luttinger liquid theory that assumes
linear dispersion relation of quasiparticles. However, in order

to determine functional dependence of the friction force on
system parameters one has to go beyond this description even
at lowest temperatures [31,32,37]. Since complete analysis
of the nonlinear spectrum is a very demanding task, in this
paper we focus on systems of strongly interacting bosons
and weakly interacting fermions. This allows us to develop a
microscopic theory of the friction force and derive new laws.
Our results are as follows. In Sec. II we introduce the model
and calculate the scattering matrix element for slow impurity
immersed in a system of weakly interacting fermions. We
consider an arbitrary form of the two-body interaction. In
Sec. III we evaluate the friction force assuming that the
Fourier transform of the interaction is given by an analytic
function. We are interested in temperatures smaller than the
Fermi energy. We demonstrate that by controlling the system
parameters one can design the desired friction in the system.
Namely, we show that the friction force can dramatically
change its temperature dependence from the expected T 4

behavior [25,31,32] to a new T 6 law. This is the result of the
scattering of the impurity off two fermions that are situated
around different Fermi points, while the scattering of the im-
purity off fermions that are around the same Fermi point leads
to the contribution to the friction force that is proportional to
T 10. In Sec. IV we apply the obtained results to the impurity
immersed in a gas of Tonks-Girardeau bosons or equivalently
in a system of noninteracting fermions. The interaction be-
tween the impurity and the background particles is assumed
to be the contact interaction. When the mass of the impurity
equals the mass of the background particles, the system is
integrable [21,24] and the impurity becomes transparent for
the background particles, leading to the absence of the friction
force [48]. We find that only for an impurity much lighter
than the background particles, the T 10 contribution to the
force may become the dominant one at higher temperatures
that remain below the Fermi energy. In Sec. V we consider
a strongly interacting boson environment that can be mapped
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[49,50] onto a weakly interacting Cheon-Shigehara model of
fermions. Section VI focuses on fermions interacting via the
screened Coulomb interaction. This system does not satisfy
the assumptions of Sec. III and requires separate analysis. The
discussion and conclusions are given in Sec. VII, while some
technical details are presented in appendices.

II. MODEL

We consider the motion of a mobile impurity immersed in
a one-dimensional system of spinless fermions. The model is
given by the Hamiltonian

H = H0 + H ′. (1)

Here H0 contains the kinetic energy of fermions of mass m
and of a single impurity of mass M that in second quantized
form read as

H0 =
∑

p

p2

2m
a†

pap +
∑

P

P2

2M
B†

PBP. (2)

The impurity and the fermion creation and annihilation oper-
ators are denoted by B† and B and by a† and a, respectively.
Since we consider a single impurity, one has

∫
dxB†(x)B(x) =

1. The fermions interact between themselves and with the
impurity. The interactions take the form

H ′ = 1

L

∑
P,p,q

GqB†
P+qBPa†

pap+q

+ 1

2L

∑
p1,p2,q

Vqa†
p1+qa†

p2−qap2 ap1 . (3)

Here Vq and Gq denote the Fourier transforms of the two-
body interaction between fermions and between fermions
and the impurity, respectively. The fermionic operators
satisfy standard anticommutation relations: {ap, a†

q} = δp,q

and {a†
p, a†

q} = {ap, aq} = 0. In what follows, we consider
a weakly interacting system at temperatures well below
the Fermi energy. In this case the scattering processes
can be classified by the number of fermions involved.
The condition on interactions is G0 � h̄vF and |V0 −∫ 1
−1 dx
∫ 1
−1 dyV|x−y|mvF /4| � h̄vF , where vF denotes the Fermi

velocity. We will study different types of the interaction
potential. We point out that we discuss finite-mass impurities
that are very different from the infinitely heavy impurities
considered in Refs. [51–56].

Our goal is to evaluate the friction force exerted on the
impurity. Let us consider a process where the impurity of
momentum P scatters off a single fermion with momen-
tum p and acquires the momentum P + δP while the final
fermion momentum is q. The interactions will be taken into
account within the perturbation theory. From the energy
and the momentum conservation of a free system it fol-
lows that p = mP/M + δP/2(m/M + 1) and q = mP/M +
δP/2(m/M − 1), where pF denotes the Fermi momentum. At
zero temperature, the Pauli principle imposes the constraints
|p| � pF and |q| � pF . One thus obtains that the scattering
process is not allowed [57] at zero temperature provided the
impurity momentum satisfies

|P|/pF < min{1, M/m}. (4)

In what follows we assume that this condition is fulfilled. At
finite temperatures, the above constraints on the momenta of
the initial and the final fermions are replaced by the product
of two Fermi distributions np(1 − nq), where np = 1/(1 +
e(εp−EF )/kBT ) and EF is the Fermi energy. However, by taking
into account that the bare quadratic dispersion relation of the
impurity gets strongly renormalized at momenta greater than
or similar to pF min{1, M/m} [58], the single-fermion process
remains forbidden at finite temperatures and the dominant
contribution to the friction force arises from the scattering off
two fermions [25].

Next we analyze the processes involving two fermions.
We calculate the scattering matrix element defined as a
vacuum expectation value tQ,q1,q2

P,p1,p2 = 〈BQaq2 aq1 |T |B†
Pa†

p1
a†

p2
〉,

where the T matrix can be expanded as T = H ′ +
H ′ 1

〈i|H0|i〉−H0+i0+ H ′ + · · · . Here the initial state is de-

noted by |i〉 = |B†
Pa†

p1
a†

p2
〉. After introducing tQ,q1,q2

P,p1,p2
=

tδp1+p2+P,q1+q2+Q we get

t = [1 − Â(p1, p2)][1 − Â(q1, q2)]
1

L2

×
[

GQ−PVp1−q1

εp1 + εp2 − εq1 − εq2+Q−P

+ GQ−PVp2−q2

EP + εp1 − EQ − εp1+P−Q

+ Gp2−q2 Gp1−q1

EP + εp1 − EQ+q2−p2 − εq1

]
(5)

to the leading order in the interactions. Here the operator Â is
defined as Â(p1, p2) f (p1, p2, q1, q2) = f (p2, p1, q1, q2). We
assumed that both p1 and p2 are modified in the scattering
process. The energy dispersion of fermions is denoted by εp =
p2/2m, while the impurity dispersion is EP = P2/2M.

Notice that the special case of Eq. (1), i.e., the system of
noninteracting fermions (Vq = 0) coupled by a contact inter-
action with an impurity of the same mass as fermions (i.e.,
M = m), is an integrable model [21,24]. One thus expects the
absence of the impurity scattering off the quasiparticles [48].
Indeed, the scattering matrix element (5) vanishes once the
energy and the momentum conservation laws are taken into
account.

The scattering matrix element (5) determines the impurity
dynamics. In the following we focus on the friction force
exerted on the impurity by the liquid. It is given by Fermi’s
golden rule:

F = 2π

h̄

∑
p1,p2,Q,q1,q2

′ ∣∣tQ,q1,q2
P,p1,p2

∣∣2(Q − P)np1 np2 (1 − nq1 )

× (1 − nq2 )δ(EP + εp1 + εp2 − EQ − εq1 − εq2 ). (6)

We point out that the symbol
∑′ denotes that the sum is taken

over distinct initial and final physical states. Next we analyze
this expression. We consider that the impurity has a positive
momentum. Additionally, we assume that the impurity is slow
and satisfies P � pF . The product of Fermi distributions in
(6) and the conservation laws impose that at low temperatures
the fermions in the initial and in the final state have to be
in the vicinity of the Fermi points. There are three types of
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FIG. 1. The impurity of momentum P scatters off two fermions
with momenta p1 and p2. Schematic depiction of three different type
of processes (a) 1-1, (b) 0-2, and (c) 2-0 that lead to finite friction
force at nonzero temperatures. Empty and filled circles represent,
respectively, incoming and outgoing momenta. Solid and dashed
parabolas show the energy of fermions and the impurity, respectively,
as a function of momentum.

configurations to be distinguished regarding the initial state.
It can consist of (i) one fermion with positive momentum and
one with negative momentum; (ii) two fermions with positive
momenta, and (iii) two fermions with negative momenta. The
configurations (i), (ii), and (iii) are characterized by the total
momentum close to zero, 2pF , and −2pF , respectively. Since
the impurity is slow, the momentum conservation imposes
that the configuration of fermions in the final state has to
be of the same type as the initial one. For example, if the
incoming fermions have negative momenta the outgoing ones
also have negative momenta. Thus we have to distinguish the
three above-mentioned cases. We refer to them as the (i) 1-1,
(ii) 0-2, and (iii) 2-0 scattering processes; see Fig. 1. All of
them give a nonzero contribution to the friction force only
at finite temperatures. We will study them in the following
sections.

III. FRICTION FORCE

In this section we evaluate the scattering matrix element (5)
and the friction force (6) assuming that the Fourier transform
Vq of the interaction between the fermions is an analytic
function of q. This allows us to express the friction force in
terms of Vq and its derivatives. We assume that the interaction
between the impurity and the background particles takes form
of the contact interaction, i.e., Gq = G.

A. 1-1 processes

We start by analyzing different scattering processes and
their contributions to the friction force. We first consider the
1-1 type processes. We assume that p1 and q1 are positive,
while p2 and q2 are negative; see Fig. 1(a). There are other
configurations of fermions of the 1-1 type giving the same
result. However, they do not provide distinct initial and final
physical states of fermions and thus do not contribute in
Eq. (6). We express the final momentum of the impurity as
Q = P + δP. At low temperatures the initial momenta are
around the Fermi momentum and one has |p2 + pF | ∼ |p1 −
pF | ∼ T/vF . Analyzing the product of distribution functions
in Eq. (6) and taking into account the energy and the mo-
mentum conservation we get that |δP| ∼ T/vF . Further, the
scattering matrix element (5) can be simplified by taking

advantage of the smallness of T/EF � 1 and to the leading
order in T it is

t1-1 = GM
G(M2 − m2) + mM

(
V0 − V2pF + 2pFV ′

2pF

)
L2
(
M2 p2

F − m2P2
) . (7)

The energy conservation can be expressed as

δ(Ei − E f ) ≈ 1

2vF
δ

(
q1 − p1 + δP

V + vF

2vF

)
, (8)

where Ei = EP + εp1 + εp2 and E f = EQ + εq1 + εq2 . Here
we introduce the impurity velocity V = P/M. The relation (8)
and the momentum conservation allow us to express q1 and
q2 in terms of the initial fermion momenta and δP. Thus it
remains to evaluate the three summations over p1, p2, and δP
in Eq. (6). As discussed above, each summation is restricted
to a momentum range of the width determined by T/vF . Thus
the phase space volume is proportional to T 3. Taking into
account the typical momentum change δP ∼ T/vF and the
temperature-independent squared scattering matrix element
t1-1 in Eq. (6), we get that the friction force is proportional
to T 4. Indeed, the detailed calculation of the force gives us

F 1-1 = − 2π

15h̄5

G4T 4V (M2 − m2)2
(
v2

F + V 2
)

M2m4v2
F

(
v2

F − V 2
)5

×
(

1 + mM
(
V0 − V2mvF + 2mvFV ′

2mvF

)
G(M2 − m2)

)2

. (9)

The temperature is assumed to be T � EF min{1, M/m}. Note
that in the case of noninteracting fermions when the impurity
mass equals the mass of fermions, M = m, the system is
integrable [21,24] and thus the friction force vanishes. Some
useful integrals needed for calculation of the expression (9)
are presented in Appendix A.

We see that the perturbation theory breaks down when
the impurity velocity approaches the Fermi velocity. This
parameter region is indeed out of the domain of validity of
our theory, since we study slow impurity. The reason is that
at momenta greater than or similar to pF min{1, M/m} the
renormalized impurity dispersion significantly deviates from
the quadratic one [58], EP = P2/2M. Thus, in the expression
(9), the impurity velocity V should be replaced by the renor-
malized impurity velocity [32] that is always smaller than vF .
As a result, the modified Eq. (9) would be always finite.

Regarding the constraints on temperature, we notice that
at temperatures greater than EF M/m thermal fluctuations
become very strong and for this specific process the typical
change of the impurity momentum is big, δP � P. The fluc-
tuations are such that the impurity can be excited to momenta
∼pF M/m that cannot be described by our theory. For a heavy
impurity the result (9) holds for T � EF ; however for a light
impurity it applies for T � EF M/m.

We point out that the low-temperature friction force expe-
rienced by the slow impurity immersed in a system of weakly
interacting bosons described by the Lieb-Liniger model has
the same dependance on the impurity velocity as that in Eq. (9)
once the Fermi velocity is replaced by the sound velocity [37].
We will show in the following sections that this property re-
mains valid also for the Tonks-Girardeau gas, the Lieb-Liniger
model with finite but strong interaction potential, as well
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as for fermions interacting via the weak screened Coulomb
interaction. We expect this to be the universal property of
one-dimensional systems.

We emphasize that one can tune interactions such that
contributions originating from the impurity–liquid coupling
and the interactions between the fermions cancel each other
in Eq. (9). This is realized for

G(M2 − m2) + mM
(
V0 − V2pF + 2pFV ′

2pF

) = 0. (10)

If the system is not integrable when the condition (10) is
satisfied, the scattering matrix element is expected to be
nonzero. Thus, we should expand Eq. (5) to the next order
in temperature. We obtain the following expressions:

t1-1 = G

2mL2 p4
F

(
m2P2 − M2 p2

F

)
× [α(p1 − pF ) + β(p2 + pF ) + γ δP], (11)

α = [GP(M2 − m2)(mP + M pF ) − 2m2M p4
FV ′′

2pF

]
2M pF ,

(12)

β = −[GP(M2 − m2)(mP − M pF ) − 2m2M p4
FV ′′

2pF

]
2M pF ,

(13)

γ = G(m2 − M2)P[m2P2+M(2m + M )p2
F ]+2m3MPp4

FV ′′
2pF

.

(14)

The scattering element (11) is proportional to temperature,
contrary to temperature-independent Eq. (7). Since the matrix
element enters the expression for the force (6) as |t1-1|2, the
force gains two additional powers of temperature with respect
to the previous result (9) and becomes proportional to T 6.

In order to evaluate the friction force, we were able to
perform the summations over momenta in Eq. (6) analytically.
However we obtained a cumbersome expression, and for
simplicity we state its form only in the limit of a very slow
impurity V � vF :

F 1-1 = − 64π3G2T 6V
(
V ′′

2pF

)2
105v10

F h̄5 . (15)

The same conditions on temperature apply here as for Eq. (9).
Comparing results (15) and (9), we find that the force (15)

dominates over the force (9) in the parameter region∣∣∣∣∣1 + mM
(
V0 − V2pF + 2pFV ′

2pF

)
G(M2 − m2)

∣∣∣∣∣
< 4π

√
2

7
mT

∣∣V ′′
2pF

∣∣∣∣V0 − V2pF + 2pFV ′
2pF

∣∣ . (16)

Here for simplicity we considered a very slow impurity V �
vF . We showed that the friction force can dramatically change
its temperature dependence from the T 4 to T 6 law by tuning
the system parameters. We will study the conditions (10) and
(16) for some specific forms of the interaction potential in the
following sections.

B. 0-2 processes

Next we consider processes of the type 0-2 illustrated in
Fig. 1(b); i.e., we assume that all incoming and outgoing
fermion momenta are positive. We introduce pr = p1 − p2

and pc = (p1 + p2)/2. In the same manner we define qr and
qc. We express δP = Q − P = 2(pc − qc) from the momen-
tum conservation. Analyzing the product of Fermi distribution
functions, we conclude that typical momenta are on the order
of |pc − pF | ∼ |qc − qF | ∼ T/vF , |qr | ∼ |pr | ∼ T/vF . From
the energy conservation we obtain that

pc = qc +
(
q2

r − p2
r

)
8m(vF − V )

, (17)

up to order T 2. Thus, contrarily to the 1-1 processes, the typ-
ical momentum change δP in the 0-2 process scales quadrat-
ically with T/EF . We further simplify the scattering matrix
element (5) as

t0-2 = Gprqr
G(M2 − m2) − 2mM3V ′′

0 (vF − V )2

4L2m2M3(vF − V )4
, (18)

to the leading order in T . Note that the scattering matrix
element changes the sign under transformations pr → −pr

as well as under qr → −qr as has to be the case due to an-
ticommutation relations between the single-particle fermion
operators appearing in the definition of t .

Making use of Eq. (17) we express δP and pc as functions
of qc, qr , and pr . The force is given by Eq. (6) and one
needs to perform the summation over the remaining three
momenta. The phase space volume scales as (T/vF )3 since
each summation is restricted to a range of the width T/vF ,
as discussed above. Thus, naively one would expect that the
force is proportional to T 9 since the typical impurity mo-
mentum change is δP ∝ T 2 and the scattering matrix element
t0-2 ∝ T 2. However, the coefficient in front of T 9 vanishes.
The reason is that the integrand behaves as an odd function un-
der the exchange of pr and qr at this order in temperature. The
next order term in temperature in the expansion of the product
of distribution functions appearing in Eq. (6) is nonzero and
determines the force that scales as T 10. Indeed, we rewrite the
energy conservation in the form

δ(Ei − E f ) ≈ 1

2(vF − V )
δ

(
pc − qc − 1

8m

q2
r − p2

r

vF − V

)
, (19)

by making use of the momentum conservation and then care-
fully evaluate Eq. (6) to be

F 0-2 = − 4π7

385h̄5

G2V T 10

m6M6v11
F (vF − V )11

× [G(M2 − m2) − 2mM3V ′′
0 (vF − V )2]2. (20)

We assumed that temperature is low enough such that the fol-
lowing relation holds: T � EF min{1, vF /V − 1, ( M

m )
1/3

(1 −
V/vF )2/3}. We present some useful integrals in Appendix A
that are needed for the evaluation of the force.

Next we consider 2-0 processes. They are depicted in
Fig. 1(c). Introducing new variables p′

i = −pi, q′
i = −qi for

i = 1, 2 and Q′ = −Q we get F 2-0(P) = −F 0-2(−P). Thus
the total force originating from the 0-2 and 2-0 processes,
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F 0-2
T = F 0-2 + F 2-0, is

F 0-2
T = − 4π7

385h̄5

G2V T 10

m6M6v11
F

×
{

[G(M2 − m2) − 2mM3V ′′
0 (vF − V )2]2

(vF − V )11

+ [G(M2 − m2) − 2mM3V ′′
0 (vF + V )2]2

(vF + V )11

}
. (21)

C. Friction force

Having analyzed different scattering processes and their
contributions, we are now able to summarize the results for
the friction force exerted on the impurity. The total force is
the sum of two contributions:

F = F 1-1 + F 0-2
T . (22)

At low temperatures the leading contribution to the force is
determined by the 1-1 processes. It is given by Eq. (9) and
scales [25,31,32] as T 4. However, provided the condition (16)
is fulfilled the force scales as T 6 and is given by Eq. (15). The
processes 0-2 and 2-0 give rise to the friction force that scales
as T 10 and may become the dominant ones by increasing the
temperature. In the following two sections, we apply these
results to (i) the Tonks-Girardeau gas and (ii) strongly inter-
acting bosons described by the Lieb-Liniger model. In Sec. VI
we examine the screened Coulomb interaction potential that
does not satisfy the assumptions of this section.

IV. TONKS-GIRARDEAU GAS

In this section we consider a one-dimensional system of
hard-core bosons, known as a Tonks-Girardeau gas [59,60].
The Hamiltonian HTG is a special case of the Lieb-Liniger
model [61,62]:

HLL = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ g
∑
i< j

δ(xi − x j ). (23)

By m we denote the mass of bosons, while g is the strength of
the short-range repulsion. HTG is realized for γ = mg/nh̄2 →
∞, where n is the mean density of bosons. In addition,
we consider an additional distinguishable particle, i.e., an
impurity, that interacts locally with bosons:

Hi = − h̄2

2M

∂2

∂X 2
+ G
∑

j

δ(X − x j ). (24)

The total Hamiltonian is given by Hb = HTG + Hi. It is well
known that the Tonks-Girardeau gas can be mapped [60] onto
spinless noninteracting fermions Hf f = − h̄2

2m

∑N
i=1

∂2

∂x2
i
. This

mapping can be extended to the case of a Tonks-Girardeau
gas with an impurity, as we show in Appendix B. Thus, Hb

maps onto Hi + Hf f , i.e., onto Hamiltonian (1) with Vq = 0
and Gq = G. For each eigenstate of the fermionic system there
is a corresponding eigenstate in the bosonic system with the
same energy. Their wave functions are identical for one given
arrangement of particles, e.g., for x1 < x2 < · · · xN , while
for other arrangements their values are obtained using the

(anti)symmetry of the wave function with respect to particle
permutations [60] and thus may differ up to a sign. Namely,
the wave functions for fermions are antisymmetric, while
those of bosons are symmetric. As a consequence, a matrix
element between any two eigenstates of Hb of any operator
that does not permute bosonic particles coincides with its
matrix element between the corresponding eigenstates of Hi +
Hf f . Since the friction force can be written as F = 〈 dP

dt 〉,
where P = −ih̄ ∂

∂X is the impurity momentum which does
not permute bosonic particles, the friction force exerted by
noninteracting fermions coincides with the friction force due
to the Tonks-Girardeau bosons. In the following, we consider
noninteracting fermions. Note that in this mapping, the sound
velocity of bosons equals the Fermi velocity of fermions.

The results derived in the previous section apply to the
system of noninteracting fermions and give the scattering
matrix element originating from the 1-1 process to be

t1-1 = G2(M2 − m2)

L2Mm2
(
v2

F − V 2
) , (25)

as follows from Eq. (7). The corresponding friction force (9)
simplifies and reads as [32]

F 1-1 = − 2π

15h̄5

G4T 4V (M2 − m2)2
(
v2

F + V 2
)

M2m4v2
F

(
v2

F − V 2
)5 . (26)

For the 0-2 processes the scattering matrix element (18)
becomes

t0-2 = G2(M2 − m2)prqr

4L2m2M3(vF − V )4
, (27)

and the total force originating from the 0-2 and 2-0 processes
(21) is

F 0-2
T = − 4π7

385h̄5

G4T 10V (M2 − m2)2

m6M6v11
F

×
[

1

(vF − V )11
+ 1

(vF + V )11

]
. (28)

Note that condition (10) simplifies to M = m. In this case the
system is integrable [21,24] and the scattering matrix element
(5) and the friction force (6) vanish [48].

The total friction force is F = F 1-1 + F 0-2
T . At low temper-

atures, the friction force is proportional to the fourth power of
temperature [25]. It is dominated by the 1-1 type processes
and is given by Eq. (26). At higher temperatures T > T ∗
the processes 0-2 and 2-0 may become more relevant. At
crossover temperature T ∗, the expression (26) is equal to the
expression (28). However, the crossover temperature has to
be sufficiently small and satisfy conditions given in Sec. III.
For example, for a very slow impurity, V � vF , one gets the
crossover temperature to be

T ∗ = 2

π

(
77

12

)1/6

EF

(
M

m

)2/3

. (29)

Here the numerical prefactor 2
π

( 77
12 )

1/6 ≈ 0.87. For very light
impurity (M � m) the crossover temperature satisfies the
condition T ∗ � EF (M/m)1/3 required by (28). However, the
expression (26) for F 1-1 is not valid for temperatures above
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EF M/m and its evaluation is beyond the scope of this paper.
Thus we cannot describe the crossover. To conclude, by
decreasing the mass of the impurity and by increasing the tem-
perature, the scattering processes 0-2 gain more importance.
However, for a very slow impurity with mass on the order of
m or bigger, the friction force is given by F1−1 at temperatures
below the Fermi energy. In this case the processes 0-2 can be
neglected, since T ∗ becomes on the order of EF or bigger.

V. STRONGLY INTERACTING BOSONS

In this section, we consider an impurity immersed in a
one-dimensional system of bosons described by the Lieb-
Liniger model [61,62] (23). The construction of fermionic
wave functions proposed in Ref. [60] (see Appendix B) that
leads to the mapping of Tonks-Girardeu bosons onto free
spinless fermions can be used for an arbitrary interaction
strength of bosons. It provides the exact mapping of the
Lieb-Liniger HLL model onto the Cheon-Shigehara model of
fermions [49,63]. The Hamiltonian of fermions can be written
in the form [50]

Hf = − h̄2

2m

N∑
i=1

∂2

∂x2
i

− 2h̄4

m2g

∑
i> j

δ′′(xi − x j ). (30)

In Appendix B, we show how this mapping can be extended
in the presence of the impurity described by Hi (24). Thus,
HLL + Hi maps onto Hf + Hi that in the second quantized
representation is given by Eq. (1) with Vq = 2h̄2q2/m2g and
Gq = G. We are interested in strongly interacting bosons
with γ = mg/nh̄2 � 1 that corresponds to weakly interacting
fermions. In the case of fermions n denotes also the mean
density. For convenience, we will consider the fermionic
system in the following. However, the results for the friction

force obtained in this section apply also to the system of
Lieb-Liniger bosons with γ � 1.

A. 1-1 processes

We extend the analysis of the Sec. IV to account for the
interaction between the fermions, employing the results of
Sec. III. For the 1-1 type processes, the matrix element is

t1-1 = G2(M2 − m2)

L2Mm2
(
v2

F − V 2
)(1 + 8π

γ

Mm

M2 − m2

h̄vF

G

)
(31)

to the leading order in temperature, as follows from Eq. (7).
The corresponding force (9) becomes

F 1-1 = − 2π

15h̄5

G4T 4V (M2 − m2)2
(
v2

F + V 2
)

M2m4v2
F

(
v2

F − V 2
)5

×
(

1 + 8π

γ

Mm

M2 − m2

h̄vF

G

)2

. (32)

We note that two contributions in the scattering element may
have opposite sign. Thus one can tune the interactions such
that the scattering matrix element (31) becomes zero. This
happens for g = gc, where

gc = 8
h̄2v2

F

G

Mm

m2 − M2
, (33)

provided M 
= m. We assume that background bosons repel
each other, i.e., g > 0. Thus, for an impurity lighter than the
bosons (M < m) and that repels the bosons (G > 0), or an
impurity that is heavier than the bosons (M > m) and that
attracts the bosons (G < 0), this can be realized. However,
this system is not integrable and the scattering matrix element
is expected to be nonzero. Thus we evaluate it to the next
order in T/EF . Using Eq. (11), we obtain that it is linear in
temperature and reads as

t1-1 = G2(m2 − M2)

2L2mpF
2(M2 pF

2 − m2P2)
[−δPP(m + M )2 + 2M(p1 − pF )(mpF + MP) + 2M(p2 + pF )(MP − mpF )], (34)

for g = gc. Contrary to the results of Sec. III where the friction force is given only for a very slow impurity, here we state its
general form:

F 1-1 = − 4π3G4T 6V (m2 − M2)2

315h̄5m10M2v14
F

(
v2

F − V 2
)5 {5(v2

F − V 2
)4

f (vF /V )
[
m4
(
v2

F + V 2
)+ M4V 2

]+ 7v6
F

(
v2

F + V 2
)(

m4v2
F + M4V 2

)}
.

(35)

Here, the function f is defined as

f (a) = 21a7

64π6

∫ ∞

−∞

e−xx5dx

cosh(x) − cosh (ax)
, a > 1. (36)

It has the following limiting behavior: lima→∞ f (a) = 1.
Comparing the expressions (32) and (35), we find that expres-
sion (35) is the leading contribution to the force provided

∣∣∣∣1 − gc

g

∣∣∣∣ < 2

√
2

7
π

T

mv2
F

. (37)

Here, for simplicity, we consider the case of a very slow
impurity V � vF .

B. 0-2 processes

Next we consider the 0-2 processes. From Eq. (18) follows
that the scattering matrix element reads as

t0-2 = G2(M2 − m2)prqr

4L2m2M3(vF − V )4

[
1 − 8π h̄M3(vF − V )2

γ GmvF (M2 − m2)

]
(38)

in the lowest order in temperature. Note that by tuning the
interactions such that Eq. (31) vanishes, the matrix element
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(38) does not vanish but its two contributions rather sum
up leading to an increase of the friction force with respect
to the noninteracting case. The force F 0-2

T = F 0-2 + F 2-0 is
given by

F 0-2
T = − 4π7

385h̄5

G4T 10V (M2 − m2)2

m6M6v11
F

×
{

1

(vF − V )11

[
1 − 8π h̄M3(vF − V )2

γ GmvF (M2 − m2)

]2

+ 1

(vF + V )11

[
1 − 8π h̄M3(vF + V )2

γ GmvF (M2 − m2)

]2}
. (39)

C. Friction force

The friction force is given by Eq. (22). At low temper-
atures, it is dominated by the 1-1 processes. In a general
case, it is proportional to the fourth power of temperature
T 4 and is given by Eq. (32). However, if the condition (37)
is satisfied, the force is given by Eq. (35) and scales as
the sixth power of the temperature. At higher temperatures
T > T ∗ the processes 0-2 and 2-0 may become dominant.
Here the crossover temperature T ∗ is defined such that two
contributions in Eq. (22) are equal. In order for the crossover
to take place, the crossover temperature has to be within the
validity of the theory and satisfy the constraints discussed in
Sec. III.

For example, for a very slow impurity vF � V assuming
that the condition (37) is not satisfied, one gets

T ∗ = 2

π

(
77

12

)1/6

EF

(
M

m

)2/3∣∣∣∣ 1 − gc/g

1 + gcM2/gm2

∣∣∣∣
1/3

. (40)

Here the numerical prefactor 2
π

( 77
12 )

1/6 ≈ 0.87. As for non-
interacting fermions, the processes 0-2 are more important
for light impurities provided the interactions between the
fermions do not dominate over the impurity-liquid coupling,
i.e., |gc|M2 � |g|m2. We can tune the interactions such that g
is in the vicinity of gc, in order to further decrease the force
F 1-1. However, Eq. (32) ceases to be valid at the crossover
temperature. For example, for light impurity M � m and the
interactions such that gcM2 � gm2, the crossover temperature
becomes T ∗/EF ≈ M2/3

m2/3 |1 − gc/g|1/3 � 1. The condition (37)
implies |1 − gc/g| > M/m and thus T ∗/EF > M/m that is
out of the validity of the expression (32). Further, note that
for M > m and repulsive interactions g > 0 and G > 0, the
crossover temperature (40) is greater than the Fermi energy,
and thus the friction force is

F = − 2π

15h̄3 V
G2T 4

m2v8
F

(
G

h̄vF

M2 − m2

mM
+ 8

h̄vF

g

)2

, (41)

for all temperatures T � EF .
If the interaction between fermions dominates over the

impurity coupling such that |gc/g|min{1, M2/m2} � 1 we can
neglect the F 0-2

T contribution for all temperatures below the
Fermi energy.

If the interactions are tuned such that Eq. (37) holds, we
should compare Eq. (35) and Eq. (39). We get the crossover

temperature

T ∗ = 2

π

(
22

3

)1/4

EF
M/m√

1 + M2/m2
, (42)

which is below the Fermi energy for very light impurities.
However, Eq. (35) breaks down in this region while Eq. (39)
remains valid. To conclude, at temperatures below the Fermi
energy, the processes 0-2 may become the dominant ones
only for very light impurities at temperatures T � EF M/m
provided g is on the order of |gc|.

VI. SCREENED COULOMB INTERACTION

In this section we consider fermions interacting via the
screened Coulomb interaction. This case is relevant for
quantum wires. The potential is given by V (r) = e2/|r| −
e2/

√
r2 + 4d2, where d denotes the distance between a wire

and a conducting plane representing the gate, while e denotes
the electron charge. The Fourier transform of the potential has
the form

Vq = 2e2 ln

(
d

w

)
− 2e2 q2d2

h̄2 ln

(
h̄

|q|d
)

(43)

for low momenta |q| � h̄/d � h̄/w and within the logarith-
mic accuracy [64]. Here w denotes the width of the wire.

The first term in (43) describes the contact interaction. It
does not contribute to the matrix element since the contact
interaction that does not have any effect on the wave function
of fermions that is antisymmetric with respect to permutations
of particle’s coordinates. We now check that this property
holds in our theory. The contribution in t originating from
the two terms linear in V in Eq. (5) should vanish for Vq =
V . The first term gives a vanishing contribution after action
of the operator 1 − Â(p1, p2), since it is symmetric under
exchange of p1 and p2. Similarly, the second one [i.e., the
second term of Eq. (5)] vanishes after action of the operator
1 − Â(q1, q2). So, there is no contribution coming from the
contact interaction between the fermions in t as has to be
the case. Thus only the second term in Eq. (43) causes the
scattering. Note that we consider weak interactions G � h̄vF

and e2δ2| ln(δ)| � h̄vF , where δ = d pF /h̄ � 1.
We point out that the Fourier transform of the interaction

potential (43) is not an analytic function of momentum and
thus the theory presented in Sec. III does not apply here.
Nevertheless, the dependence of the fermion and the impurity
momenta on temperature remains the same as in Sec. III as
well as the temperature constraints. In this section we evaluate
the scattering matrix element (5) and the friction force (6) for
the screened Coulomb interaction potential.

A. 1-1 processes

We start by considering the 1-1 processes. We determine
the matrix element (5) to be

t1-1 = G2(M2 − m2)

L2Mm2
(
v2

F − V 2
)[1 + 8

δ2e2

G

Mm

M2 − m2
ln (2Eδ)

]
,

(44)
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to the leading order. Here E denotes the Euler number. The
first term in Eq. (44) describes noninteracting fermions, while
the second term describes the effect of the interaction. We
calculate the friction force:

F 1-1 = − 2π

15h̄5

G4T 4V (M2 − m2)2
(
v2

F + V 2
)

M2m4v2
F

(
v2

F − V 2
)5

×
[

1 + 8
δ2e2

G

Mm

M2 − m2
ln (2Eδ)

]2

. (45)

By analyzing the expression (45), wee see that its two con-
tributions can cancel each other. This happens for G = Gc,
where

Gc = 8δ2e2 ln(2Eδ)
mM

m2 − M2
, (46)

provided M 
= m. The cancellation can be realized for a repul-
sive interaction between the impurity and the liquid (G > 0) if
the impurity is heavier than the background particles M > m,
and in the opposite case M < m for an attractive interaction
G < 0. This should be contrasted with the case of strongly
interacting repulsive bosons considered in the previous section
where the related cancellation of the scattering matrix element
1-1 takes place for G(m − M ) > 0.

Next we evaluate the scattering matrix element (5) for G =
Gc and obtain that it is proportional to temperature:

t1-1 = − 16δ4e4mM2 ln(2Eδ)

L2 p4
F (m2 − M2)

(
M2 p2

F − m2P2
)

× [α(p1 − pF ) + β(p2 + pF ) + γ δP], (47)

α = [−pF ln (4δ2)(mpF + MP) − 3mp2
F − 2MPpF ]2M pF ,

(48)

β = [pF ln (4δ2)(mpF − MP) + 3mp2
F − 2MPpF

]
2M pF ,

(49)

γ = Pp2
F [ln (4δ2)(m + M )2 + 4mM + 3m2 + 2M2]. (50)

For simplicity, we state the friction force for a very slow
impurity V � vF only:

F 1-1 = −16384π3δ8e8m12MPT 6 ln2(2Eδ) ln2 (4E3δ2)

105p14
F h̄5(m2 − M2)2

.

(51)

Note that for special case M = m this result does not apply
since Eq. (45) cannot vanish and is always the leading contri-
bution to F 1-1. Further, we point out that Eq. (51) is the leading
contribution for the parameter range

|1 − Gc/G| <

√
1

14
π

T

EF

ln (4E3δ2)

ln (2Eδ)
. (52)

Note that Eq. (43) is determined within the logarithmic
accuracy, and thus one can neglect all the numerical fac-
tors under logarithms in this section. However, we kept
them for completeness of the solution for the given model
potential (43).

B. 0-2 processes

Next we consider the 0-2 processes. They lead to the matrix
element

t0-2 = G2(M2 − m2)prqr

4L2m2M3(vF − V )4
+ d2e2G

2L2h̄2m(vF − V )2

× [(pr − qr )2 ln (|pr − qr |d/h̄)

− (pr + qr )2 ln (|pr + qr |d/h̄) + 4prqr (ln 2 − 1)].

(53)

The total force originating form the 0-2 and 2-0 processes
reads as

F 0-2
T = − 4π7

385h̄5

G4T 10V (M2 − m2)2

m6M6v11
F

×

⎧⎪⎪⎨
⎪⎪⎩
[
1 − 8δ2e2M3(vF −V )2 ln

(
T d

h̄vF

)
Gmv2

F (M2−m2 )

]2
(vF − V )11

+
[
1 − 8δ2e2M3(vF +V )2 ln

(
T d

h̄vF

)
Gmv2

F (M2−m2 )

]2
(vF + V )11

⎫⎪⎪⎬
⎪⎪⎭ (54)

within the logarithmic accuracy. The functional dependence
on momenta of the contribution originating from the screened
Coulomb interaction in (53) is different from previously con-
sidered cases. If it dominates over the contribution coming
from the impurity-liquid coupling, the force F 0-2

T becomes
proportional to T 10 ln2 ( T d

h̄vF
). Also, if one tunes G to be

equal to Gc, the friction force F 0-2
T becomes bigger than the

corresponding one in the case of noninteracting fermions (28).

C. Friction force

As expected, at low temperatures the 1-1 type processes are
the dominant ones and the friction force is given by Eq. (45). If
however the condition (52) is fulfilled, the force scales as the
sixth power of temperature and is given by (51). Increasing
the temperature the processes 0-2 and 2-0 gain in importance.
We define the crossover temperature T ∗ such that the force
F 1-1 equals F 0-2

T . However, the crossover temperature is out of
the domain of validity of our theory, as we discuss below.

For example, assuming that the condition (52) is not satis-
fied, in the case of a very slow impurity vF � V , one gets

T ∗ = 2

π

(
77

12

)1/6

EF

(
M

m

)2/3∣∣∣∣ 1 − Gc/G

1 + NGcM2/Gm2

∣∣∣∣
1/3

, (55)

where N ≈ 1 + ln (T ∗/EF )/ ln δ and 2
π

( 77
12 )

1/6 ≈ 0.87. If the
interaction between the fermions dominates over the impurity-
liquid coupling such that |Gc/G|min{1,NM2/m2} � 1, the
0-2 processes are always negligible. This is the case also for
a heavy impurity M > m and an attractive impurity-liquid
interaction G < 0. The reason is that in these cases T ∗ ∼ EF

and thus the 0-2 processes can be safely neglected in the
considered parameter region.

If the interaction between the fermions does not dominate
over the impurity-liquid coupling, in the case of a heavy
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impurity M > m and repulsive interactions, in order for the
crossover temperature to satisfy T ∗/EF � 1, we should tune
the interactions such that G is in close proximity to Gc. Then,
the condition (52) becomes valid and, as we show below, the
scatterings 0-2 are negligible. Indeed, in a general case, by
comparing Eq. (51) with Eq. (54) we find

T ∗ = 2

π

(
11

6

)1/4

EF
M

m

( | ln (4E3δ)|
| ln (2Eδ) + M2 ln (δc)/m2|

)1/2

,

(56)

where c is on the order of T ∗/EF . To conclude, for heavy
impurities M > m, the 0-2 processes may be neglected for
temperatures below the Fermi energy. Even more, the 0-2
processes may be important only for very light impurities
(M � m) provided |G| is on the order of |Gc| and at tempera-
tures above EF M/m, where an analysis of F 1-1 is missing.

VII. CONCLUSIONS AND DISCUSSION

In this paper we have studied the scattering of a slow quan-
tum impurity off background particles in one-dimensional liq-
uids by employing the microscopic description. In particular,
we have focused on the friction force exerted on the impurity.
We have determined its dependence on the system parameters
for several interacting systems: (i) assuming the Fourier trans-
form of the interaction potential felt by fermions is an analytic
function of momenta and (ii) for fermions interacting via
screened Coulomb interaction. Some special cases of the class
(i) have been studied in detail: (a) the Tonks-Girardeau gas
or equivalently the system of noninteracting fermions and (b)
bosons interacting strongly via the contact interaction or the
Cheon-Shigehara model for weakly interacting fermions. We
have considered temperatures well below the Fermi energy.

We have demonstrated that by tuning the system pa-
rameters the expected T 4 dependence of the friction force
[25,31,32] can dramatically change into a new universal T 6

law as shown by Eqs. (15), (35), and (51). These findings
allow us to design the desired friction force in the system.
It would be interesting to verify whether this result remains
valid for arbitrary strength of the interaction between the
background particles. Note that the friction force on the
impurity in the system of weakly interacting bosons has
been studied in Ref. [37]. It was found that the force can
become proportional to T 8 due to scattering off Bogoliubov
quasiparticles. However, this result ceases to be valid at
very low temperatures T � mv2γ 1/4, where γ � 1. Here v

denotes the sound velocity. The reason is that the low-energy
quasiparticles are of fermionic nature [65]. Note that at arbi-
trary interaction strength the region of low-energy fermionic
quasiparticles becomes wider [66] and thus their scattering off
the impurity determines the low-temperature friction force.
Also, the system of fermions at arbitrary interaction and at
low temperatures can be described by weakly interacting
fermionic quasiparticles by applying the refermionization pro-
cedure [67].

While the above discussed friction force is the result of the
scattering of the impurity off the fermions situated around
different Fermi points, we have analyzed also the related
process where the fermions are around the same Fermi point.

They lead to the T 10 contribution of the friction force, and can
become dominant at higher temperatures only for very light
impurities.

Further, in this paper we have studied a mobile impurity
weakly coupled to the system, G � h̄vF . However, using
the Luttinger liquid description, in Ref. [25] it was shown
that a strongly coupled slow impurity moving in a system
of repulsive fermions is well described by a weak-coupling
impurity approach at low temperatures: (i) T < EF m/M for
a very heavy impurity M � m and (ii) T < EF for very light
impurity M � m. These findings imply that our results for
the friction force from Secs. III, V, and VI apply also for
the impurity strongly coupled to the background particles.
Note that the friction force is expected to be temperature
independent for a very heavy M � m and strongly coupled
impurity for temperatures above EF m/M [25].

We point out that our results indicate that there is universal
dependence of the low-temperature T 4 friction force on the
impurity velocity in one-dimensional systems as shown by
Eqs. (9), (26), (32), and (45). This statement is in agreement
with the findings of Ref. [37] that studies bosons interacting
weakly via contact interaction. In that case the sound velocity
of a system of bosons corresponds to the Fermi velocity.

Versatile and highly controlled experimental realizations
with ultracold gases provide promising platforms where our
results could be tested. The impurities can be realized by
mixing different atoms [11,12], exciting a few atoms into a
different hyperfine internal state [4,5], or with trapped ions
[8,9]. Even more important for our work is the possibility
to tune the interactions using the Feshbach resonance [68] in
order to observe the predicted dramatic change of the friction
force.
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APPENDIX A: USEFUL INTEGRALS

Some useful integrals needed for the evaluation of the
friction force are presented in this Appendix. For analysis of
the 1-1 type processes, we calculated

∫ +∞

−∞
dx

x3e−x

cosh (x) − cosh (ax)
= 16π4

15

a(a2 + 1)

(a2 − 1)4
, a > 1.

(A1)

In the case of the 0-2 processes, we evaluated the integrals

∫ ∞

0
dx

[L5(−e−x ) − L5(−ex )]2

sinh2 (x)
= 97π10

665 280
, (A2)∫ ∞

0
dx

x(π2 + x2)[L7(−e−x ) − L7(−ex )]

sinh2 (x)
= 193π10

277 200
.

(A3)

Here Ln(x) denotes the polylogarithm function.
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APPENDIX B: FERMION-BOSON DUALITY

The mapping [60] of the Tonks-Girardeau (TG) gas to
noninteracting fermions can be performed in the following
way. We denote by 	B(x1, . . . xN ) a many-body wave function
of an eigenstate of the TG Hamiltonian of N bosons with
coordinates x1, . . . , xN . Then, the many-body wave function
of the corresponding eigenstate of spinless noninteracting
fermions is given by

	F (x1, . . . , xN ) =
N∏

i> j

sgn(xi − x j )	B(x1, . . . , xN ), (B1)

where sgn(x) = x/|x|. It has the same energy as the cor-
responding eigenstate of bosons. The product of terms∏N

i> j sgn(xi − x j ) accounts for the antisymmetry of the wave
function with respect to particle permutations.

We point out that in the case of a TG gas with an impurity,
the mapping onto noninteracting fermions with an impurity
can be easily generalized. The reason is that the impurity is
distinguishable from the particles of the system. The mapping
can be written as

	F (X, x1, . . . , xN ) =
N∏

i> j

sgn(xi − x j )	B(X, x1, . . . , xN ),

(B2)

where X denotes the impurity coordinate while
	B(X, x1, . . . , xN ) is a many-body wave function of an

eigenstate of the system of TG bosons and the impurity
described by (24). The contact interaction of the impurity
with bosons imposes continuity of 	B and discontinuity of its
partial derivative ∂xi at xi = X ±. Here X ± = limε→0+ X ± ε.
This constraint remains unchanged and applies also to the
corresponding 	F given by (B2). That is why the interaction
potential of the impurity is G

∑
i δ(X − xi ) both in the case of

bosons and fermions.
If the mapping (B1) is applied onto the Lieb-Liniger

model at arbitrary interaction strength, one obtains a sys-
tem of fermions in a specific interaction potential [49,63].
Namely, the interaction potential

∑
i< j gδ(xi − x j ) imposes

the continuity of the 	B wave function but the discontinuity
of (∂xi − ∂x j )	B at xi = x±

j . These constraints on 	B imply
different constraints on the corresponding 	F function. By its
construction the wave function of fermions is antisymmetric
under particle permutations and thus it is discontinuous while
the combination of the partial derivatives (∂xi − ∂x j )	F is a
continuous function at xi = x±

j for a finite nonzero value of g.
These constraints can be incorporated into the Hamiltonian of
the system by a specific interaction potential [49,63], which
can be written as [50] −2δ′′(xi − x j )/m2g. The interaction
strength is inversely proportional to the interaction strength
of the bosons, and thus in the TG limit we get free fermions.
We further point out that the mapping (B2) also applies to the
Lieb-Liniger model with the impurity (24) giving the system
of fermions modeled by Hamiltonian (30) with the impurity
described by Eq. (24).
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