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The symmetry considerations that imply a nonzero anomalous Hall effect (AHE) in certain noncollinear
antiferromagnets also imply both nonzero orbital magnetization and a net spin magnetization. We have explicitly
evaluated the orbital magnetizations of several anomalous Hall effect antiferromagnets and find that they tend to
dominate over spin magnetizations, especially so when spin-orbit interactions are weak. Because of the greater
relative importance of orbital magnetization, the coupling between magnetic order and an external magnetic field
is unusual. We explain how magnetic fields can be used to manipulate magnetic configurations in these systems,
pointing in particular to the important role played by the response of orbital magnetization to the Zeeman-like
spin exchange fields.
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I. INTRODUCTION

We have previously [1] pointed out that spin-orbit interac-
tions induce an anomalous Hall conductivity, i.e., an antisym-
metric contribution to the conductivity tensor σαβ = ∂ jα/∂Eβ ,
in some common antiferromagnets (AFMs) with noncollinear
magnetic order. Because the anomalous Hall effect (AHE)
is usually associated with ferromagnetism, we refer to these
systems as AHE AFMs. One way to understand the finite
anomalous Hall conductivity of AHE AFMs is to view it as
a time-reversal-odd pseudovector σ AH

α = εαβγ σβγ /2 that only
vanishes in magnetic systems when required to do so by some
lattice symmetry. This idea of spatial symmetry controlled
AHE has also been extended to collinear AFMs [2].

Since the total magnetization is also a time-reversal-odd
pseudovector, it must be nonzero in AHE AFMs. Indeed,
Mn3Ir, the prototypical AHE AFM identified in Ref. [1], has
a finite magnetization [3,4], as do other AHE AFMs such as
Mn3Sn and Mn3Ge [5–8]. Precisely speaking the existence
of a net magnetization makes these AHE AFMs weak fer-
romagnets rather than ideal antiferromagnets, for which the
total magnetization exactly vanishes. It is also because of the
nonzero total magnetization that the sign of the AHE can be
flipped by reversing the magnetic field direction in experi-
ments. However, the microscopic picture of magnetization in
AHE AFMs is far from clear. In particular, it is expected that
typical AHE AFMs should have vanishingly small total spin
magnetization due to the much larger exchange coupling than
the magnetic anisotropy of sublattice moments. As a result,
the orbital contribution to the total magnetization [9–14] is no
longer negligible and could play a key role in determining how
AHE AFMs respond to external magnetic fields.

Our goal in this work is to develop a quantitative de-
scription of manipulating the order parameter direction of

AHE AFMs coherently using magnetic fields coupled to the
orbital degrees of freedom of electrons, which is appropriate
for those AHE AFMs with dominating orbital magnetization
over the spin contribution. To this end, we first provide
a general criterion, backed by first-principles calculations,
for searching for such orbital-magnetization-dominant AHE
AFMs. We then point out, in the framework of relativistic
spin density functional theory (SDFT), that the magnetic field
reorients the order parameter through an unusual orbital-spin
susceptibility, for which we give a convenient formula based
on linear response theory. With these preparations, we finally
explain our method for investigating field-induced coherent
order parameter switching in such AHE AFMs, by keeping
track of energy extrema evolution in the configuration space,
and illustrate the various unusual switching behaviors by
applying this approach to a toy model mimicking Mn3Ir.

II. GROUND-STATE ORBITAL AND SPIN
MAGNETIZATIONS

Orbital magnetization arises from circulating electron cur-
rents. In a finite system, it can be unambiguously defined as
the expectation value of − 1

2 j × r [10]. In an extended system,
this definition of orbital magnetization becomes ambiguous
because the position operator is unbounded. Historically, this
conundrum posed both conceptual and practical challenges,
but these have been fully solved recently [11–14]. In par-
ticular, we now know that there are two gauge-invariant
contributions to the total orbital magnetization of an extended
system, due to the magnetic moments of individual Bloch
wave packets and to the Berry phase modification of the
electron density of states in a magnetic field, respectively
[11,15].
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TABLE I. Ground-state spin and orbital magnetization (in mμB

per formula unit) for some common AHE AFMs. The partial
orbital magnetizations M1

orb and M2
orb are respectively the Bloch

state orbital moment and magnetic-field-dependent density-of-states
contributions.

Mspin M1
orb M2

orb M tot
orb

Mn3Ir 26.9 −76.7 106.1 29.7
Mn3Pt 11.2 −17.0 29.4 12.2
Mn3Rh 2.4 −24.0 35.0 11.0
Mn3Sn 0.9 40.5 −42.5 −2.0
Mn3Ge 0.9 −17.5 35.2 17.7

To verify that orbital magnetization has a larger relative
importance in AHE AFMs, we have calculated both orbital
and spin magnetizations in Mn3Ir, Mn3Pt, Mn3Rh, Mn3Sn,
and Mn3Ge, all AHE AFMs according to previous work
[1,5–8], listed in Table I. The orbital magnetization Morb

is calculated with the zero-temperature expression given in,
e.g., Ref. [14] using Wannier interpolation of results from
relativistic SDFT (see the Supplemental Material [16] and
Refs. [17–26] therein), which employs exchange-correlation
energy functionals that retain the structure of the nonrelativis-
tic limit [27,28], but adds corrections from spin-orbit coupling
to the Kohn-Sham single-particle equations [29]. We find that
Morb is at least comparable to the total spin magnetization
Mspin in size and that it is much larger than the latter in
certain materials, e.g., Mn3Rh. This is in sharp contrast to con-
ventional metallic ferromagnets such as Fe in which orbital
magnetization is more than one order of magnitude smaller
than spin magnetization. We are also aware of earlier SDFT
calculations showing the importance of orbital magnetization
in Mn3Sn [30] prior to the establishment of a gauge-invariant
form of the orbital magnetization in crystalline solids.

Interestingly, comparing Morb and Mspin across Table I, we
see that heavier elements have smaller Morb/Mspin values. This
trend can be understood by taking spin-orbit coupling as a
weak perturbation [31–33], as we explain below. We consider
first the atomic limit in which spin-orbit coupling can be
approximated by λsoL · S. Here L and S are the orbital and
spin angular momentum operators that are proportional with
appropriate g factors to the local orbital and spin magnetic
moments. It follows that magnetic order, which leads to a
nonzero spin density averaged over an atomic sphere sur-
rounding each magnetic atom, results in an effective magnetic
field that couples directly to the local orbital moment. We
write this effective coupling as −Morb · H, where Morb =
−goμBL/h̄ and H = h̄λsoS	̂/goμB, with S and 	̂ being the
magnitude and the direction of the local spin density, and
go being the appropriate g factor. The orbital magnetization
is then the orbital-orbital susceptibility ←→χ o, a rank-2 tensor
that is nonzero even in the absence of spin-orbit coupling,
times this effective magnetic field. It follows that the orbital
magnetization is linear in spin-orbit coupling strength in the
perturbative limit.

In the case of noncollinear antiferromagnets, the local
orbital field H is usually not along the direction of the total
orbital magnetization. This can be understood as a result of
the anisotropy in the local ←→χ o that is allowed by symmetry.

For example, the structure of Mn3Ir has a fourfold rotational
symmetry around an axis (taken as ẑ) through a Mn atom
and perpendicular to the square formed by its four nearest
neighboring Ir atoms (taken as the xy plane). There are also
two mirror planes perpendicular to x̂ and ŷ, respectively. These
symmetry operations will eliminate all off-diagonal elements
of ←→χ o and make χ xx

o = χ
yy
o , but leave the ratio between χ zz

o
and χ xx

o unfixed. Thus, even if n̂111 · H = 0, with H parallel to
the local spin magnetization and exactly coplanar for the three
Mn sites in a unit cell, n̂111 · ←→χ o · H �= 0. It is also easy to see
that the contributions from the other two sites in the unit cell
are the same.

When the spin canting that produces a nonzero to-
tal spin magnetization is due to site-dependent single-ion
anisotropies, one can also use a similar argument as the one
above to relate the total spin magnetization to the effective
field due to spin-orbit coupling. In this case, the total spin
magnetization is induced by the effective field H through a
susceptibility ←→χ so that connects spins and magnetic fields
coupled to orbital degrees of freedom. Since ←→χ so is clearly
zero in the absence of spin-orbit coupling, it must be at
least linear in λso, and the spin canting must therefore be
at least of second order. A special role of ←→χ so is in the
reorientation of the noncollinear magnetic order parameters
by external magnetic fields, which will be discussed in detail
below. Useful formulas for ←→χ so that can be applied in model
or first-principles calculations are derived in Sec. IV.

The same conclusion for the spin canting can be reached
by relating ←→χ so to magnetocrystallline anisotropy. Following
Bruno [33], we can write the spin-orbit coupling term into an
anisotropy energy

Eso = −1

2
H · ←→χ o · H = − h̄2λ2

soS2

2μ2
B

	̂ · ←→χ o · 	̂. (1)

The anisotropy energy tensor is thus at least on the order of
λ2

so. For a ferromagnet with cubic symmetry, the rank-2 tensor←→χ o is isotropic and one has to go to the fourth order in λso.
But for Mn3Ir the local symmetry with respect to a Mn atom
is not cubic, and as discussed above χ xx

o = χ
yy
o �= χ zz

o . This
means there is either an easy axis (along ẑ) or an easy-plane
(in xy plane) anisotropy. For Mn3Ir, it is the former. Since
the antiferromagnetic nearest neighbor coupling between Mn
moments prefers a coplanar arrangement of the moments,
which is incompatible with the local easy axes, the local Mn
moments have to cant out of plane. The amount of canting
is proportional to the ratio between the anisotropy energy
and the nearest neighbor exchange coupling. Thus, the spin
canting has to be at least ∝ λ2

so. Note that this argument does
not apply to spin canting due to the anisotropic exchange
interaction or the Dzyaloshinskii-Moriya interaction (DMI),
which is linear in λso [34,35]. However, it can be shown
that in both the cubic (X = Ir, Pt, Rh) and the hexagonal
(X = Sn, Ge) Mn3X compounds, DMI only plays a minor
role compared to magnetocrystalline anisotropy. For the cubic
compounds, the DMI vectors for four nearest neighbor bonds
connecting two Mn sublattices cancel each other, while for
the hexagonal compounds the DMI disfavors canting [36] and
hence only renormalizes the antiferromagnetic Heisenberg
exchange coupling between Mn spins.
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FIG. 1. Dependence of net Mspin and Morb on spin-orbit coupling
strength in Mn3Ir. λ/λso is the ratio of spin-orbit coupling strength to
its realistic value.

Although the atomic limit considerations above do not
strictly apply to metallic AFMs, we expect that the general
trend should still hold. As an explicit check, we calculated the
total orbital and spin magnetizations of Mn3Ir versus spin-
orbit coupling strength by artificially varying the speed of
light when generating the fully relativistic pseudopotentials.
The results shown in Fig. 1 agree well with the qualitative
picture explained above. It follows that in an AHE AFM
family of given symmetries, larger Morb/Mspin values should
be expected in materials with weaker, not stronger, atomic
spin-orbit coupling, if the DMI is not the dominant mecha-
nism for the spin canting.

III. MANIPULATING AFM ORDER WITH
A MAGNETIC FIELD

Having established the importance of orbital magnetiza-
tion in AHE AFMs, below we discuss the order parameter
reorientation induced by magnetic fields within the relativistic
SDFT formalism. Important differences between the present
formulation and the conventional approach of solving the
Landau-Lifshitz-Gilbert (LLG) equation for a classical spin
model with local Zeeman coupling to external fields will be
discussed at the end.

We first consider the simpler case of a ferromagnet in
which the order parameter is a vector that specifies the spin
orientation 	̂. Because the energy scales associated with
external magnetic fields are small, it is sufficient to account
only for the contribution to energy that is of first order in H,
namely the coupling of H to total magnetization. Minimizing
total energy in the presence of a field then yields

0 = δEani(δ	̂) − δM(δ	̂) · H, (2)

where Eani is the dependence of energy on order parameter
direction in the absence of a field. When M is purely due
to spin its magnitude is essentially fixed at the saturation
magnetization Ms. Eq. (2) then simply implies that the mag-
netization direction adjusts so that the anisotropy field Hani ≡
−δEani/(Msδ	̂) cancels the external magnetic field. When M
is dominated by the orbital contribution, on the other hand,
Eq. (2) must be generalized to

Hani + δMorb

Msδ	̂
· H = 0. (3)

To go further, we discuss the meaning of Eq. (3) within the
framework of relativistic SDFT. For magnetic systems, SDFT
has the convenience of explicitly accounting for the Zeeman-
like exchange coupling between the magnetic condensate
and the Kohn-Sham quasiparticle spins in the exchange-
correlation potential. Although the relativistic SDFT has some
subtle disadvantages [37], notably a failure [38] to capture the
interaction physics responsible for Hund’s second rule, it is
regularly and successfully applied and is built into common
electronic structure software packages. Its practical success
is likely due to the fact that the degree to which local spin
alignment reduces interaction energies is not strongly altered
by relativistic corrections.

In this formalism, 	̂ enters the exchange-correlation po-
tential in the form of −�ex	̂ · S ≡ −gμBHspin · S/h̄, where
�ex is the exchange field strength. Using a simplified notation
in which the variation of �ex within an atomic cell is left
implicit, we have

δMorb

Msδ	̂
= h̄�ex

gμBMs

δMorb

δHspin
= h̄�ex

gμBMs

←→χ os, (4)

where g ≈ −2 is the Lande g factor, and ←→χ os = ←→χ T
so is the

orbital-spin susceptibility discussed further below. With this
notation, Eq. (2) becomes

Hani = − h̄�ex

gμBMs

←→χ os · H. (5)

It follows that when the magnetization is orbitally dominated,
the anisotropy field must be balanced by an adjustment in
Morb produced by the orbital-spin susceptibility ←→χ os which,
among the various magnetic susceptibility contributions iden-
tified in solid state systems [39–42], is the one seldom ad-
dressed in the literature [39,43,44]. In the next section, we will
discuss how ←→χ os can be calculated in the SDFT framework.

We now turn to the specific case of AHE AFMs, in which it
is convenient to view the magnetic sublattice-dependent spin-
density directions 	̂i (i labels the total N magnetic sublat-
tices) as the order parameter. Because the exchange coupling
between local moments is strong, the relative orientations
between local moments on different sublattices are normally
nearly fixed. Then, as in the case of a classical rigid body,
the number of parameters can be reduced to three for any N
[45–48]. The counterpart of Eq. (2) for the noncollinear case
is

0 = δEani(δω) − δM(δω) · H, (6)

where ω represents the three variables parametrizing the
three-dimensional rotation group SO(3). For infinitesimal ro-
tations, the three components of δω commute and can be cho-
sen as infinitesimal rotation angles around the three Cartesian
axes δωα . It follows that

δEani

δωα

= δMorb

δωα

· H = H ·
N∑

i=1

δMorb

δ	̂i
· δ	̂i

δωα

= h̄�ex

gμB
Hλ

N∑
i=1

(
χ i

os

)
λγ

εγαβ 	i
β, (7)

where Greek letters label x, y, z, ←→χ i
os is the total orbital

response to a local Zeeman field on sublattice i, which can
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be evaluated by using Eq. (9) and projecting the spin operator
onto site i. The Levi-Civita symbol comes from the antisym-
metric infinitesimal rotation matrix in Cartesian coordinates.

There are, however, exceptions for the applicability of
Eq. (7). One example is the inverse triangular order of Mn3Sn,
which has vanishing in-plane anisotropy if one only con-
siders the uniaxial anisotropy for each magnetic sublattice.
To account for such situations, it is necessary to relax the
rigid-body assumption. This can be done by, e.g., including
a few more parameters {νi} besides the three [ω in Eq. (6)]
characterizing the rigid-body rotation 	̂. These parameters
characterize the deformation of the rigid body, and in the limit
of large exchange coupling should be much smaller compared
to the other three. The balance equation thus becomes

δEani

δωα

− δM
δωα

· H = 0,

δ(Eex + Eani )

δνi
− δM

δνi
· H = 0, (8)

which are in general hard to solve but can sometimes be
simplified with additional constraints from symmetry. One
example is given in Ref. [49].

With above preparations, we propose the following strat-
egy for studying coherent magnetic switching in AHE AFMs.
Switching through domain nucleation and growth will be
discussed elsewhere. With a microscopic Hamiltonian we can
identify energy extrema that satisfy Eq. (7). These correspond
to local minima, maxima, and saddle points in the SO(3)
parameter space. Both the positions in SO(3) space and the
energies of these extrema change smoothly with increasing
external magnetic field. Whenever a minimum is converted to

a saddle point, magnetic switching to a new minimum can
proceed. For numerical implementation, one can discretize
the SO(3) space, calculate Eani, Morb, δEani

δω
, and ←→χ i

os at each
grid point, and search for the H-dependent energy extrema.
To complement the tools needed for such an approach, in the
next section we will give explicit formulas for the orbital-spin
susceptibility, which will be used in the model example in
Sec. V.

IV. CALCULATION OF ORBITAL-SPIN SUSCEPTIBILITY

The calculations described below apply a new method that
we have developed to evaluate ←→χ os in crystals [16]. To apply
a uniform magnetic field to the orbital degrees of freedom,
we consider a periodic vector potential A(r) = B×q

q2 sin(q · r)
and then take the q → 0 limit [14,41] with q · B = 0 [50]. It
then follows from the linear response theory that for a grand
canonical ensemble

χαβ
os = −eh̄gμB

4
kBT εαγ δ

×
∑

n

Im

[∫
[dk] tr(G0v

γ G0v
δG0σ

β )

]
, (9)

where G0 is the Kohn-Sham thermal Green’s function, v
is the velocity operator, σ is the spin-space Pauli matrix
vector, and n is a fermionic Matsubara frequency label. We
note that the susceptibility is in general ensemble dependent.
Conversion from the above result to that for the canonical
ensemble, for example, involves evaluating the dependence of
magnetization M on chemical potential μ and that of μ on
magnetic field H [16].

To convert Eq. (9) to a form more suitable for model or DFT calculations, we perform the Matsubara summation and group
like terms together [16]:

χαβ
os = i

eh̄gμB

4
εαγ δ

∑
k

v
γ

abv
δ
baσ

β
aa

Eba
f ′
a + i

eh̄gμB

4
εαγ δ

×
∑

k

[
v

γ
aa

(
vδ

abσ
β

ba − vδ
baσ

β

ab

) + 3σβ
aav

γ

abv
δ
ba

E2
ab

− v
γ

abv
δ
bcσ

β
ca + v

γ

abσ
β

bcv
δ
ca + σ

β

abv
γ

bcv
δ
ca

EabEac

]
fa, (10)

where a, b, c are band indices, b �= a �= c (but b = c is allowed), and repeated indices are summed over. fa = f (Ea) is the
Fermi-Dirac distribution function, Ea is the eigenenergy for band a at a given momentum, f ′

a = ∂ f (Ea)/∂Ea. The first term can
be viewed as a correction to the g factor [39] and is hence separated out. But it has to be taken into account when we discuss
the magnetic field induced spin-density later. Equation (10) can be directly compared [16] with the result obtained by Misra and
Kleinman using a different method (Eqs. (3.40) and (3.46) in Ref. [39]).

Equation (10) is not particularly suitable for model calculations, because the energy differences in the denominators could
vanish when there are degeneracies in the occupied states. It is thus useful to rewrite Eq. (10) to a different form, in which such
energy differences do not appear. The result is

χαβ
os = i

eh̄gμB

4

(
�

αβ

surf + �
αβ

sea,1 + �
αβ

sea,2

)
, (11)

where �
αβ

surf is a Fermi surface term, and �
αβ

sea,1, �
αβ

sea,2 are Fermi sea terms. Their expressions are

�
αβ

surf = −εαγ δ

∑
k

f ′
a

Eab

(
vγ

aav
δ
abσ

β

ba + v
γ

bav
δ
aaσ

β

ab + v
γ

abv
δ
baσ

β
aa

)
, a �= b,

�
αβ

sea,1 = εαγ δ

∑
k

fab

E2
ab

(
vγ

aav
δ
abσ

β

ba + v
γ

bav
δ
aaσ

β

ab + v
γ

abv
δ
baσ

β
aa

)
, a �= b,

104418-4



MANIPULATING ANOMALOUS HALL ANTIFERROMAGNETS … PHYSICAL REVIEW B 101, 104418 (2020)

�
αβ

sea,2 = −εαγ δ

∑
k

v
γ

abv
δ
bcσ

β
ca

(
fa

EabEac
+ fb

EbaEbc
+ fc

EcaEcb

)
, a �= b �= c �= a, (12)

where fab = fa − fb. We now show that in the case of insulators (where �surf can be ignored at low temperatures), only cross-gap
energy differences appear in the Fermi sea terms. Thus, the degeneracies of filled bands will not lead to diverging integrands.
First, it is obvious that �sea,1 only involves cross-gap energy differences Eab, because of the factor fab. To see that �sea,2 also
has such a property, we separately consider the situations of (1) fa = fb = fc, (2) fa = fb = 1, fc = 0, plus permutations of
a, b, c, and (3) fa = fb = 0, fc = 1, plus permutations of a, b, c. For (1), it is trivial to observe that 1

EabEac
+ 1

EbaEbc
+ 1

EcaEcb
= 0.

For (2), the terms in the parentheses become − 1
EacEbc

, which will not diverge since c is unoccupied while a and b are occupied,

and other permutations of a, b, c give similar results. For (3), only the last term 1
EacEbc

in the parentheses is nonzero, and it will
never diverge since a, b are unoccupied while c is occupied, and other permutations give similar results.

It is also interesting to make the connections between χos

and the orbital magnetization more explicit. For simplicity, we
consider the insulating case at T = 0 so that only the Fermi
sea terms in Eq. (11) are relevant. By repeatedly using the
following identities,

〈∂kγ
uak|ubk〉 = h̄v

γ

ab

Eab
, a �= b,

〈∂�β
uak|ubk〉 = −σ

β

ab

Eab
, a �= b,

(13)
∂kγ

Hk = h̄vγ , ∂�β
Hk = −σβ,

∂kγ
Ea = h̄vγ

aa, ∂�β
Ea = −σβ

aa,

where � is a fictitious exchange field coupled to σ through
Hex = −� · σ , we arrive at

�
αβ

sea,1 = −εαγ δ

h̄2

∑
k,a∈occu

∂�β
[〈∂kγ

uak|∂kδ
uak〉Ea],

�
αβ

sea,2 = −εαγ δ

h̄2

∑
k,a∈occu

∂�β
[〈∂kγ

uak|Hk|∂kδ
uak〉]. (14)

Therefore,

χαβ
os = gμB

2
∂�β

[
− ie

2h̄
εαγ δ

∑
k,a∈occu

〈∂kγ
uak|Hk + Ea|∂kδ

uak〉
]

= ∂Mα
orb

∂Bβ
s

, (15)

where Bs = 2�/gμB is an effective Zeeman field that only
couples to spin degrees of freedom. Namely, the orbital-spin
susceptibility can be obtained directly from taking derivative
of the orbital magnetization formula with respect to a uniform
exchange field.

Before ending this section, we comment on the self-
consistent-field corrections to the orbital-spin susceptibility
within SDFT, when calculating the response to a real Zeeman
field. Note the orbital-spin susceptibility used in, e.g., Eq. (7)
is not the response to actual Zeeman fields, but to order
parameter reorientation, for which we do not need to include
such corrections. Taking into account the orbital response
to both the Zeeman field and the associated change in the

exchange field � defined above, we have

δMorb = ←→χ os ·
(

HZeeman + 2

gμB
δ�

)
,

δ� = − �

Ms

←→χ s ·
(

HZeeman + 2

gμB
δ�

)
, (16)

where we have assumed that only the direction of the ex-
change field is significantly modified by the external Zeeman
field. The many-body orbital-spin susceptibility within SDFT
is therefore

←→χ SDFT
os =←→χ os ·

[
1− 2�

gμBMs

(
1+ 2�

gμBMs

←→χ s

)−1

· ←→χ s

]
.

(17)

V. MODEL CALCULATIONS FOR AHE AFMS

We now give an example of the procedure proposed above
using a toy model that mimics the magnetic structure of
Mn3Ir. We consider a 1/4-depleted face-centered cubic (fcc)
lattice (Fig. 2), with an s-orbital on each site, nearest-neighbor
hopping, and sublattice-dependent exchange fields whose di-
rections replicate the triangular antiferromagnetic order of
Mn3Ir. We add spin-orbit coupling Hso, being careful to re-
spect the C2 symmetry axis η̂ along bond-dependent lines (see
Fig. 2) that pass through the center of each nearest neighbor

(a) (b)

Γ        X       M           Γ       R            X       M

1
2

3

FIG. 2. (a) Structure of a s-d model resembling Mn3Ir with its
bands shown in panel (b). The smaller arrows in panel (a) represent
the C2 axes η̂mn in Eq. (18).

104418-5



HUA CHEN et al. PHYSICAL REVIEW B 101, 104418 (2020)

bond:

Hso =
∑

〈im, jn〉αβ

itso(d̂im, jn × η̂mn) · σαβ c†imαc jnβ. (18)

Here i j label unit cells, mn label sublattices, αβ label spin
components, d̂im, jn is a unit vector pointing from site im to
site jn, and σ is the vector formed by three Pauli matrices. As
discussed above, the spin-orbit coupling vector η̂mn is chosen
to be parallel to rc

mn − (rm + rn)/2, where rc
nm is the mean

of all neighbors of the bond mn. The band structure of this
model is illustrated in Fig. 2(b). This s-d model allows us
to calculate Morb and ←→χ i

os, but not the full Eani that should
come from a microscopic Hamiltonian of the d electrons.
We thus supplement the model with a phenomenological
site-dependent uniaxial anisotropy of the exchange fields [4]
consistent with the crystal symmetry:

Eani = −
∑
im

K

2
(	̂im · n̂m)2, (19)

where 	̂im is the direction of the local exchange field on each
site, and n̂m are the directions of the local easy axes on the
three sublattices: n̂1,2,3 = x̂, ŷ, ẑ. We follow the prescription
given at the end of Sec. III: We calculate Eani, Morb, δEani

δω
,

and ←→χ i
os for different configurations of the exchange field

directions 	̂im obtained by rotating them while fixing their
relative orientations.

Consider the starting ground-state configuration with Morb

along the (111) direction, and site-dependent exchange fields
with 120◦ relative orientations in a perpendicular plane. The
eight equivalent (111) directions have identical energy min-
ima in the absence of a magnetic field. We apply a field H
along the (11̄1), with the expectation that with increasing H
the system will eventually switch to a configuration with a
parallel Morb. Based on symmetry considerations, we focus
on the path in SO(3) defined by rotation around the (1̄01)
direction with angle θ . If the order parameter were that of
an ordinary ferromagnet, Eani would, in the absence of a
magnetic field, have four equivalent minima along this path at
θ = 0, arccos(−1/3) ≈ 109.47◦, 180◦ and arccos(−1/3) +
180◦ corresponding to four of the eight (111) directions. How-
ever, plotting our Eani vs θ in Fig. 3(b) shows only two energy
minima located at the first two rotation angles. The other
two orientations differ in the chirality of the three exchange
fields and do not have the same energy. Among the two
remaining minima, θ = arccos(−1/3) rotates the (111) plane
normal to the (1̄11̄) direction. However, Morb is surprisingly
rotated oppositely to the (11̄1) direction. (Similar behaviors
exist in Mn3Sn and Mn3Ge [36]). Thus, the magnetic switch-
ing induced by a field along (11̄1) corresponds to reaching
the minimum at θ = arccos(−1/3) through the saddle point
initially at θ ≈ 55◦.

Figure 3(c) shows the energies of these three extrema as
a function of H . As H increases, the energy of the final θ =
arccos(−1/3) state moves below that of the initial minimum,
and the latter eventually disappears after merging with the
saddle point. At this time, the magnetization configuration
will switch to the final state θ = arccos(−1/3).

Switching between time-reversed states for noncollinear
AHE AFMs is more complicated since it may not be able to

(111)

(1-11)

(-11-1)

(-1-1-1)

(a)

(b)

(c)

FIG. 3. (a) Rigid counterclockwise rotation of the noncollinear
order parameter with respect to the (1̄01) direction. The unrotated
structure has orbital magnetization along (111). (b) Anisotropy en-
ergy vs rotation angle. (c) Total energy at three lowest extrema along
the rotation path vs strength of an external magnetic field along
(11̄1).

be achieved through a single rotation around a fixed axis. We
have already shown for the model above that such a switching
cannot be achieved through a single π rotation with respect to
the (1̄01) axis. Actually, it can be realized through a single π

rotation only when the rotation axis is parallel to the ground-
state total magnetization. This switching path has higher bar-
riers, however, because it causes the local moments to deviate
more significantly from their local easy axes. A more probable
switching process consists of three segments which rotate
Morb from (111) to (1̄1̄1̄) by going through two other equiva-
lent (111) directions, e.g., (111) → (11̄1) → (11̄1̄) → (1̄1̄1̄).
In general, one needs to consider the 3 degrees of freedom
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FIG. 4. Modulus of the function δE/δω vs the rotation angle at
zero and finite magnetic fields along (1̄1̄1̄).

of SO(3), at least locally, in order to determine the smooth
switching path connecting two time-reversed states. We em-
phasize that this nontrivial switching path can also be mani-
fested in a static manner, through, e.g., the structure of domain
walls separating time-reversed states in AHE AFMs.

Moreover, in the presence of a magnetic field, the idealized
rotation path discussed above will smoothly deform and for
sufficiently strong fields will switch directly. Figure 4 shows
an example of field-induced deformation of the switching
path, which plots the modulus of δE

δω
along the same path as in

Fig. 3, but with the magnetic field along (1̄1̄1̄) direction. One
can see that at finite H the minimum originally at (11̄1) shifts
to larger θ . Such deformation is also relevant to the structure
and dynamics of magnetic domain walls driven by magnetic
fields in AHE AFMs.

VI. DISCUSSION

We have been ignoring spin contributions to the coupling
with H. Taking the spin canting into account leads to two
additional effects in our theory: (1) The canting-induced spin
magnetization is nonzero and can depend in a nontrivial way
on the global orientation of the magnetic configuration. (2)
In certain cases, the magnetic anisotropy energy depends
critically on the spin canting. Here we focus on the first effect
since the second has been discussed at the end of Sec. III.

Both the external magnetic field and spin-orbit coupling
effects can lead to spin canting by competing with the ex-
change coupling between localized spins. When the former

is much smaller than the latter, which is usually the case for
canted antiferromagnets, the canting-induced spin magneti-
zation in coherent order parameter switching is determined
by minimizing the total energy while keeping the direction
of the total magnetization fixed. In this case, the argument
of orbital magnetization dominating over the spin magneti-
zation in the limit of small spin-orbit coupling still applies.
Even if the Zeeman energy is not much smaller than the
anisotropy energy, for coherent rotation to occur it only has to
be comparable to the anisotropy energy, meaning the canting
induced by the Zeeman field is also as small as that due
to anisotropy. Therefore, we can ignore the canting-induced
spin magnetization throughout the switching process if the
orbital magnetization is dominant in the ground state. More
generally, spin coupling to magnetic fields can be included
in our formalism in a way similar way to that of the orbital
coupling, but through the spin-spin susceptibility that can also
be obtained microscopically.

Our SDFT formalism for discussing field-induced switch-
ing is formally equivalent to the LLG equation in the slow
dynamics limit, which becomes a torque balance equation. A
major difference between our approach and the conventional
LLG-based method is how the effective fields or torques are
evaluated. To use the LLG equation, a usual practice is to
consider a classical Heisenberg-like model, with the Heisen-
berg and anisotropic exchange couplings, anisotropies, and
coupling to external fields, narrowed down using symmetry
and fitted to experimental data. Our method does not rely
on the assumption of a Heisenberg-like classical spin model
and provides the quantities appearing in the balance equation
from microscopic calculations. To a certain extent, the role
of orbital magnetization in coherent switching discussed in
this work can be represented by an effective g tensor of each
local moment in the classical spin model. The g tensors are
not only anisotropic but also have nontrivial dependence on
the direction of local moments. Such an effect is not usually
considered in phenomenological spin models.
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