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We study an asymmetric J1-J2 zigzag ladder consisting of two different spin- 1
2 antiferromagnetic (AFM; J2,

γ J2 > 0) Heisenberg legs coupled by zigzag-shaped ferromagnetic (FM; J1 < 0) interleg interaction. On the
basis of density-matrix renormalization group based calculations, the ground-state phase diagram is obtained
as functions of γ and J2/|J1|. It contains four kinds of frustration-induced ordered phases except a trivial FM
phase. Two of the ordered phases are valence bond solid (VBS) with spin-singlet dimerization, which is a rather
conventional order by disorder. Still, it is interesting to note that the VBS states possesses an Affleck-Kennedy-
Lieb-Tasaki–type topological hidden order. The remaining two phases are ferrimagnetic orders, each of which
is distinguished by commensurate or incommensurate spin-spin correlation. It is striking that the ferrimagnetic
orders are not associated with geometrical symmetry breaking; instead, the global spin-rotation symmetry is
broken. In other words, the system lowers its energy via the FM interleg interaction by polarizing both of the
AFM Heisenberg legs. This is a rare type of order by disorder. Besides, the incommensurate ferrimagnetic state
appears as a consequence of the competition between a polarization and a critical Tomonaga-Luttinger–liquid
behavior in the AFM Heisenberg legs.

DOI: 10.1103/PhysRevB.101.104407

I. INTRODUCTION

Low-dimensional frustrated quantum magnets, in which a
macroscopic number of quasidegenerate states compete with
each other, provide an ideal playground for the emergence
of exotic phenomena [1]. For instance, the interplay of frus-
tration and fluctuations could lead to unexpected condensed
matter orders at low temperatures by spontaneously break-
ing some sort of symmetry, order by disorder [2]. Long-
range-ordered (LRO) magnetic state with breaking a spatial
symmetry as well as valence bond solid (VBS) state with a
formation of disentangled-unit–like local spin-singlet pair are
typical examples of order by disorder. Moreover, when quan-
tum fluctuations between the quasidegenerate states prevent
a selection of particular order, one ends up with spin liquids.
Modern theories have brought us new insight by identifying
spin liquids as topological phases of matter [3,4]. In recent
years, the realization of topological phases in frustrated spin
systems has been one of the central topics in condensed matter
physics [5–7].

In one-dimensional (1D) and spin- 1
2 case, quantum fluctu-

ations are maximized so that we may place more expectations
on the discovery of novel ground states by the cooperative
effects with magnetic frustration. A most simply structured
1D frustrated system is the so-called spin- 1

2 J1-J2 chain con-
sisting of nearest-neighbor J1 and next-nearest-neighbor J2

couplings. When both J1 and J2 are antiferromagnetic (AFM),
the ground state is a VBS, the nature of which can be grasped
by the Majumdar-Ghosh (MG) model [8], at J2/J1 � 0.24

[9,10]. The idea of MG model was generalized to the Affleck-
Kennedy-Lieb-Tasaki (AKLT) model [11] exhibiting spin-
1 VBS ground state with a symmetry-protected topological
order [12].

Meanwhile, the J1-J2 chain with ferromagnetic (FM)
J1 and AFM J2, which is known as a standard mag-
netic model for quasi-1D edge-shared cuprates such as
Li2CuO2 [13], LiCuSbO4 [14], LiCuVO4 [15], Li2ZrCuO2

[16], Rb2Cu2Mo3O12 [17], and PbCuSO4(OH)2 [18], en-
closes a wider array of states of matter. Theoretically, this
model has been extensively studied: Other than a trivial FM
state in the dominant J1 region, the ground state is a topolog-
ical VBS accompanied by spontaneous multiple dimerization
orders [19,20]. (More details are described in Sec. III A of
this paper.) It is also intriguing that a vector chirality and
multimagnon bound states are induced in the presence of
magnetic field [21–24]. Especially, the detection of nematic
or higher multipolar phases is one of the most exciting exper-
imental current issues [14,25–29]. Sensitive features to even
tiny interchain couplings are another characteristic of this
system [30–32].

Another typical example of frustrated 1D system is the
delta chain (or sawtooth chain). The lattice structure is a
series of triangles, as shown in Fig. 1(b), which is sim-
ilar to that of the J1-J2 chain but certain parts of J2

bonds are missing. There have been several candidates
for delta-chain and related materials: YCuO0.25 [33,34],
[Cu(bpy)(H2O)][Cu(bpy)(mal )-(H2O)](ClO4)2 [35], ZnL2S4

(L = Er, Tm, and Yb) [36], Cu(AsO4)(OH) · 3H2O [37],
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FIG. 1. (a) Lattice structure of the asymmetric J1-J2 zigzag lad-
der. The indices A and B denote apical and basal chains, respectively.
The lattice spacing a is set as a distance between neighboring
sites along the chains. The AFM interaction in the apical chain is
controlled by γ . (b) Lattice structure of the so-called delta chain (or
sawtooth chain) which is realized in the limit of γ = 0. (c) Schematic
representation of the ferrimagnetic state with global spin-rotation
symmetry breaking.

Mn2GeO4 [38], Rb2Fe2O(AsO4)2 [39], CuFe2Ge2 [40],
Fe10Gd10 [41], Cu2Cl(OH)3 [42], Fe2O(SeO3)2 [43], and
V6O13 [44]. In these materials, a wide array of complex phases
have been experimentally observed. Delta-chain systems may
offer an outlook toward promising prospects on novel mag-
netic phenomena.

The magnetic properties of delta-chain systems are to-
tally different in different signs of J1 and J2. For the
case of J1 < 0 and J2 > 0 (typically, referred as FM-
AFM delta chain), only two corresponding materials have
been recognized. One of them is malonatobridged cop-
per complexes [Cu(bpy)(H2O)][Cu(bpy)(mal)-(H2O)](ClO4)2

[35]. The magnetic Cu2+ ions with effective spin 1
2 form

into a delta-chain network. The base and the other exchange
couplings in a triangle made of malonate were estimated,
respectively, as AFM (J2 = 6.0 K) and FM (J1 = −6.6 K)
from the analysis of magnetic susceptibility χ (T ); and, as
AFM (J2 = 10.9 K) and FM (J1 = −12.0 K) from the fitting
of magnetization curve (typically, referred as FM-AFM delta
chain). In either case, the ratio of AFM and FM couplings
is close to 1. This means that the material would be in the
region of strong frustration. Theoretically, the ground state
was predicted to be a ferrimagnetic state but the detailed
spin structures are less understood [45]. In fact, only qual-
itative behavior of measured magnetization curve could be
explained by assuming a ferrimagnetic ground state [46,47].
A deeper understanding of the ferrimagnetic state is necessary
to resolve the remaining discrepancy between experiment and
theory.

The second candidate of the FM-AFM delta-chain ma-
terials is a mixed 3d/4 f cyclic coordination cluster sys-
tem Fe10Gd10 [41]. In these days, the delta-chain physics
is increasingly attracting attention due to the synthesis of
Fe10Gd10. This cluster consists of 10 + 10 alternating Gd
and Fe ions. The exchange couplings were estimated as FM
(J1 = −1.0 K) between Fe and Gd ions, AFM (J2 = 0.65 K)
between Fe ions, and nearly zero between Gd ions; the
magnetic ions form an FM-AFM delta-chain short ring. The
parameter ratio J2/|J1| = 0.65 seems to be very close the FM
quantum critical point J2/|J1| = 0.7 [48]. Although the spin
values of Fe and Gd ions are higher than S = 1

2 (S = 5
2 and

7
2 , respectively), quantum fluctuations would play important
roles to determine the ground state because of the quantum
criticality [49]. This means that the magnetic properties can
be drastically changed upon even a small variation of external
influences such as magnetic field, pressure, chemical means,
and gating current. So, this delta-chain material is drawing
attention also from the perspective of controlling magnetic
states in molecular spintronics [50].

For comparison, a few examples of delta-chain materi-
als only with AFM interactions (J1, J2 > 0) have been also
reported. With the help of MG-like projection method, the
magnetic properties of the AFM-AFM delta chain are better
understood than those of the FM-AFM one [33,51–53]. A pe-
culiarly interesting feature is the dispersionless kink-antikink
domain wall excitations to the dimerized VBS ground state.
A kink is highly localized only in the range of one triangle.
The first candidate of AFM-AFM delta-chain materials was
the delafossite YCuO2.5 [33]. However, a first-principles cal-
culation revealed that the ratio of J2/J1 in YCuO2.5 is out of
the range of the dimerized VBS ground state and additional
intrachain FM interaction is significantly large [34]. Very
recently, the other candidate materials Cu2Cl(OH)3 (S = 1

2 )
[42] and Fe2O(SeO3)2 (S = 5

2 ) have been reported. They
indeed exhibit characteristic features of AFM-AFM delta
chain: a magnetization plateau at half-saturation [46,54] in
Cu2Cl(OH)3 and an almost flat-band one-magnon excitation
spectrum in Fe2O(SeO3)2.

As mentioned above, the research of frustrated 1D systems
with J1-J2 or delta-chain structures has become more and
more active. Interestingly, each of the J1-J2 chain and the
delta chain is expressed as a limiting case of an asymmetric
J1-J2 zigzag ladder, defined as two different AFM Heisenberg
chains coupled by zigzag-shaped interchain FM interaction
[see Fig. 1(a)]. When one of the Heisenberg chains vanishes,
it is the delta chain; and, when the Heisenberg chains are
equivalent, it is the J1-J2 chain. However, it is known that their
ground states are completely different. Then, one may simply
question how the two limiting cases are connected. Of par-
ticular interest is that the effect of exchange coupling toward
the J1-J2 chain can be a likely perturbation in real delta-chain
compounds, e.g., the effect of tiny coupling between Gd ions
in Fe10Gd10.

In this paper, we therefore study an asymmetric FM-AFM
J1-J2 zigzag ladder using the density-matrix renormalization
group (DMRG) technique. We first clarify the detailed spin
structure and low-energy excitations of ferrimagnetic state in
the delta-chain limit. We suggest that the ferrimagnetic state is
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a rare type of order by disorder, where the energy is lowered
by FM fluctuation between two polarized AFM Heisenberg
chains with spontaneous breaking of the global spin-rotation
symmetry. Then, we examine how the ferrimagnetic state is
collapsed and connected to the well-known incommensurate
spiral state in the J1-J2 chain. We also find there exist two
kinds of VBS phases in the spiral region. Finally, we obtain
the ground-state phase diagram of asymmetric J1-J2 zigzag
ladder with interpolating between the delta chain and J1-J2

chain.
The paper is organized as follows: In Sec. II our spin

model is explained and the applied numerical methods are
described. In Sec. III we briefly mention to-date knowledge
on the ground state for two limiting cases of our spin model.
In Sec. IV we present our numerical results and discuss how
the two limiting cases are connected. Finally, we end the paper
with a summary in Sec. V.

II. MODEL AND METHOD

A. Model

The asymmetric J1-J2 zigzag ladder is defined as two
Heisenberg chains coupled by zigzag-shaped interchain inter-
action. The lattice structure is sketched in Fig. 1(a). We call
a leg chain with larger interaction “basal chain” and the other
with smaller interaction “apical chain.” The Hamiltonian is
written as

H = J1

∑
i

SA,i · (SB,i + SB,i+1)

+ J2

∑
i

(SB,i · SB,i+1 + γ SA,i · SA,i+1), (1)

where SB,i is spin- 1
2 operator at site i on the basal chain and

SA,i is that on the apical chain. We focus on the case of
FM interchain coupling (J1 < 0) and AFM intrachain cou-
pling (J2 > 0). The intrachain interaction of apical chain is
controlled by γ (0 � γ � 1). The system (1) corresponds
to the so-called delta chain (or sawtooth chain) at γ = 0
[Fig. 1(b)] and the so-called J1-J2 chain at γ = 1. The existing
knowledge on the ground-state properties of these chains
is briefly summarized in the next section. In our numerical
calculations, the chain lengths of basal and apical chains are
denoted as LB and LA, respectively. The total number of sites
is L = LB + LA. In this paper, we call the system for 0 < γ <

1 “asymmetric J1-J2 zigzag ladder,” which has been little or
not studied. In the case of J1 > 0 and J2 > 0, there are a few
studies [55,56].

B. DMRG methods

In order to examine the ground-state and low-energy ex-
citations of asymmetric J1-J2 zigzag ladder, we employ the
DMRG techniques, namely, conventional DMRG (hereafter
referred to simply as DMRG), dynamical DMRG (DDMRG),
and matrix-product-state-based infinite DMRG (iDMRG)
methods. They are used in a complementary fashion to further
confirm our numerical results.

The DMRG method is a very powerful numerical method
for various (quasi-)1D quantum systems [57]. However, some

difficulties are often involved in the DMRG analysis for
strongly frustrated systems like Eq. (1). First, the system-size
dependence of physical quantities is usually not straightfor-
ward. Therefore, relatively many data points are required to
perform a reasonable finite-size scaling analysis. We thus
study systems with length up to L = 161 (LB = 81, LA =
80) under open boundary conditions (OBC) and systems
with length up to L = 64 (LB = 32, LA = 32) under periodic
boundary conditions (PBC). Either OBC or PBC is chosen
depending on the calculated quantity. Second, a lot of nearly
degenerate states are present around the ground state. To
obtain results accurate enough, a relatively large number of
density-matrix eigenstates m must be kept in the renormal-
ization procedure. In this paper, we keep up to m = 8000
density-matrix eigenstates, which is much larger than that kept
in usual DMRG calculations for 1D systems, and extrapolate
the calculated quantities to the limit m → ∞ if necessary. In
this way, we can obtain quite accurate ground states within the
error of �E/L = 10−8|J1|.

For the calculation of dynamical quantities, we use the
DDMRG method which has been developed for calculat-
ing dynamical correlation functions at zero temperature in
quantum lattice models [58]. Since the DDMRG algorithm
performs best for OBC, we study an open cluster with length
up to L = 129 (LB = 65, LA = 64). The DDMRG approach
is based on a variational principle so that we have to prepare
a “good trial function” of the ground state with the density-
matrix eigenstates. Therefore, we keep m = 1200 to obtain the
ground state in the first 10 DMRG sweeps and keep m = 600
to calculate the excitation spectrum. In this way, the maximum
truncation error, i.e., the discarded weight, is about 1 × 10−5,
while the maximum error in the ground-state and low-lying
excited states energies is about 10−4|J1|.

The iDMRG method is very useful because it enables us to
obtain the physical quantities directly in the thermodynamic
limit [59,60], if the matrix product state is not too complicated
and the simulation can be performed accurately enough. In
our iDMRG calculations, typical truncation errors are 10−8

using bond dimensions χ up to 6000. In this way, the effective
correlation length near criticality is less or at most equal
to 500, so that most of the interesting parameter region of
the system (1) can be reasonably examined by our iDMRG
simulations.

III. PREVIOUS STUDIES FOR LIMITING CASES

So far, our system for two limiting cases, namely, J1-J2

chain (γ = 1) and delta chain (γ = 0), has been extensively
studied. In this section, we briefly summarize to-date knowl-
edge on the ground state for the limiting cases.

A. J1-J2 chain (γ = 1)

At γ = 1, we are dealing with the J1-J2 chain, which
may be also recognized as symmetric J1-J2 zigzag ladder. In
the limit of J2/|J1| = 0, the system is a simple FM Heisen-
berg chain with FM ordered ground state. Increasing J2/|J1|,
the FM state persists up to J2/|J1| = 1

4 ; then, a first-order
phase transition from the FM to an incommensurate (“spiral”)
state occurs [61]. The total spin in the incommensurate phase
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is zero (Stot = 0). Since quantum fluctuations disappear at
the FM critical point, the critical value J2/|J1| = 1

4 can be
recognized similarly both in the quantum as well as in the
classical model [62,63].

At J2/|J1| > 1
4 , the incommensurate correlations are short

ranged in the quantum model [64,65]. Instead, the system ex-
hibits a spontaneous nearest-neighbor FM dimerization with
breaking of translation symmetry, as a consequence of the
quantum fluctuations typical of magnetic frustration, i.e., or-
der by disorder. By regarding the ferromagnetically dimerized
spin- 1

2 pair as a spin-1 site, the system is effectively mapped
onto a spin-1 Heisenberg chain and an Affleck-Kennedy-Lieb-
Tasaki (AKLT) type hidden topological order protected by
global Z2 × Z2 symmetry is naively expected as a Haldane
state [11,66] (also see Sec. IV C 6). In fact, the hidden order
has been numerically confirmed [19,20].

Furthermore, the existence of (exponentially small)
singlet-triplet gap at J2/|J1| � 3.3 was predicted by the field-
theory analysis [67] and its verification had been a longstand-
ing issue. Only recently, the gap was numerically estimated:
with increasing J2/|J1| it starts to open at J2/|J1| = 1

4 , reaches
its maximum ∼0.007|J1| around J2/|J1| = 0.65, and expo-
nentially decreases [20]. The ground state is a kind of VBS
state with spin-singlet formations between third-neighbor
sites. Therefore, the magnitude of gap basically scales to the
strength of third-neighbor valence bond.

B. Delta chain (γ = 0)

At γ = 0, the system is the delta chain consisting of
a linear chain of corner-sharing triangles [Fig. 1(b)]. The
ground-state properties are less understood than those of the
J1-J2 chain. One main reason is that numerical investigation
of the delta chain is particularly difficult due to the strong
magnetic frustration and a number of nearly degenerate states
near the ground state. Especially the FM critical point is
macroscopically degenerate and consists of multimagnon con-
figurations formed by independent localized magnons and the
special localized multimagnon complexes [48].

Nonetheless, a numerical study could identify the ground
state at J2/|J1| < 1

2 to be FM; that at J2/|J1| > 1
2 to be ferri-

magnetic [45]. The total spins of the ferromagnetic and ferri-
magnetic phases are L/2 and L/4, respectively. To understand
the origin and the properties of this ferrimagnetic state, the
delta chain in the large limit of easy-axis exchange anisotropy
was studied [68]. In this limit, the system can be reduced to a
1D XXZ basal chain under a static magnetic field depending
on the magnetic structure of apical chain. The ground state
was identified as ferrimagnetic with fully polarized apical
spins and weakly polarized basal spins. It is expected that
some essential features may be inherent in the isotropic SU(2)
limit. In fact, the spin structure agrees qualitatively to the
ferrimagnetic state determined in this paper [see Fig. 1(c)].

IV. RESULTS

A. Classical limit

As mentioned above, the FM critical point is known to
be J2/|J1| = 1

4 for the J1-J2 chain (γ = 1) and J2/|J1| = 1
2

for the delta chain (γ = 0). To be examined first is how

the critical point changes between the limiting cases, i.e.,
0 < γ < 1. Since the quantum fluctuations vanish at the FM
critical point, the critical value can be exactly estimated by
the classical spin-wave theory (SWT). The Fourier transform
of our Hamiltonian (1) reads as

H = 1

2

∑
q

Jq �Sq · �S−q (2)

with

Jq = (1 + γ )J2 cos q

±
√

(1 − γ )2J2
2 (1 − cos q)2 + 4J2

1 cos2(q/2). (3)

If Eq. (3) has a minimum at q = 0, the system is in an FM
ground state. The FM critical point is thus derived as

J2,c

|J1| = 1

2(1 + γ )
. (4)

As shown in Fig. 2(a), the FM region is simply shrunk with
increasing γ because the AFM interaction is increased in the
apical chain. We have confirmed this FM critical boundary
numerically by calculating the total spin Stot of the whole
system, which is defined as

〈�S2〉 = Stot (Stot + 1) =
∑
i, j

〈�Si · �S j〉. (5)

It can be also verified by finding the absence of LRO FM state
in the spin-spin correlation functions. These results are shown
in Appendix A.

By evaluating q (≡ qmin) value to minimize Eq. (3), a
classical ground-state phase diagram is obtained as Fig. 2(a).
There are three kinds of LRO phases: FM phase with qmin =
0, incommensurate phase 0 < qmin < π , and commensurate
phase with qmin = π . Since the ferrimagnetic state in Fig. 1(c)
is of commensurate with q = π and the propagation number
of the J1-J2 chain is incommensurate, the SWT results are
consistent with those of the quantum system (1) in the two
limiting cases γ = 0 and 1. Therefore, even in the quantum
system an incommensurate-commensurate phase transition is
naively expected at finite γ with J2/|J1| fixed.

B. γ = 0: Delta chain

Although the ground state of the delta chain is most
probably ferrimagnetic at J2/|J1| > 1

2 , the detailed magnetic
structure and properties have not been fully settled. To gain
further insight into them, we here calculate the total spin,
spin-spin correlation functions, and stabilization energy of
ferrimagnetic state for the delta chain. We need to pick
through the system-size dependence of the quantities to deal
with nontrivial finite-size effects of the delta chain.

1. Total spin

Investigating the total spin Stot is a simple way to ex-
plore the possibility of ferrimagnetic state. As shown below,
the system-size dependence of Stot is significantly different
between applying OBC and PBC. This obviously implies
the difficulty of performing numerical calculations for this
system. Nevertheless, the fact that they should coincide in
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FIG. 2. (a) Classical ground-state phase diagram of the asymmet-
ric J1-J2 zigzag ladder. The phases are characterized by propagation
vector q = qmin minimizing Jq [Eq. (3)]: FM (qmin = 0); commensu-
rate (qmin = π ); incommensurate (0 < qmin < π ). (b) Ground-state
phase diagram of the asymmetric J1-J2 zigzag chain [Eq. (1)] deter-
mined by DMRG calculations. Inset: enlarged view around the PF
phase.

the thermodynamic limit L → ∞ makes the finite-scaling
analysis even more reliable. We here use the DMRG method.

Let us first see the case of OBC. In Fig. 3(a) the total spin
per site Stot/L is plotted as a function of inverse system size
1/L for several values of J2/|J1|. When J2/|J1| is order of
1, the effect of strong frustration is explicitly embedded in
the finite-size scaling; namely, due to the Friedel oscillation,
Stot/L awkwardly oscillates with 1/L. However, as expected,
such an oscillation no longer appears in a case of large
J2/|J1| = 100. When J2/|J1| 	 1, a straightforward scaling
is allowed since the frustration is much weaker. Eventually,
for all the J2/|J1| values, Stot/L seems to be extrapolated
to 1

4 in the thermodynamic limit. Although one may think
that the PBC should be applied if the Friedel oscillation is
problematic, the situation is not so simple as explained below.

(a)

(b)

0 0.01 0.02 0.03 0.04 0.050.1

0.2

0.3

0 0.02 0.04 0.06 0.080

0.1

0.2

0.3

0.4

FIG. 3. Finite-size scaling analysis of the total spin per site for
the delta chain (γ = 0), where (a) OBC and (b) PBC are applied.
The dotted lines are guide for eyes.

We then turn to the case of PBC. In Fig. 3(b), Stot/L is
plotted as a function of 1/L for several values of J2/|J1|.
Unlike in the case of OBC, the oscillation is not seen in
Stot/L vs 1/L. Instead, there exists a “critical” system size to
achieve finite Stot/L in the ground state. This is caused by a
kind of typical finite-size effects: under the PBC, the basal
chain forms a plaquette singlet and the basal spins are more
or less screened. This screening leads to the reduction of FM
interaction between the basal and apical chains although the
FM fluctuations between the two chains are essential to stabi-
lize the ferrimagnetic state (see Sec. IV B 2). Besides, only a
small screening may be sufficient to collapse the ferrimagnetic
state because the stabilization gap of ferrimagnetic state is
very small (see Sec. IV B 3). Consequently, the ferrimagnetic
state can be readily prevented under the PBC. For reference,
the system-size dependence of energies for spin-singlet and
ferrimagnetic states is shown in Appendix B. Since the triplet
excitation gap of plaquette singlet roughly scales to J2/|J1|
with a fixed system size, the critical system size is larger
for larger J2/|J1| as seen in Fig. 3(b). Once the system size
goes beyond the critical one, Stot/L approaches smoothly to 1

4
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FIG. 4. Spin-spin correlation function 〈Sz
α,iS

z
β, j〉 for the delta

chain (γ = 0) as a function of distance |i − j| at (a) J2 = 0.6, (b) 1,
and (c) 2. The total Sz sector is set to be Sz

tot = L/4. The legends
denote as A-A: (α, β ) = (A, A), B-B: (α, β ) = (B, B), and A-B:
(α, β ) = (A, B). (d) Averaged values of 〈Sz

α,i〉 on the apical and basal
sites as a function of J2/|J1|.

at L → ∞. The fitting function is Stot/L = 1
4 + 1/L for any

J2/|J1|.
Thus, we have confirmed that the total spin of the delta

chain at J2/|J1| > 1
2 is Stot = L/4, indicating the ferrimagnetic

state, and the ferrimagnetic phase persists up to the large
J2/|J1| limit.

2. Spin-spin correlation

Then, in order to determine the magnetic structure of
the ferrimagnetic state, we examine spin-spin correlation
functions 〈Sα,i · Sβ, j〉 between apical sites: (α, β ) = (A, A),
between basal sites: (α, β ) = (B, B), and between apical and
basal sites: (α, β ) = (A, B)/(B, A). For convenience, we fix
the z component of total spin at the total spin retained in the
ferrimagnetic ground state, i.e., Sz

tot = Stot = L/4. It lifts the
ground-state degeneracy due to the SU(2) symmetry breaking
and the (spontaneous) magnetization direction is restricted to
the z-axis direction. Hence, we need only to see 〈Sz

α,iS
z
β, j〉

instead of 〈Sα,i · Sβ, j〉.
In Figs. 4(a)–4(c), iDMRG results of the correlation func-

tion 〈Sz
α,iS

z
β, j〉 are plotted as a function of distance |i − j| for

J2/|J1| = 0.6, 1, and 2. We clearly see long-ranged correla-
tions indicating a magnetic order for all the J2/|J1| values.
If no magnetic order exists, all the correlation functions con-
verge to (Sz

tot/L)2 = 1
16 at long-distance limit |i − j| → ∞.

The intrachain correlations 〈Sz
A,iS

z
A, j〉 and 〈Sz

B,iS
z
B, j〉 are both

positive at the long distance, and the former correlation is
much larger than the latter one. This means that the apical
spins are nearly fully polarized and the basal spins are only
weakly polarized. In addition, a Néel-type staggered oscilla-
tion is clearly seen leastwise at the short distance in 〈Sz

B,iS
z
B, j〉.

These correlations immediately correspond to a ferrimagnetic
state, which is schematically sketched in Fig. 1(c). This pic-
ture seems to be valid in the whole region of J2/|J1| > 0.5.

Now, another question may arise: Is the Néel-type stag-
gered spin alignment on the basal chain LRO? The answer is
NO. Although 〈Sz

B,iS
z
B, j〉 indeed exhibits an AFM oscillation at

short distances |i − j|, it vanishes at the long-distance limit.
In fact, the oscillating part of 〈Sz

B,iS
z
B, j〉 exhibits a power-

law decay indicating a critical behavior of the Tomonaga-
Luttinger liquid (TLL) (see Appendix C). This also excludes
the possibility of VBS formation in the basal chain because
an exponential decay of the spin-spin correlation should be
found in a VBS state. It means that, very surprisingly, the
present ferrimagnetic order is an order by disorder but without
any geometrical symmetry breaking. Instead, the magnetic
frustration is relaxed by a spontaneous breaking of the global
spin-rotation symmetry. In other words, the system can gain
energy from the FM interaction between the apical and basal
chains by polarizing both of the chains. This is a very rare type
of order by disorder.

This picture of order by disorder may be further convinced
by looking at the relation between the polarization level
of basal spins and the stabilization of ferrimagnetic order.
Thus, to see the J2/|J1| dependence of polarization level in
more detail, we examine the expectation values of local spin
moment Sz

A,i and Sz
B,i. In Fig. 4(d) the averaged values of 〈Sz

A,i〉
and 〈Sz

B,i〉 are plotted as a function of J2/|J1|. We find that

with increasing J2/|J1|, 〈Sz
A,i〉 increases and saturates at 1

2 ,

while, 〈Sz
B,i〉 decreases and goes down to 0 in the large J2/|J1|

limit. The decrease of 〈Sz
B,i〉 may be naively expected by the

fact that the basal chain approaches a 1D SU(2) Heisenberg
model at large J2/|J1|, while, the increase of 〈Sz

B,i〉 is a simple

consequence of the condition 〈Sz
A,i〉 + 〈Sz

B,i〉 = 1
2 . If the order-

by-disorder picture associated by interchain FM interaction is
true, the ferrimagnetic state at larger J2/|J1| should be fragile
because of smaller polarization of basal spins. Actually, the
stabilization energy of ferrimagnetic order decreases with
increasing J2/|J1| as described in the following subsection.

3. Stabilization gap

To figure out the stability of the ferrimagnetic state, we
calculate a stabilization gap defined by energy difference
between the ferrimagnetic state and a lowest state in the
Stot = 0 sector:

�(L) = E0(0, L) − E0(Sg.s., L), � = lim
L→∞

�(L), (6)

where E0(S, L) is the lowest-state energy of L-site periodic
system in the Stot = S sector, and Sg.s. is a total spin of the
ground state. The energy of ferrimagnetic state can be sim-
ply obtained as a ground-state energy, though, as mentioned
above, the total spin Sg.s./L in the ferrimagnetic state can
deviate from 1

4 for a finite cluster. Whereas, it is nontrivial
to estimate the energy of a lowest state in the Stot = 0 sector
because it is an excited state and there are many quasidegen-
erate states near the ferrimagnetic ground state. A proper way
needs to be provided to extract the Stot = 0 state. We therefore
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FIG. 5. Energy difference between the lowest Stot = 0 state and
ferrimagnetic ground state for the delta chain, as a stabilization gap of
the ferrimagnetic state. (a) Finite-size scaling and (b) the extrapolated
values �/|J1| as a function of J2/|J1|. Inset: Semilog plot of �/|J1|
as a function of J2/|J1|. The dotted line is a fit for the large J2/|J1|
region: �/|J1| = 0.037 exp(−1.3J2/|J1|).

consider the following augmented Hamiltonian:

H ′ = H + λ�S2, (7)

where H is our original Hamiltonian (1) and the additional
term corresponds to the total spin operator (λ > 0). By setting
λ to be large enough, all the states with Stot > 0 are lifted.
Eventually, we can find a state with Stot = 0 as the lowest
state.

In Fig. 5(a) the energy difference �(L) is plotted as a
function of 1/L for several J2/|J1| values. Since the magnetic
frustration causes a sinelike oscillation in �(L) vs 1/L [20],
the finite-size scaling analysis is not very straightforward.
Still, the plotted values show the sinelike oscillation with
roughly more than one period, an acceptable scaling with
linear function �(L)/|J1| = �/|J1| + A/L (A is fitting pa-
rameter) may be possible. Actually, even if we assume a more
general fitting function �(L)/|J1| = �/|J1| + A/Lη, the ex-
trapolated values of �/|J1| are almost unchanged because η ≈
1 is always achieved. In Fig. 5(b) the extrapolated values of �

are plotted as a function of J2/|J1|. At the FM critical point

J2/|J1| = 1
2 , the lowest energies for all Stot sectors are degen-

erate and it leads to � = 0. As soon as the system goes into the
ferrimagnetic phase, the stabilization gap � steeply increases,
reaches a maximum around J2/|J1| = 1, and decreases with
further increasing J2/|J1|. The magnetic frustration would be
strongest at the maximum position J2/|J1| ∼ 1 because each
triangle is fully frustrated. This is another indication of the
fact that the ferrimagnetic state is originated from order by
disorder. As shown in the inset of Fig. 5(b), the stabilization
gap seems to decay exponentially with J2/|J1| in the large
J2/|J1| region. It means that the ferrimagnetic state is rapidly
destabilized in the large J2/|J1| regime although it persists up
to J2/|J1| = ∞ in a precise sense. This is consistent with the
rapid decrease of 〈Sz

B,i〉 with J2/|J1|. The system can gain only
little energy from the interchain FM interaction in case where
the basal spins are not really polarized. In short, the quantum
fluctuations between the apical and the basal chains play an
essential role to stabilize the ferrimagnetic state.

4. Dynamical spin structure factor

In order to provide further insight into the ferrimagnetic
structure, we investigate the low-energy excitations of the
delta chain. We calculate dynamical spin structure factors
for both the apical and basal chains with using the DDMRG
method. The dynamical spin structure factor is defined as

Sα (q, ω) = 1

π
Im〈ψ0|Sz

α,q

1

Ĥ + ω − E0 − iη
Sz

α,q|ψ0〉

=
∑

ν

|〈ψν |Sz
α,q|ψ0〉|2δ(ω − Eν + E0), (8)

where α denotes either apical (A) or basal (B) chain, |ψν〉 and
Eν are the νth eingenstate and the eigenenergy of the system,
respectively (ν = 0 corresponds to the ground state). Under
OBC, we define the momentum-dependent spin operators as

Sz
α,q =

√
2

Lα + 1

∑
l

eiqri Sz
α,i, (9)

with (quasi)momentum q = πZx/(Lα + 1) for integers 1 �
Zx � L. We use open clusters with LA = 31, LB = 32 for
SB(q, ω) and with LA = 64, LB = 65 for SA(q, ω). In Fig. 6,
DDMRG results of the dynamical spin structure factors are
shown for J2/|J1| = 0.6 and 1.

Let us see the spectrum for the apical chain. Since the spins
are fully polarized on the apical chain, the main dispersion
of SA(q, ω) is basically described by that of the 1D FM
Heisenberg chain. For J2/|J1| = 0.6, a precise fitting leads
to ωq/|J1| = J ′[cos(q) − 1) + J ′′(cos(2q) − 1] with nearest-
neighbor FM coupling J ′ = −0.11 and next-nearest-neighbor
AFM coupling J ′′ = 0.016. Interestingly, we find that the
dominant FM coupling is effectively induced on the apical
chain in spite of no direct interaction between apical sites.
A similar fitting for J2/|J1| = 1 gives J ′ = −0.075, J ′′ =
0.018. The reduction of |J ′| with increasing J2/|J1| is naturally
expected because the apical spins are completely free in the
large J2/|J1| limit. This reduction also reflects the weakening
of ferrimagnetic state.

We then turn to the spectrum for the basal chain. Al-
though the basal chain is weakly polarized, we expect that the
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FIG. 6. Dynamical spin structure factors for (a) apical and
(b) basal chains at J2/|J1| = 0.6. (c), (d) The same spectra at
J2/|J1| = 1. Finite broadening η is introduced: η = 0.03|J1| in
(a) and (c), η = 0.02|J1| in (b), and η = 0.05|J1| in (d). The dotted
lines are approximate analytical expressions of the main dispersions
(see text).

fundamental excitations could be at least qualitatively de-
scribed by those of the 1D SU(2) Heisenberg chain because
the dominant short-range correlation is AFM. For J2/|J1| =
0.6, the magnon dispersion (lower bound of the continuum)
of SB(q, ω) is certainly sinelike function and the well-known
shaped two-spinon continuum is seen. However, surprisingly,
such the weak spin polarization (SB,tot/LB = 0.11) drastically
suppresses the dispersion width down to 0.15|J1| from that of
the 1D SU(2) Heisenberg chain π |J1|/2 [69]. It is interesting
that the dispersion width is rapidly recovered to 0.75|J1| when
the spin polarization is slightly reduced to SB,tot/LB = 0.085
at J2/|J1| = 1. Another effect of the weak polarization on the
dispersion is a shift of node. Due to the dominant AFM fluc-
tuation on the basal chain in the whole region of ferrimagnetic
phase, a largest peak always appears at (q, ω) = (π, 0). If
there is no spin polarization, the other node should be at q = 0
but it is actually shifted to higher q value as seen in Figs. 6(b)
and 6(d). This behavior is similar to the case in the presence of
magnetic field. Namely, the node position can be expressed as
q = 2π〈SB,tot〉/LB where 〈SB,tot〉 is the total spin of the basal
chain with length LB.

C. Finite γ: Asymmetric J1-J2 zigzag ladder

As described above, we have confirmed that the ferrimag-
netic state is indeed stabilized at J2/|J1| > 1

2 in the delta chain
(γ = 0). Then, let us see what happens when the apical sites
are connected by AFM interaction, the strength of which can
be controlled by γ . Since the system is in a singlet ground
state, i.e., Stot = 0, in the J1-J2 chain (γ = 1), the collapse
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FIG. 7. (a) System-size dependence of total spin per site Stot/L
for several γ values with J2/|J1| = 0.6 fixed. The dashed line in-
dicates the value of Stot/L for the full ferrimagnetic state. (b) The
L → ∞ extrapolated values of Stot/L as a function of γ .

of ferrimagnetic state is naively expected at some γ (< 1).
Incidentally, the ferrimagnetic state is trivially enhanced if an
FM interaction is introduced between apical sites.

1. Total spin

Simply, we examine the γ dependence of the total spin to
identify when and how the ferrimagnetic state is destabilized.
In Fig. 7(a) the total spin per site Stot/L is plotted as a function
of 1/L for several γ values with J2/|J1| = 0.6 fixed. Due
to the strong frustration, the value of Stot/L oscillates with
1/L; however, we may perform a reasonable finite-size scaling
analysis with finer data points using large enough clusters.
We here use open clusters with length up to L = LA + LB =
100 + 101 = 201. The L → ∞ extrapolated value of Stot/L is
plotted as a function of γ in Fig. 7(b).

At γ = 0, the ground state is in the ferrimagnetic state
with nearly fully polarized apical spins and the total spin per
site is Stot = L/4. Hereafter, we call this state “full ferrimag-
netic (FF) state” to discriminate it from another ferrimagnetic
state with Stot < L/4 [denoted as “partial ferrimagnetic (PF)
state”] which appears below. When the AFM interaction be-
tween apical spins is switched on, one may naively expect a
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collapse or weakening of the full spin polarization in the
apical chain; nevertheless, interestingly, the FF condition
Stot = L/4 survives up to γ ≈ 0.08. This can be interpreted
as follows: Roughly speaking, since the system can gain more
energy from interchain FM interaction than AFM interaction
between apical spins, the FM LRO in the apical chain is still
maintained at γ � 0.08.

With increasing γ from 0.08, the competition between
interchain FM interaction and apical intrachain AFM inter-
action derives a new state. As seen in Fig. 7(a), at γ = 0.09
the value of Stot/L seems to converge at a finite but smaller
value than 1

4 as 1/L decreases. This clearly suggests that
some sort of collapse of the FF state happens around γ =
0.09. With further increasing γ , the value of Stot/L appears
to be continuously reduced and reaches zero around γ =
0.14 [see Fig. 7(b)]. Surprisingly, we find that there exists
a finite γ range exhibiting 0 < Stot/L < 1

4 . Since the basal
chain basically keeps its weakly polarized or nearly singlet
state, it would be a good guess that spin polarization on the
apical sites is gradually collapsed with increasing γ in this PF
phase (0.08 � γ � 0.14). In other words, the ferrimagnetic
order by disorder in association with the global spin-rotation
symmetry breaking disappears around γ = 0.14. Actually, as
stated below, the system has the other order by disorder, i.e.,
dimerization order, at γ � 0.14. The region of the PF phase
is shown as a shaded area in the ground-state phase diagram
[Fig. 2(b)].

We make some remarks on the existence of PF phase.
Such a “halfway” magnetization 0 < Stot/L < 1

4 in a ferri-
magnetic state is generally prohibited by the Marshall-Lieb-
Mattis (MLM) theorem [70,71]. There is an exception to this,
however, when the ferrimagnetic order and a quasi-long-range
order of TLL compete [72]. This corresponds to the com-
petition between small FM polarization and dominant AFM
fluctuations in the basal chain of our system. As confirmed in
Appendix C, the basal chain in the FF state indeed exhibits a
TLL behavior.

2. Spin-spin correlation

We then consider the evolution of spin-spin correlation
function with γ in the FF phase. In Figs. 8(a)–8(c) iDMRG
results of the spin-spin correlation function 〈Sz

α,iS
z
β, j〉 for γ =

0, 0.04, and 0.08 with fixed J2/|J1| = 0.6 are plotted as a
function of distance |i − j|. We keep Sz

tot = 4/L as done in
Fig. 4.

As far as the FF state is maintained up to γ ≈ 0.08,
the correlation functions seem to be almost independent of
γ . Accordingly, the expectation values of Sz

A,i and Sz
B,i are

unchanged up to γ ≈ 0.08, as shown in Fig. 8(d). Perhaps,
one may naively expect the reduction of 〈Sz

A,i〉 with increasing
γ , i.e., with increasing AFM coupling between apical spins.
However, this is not actually the case. This can be understood
as follows: as estimated by the fitting of low-energy excitation
spectrum, an FM coupling with the magnitude ∼0.11|J1| is
effectively induced between neighboring apical sites at γ =
0. Thus, the apical chain may be effectively mapped onto
an FM chain with Jeff = −0.11|J1|. Therefore, it would be
rather natural that the (nearly) full polarization is free of the

FIG. 8. Spin-spin correlation function 〈Sz
i Sz

j〉 of the asymmetric
J1-J2 zigzag ladder as a function of |i − j| with fixed Sz

tot/L = 1
4

and J2/|J1| = 0.6 for (a) γ = 0, (b) 0.04, and (c) 0.08. (d) Averaged
values of 〈Sz

i 〉 on the apical and basal sites as a function of γ for
J2/|J1| = 0.6. The circles and crosses denote iDMRG and DMRG
results, respectively.

influence of additional AFM coupling γ J2 until it reaches
around ∼0.11|J1|.

No γ dependence of the spin structure up to γ ≈ 0.08 then
indicates that the total energy of FF state is simply lifted by
the AFM interaction γ J2 between nearly fully polarized apical
spins; it switches into the energy level with a metastable PF
state at γ ≈ 0.09. Hence, the FF to PF phase transition is of
the first order. It can be also confirmed by a steep (or almost
discontinuous) change of Stot and 〈Sz

α,i〉 at γ ≈ 0.09. On the

other hand, both of 〈Sz
A,i〉 and 〈Sz

B,i〉 smoothly approach to zero
around γ ≈ 0.14. Thus, the transition from PF to the spiral
singlet (Stot = 0) region is of the second order or continuous.

3. Stabilization gap

To quantify the stability of ferrimagnetic state at finite γ ,
we calculate the stabilization energy � [Eq. (6)] as done in the
case of delta chain. In Fig. 9(a) the finite-size scaling analysis
of �(L) is performed for several γ values with J2/|J1| = 0.6
fixed. Although a sinelike oscillation is present as in the
case of delta chain, an acceptable scaling may be possible in
the FF phase (γ � 0.09). We here employ two kinds of fit-
ting functions: �(L)/|J1| = �/|J1| + A/L and �(L)/|J1| =
�/|J1| + A/Lη. Since the former (latter) function seems to
underestimate (overestimate) the extrapolated value of �/|J1|,
their averaged value is plotted as a function of γ in Fig. 9(b).
The width of error bar means the differnce between two
values of �/|J1| obtained by the two fitting functions. The
stabilization gap is approximately linearly reduced by γ up
to the critical point γ ≈ 0.08. This also supports the above
speculation that the total energy of FF state is simply lifted
by γ J2.

104407-9



YAMAGUCHI, DRECHSLER, OHTA, AND NISHIMOTO PHYSICAL REVIEW B 101, 104407 (2020)

0 0.05 0.1 0.150

0.01

0.02

0.03

0 0.02 0.04 0.06 0.08 0.10

0.002

0.004

0.006

0.008

(a)

(b)

FIG. 9. (a) Finite-size scaling of energy difference between low-
est Stot = 0 state and ferrimagnetic ground state for the asymmetric
J1-J2 zigzag ladder with fixed J2/|J1| = 0.6. The solid and dotted
lines show the fitting results with �(L)/|J1| = �/|J1| + A/L and
�(L)/|J1| = �/|J1| + A/Lη, respectively. (b) Extrapolated values of
�/|J1| as a function of γ . The width of error bar means the difference
of �/|J1| obtained by the two fitting functions.

In the PF phase (γ � 0.09), however, the scaling analysis
of �(L) is virtually impossible. As an example, �(L)/|J1| vs
1/L for γ = 0.1 is shown in Fig. 9(a). This difficulty is caused
by the following several factors: (i) As shown in the next
subsection, an incommensurate oscillation is involved in the
PF state. (ii) The total spin per site Stot/L is strongly dependent
on system size since the states in different Stot sectors are
extremely quasidegenerate around the ground state. (iii) The
available system size is strictly limited because the second
term of Eq. (7) includes long-range interactions and a peri-
odic cluster must be used. Nevertheless, the stabilization gap
should be positive due to the nonzero total spin of the ground
state [Fig. 7(b)]. We can, at least, confirm that the PF order is
very fragile with the stabilization gap � < 4.3 × 10−4|J1| at
γ = 0.08. This small stabilization gap also tells us that there
are a macroscopic number of quasidegenerate states belonging
to different Stot sectors since the total spin is continuously
varied from L/4 to 0 with γ in the PF phase.

0 0.1 0.2 0.3
0

0 0.2 0.4 0.6 0.8 1
0

0.06 0.1 0.14

-12.7
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FIG. 10. (a) Static spin structure factor for J2/|J1| = 0.6 as a
function of γ . The lattice spacing a is set as shown in Fig. 1(a).
(b) Enlarged figure of (a) for 0 � γ � 0.3. Inset: ground-state energy
as a function of γ .

4. Static spin structure factor

It is important to see how the intrachain spin modulation
changes with γ . A most significant quantity to know would be
the propagation number which can be extracted as a maximum
position of static spin structure factor. Therefore, we calculate
the static spin structure factor for each of the apical and basal
chains. It is defined as

Sα (q) = 1

L2
α

Lα∑
i. j=1

eiq(ri−r j )〈Sα,i · Sα, j〉 (10)

for the apical (α = A) or basal (α = B) chains. The lattice
spacing a is set as shown in Fig. 1(a). In Fig. 10 the propa-
gation numbers qmax for J2/|J1| = 0.6 using a 64-site periodic
cluster are plotted as a function of γ .

At γ = 0, the system is in the FF state whose spin structure
is commensurate and simple as shown in Fig. 1(c). The apical
spins are nearly fully polarized and the propagation number
is qmax = 0, whereas for basal chain the dominant correlation
is AFM (qmax = π/a) although it is slightly polarized. It is
obvious that this spin structure persists in the whole region of
the FF phase at 0 � γ � 0.08.
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In the singlet (Stot = 0) phase at γ � 0.14, the propagation
numbers of apical and basal chains are both incommensu-
rate, i.e., 0 < qmax < π/a. At γ = 1, they coincide and it is
estimated as qmax = 0.958. This value is in good agreement
with our previous estimation qmax = 0.958 [73] in the ther-
modynamic limit. With decreasing γ , the propagation number
is reduced because short-range FM correlation is relatively
enhanced. Interestingly, they are equal or very close down to
the critical point at γ ≈ 0.14 and obviously split for smaller γ .
It would be a good guess that the short-ranged spiral structure
of the J1-J2 chain (γ = 1) is approximately maintained down
to γ ≈ 0.14. In a broad sense, this incommensurate region can
be referred to as a spiral singlet phase.

In Fig. 10(b) an enlarged figure around the PF phase
(0.08 � γ � 0.14) is shown. As shown in the inset of
Fig. 10(b) the phase boundaries are recognized by level
crossing of the ground-state energies. It clearly indicates the
existence of an intermediate phase between the FF and spiral
singlet phases, though the region (0.08 � γ � 0.11) is a bit
narrower than that in the thermodynamic limit (0.08 � γ �
0.14) due to finite-size effects. The intermediate phase is the
PF phase as described above.

In the PF phase, the dominant correlation of the basal chain
seems to be incommensurate and the propagation number of
the apical chain keeps qmax = 0. It is a natural consequence of
the global spin-rotation symmetry breaking because the total
spin can be no longer finite if both of the propagation numbers
are nonzero. This incommensurate propagation is a conse-
quence of the halfway magnetization so that the prohibition by
the MLM theorem is also avoided by the TLL characteristic
of basal chain. Similar incommensurate features have been
reported for PF state in frustrated systems [74,75].

5. Dimerization order

So, let us see more about the magnetic properties of the
spiral singlet (Stot = 0) phase at larger γ . It is known that the
system has LRO with spontaneous dimerization in the J1-J2

chain (γ = 1) [19,20]. Therefore, as a starting point it would
be reasonable to examine the evolution of dimerization order
parameters with decreasing γ from 1. The dimerization order
parameter between sites distant δ along the J1 zigzag chain is
defined as

Odimer (δ) = lim
L→∞

|〈SA,i · SB,i−(δ−1)/2〉 − 〈SA,i · SB,i+(δ+1)/2〉|
(11)

for odd δ, and

Odimer (δ) = lim
L→∞

|〈Sα,i · Sα,i+δ/2〉 − 〈Sα,i · Sα,i+δ/2〉| (12)

for even δ. If Odimer (δ) is finite for δ, it signifies a long-range
dimerization order associated with mirror symmetry breaking
for odd δ or translation symmetry breaking for even δ. We
here study the case of δ = 1, 2, and 3. Schematic pictures of
the possible dimerization orders are shown in Fig. 11(a). A
finite Odimer (δ) for δ = 2 and 3 indicates a valence bond
formation, i.e., spin-singlet formation, between two sites on
the dimerized bond. In Fig. 11(b) the iDMRG results of
dimerization order parameter Odimer (δ) for δ = 1, 2, and 3 are
plotted as a function of γ at J2/|J1| = 1. For confirmation,

δ

δ = 
δ = 
δ = 

(a) δ = 1

δ = 2

δ = 3

(b)

FIG. 11. (a) Schematic pictures of possible dimerization order.
The states for δ = 2 and 3 are characterized as VBS. A solid
(dotted) ellipse denotes a spin-singlet (spin-triplet) dimer. (b) Av-
eraged dimerization order parameters Odimer (δ) as a function of γ at
J2/|J1| = 1. Inset: each contribution to Odimer (2) from the apical and
basal chains.

we also estimate Odimer (δ) in the thermodynamic limit for
some γ values using DMRG under OBC. We can find their
excellent agreement with the iDMRG results. Note that the
FM interaction J1 at both edges in the open clusters is set to
be zero. It enables us to perform the finite-size scaling analysis
more easily because the competing two translation symmetry-
breaking states are explicitly separated [20]. For confirmation,
we have checked that the ground state in the thermodynamic
limit does not depend on the choice of boundary conditions.

At γ = 1, two dimerization orders with δ = 1 and 3 coexist
[20]. With decreasing γ , interestingly, Odimer (3) is signifi-
cantly enhanced and Odimer (1) is slightly increased down to
γ ≈ 0.195. With fixed J2/|J1| = 1, we may deduce that the
magnetic frustration is largest in the limit of γ = 0 where the
system is a series of isotropic triangles with uniform magni-
tude of interactions. The valence bond pair may be strength-
ened to screen spins more strongly for the relaxation of
larger magnetic frustration at smaller γ . Since Odimer (2) = 0
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down to γ ≈ 0.195, this state is dominantly characterized as a
VBS state with δ = 3 dimerization order (we call it “D3-VBS”
state).

Even more surprisingly, Odimer (2) exhibits a steep increase
(almost jump) at γ ≈ 0.195. The other order parameters
Odimer (1) and Odimer (3) are also not differentiable with γ at
this point. This clearly indicates another first-order transition
at γ ≈ 0.195. We note that both of the apical and basal chains
are spontaneously dimerized along the chain direction in the
region of Odimer (2). The order parameter for each chain is
plotted in the inset of Fig. 11(b) (the main figure shows
the averaged value). Since the value of Odimer (2) is much
larger than the other dimerization order parameters at 0.035 �
γ � 0.195, the state is recognized as a VBS one with δ = 2
dimerization order (we call it “D2-VBS” state). Since this δ =
2 dimerization order is associated with a translation symmetry
breaking, the magnetic structure consists of a supercell with
four sites. More detailed analysis is given in Appendix D.

The dimerization order can be also detected by studying
the topological properties of the system. Then, let us see the
entanglement spectrum (ES) [76] which can be obtained by a
canonical representation of the an infinite matrix-product state
in the iDMRG calculations [12]. Using Schmidt decomposi-
tion, the ground-state wave function can be expressed as

|ψ〉 =
∑

i

e−ξi/2
∣∣φA

i

〉 ⊗ ∣∣φB
i

〉
, (13)

where the states |φS
i 〉 correspond to an orthonormal basis for

the subsystem S (either A or B). We study the ES for several
kinds of splitting pattern between subsystems A and B. The
splitting patterns are sketched in Fig. 12(a). In our iDMRG
calculations, the ES {ξα} is simply obtained as ξα = −2 ln λα ,
where {λ2

α} are the singular values of the reduced density
matrices after the bipartite splitting. The low-lying four ES
levels are plotted as function of γ in Figs. 12(b)–12(e).

When the one dimerized singlet pair straddles the subsys-
tems A and B [Figs. 12(b) and 12(d)], the lowest entanglement
level is doubly degenerate as a reflection of the edge state.
On the other hand, when this is not the case [Figs. 12(c) and
12(e)], the lowest entanglement level is nondegenerate. Our
result for the D3-VBS state is consistent with previous re-
search on the symmetric case [19]. These facts would strongly
support the formation of long-range dimerization order. We
can also find a discontinuous change of ∂ (−2 ln λα )/∂γ at
γ ∼ 0.195, which seems to correspond to the transition point
from the D2-VBS to D3-VBS state. We note that the differ-
ence between Figs. 12(b) and 12(d) as well as 12(c) and 12(e)
comes from the asymmetric nature of our system. More details
about the asymmetric nature are discussed in Appendix D.

In the spiral singlet phase, the system is in either D2-
VBS or D3-VBS state. The phase boundary between them is
shown in Fig. 2(b). In general, the spin gap, namely, energy
difference between spin-singlet ground state and spin-triplet
first excited state, is expected to be finite when the system is
in a VBS state. In the D3-VBS phase, the spin gap simply
scales to an energy to break a valence bond for δ = 3. In
the D2-VBS phase, each of the apical and basal chains has a
different valence bond. Nevertheless, it is easy to imagine that
the valence bond in the apical chain is more fragile because

(a)

(e)

(b) (c)

(d)

(b) (c) (d) (e)

D2-VBS

D3-VBS

γ γ

2121

0121

α=λ
λ

FIG. 12. (a) Schematic pictures of considered splitting of the
system into two subsystems in the D2-VBS and D3-VBS state.
A solid ellipse denotes a spin-singlet pair. The number of singlet
pair crossing with each cut is shown in the green square. (b)–(e)
Entanglement spectrum for the corresponding splitting as a function
of γ at J2/|J1| = 1.

of smaller AFM interaction, although Odimer (2) for the apical
chain is larger than that for the basal chain. Thus, the spin gap
in the D2-VBS phase scales to an energy to break a valence
bond in the apical chain. This means that a larger energy
than the spin gap is needed to break a valence bond in the
basal chain. It would provide a 1

2 plateau in the magnetization
process with magnetic field.

6. String order

We have confirmed the existence of nearest-neighbor (δ =
1) FM dimerization order in the whole spiral singlet region.
A spin-triplet pair may be effectively formed in the each
ferromagnetically dimerized bonds: by relating three states
| ↑↑〉, | ↑↓〉 + | ↓↑〉)/

√
2, and | ↓↓〉 to Sz = 1, 0, and −1

states, respectively, the resultant spin on the dimerized bond
can be reduced to a spin-1 degree of freedom. Consequently,
the system could be mapped onto a S = 1 Heisenberg chain
accompanied by the emergent effective spin-1 degrees of free-
dom with the dimerized two spin 1

2 ’s [19]. Furthermore, the
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FIG. 13. String order parameter as a function of γ at J2/|J1| = 1
using iDMRG (circles) and DMRG (crosses) methods. The DMRG
results are extrapolated values to the thermodynamic limit.

presence of third-neighbor AFM dimerization order ensures
a valence bond formation between the neighboring effective
S = 1 sites [20]. It leads to finite spin gap as a Haldane gap
in symmetry-protected VBS state [11,12]. Although the spin
gap is a good indicator to measure the stability of VBS state, it
would be too small to correctly estimate with DMRG method
in most of the parameter region of system (1). Alternatively,
the stability of VBS state associated with the Haldane picture
can be evaluated by examining the string order parameter [77]:

Oz
string = − lim

|k− j|→∞

〈(
Sz

A,k + Sz
B,k

)

× exp

[
iπ

j−1∑
l=k+1

(
Sz

A,l + Sz
B,l

)](
Sz

A, j + Sz
B, j

)〉
. (14)

For our system (1), Eq. (14) can be simplified as

Oz
string = − lim

|k− j|→∞
(−4) j−k−2

〈(
Sz

A,k + Sz
B,k

)

×
j−1∏

l=k+1

Sz
A,l S

z
B,l

(
Sz

A, j + Sz
B, j

)〉
. (15)

The finite value of Oz
string suggests the formation of a VBS

state having a hidden topological long-range string order.
Since twofold degeneracy of the ground state due to the FM
dimerization is lifted in our numerical calculations, |Oz

string|
can have two different values depending on how to select k
and j. We then take their average.

In Fig. 13 iDMRG and DMRG results for the string order
parameter are plotted as a function of γ at J2/|J1| = 1. We
can see a good agreement between the iDMRG and DMRG
values. With decreasing γ from 1, Oz

string is significantly
increased and has a pointed top at γ ≈ 0.195, which is the
first-order transition point between D3-VBS and D2-VBS
phases. With further decreasing γ , it decreases and vanishes at
γ = 0.035, which is the second-order transition point between
D2-VBS and ferrimagnetic phases. We notice that the overall

trend of Oz
string is similar to that of the δ = 3 dimerization

order parameter Odimer (3). It means that the stability of string
order is dominated by the strength of valence bond with δ = 3.
In other words, a Haldane state is produced as a structure
where all the neighboring effective spin-1 sites are bridged by
the δ = 3 valence bonds. Even though it is a Haldane state,
the maximum value Oz

string ∼ 0.065 is much smaller than

Oz
string = 4

9 � 0.4444 for the perfect VBS state for the AKLT
model [11] and Oz

string � 0.3743 for the S = 1 Heisenberg
chain [78]. This small value of Oz

string is interpreted as a sign
of fragility of the D3-VBS state, which is however comparable
with the maximum value for the J1-J2 chain at J2/|J1| ≈ 0.6
(Oz

string ∼ 0.06) [19,20].

V. SUMMARY

We studied the asymmetric S = 1
2 J1-J2 zigzag ladder,

defined as two different AFM Heisenberg chains coupled by
zigzag-shaped interchain FM interaction, using the DMRG-
based techniques. The AFM chain with larger (smaller) inter-
action is referred to as apical (basal) chain.

First, a classical phase diagram was obtained by the
spin-wave theory. It contains three phases: FM, commensu-
rate, and incommensurate phases. It offers the possibility of
commensurate-incommensurate phase transition by tuning the
ratio of AFM interaction of the apical and basal chains in the
quantum case.

Next, we revisited the ferrimagnetism in the so-called delta
chain as the vanishing limit of AFM interaction in the apical
chain. The ferrimagnetic state is characterized by total spin
Stot = L/4. By carefully examining the long-range spin-spin
correlation functions and low-energy excitations, we pointed
out that the origin of ferrimagnetic state is order by disorder
without geometrical symmetry breaking but with a global
spin-rotation symmetry breaking. Accordingly, the system can
gain energy from the FM interaction between the polarized
apical and basal spins. So to speak, FM fluctuations play
an essential role to lower the ground-state energy against
the magnetic frustration. This is a rare type of order by
disorder. And yet the basal chain is essentially a critical AFM
Heisenberg chain as a TLL and its polarization is rather ill
conditioned as a state of chain itself. In this regard, one could
interpret this to mean that the ferrimagnetic order competes
with a quasi-long-range AFM order of TLL.

Then, we examined how the ferrimagnetic state is affected
by AFM interaction of the apical chain, which is controlled
by γ . We found that the ferrimagnetic state with Stot = L/4
is maintained up to a finite value of γ ; and with further
increasing γ the system goes into spiral singlet (Stot = 0)
phase at a certain amount of γ . Of particular interest is
the appearance of another ferrimagnetic phase characterized
by 0 < Stot < L/4 between the Stot = L/4 ferrimagnetic and
Stot = 0 phases. Such a “halfway” magnetization, which is
generally prohibited by the MLM theorem, is now allowed
under the competition between ferrimagnetic and quasi-long-
range order of TLL.

Finally, the detailed magnetic properties of spiral singlet
phase was investigated. With evaluating various dimerization
order parameters, we confirmed that the Stot = 0 region is
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covered by two kinds of VBS phases depending on the pa-
rameter values. One is the D2-VBS phase where the valence
bond is formed along the apical and basal chains; the other is
the D3-VBS phase where the valence bond is formed between
the apical and basal spins. Interestingly, a hidden topological
long-range string order exists in the whole region of VBS
phases and its strength scales only to the stability of D3-VBS
state.

We summarized the above numerical results as a ground-
state phase diagram, which contains a variety of frustration-
induced ordered phases. Especially, it is quite curious that
a simple frustrated system, like the asymmetric zigzag lad-
der, exhibits very different kinds of order by disorder, asso-
ciated with geometrical symmetry and global spin-rotation
symmetry.
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APPENDIX A: NUMERICAL CONFIRMATION OF
FERROMAGNETIC CRITICAL POINT

In the main text, we have obtained the γ dependence of FM
critical point by classical SWT. It is given as

J2,c

|J1| = 1

2(1 + γ )
(A1)

for γ > 0. This derivation can be easily extended to negative
γ . Then, when γ < 0 we obtain the FM critical point as

J2,c

|J1| = 1

2
, (A2)

which is independent of γ .
Since the quantum fluctuations vanish at the FM critical

point, Eqs. (A1) and (A2) should be exact. We here confirm
them numerically. A simplest way is to check the presence
or absence of long-range FM order. In Fig. 14(a) we show
iDMRG result for the spin-spin correlation function 〈Si · S j〉
at γ = 0.2 as a function of distance |i − j|. For convenience,
the site indices i and j are taken along the J1 zigzag chain. At
J2/|J1| = 0.4 we can clearly see an FM long-range order with
〈Si · S j〉 = 1

4 for any pair of i and j at the large distance. How-
ever, the FM long-range order seems to be already destroyed
at only a slightly larger J2/|J1| = 0.42. In fact, this iDMRG
result is consistent with the SWT estimation J2,c/|J1| = 0.417
for γ = 0.2. Additionally, since the system is in the D3-VBS
state at J2/|J1| = 0.42, an exponential decay of 〈Si · S j〉 is
thus expected.

Furthermore, we also numerically estimate the FM critical
point for γ < 0. In Fig. 14(b) we compare the γ dependence
of J2,c/|J1| values estimated by DMRG and SWT. We can
find a good agreement between them. The reason why the
FM critical point does not depend on γ is as follows: For

-1 0 10.2

0.3

0.4

0.5

DMRG

(a)

(b)

FIG. 14. (a) iDMRG results for spin-spin correlation function
〈Si · S j〉 as a function of distance |i − j| with γ = 0.2 fixed. (b) Com-
parison of the γ dependence of FM critical points J2,c/|J1| estimated
by DMRG and spin-wave theory.

any negative γ , the apical chain is fully polarized and this
FM order affects the basal chain as an external field via the
interchain coupling J1. Therefore, the FM phase transition
boils down to the question of a competition between FM
interchain interaction J1 and AFM interaction J2 in the basal
chain, namely, independent of γ . Even intuitively, Eq. (A2)
can be obtained by comparing the numbers of J1 and J2 bonds.

APPENDIX B: ARTIFICIAL ENHANCEMENT OF
SPIN-SINGLET STATE WITH SHORT CHAINS

In Fig. 3(b) of the main text, the total spin per site Stot/L
is plotted as a function of 1/L under PBC. With decreasing
1/L, we see a drastic change of the total spin from Stot/L =
0 to Stot/L = 1/4 + 1/L at some value of 1/L. This is the
consequence of a typical finite-size effect: If the system size
is sufficiently small, the basal chain forms a short AFM ring
under PBC and a plaquette singlet is highly stabilized. On the
other hand, the ferrimagnetic state may be readily prevented
due to the screening of basal spins. This finite-size effect
could be eliminated by increasing the system size because
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FIG. 15. Energies per site for lowest-lying spin-singlet and ferri-
magnetic states at J1 = −1, J2 = 0.8, and γ = 0.0 as a function of
inverse system size. The PBC is used.

the plaquette singlet is rapidly destabilized for larger systems.
To confirm it, we compare the energies for spin-singlet and
ferrimagnetic states in Fig. 15. When the system size is small,
the energy for spin-singlet state is much lower than that for
ferrimagnetic state. They approach with increasing system
size and cross at some value of L(≡ Lc). Roughly speaking,
one could interpret this to mean that the energy gain from
ferrimagnetic formation becomes larger than that from the
plaquette singlet formation of basal chain around the critical
system size L = Lc. Therefore, we take Stot/L = 1

4 + 1/L for
the finite-size scaling and obtain Stot/L = 1

4 in the thermody-
namic limit L → ∞.

APPENDIX C: TOMONAGA-LUTTINGER–LIQUID
BEHAVIOR OF BASAL CHAIN IN FULL

FERRIMAGNETIC PHASE

As mentioned in the main text, the basal chain in the fer-
rimagnetic states should be a TLL because it only allows the
system to have an incommensurate “halfway” magnetization
other than the commensurate one. We can check it by looking
at the spin-spin correlation in the basal chain. We plot iDMRG
results of the spin-spin correlations |〈Sz

B,iS
z
B, j〉 − 〈Sz

B,i〉〈Sz
B, j〉|

in the FF state as a function of distance |i − j| in Fig. 16.
The z component of total spin is fixed at Sz

tot = L/4. We
can see a power-law decay with distance, i.e., |〈Sz

B,iS
z
B, j〉 −

〈Sz
B,i〉〈Sz

B, j〉| ∼ 1/|i − j|, as a signature of TLL. For comfir-
mation, we also plot the spin-spin correlation for the D3-VBS
state in the inset of Fig. 16. It clearly exhibits an exponential
decay indicating a gapped VBS state.

APPENDIX D: DIMERIZATION ORDER WITH
TRANSLATION SYMMETRY BREAKING

In the main text, we have estimated the dimerization or-
der parameters defined as the difference between spin-spin
correlations for the “neighboring” bonds. To obtain further
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FIG. 16. Spin-spin correlation function as a function of distance
|i − j| with J2/|J1| = 0.6.

insight into the dimerization structure, we here look at the
bare spin-spin correlations. In Figs. 17(b)–17(d) we plot the
spin-spin correlations for various pairs of spins as a function
of γ . Each symbol corresponds to a bond marked by the same
symbol in Fig. 17(a).

At γ � 0.195, the valence bond structure is relatively sim-
ple. The correlation 〈(Si · S j )I〉 has two different values and
the difference between them provides the dimerization order
parameter. This is the same for 〈(Si · S j )III〉. No splitting of the

(a)

II II
I

I
(b)

(d)(c)

I

II

III

FIG. 17. (a) Schematic pictures of possible dimerization order.
The pictures I–III are related to the dimerization order parameter
with δ = 1–3, respectively. A solid (dotted) ellipse denotes a spin-
singlet (spin-triplet) dimer. The symbols on bond correspond to those
used in the following plots (b)–(d). (b) Spin-spin correlation function
for the bonds marked with the symbols in I. (c), (d) Similar plots to
(a) for II and III.
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correlation 〈(Si · S j )II〉 indicates the absence of dimerization
order parameter for δ = 2.

At γ � 0.195, the situation is a bit more complicated.
The translation symmetry is broken due to the presence of
dimerization order for δ = 2 and all the three dimerization
orders coexist. As a result, the two values of 〈(Si · S j )I〉 and

〈(Si · S j )III〉 are further split into four values. Likewise, the
correlation 〈(Si · S j )II〉 is also split into four values because
the strength of dimerization order can be different between
the apical and basal chains. Therefore, the magnetic struc-
ture consists of a supercell with four sites in the D2-VBS
phase.
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