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Giant anisotropy of Gilbert damping in a Rashba honeycomb antiferromagnet
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Giant Gilbert damping anisotropy is identified as a signature of strong Rashba spin-orbit coupling in a
two-dimensional antiferromagnet on a honeycomb lattice. The phenomenon originates in spin-orbit-induced
splitting of conduction electron subbands that strongly suppresses certain spin-flip processes. As a result, the
spin-orbit interaction is shown to support an undamped nonequilibrium dynamical mode that corresponds
to an ultrafast in-plane Néel vector precession and a constant perpendicular-to-the-plane magnetization. The
phenomenon is illustrated on the basis of a two-dimensional s-d-like model. Spin-orbit torques and conductivity
are also computed microscopically for this model. Unlike Gilbert damping, these quantities are shown to reveal
only a weak anisotropy that is limited to the semiconductor regime corresponding to the Fermi energy staying in
the close vicinity of the antiferromagnetic gap.
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I. INTRODUCTION

A gapless character of the spin-wave spectrum in isotropic
Heisenberg magnets in two dimensions results in the ho-
mogeneity of magnetic ordering being destroyed by thermal
fluctuations at any finite temperatures. In contrast, in van der
Waals magnets, characterized by intrinsic magnetocrystalline
anisotropy that stems from spin-orbit coupling [1], an ordered
magnetic state can be retained down to a monolayer limit.
Two-dimensional (2D) van der Waals magnets are currently
experiencing revived attention [2–8], driven by the prospects
of gateable magnetism [9–12], a continuing search for Kitaev
materials [13,14], and Majorana fermions [15], topologically
driven phenomena [16] as well as various applications [3,4,7].
The trade-off between quantum confinement, nontrivial topol-
ogy, and long-range magnetic correlations determines their
unique magnetoelectronic properties, in particular, a tunable
tunneling conductance [17] and magnetoresistance [18–20],
depending on the number of layers in the sample, as well as
long-distance magnon transport [21].

Ferromagnetic thin films have already entered commercial
use in hard drives, magnetic field, and rotation angle sensors
and in similar devices [7,22,23], while keeping high promise
for technologically competitive ultrafast memory elements
[24] and neuromorphic chips [25]. Moreover, it has recently
been suggested that current technology may have a lot to gain
from antiferromagnetic (AFM) materials. Indeed, manipulat-
ing AFM domains does not induce stray fields and has no
fundamental speed limitations up to THz frequencies [26].
Despite their ubiquitousness, AFM materials have, however,
avoided much attention from technology due to an apparent
lack of control over the AFM order parameter—the Néel

vector. Switching the Néel vector orientation by short electric
pulses has been put forward only recently as the basis for
AFM spintronics [27–29]. The proposed phenomenon has
been observed in noncentrosymmetric crystals such as CuM-
nAs [30–33] and Mn2Au [34–36]. It should be noted that,
in most cases, antiferromagnets are characterized by insulat-
ing type behavior [37], limiting the range of their potential
applications, e.g., for spin injection [38]. Interestingly, AFM
Mn2Au possesses a typical metal properties, inheriting strong
spin-orbit coupling and high conductivity, and is characterized
by collective mode excitations in the THz range [36].

Despite a lack of clarity concerning the microscopic mech-
anisms of the Néel vector switching, these experiments have
been widely regarded as a breakthrough in the emerging field
of THz spintronics [26,30,36,39–43]. It has been suggested
that current-induced Néel vector dynamics in an antiferro-
magnet is driven primarily by the so-called Néel spin-orbit
torques [29,32,44–56]. The Néel spin-orbit torque originates
in a nonequilibrium staggered polarization of conduction elec-
trons on AFM sublattices [29,32,48,50]. The characteristic
magnitude of the nonequilibrium staggered polarization and
its relevance for the experiments with CuMnAs and Mn2Au
remain, however, debated.

The Néel vector dynamics in an antiferromagnet is also
strongly affected by an interplay between different types of
Gilbert dampings. Unlike in a simple single-domain ferro-
magnet with a single sublattice, the Gilbert damping in an
antiferromagnet is generally different on different sublattices
and includes spin pumping from one sublattice to another.
A proper understanding of Gilbert damping is of key impor-
tance for addressing not only the mechanism of spin pump-
ing but also domain-wall motion, magnon lifetime, AFM

2469-9950/2020/101(10)/104403(11) 104403-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9659-424X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.104403&domain=pdf&date_stamp=2020-03-02
https://doi.org/10.1103/PhysRevB.101.104403


M. BAGLAI et al. PHYSICAL REVIEW B 101, 104403 (2020)

resonance width and many other related phenomena [57–61].
It is also worth noting that spin pumping between two thin
ferromagnetic layers with antiparallel magnetic orientations
shares many similarities with Gilbert damping in a bipartite
antiferromagnet [62,63].

A conduction electron mechanism for Gilbert damping in
collinear ferromagnets requires some spin-orbit interaction
to be present. It is, therefore, commonly assumed that spin-
orbit interaction of electrons naturally enhances the Gilbert
damping. Contrary to this intuition, we show that Rashba
spin-orbit coupling does generally suppress one of the Gilbert
damping coefficients and leads to the appearance of un-
damped nonequilibrium Néel vector precession modes in the
antiferromagnet.

Spin dynamics in a bipartite antiferromagnet is described
in terms of two mutually orthogonal vector fields, namely,
the vector n(t ) that is proportional to the Néel vector (differ-
ence between sublattice moments) and the vector m(t ) that
is proportional to the net magnetization (sum of sublattice
moments) of a sample. Even though the AFM ground state
corresponds to m = 0, it is widely understood that no Néel
dynamics is possible without formation of a small but finite
nonequilibrium magnetization m. It appears, however, that
Gilbert damping terms associated with the time dynamics of
m(t ) and n(t ) are essentially different from a microscopic
point of view.

Indeed, the Gilbert damping that is proportional to ∂t n is
characterized by a coefficient αn, which is vanishing in the
absence of spin-orbit interaction, much like it is the case
in the ferromagnets. This behavior can be traced back to
a spin-rotational symmetry of the collinear antiferromagnet.
Indeed, the absolute value of n is conserved up to the order m2.
Thus, the dynamics of the Néel vector is essentially a rotation
that does not change the conduction electron spectrum as far
as the spin-rotation invariance is present. Breaking the spin-
rotation symmetry by spin-orbit interaction induces, therefore,
a finite αn, which is quadratic with respect to spin-orbit
interaction strength.

In contrast, the Gilbert damping that is proportional to
∂t m originates directly in the conduction electron scattering
even in the absence of any spin-orbit interaction. The strength
of the damping in a simple symmetric antiferromagnet is
characterized by a coefficient αm, which is typically much
larger than αn. As a rule, the spin-orbit interaction tends to
suppress the coefficient αm by restricting the ways in which
electrons can damp their magnetic moments. The condition
αm � αn has been indeed well documented in a metallic
antiferromagnet [57,59].

In this paper, we uncover the microscopic mechanism of
strong and anisotropic Gilbert damping suppression due to the
influence of spin-orbit interaction in a 2D AFM model on a
honeycomb lattice.

Below we focus mainly on the antiferromagnet in the
regime of good metallic behavior, such that the Fermi energy
of electrons exceeds by an order of magnitude that of an
effective s-d exchange coupling between electron spins and
localized AFM momenta. In this case, the transition to the
highly anisotropic regime takes place provided the charac-
teristic spin-orbit energy λ exceeds the scale h̄/τ , where τ

is the electron scattering time. Alternatively, one may think

of characteristic spin-orbit length becoming smaller than the
mean-free path of conduction electrons. We show here that
the splitting of 2D Fermi surfaces by spin-orbit interaction
leads to a dramatic suppression of electron spin flips in certain
directions. This results in a strong anisotropy of both Gilbert
damping tensors α̂n and α̂m, that get some of their principal
components vanishing. This extreme anisotropy in the damp-
ing leads to essentially undamped Néel vector dynamics for
certain nonequilibrium modes.

In particular, we identify a specific undamped mode that
corresponds to perpendicular-to-the-plane magnetization m ∝
ẑ and in-plane Néel vector n(t ) ⊥ ẑ. The Néel vector corre-
sponding to the mode precesses around the direction of m with
the frequency Jexm/h̄, where Jex is the value of the isotropic
AFM exchange.

The presence of the undamped mode identified here il-
lustrates how lowering the symmetry of the electronic bath
(by spin-orbit interaction) may induce a conservation law
in the localized spin subsystem. Based on this microscopic
mechanism, we provide qualitative arguments in favor of
a generality of the giant Gilbert damping anisotropy in a
2D metallic antiferromagnet with spin-orbit coupling. Even
though the undamped mode cannot be associated with a
single spin wave or a magnon, its presence has a strong
impact on the nonequilibrium Néel vector dynamics in 2D
Rashba AFMs.

Apart from the Gilbert damping, our results extend to cover
conductivity and spin-orbit torques in the Rashba honeycomb
AFM model. We also demonstrate how weak anisotropy of all
these quantities emerge with Fermi energies approaching the
AFM band gap.

II. PHENOMENOLOGY OF AFM DYNAMICS

In this paper, we choose to describe the antiferromagnet
with a classical Heisenberg model for localized spins SX =
SnX on two sublattices X = A, B. The spins have the same
modulus S and antiparallel directions nA = −nB in the ground
state. The AFM Heisenberg model is coupled to an effective
tight-binding model of conduction electrons (see Appendix A)
by means of exchange interaction,

Hsd = −J
∑

i

∑
σσ ′

Si · σσσ ′c†
iσ ciσ ′ , (1)

where J stands for an s-d-like exchange energy that is the
same on A and B sublattices, the operators c†

iσ (ciσ ) are the
standard creation (annihilation) operators for an electron on
the lattice site i with the spin index σ , and the notation
σ = (σx, σy, σz ) represents the three-dimensional vector of
Pauli matrices.

The real-time dynamics of an antiferromagnet is, then, de-
fined by two coupled differential equations (Landau-Lifshitz-
Gilbert equations) on the unit vectors nA and nB,

ṅA = HA × nA + (JA/h̄) nA × sA, (2a)

ṅB = HB × nB + (JA/h̄) nB × sB, (2b)
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where the dot stands for the time derivative, sX is the spin
density of conduction electrons on the sublattice X ,

sA,B(r) = 1

2

∑
iσσ ′

〈c†
iσ σσσ ′ciσ ′ 〉 2

A , (3)

and A is the area of the unit cell in the antiferromagnet. The
notations HA,B refer to effective fields on the sublattices A and
B that are defined by the Heisenberg model.

For an isotropic antiferromagnet, one finds an effective
field [28] HA + HB = Jexm/h̄ + 2H , where H is an external
magnetic field in frequency units and Jex is a direct AFM
exchange energy that is one of the largest energies in the
problem. In turn, the combination HA − HB is proportional
to magnetic anisotropy that we do not specify in this paper.

Magnetization dynamics in antiferromagnets is conve-
niently formulated in terms of the Néel and magnetization
vectors,

n = (nA − nB)/2, m = (nA + nB)/2, (4)

that remain mutually perpendicular n · m = 0 and yield the
constraint n2 + m2 = 1. The dynamics necessarily induces
a finite nonequilibrium magnetization vector m, while the
condition m � 1 remains to be fulfilled.

From Eqs. (2), we obtain

ṅ = −� n × m + H × n + n × s+ + m × s−, (5a)

ṁ = H × m + m × s+ + n × s−, (5b)

where � = 2JexS/h̄ and s± = JA (sA ± sB)/2h̄. In Eqs. (5),
we have deliberately skipped terms that are induced by
anisotropy of AFM exchange since the latter depend on
particularities of the AFM Heisenberg model that we do not
discuss here.

The vector s+ is proportional to average polarization of
conduction electrons, while the vector s− is proportional to the
staggered polarization. The quantities s± = s±

0 + δs± contain
equilibrium contributions s±

0 that characterize various inter-
actions induced by conduction electrons. These contributions
do renormalize the parameters of the AFM Heisenberg model
and are not the subject of the present paper.

The nonequilibrium contributions δs± originate from vari-
ous forces applied to conduction electrons. One natural exam-
ple is the electric field that not only induces an electric current
in the sample but also contributes to δs±. The electric field can
be further related to electric current by the resistivity tensor.
The response of spin densities to electric current defines the
so-called spin-orbit torques in Eqs. (5) that we also compute.

Similarly, the response of δs± to the time derivatives ṅ
and ṁ describe various types of Gilbert damping induced by
conduction electrons. Quite generally, such a response can be
written in the form of a tensor,(

δs+
δs−

)
=

(
α̂m α̂mn

α̂nm α̂n

)(
ṁ
ṅ

)
, (6)

where all tensor components may themselves depend on the
vectors n and m.

Gilbert dampings, in their original meaning, correspond
to the contributions to δs± that are symmetric under the
time reversion. (Here, by time reversion, we mean the time
reversion of the Heisenberg model for localized spins, while

the tight-binding model part describing “the bath” of conduc-
tion electrons remains nonreversed). The terms that change
sign under the time reversion should, more appropriately, be
referred to as effective spin renormalizations. Both types of
terms are, however, obtained from the microscopic analysis of
the Gilbert damping tensors in Eq. (6), similar to the case of
ferromagnets [64].

Time reversion, mentioned above, does not apply to con-
duction electrons that form a “bath” for an angular momen-
tum. Thus, the time reversion does not reverse the scattering
time τ that describes the scattering of conduction electrons
on disorder potential. Such a definition helps to identify the
dissipative (symmetric with respect to the time reversion) con-
tributions to δs± that correspond to Gilbert dampings. These
contributions must, however, change signs under complete
time reversion (the one which also includes that of the electron
bath and corresponds to the transformation τ → −τ ). We
will see below, indeed, that all Gilbert dampings are naturally
proportional to the scattering time τ in the same way as the
longitudinal conductivity.

Before we proceed with the microscopic analysis of δs±
for a particular model, it is instructive to draw some general
consequences for Eqs. (5) based on symmetry arguments in
the case of collinear antiferromagnets with sublattice symme-
try and spin-rotational invariance (i.e., for vanishing spin-orbit
interaction).

Assuming that deviations from the AFM ground state
remain small, we shall limit ourselves to the linear order in m
in Eq. (7a) and to the quadratic order in m in Eq. (7b). Thus,
we shall retain terms up to linear order in m in the tensors α̂m,
α̂nm, and α̂mn and terms up to quadratic order in m in α̂n.

Mixing tensors α̂mn and α̂nm must be odd in m, which
implies, for our precision, a linear in m approximation. As
a result, the sublattice symmetry (the symmetry with respect
to renaming A and B) prescribes that the mixing tensors must
also be linear in n. In the absence of spin-orbit coupling, we
are also restricted by spin-rotation invariance that (together
with the sublattice and time-reversion symmetries) dictates
the following form of the Gilbert damping contributions to
the nonequilibrium spin densities:

δs+ = αmṁ+α′
mn×(n×ṁ)+αmnm×(n×ṅ), (7a)

δs− = αnṅ+α′
nm×(m×ṅ) + αnmn×(m×ṁ), (7b)

where all coefficients are assumed to be constants.
It is easy to see that the vector forms n × (m × ṅ) and

m × (n × ṁ), which could have, respectively, entered the
spin densities δs+ and δs−, do not contribute to Eqs. (5) in
the precision explained above. Substitution of Eqs. (7) into
Eqs. (5) gives

ṅ = −� n×m + H×n + ᾱm n×ṁ + αn m×ṅ, (8a)

ṁ = H × m + αn n × ṅ + ᾱmm × ṁ + γ (n × m)(n · ṁ)

−α′
nm2n × ṅ, (8b)

where ᾱm = αm−α′
m and γ = αmn+αnm+α′

m−α′
n. Discard-

ing the three last terms in Eq. (8b), which are all of the second
order in m, we indeed arrive at a set of Gilbert damping terms
that is widely used in the AFM literature [57,58,60].
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FIG. 1. Electronic band structure of the honeycomb AFM model
of Eq. (9) for different orientations of the Néel vector (nz = cos θ ).
Two-dimensional momenta p are measured with respect to the wave-
vectors K and K ′ that specify two nonequivalent valleys. Deviation
of the Néel vector from the perpendicular-to-the plane configuration
(θ = 0) lifts the valley degeneracy. We restrict our analysis to the
metallic regime with Fermi energies corresponding to two Fermi
surfaces per valley (an example is shown by a black dotted line). The
energy scale � characterizes the strength of s-d exchange interaction.

The symmetry consideration behind Eqs. (8) has essen-
tially relied upon the spin-rotation invariance. This also im-
plies αn = 0 as has been pointed out in the introductory
section. The coefficient αm can, in turn, be finite and large,
even in the absence of spin-orbit interaction. As we will
show below, the presence of spin-orbit interaction does not
only provide us with a finite αn but also drastically changes
the symmetry structure of Eqs. (8). We will demonstrate
that the onset of spin-orbit interaction strongly affects the
coupling of the localized spin subsystem to the electron bath
(described by the tight-binding model), resulting in a strong
reduction in the ability of conduction electrons to flip spins
in certain directions and, therefore, to impose a friction on
magnetization dynamics.

In the following, we turn to the microscopic analysis of
the conductivity (Sec. IV), spin-orbit torques (Sec. V), and
Gilbert dampings (Sec. VI) in a particular model of Rashba
honeycomb antiferromagnet that has been put forward re-
cently by some of the authors [65]. Rashba spin-orbit interac-
tion breaks spin-rotational invariance of the model by singling
out the direction ẑ perpendicular to the 2D plane. We therefore
investigate how such spin-rotation breaking manifests itself in
the anisotropy of the above-mentioned quantities.

III. MICROSCOPIC MODEL

For the sake of a microscopic analysis, we adopt a sublat-
tice symmetric s-d-like model of a 2D honeycomb antiferro-
magnet with Rashba spin-orbit coupling that was introduced
in Ref. [65]. The energy dispersion of this model is illustrated
schematically in Fig. 1. The low-energy model for conduction
electrons responsible for the dispersion in Fig. 1 is described
by an effective Hamiltonian (see Appendix A) that in a

valley-symmetric representation reads

H eff = v p · � + 1
2λ[σ × �]ẑ − � n · σ �zz + V (r). (9)

Here �, �, and σ are the vectors of Pauli matrices in sublat-
tice, valley, and spin space, respectively, v is the characteristic
Fermi velocity, while λ and � = JS are the energy scales
characterizing the strength of Rashba spin-orbit coupling and
s-d-like exchange energy, correspondingly.

The term V (r) stands for a scalar Gaussian white-noise
disorder potential, which is proportional to the unit matrix
in sublattice, valley, and spin space. The potential has a zero
mean value 〈V (r)〉 = 0 and is fully characterized by the pair
correlator,

〈V (r)V (r′)〉 = 2π (h̄v)2αd δ(r − r′), (10)

where the angular brackets denote the averaging over disorder
realizations. The dimensionless parameter αd � 1 quantifies
the disorder strength.

The disorder potential is responsible for a momentum
relaxation of conduction electrons. Exchange interaction and
spin-orbit scattering (or the scattering on noncollinear con-
figurations with m 
= 0) enable coupling between localized
angular momenta and kinetic momenta of electrons. Together,
these mechanisms form a channel to dissipate angular mo-
mentum of localized spins into the lattice. Thus, our model
provides us with a microscopic framework to study dissipative
quantities such as Gilbert dampings, antidamping spin-orbit
torques, and conductivity that we compute below. We also
note that the computation of spin-relaxation time can be
directly related to our analysis of Gilbert damping [66,67].

The spectrum of the model Eq. (9) with V (r) = 0 consists
of two electron and two hole branches for each of the valleys
as illustrated in Fig. 1,

εe
±,ς (p) =

√
v2 p2 + �2 ± ςλ�nz + λ2/4 ∓ λ/2, (11a)

εh
±,ς (p) = −

√
v2 p2 + �2 ∓ ςλ�nz + λ2/4 ± λ/2, (11b)

where ς = ± is the valley index. All spectral branches are
manifestly isotropic with respect to the direction of the elec-
tron momentum p irrespective of the Néel vector orientation
(as far as m = 0).

To limit the complexity of our microscopic analysis, we
restrict ourselves to the metallic regime that corresponds to
the Fermi energy εF > � + λ above the minimum of the top
electron branches, εe

+,ς (p), as shown schematically in Fig. 1.
Note that the Fermi energy εF is counted in the model from
the center of the AFM gap. We also focus on the limit of weak
disorder εF τ/h̄ � 1, where τ = h̄/(παdεF ) stands for the
electron scattering time. Also, to describe spin-orbit-induced
anisotropy, we find it convenient to decompose the Néel
vector (as well as the magnetization vector) to the in-plane
and perpendicular-to-the-plane components as n = n‖ + n⊥,
where n⊥ = nz ẑ.

IV. CONDUCTIVITY

The electric conductivity in the metallic regime is domi-
nated by electron diffusion. Despite the fact that the Fermi
surface (line) is isotropic and does not depend on the direction
of n‖, the conductivity appears to be weakly anisotropic with
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FIG. 2. A model of Rashba honeycomb antiferromagnet with
two sublattices, A and B, and on-site exchange interaction between
localized momenta and conduction electrons [see Eq. (1)]. The large
blue arrow represents the Néel vector, n, that is, in general, charac-
terized by nonvanishing in-plane, n‖, and perpendicular-to-the-plane,
n⊥, components. We refer to a specific coordinate system with x̂ axis
chosen to be in the direction of n‖.

respect to in-plane rotations of the Néel vector due to the onset
of spin-orbit interaction. In particular, for nz = 0, we find the
diagonal conductivity components

σxx = 4e2

h

εF τ

h̄

ε2
F − �2

ε2
F + 3�2

, (12a)

σyy = σxx

[
1 + ε2

F

ε2
F − �2

λ2�2

ε4
F + ε2

F �2 + 2�4

]
, (12b)

where the principal axes correspond to choosing x̂ direction
along n‖ (see Fig. 2). In the deep metal regime, and for a
general direction of n, this anisotropy is evidently small,

ρxx − ρyy

ρxx + ρyy
= λ2�2

ε4
F

(
1 − n2

z

)
, εF � λ + �, (13)

where ρaa = 1/σaa is the corresponding resistivity tensor
component. We note that the anomalous Hall conductivity is
identically vanishing in the model of Eq. (9).

The results of Eqs. (12) and all subsequent results of our
paper are technically obtained from linear response Kubo
formulas evaluated in the diffusive approximation (ladder
diagram summation). The details of these calculations can be
found in Appendixes B–D.

V. SPIN-ORBIT TORQUE

Before proceeding with the microscopic analysis of Gilbert
damping, we shall discuss the effects of spin-orbit-induced
anisotropy for spin-orbit torques in the model of Eq. (9). Since
this anisotropy appears to be weak in the metal regime, we
shall touch on it only briefly.

As was already mentioned, the spin-orbit torques originate
in the response of nonequilibrium spin polarizations δs± to
electric current. Technically, we first compute the response of
δs± to electric field and then express the electric field in terms
of 2D electric current density j using the conductivity tensor
of Eqs. (12).

FIG. 3. The coefficients a, b, and c in Eq. (14) as a function of
the direction of the Néel vector, nz = cos θ , for two different Fermi
energies: εF = 4� (left panel) and εF = 16� (right panel). We use
λ = 1.5�. For nz = 0, the results correspond to Eqs. (15).

A straightforward computation of such a response gives
δs− = 0 (see Appendixes B and C for more detail) and

δs+ = a
(
n2

z

)
ẑ × j + b

(
n2

z

)
n‖ × (n‖ × (ẑ × j))

+ c
(
n2

z

)
n‖ × (n⊥ × (ẑ × j)), (14)

where the coefficients a, b, and c do generally depend on n2
z =

1 − n2
x − n2

y and are shown in Fig. 3. It is appropriate to recall
here that the computation of the responses from the model of
Eq. (9) refers to the case when m = 0. The symmetry form of
Eq. (14) in this case has been also established recently from
numerical simulations [65].

Importantly, the first term on the right-hand side of Eq. (14)
represents the well-known Rashba-Edelstein effect [68], while
the other two terms represent higher harmonics of the same
fieldlike effect that arise due to spin-rotation symmetry break-
ing. Antidamping like torques (that are even under time re-
versal) are vanishing in the model due to the valley symmetry
constraint. This symmetry reads xH[n]x = H[−n], from
which it follows that the response of δs+ to charge current
must be an even function of n.

The behavior of the coefficients a, b, and c as a function of
nz is illustrated in Fig. 3 for two different choices of the Fermi
energy. For in-plane Néel vector orientations (nz = 0), we find

a = a0
1 + 3δ2

1 + 2λ̄2δ2 + δ4 − 2δ6
, (15a)

b = 2 a δ2 1 − 2λ̄2 − 4δ2 + δ4

1 + 2δ2 − 3δ4
, (15b)

c = −2 a δ2 1 + 2λ̄2δ2 − 2δ2 − 3δ4 + 4δ6

1 + 4δ2 + 5δ4 + 6δ6
, (15c)

where

a0 = AJ

eh̄v

λ

εF
, λ̄ = λ

εF
, δ = �

εF
. (16)

In the metal regime, εF � λ + �, the results of Eqs. (15) are
reduced to

a = AJ

eh̄v

λ

εF
, b = −c = 2

AJ

eh̄v

λ

εF

(
�

εF

)2

. (17)

One can, therefore, see that the high harmonics terms (propor-
tional to b and c) become irrelevant in the metal regime.
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Vanishing response of the staggered polarization, δs− = 0,
for the model of Eq. (9) is a simple consequence of the
sublattice symmetry. As shown below the presence of a finite,
though small, m breaks such a symmetry and leads to a
finite δs−. Taking into account a linear in m term in the
Hamiltonian is also necessary to obtain finite mixed Gilbert
damping tensors α̂nm and α̂mn in Eq. (6).

A low-energy model that takes into account finite magneti-
zation vector reads (see also Appendix D)

H = H eff − � m · σ, (18)

where H eff is given by Eq. (9). The conductivity tensor
does not acquire a linear in m terms in the leading order
with respect to the large metal parameter εF τ/h̄, because
the anomalous Hall effect remains subleading with respect to
the metal parameter. Similarly, the result of Eq. (14) is not
affected by the linear in m corrections.

However, the direct computation of the staggered polar-
ization response (in the linear order with respect to m) gives
rise to a finite result. In the limit of large Fermi energy εF �
λ + �, we find

δs− = AJ

eh̄v

λ

εF

(
�

εF

)2

[2 n⊥×(m⊥×(ẑ× j))

+ 2m‖×(n⊥×(ẑ× j)) − 3 n‖×(m⊥×(ẑ× j))], (19)

where the overall strength of the effect is again of the order
of the coefficients b and c. This makes the effects of nonequi-
librium staggered polarization (including the celebrated Néel
spin-orbit torque) irrelevant in the metal regime. Indeed, stag-
gered polarization can hardly be induced by electrons with
wavelengths that strongly exceed the distance between A and
B sublattices.

The results of Eqs. (14) and (15) clearly suggest that the
only torques surviving in the large energy limit are those re-
lated to nonequilibrium polarization δs+ = a0 ẑ × j, which is
nothing but the standard Rashba-Edelstein effect [68]. These
torques have a form T n = a0 n × (ẑ × j) on the right-hand
side of Eq. (5a) and T m = a0 m × (ẑ × j) on the right-hand
side of Eq. (5b). The anisotropy of torques is, however,
irrelevant in this limit.

VI. GILBERT DAMPING

Surprisingly, the situation is different when we consider
Gilbert damping terms. In this case, we find that the giant
anisotropy of Gilbert damping persists to arbitrarily large
Fermi energy as soon as spin-orbit energy λ exceeds h̄/τ . The
latter condition ensures that the scattering between spin-split
subbands is suppressed.

The direct computation of the Gilbert damping tensors for
λ � h̄/τ gives

δs+ = α‖
m ṁ‖ + γ�mm + γ�mn, (20a)

δs− = α⊥
n ṅ⊥ + γ�nm + γ�nn, (20b)

where the terms �ab contain various vector forms.

Far in the metal regime, εF � λ + �, we find

α‖
m = 2

εF τ

h̄

AJ2S

π h̄2v2

[
1 − �2

ε2
F

(
2 + n2

z

) + . . .

]
, (21a)

α⊥
n = εF τ

h̄

AJ2S

π h̄2v2

[(
λ

εF

)2

+ . . .

]
, (21b)

γ = 2
εF τ

h̄

AJ2S

π h̄2v2

[(
�

εF

)2

+ . . .

]
, (21c)

while the vectors forms �ab can be written as

�mm = n×(n×ṁ) + n‖×(n‖×ṁ‖)

− 2n‖×(n‖×ṁ⊥), (22a)

�mn = n×(m‖×ṅ⊥) − m⊥×(n‖×ṅ⊥)

+ n⊥×(m⊥×ṅ‖) − n‖×(m‖×ṅ‖)

− 3m⊥×(n⊥×ṅ‖), (22b)

�nm = 2n‖×(m‖×ṁ⊥) + 2m‖×(n⊥×ṁ‖)

− n⊥×(m⊥×ṁ) + 2m⊥×(n×ṁ)

+ m‖×(n×ṁ⊥) − m⊥×(n⊥×ṁ‖), (22c)

�nn = −m × (n × ṅ‖). (22d)

Thus, we see from Eqs. (21) that the coefficients α⊥
n and

γ are vanishingly small in the metal regime. Moreover, in the
limit εF � �, the only nonvanishing contributions to Gilbert
dampings are given by the first terms on the right-hand sides
of Eqs. (20) that are manifestly anisotropic.

The onset of spin-orbit interactions therefore makes Gilbert
dampings ultimately anisotropic, also in the deep metal
regime. This is in contrast to conductivity and spin-orbit
torques that are quickly becoming isotropic in the metal limit.
For εF � λ + �, we find the well-known Landau-Lifshitz-
Gilbert equations,

ṅ = −� n×m + H×n + ᾱ‖
m n×ṁ‖ + α⊥

n m×ṅ⊥,
(23)

ṁ = H × m + α⊥
n n × ṅ⊥ + ᾱ‖

mm × ṁ‖,

where we again omit terms that originate, e.g., from magnetic
anisotropy of the antiferromagnet. Equations (23) are clearly
different from Eqs. (8) derived on the basis of symmetry
analysis in the absence of spin-orbit interaction.

The very pronounced, highly anisotropic Gilbert damping
terms in the Landau-Lifshitz-Gilbert equations of Eqs. (23)
represent the main result of our paper. The phenomenon of the
giant Gilbert damping anisotropy in the 2D antiferromagnet
clearly calls for a qualitative understanding that we provide
in Sec. VII.

VII. QUALITATIVE CONSIDERATION

The results of Eqs. (20) and (21) suggest that the anisotropy
of Gilbert damping is most pronounced in the metal limit,
εF � � + λ as far as λτ/h̄ � 1. In particular, certain spin-
density responses are vanishing in this limit. One of them
is the response of the average spin density δs+

z to ṁz that is
defined by the tensor component αzz

m in Eq. (6). The other four
vanishing tensor components αxx

n , αxy
n , αyx

n , and α
yy
n correspond
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to the responses of the in-plane staggered spin densities δs−
x

and δs−
y to ṅx and ṅy.

It is important to stress that the component αzz
m is not

only finite but also quite large in the absence of spin-orbit
interaction, i.e., for λ = 0. It is, therefore, instructive to un-
derstand how the onset of spin-orbit interaction may cancel
αzz

m response and lead to the conservation of z projection of
magnetization vector.

Such a qualitative understanding can be achieved by con-
sidering the Kubo-Greenwood formula for αzz

m for the model
of Eq. (18) in the limit � → 0 and τ → ∞,

αzz
m ∝

∑
p

∑
s,s′=±

|〈�p,s|σz|�p,s′ 〉|2δ(εF − εe
p,s

)
δ
(
εF − εe

p,s′
)
,

(24)

where εe
p,± =

√
v2 p2 + λ2/4 ∓ λ/2 correspond to the two

electronic branches of Eq. (11a) that are evidently valley
degenerate in the limit � → 0.

The states �p,s are simply the eigenstates of the Hamilto-
nian H0 = vp · � + (λ/2)[σ × �]z,

H0 =

⎛⎜⎝ 0 0 v(px −ipy) 0
0 0 −iλ v(px −ipy)

v(px +ipy) iλ 0 0
0 v(px +ipy) 0 0

⎞⎟⎠, (25)

that can be explicitly written as

�p,± = 1

2
√

v2 p2 ∓ λεe±/2

⎛⎜⎝ vp e−iφ

±iεe
±

εe
±

±ivp eiφ

⎞⎟⎠, (26)

where we have used px = p cos φ, py = p sin φ.
One may notice that 〈�p,s|σz|�p,s〉 = 0 for any value of

λ, suggesting that the response function αzz
m in Eq. (24) is

vanishing. This is, however, not the case for λ = 0. Indeed,
in the absence of spin-orbit interaction, the electron branches
become degenerate εe

p,± = vp such that the in-plane spin-flip
processes contribute to the Kubo formula:

〈�p,+|σz|�p,−〉|λ=0 = 〈�p,−|σz|�p,+〉|λ=0 = 1. (27)

These processes are exactly the ones responsible for a fi-
nite Gilbert damping component αzz

m in the absence of spin-
orbit interaction. The spin-orbit-induced splitting of the sub-
bands forbids these spin-flip processes as soon as λτ/h̄ �
1 and leads to a giant anisotropy of Gilbert damping in
the metal limit. Indeed, the other elements of the Gilbert
damping tensors αxx

m and α
yy
m remain finite irrespective of the

subband splitting,

〈�p,±|(σx + iσy)|�p,±〉 = ±iv p eiφ√
v2 p2 + λ2/4

. (28)

One can further show that for λ = 0 the entire Gilbert damp-
ing tensor α̂m becomes isotropic α̂xx

m = α̂
yy
m = α̂zz

m as has been
expected on the basis of the symmetry analysis. In this case,
spin polarization of itinerant electrons may not distinguish
in-plane and out-of-plane projections of the vectors n and m
in contrast to the forms of Eqs. (20).

A very similar physics is also responsible for the anisotropy
of the tensor α̂n. It is worth noting that the same type

of anisotropy is known to take place in the limit of large
spin-orbit interaction in 2D Rashba ferromagnets [64]. Spin-
orbit-induced anisotropy of Gilbert damping, however, plays
a lesser role in 2D ferromagnets due to the much stricter
constraint on the single magnetization vector. A less restricted
dynamics of m and n vectors make the Gilbert damping
anisotropy play a bigger role in 2D antiferromagnets.

Indeed, it can be directly seen from Eqs. (23) that a
nonequilibrium state with m = mẑ and n = n‖ becomes un-
damped in the absence of external field H = 0. Such a state
corresponds to the undamped Néel vector precession around
the ẑ axis with a frequency given by Jexm. The state clearly
survives in the presence of easy plane magnetic anisotropy in
the antiferromagnet.

The above argument shows that the physics of the spin-
orbit-induced suppression of Gilbert damping in AFM as well
as spin-orbit-induced anisotropy of the Gilbert damping has
a microscopic mechanism that obviously extends beyond the
model considered in this paper. We believe, therefore, that
such a phenomenon remains to be rather generic for a variety
of 2D or layered AFM systems with strong spin-orbit coupling
of Rashba type.

VIII. CONCLUSIONS

In this paper, we demonstrate that the presence of suf-
ficiently strong spin-orbit coupling λτ/h̄ � 1 results in the
ultimate anisotropy of the Gilbert damping tensor in the metal
regime, εF � � + λ. One can trace the phenomenon to the
spin-orbit-induced splitting of Fermi surfaces that forbids
scattering processes that are responsible for the relaxation of
certain magnetization and Néel vector components.

We also demonstrate that a finite in-plane projection n‖
of the Néel vector is responsible for a weak anisotropy of
conductivity and spin-orbit torques for Fermi energies ap-
proaching the band edge, εF ∼ � + λ. This anisotropy is,
however, absent in the metallic regime.

Gilbert damping is, however, isotropic in the absence of
spin-orbit interaction as it is required by symmetry consider-
ations. Thus, we demonstrate that the onset of Rashba spin-
orbit interaction in 2D or layered AFM systems leads to a gi-
ant anisotropy of Gilbert damping in the metallic regime. The
physics of this phenomenon originates in spin-orbit-induced
splitting of the electron subbands that destroys a particular
decay channel for magnetization and leads to undamped pre-
cession of the Néel vector. The phenomenon is based on the
assumption that other Gilbert damping channels (e.g., due to
phonons) remain suppressed in the long magnon wavelength
limit that we consider. The predicted giant Gilbert damping
anisotropy may have a profound impact on the Néel vector
dynamics in a variety of 2D and layered AFM materials.
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APPENDIX A: MODEL SYSTEM

In this Appendix, we shall briefly justify Eqs. (9) and
(18) of the main text. We start from an s-d-like model
for a 2D antiferromagnet on a honeycomb lattice [65]. The
model includes a local exchange interaction between localized
magnetic moments and conduction electron spins as given
by Eq. (1). Itinerant electrons in the model are, therefore,
governed by the tight-binding Hamiltonian,

H0 = − t
∑

i

∑
σσ ′

c†
iσ ciσ ′ − J

∑
i

∑
σσ ′

Si · σσσ ′c†
iσ ciσ ′

+ iλ

3a

∑
〈i, j〉

∑
σσ ′

ẑ · (σ × d i j )σσ ′c†
iσ c jσ ′ , (A1)

where we do ignore disorder for a moment. The model is
characterized by the nearest-neighbor hopping energy t and
the Rashba spin-orbit coupling energy λ, the z axis is aligned
perpendicular to the 2D plane, the in-plane vectors d i j connect
the neighboring sites i and j on a honeycomb lattice. For any
site i on the sublattice A, we choose

d1 = a

(
0
1

)
, d2 = a

2

(√
3

−1

)
, d3 = −a

2

(√
3

1

)
, (A2)

where a is the length of the bond between A and B.
By projecting the tight-binding model of Eq. (A1) on states

in the vicinity of the valley wave vectors,

K = 4π

3
√

3a

(
1
0

)
, and K ′ = −K, (A3)

we find, in the valley symmetric approximation, the effective
Hamiltonian of Eq. (9) with the assumption that SA = −SB,
where v = 3ta/2h̄. By relaxing the assumption, we obtain the
model of Eq. (18).

APPENDIX B: LINEAR RESPONSE TENSORS

To keep technical expressions compact, we let h̄ = 1 and
εF = ε below. Our technical analysis is based on the linear
response of electron spin density to various perturbations at
zero frequency (DC) limit. In particular, we consider three
types of responses: the one with respect to electric current
(via electric field and inverse conductivity tensor), the one
with respect to the time derivative of the Néel vector, and the
other one with respect to the time derivative of magnetization
vector. These responses are summed up as

δs+ = ŜSOT
+ j + ŜGD

mn ṅ + ŜGD
m ṁ, (B1a)

δs− = ŜSOT
− j + ŜGD

nm ṁ + ŜGD
n ṅ, (B1b)

where we define the response tensors ŜSOT
± that are describ-

ing spin-orbit torques (both fieldlike and antidamping) and
various ŜGD tensors that are describing various contributions

to Gilbert dampings (and to effective spin renormalizations)
[64].

To compute the linear response tensors in Eqs. (B1), we
apply the standard Kubo formula,

δs±
α = J2Sv2A

2V

∑
β

T̂r
〈
ĜRŝ±

α ĜAF̂β

〉 ∂Xβ

∂t
, (B2)

where V is the system area, T̂r is an operator trace, ĜR(A) =
(ε − H ± i0) are retarded (advanced) Green’s function op-
erators, ŝ+

α = σα , ŝ−
α = z�zσα are the operators corre-

sponding to the average spin-polarization s+ and staggered
spin-polarization s−, the product F̂ · X (t ) represents the time-
dependent perturbation in the Hamiltonian, while the angular
brackets denote the disorder averaging that we consider in
diffusive (ladder) approximation.

The linear-response formula Eq. (B2) assumes a zero-
temperature and zero-frequency limit that corresponds to tak-
ing both Green’s functions at the same energy ε = εF . We
also neglect the Fermi-sea contribution (also known as Středa
contribution) since such a contribution appears to be either
zero or subleading in the metal parameter ετ � 1 with respect
to our results.

Thus, to compute Gilbert dampings and spin-orbit torque
tensors we consider a linear response of δs± to the three
perturbations mentioned above. Each perturbation is param-
eterized by the term δH = F̂ · X (t ) with

Ẋ = ṅ, F̂ = −�z�zσ, (B3a)

Ẋ = ṁ, F̂ = −� σ, (B3b)

Ẋ = (πv/e)σ̂−1 j, F̂ = �, (B3c)

where σ̂ is the conductivity tensor (this is computed from
the standard Kubo formula which is analogous to the one
in Eq. (B2) but for the response of current density to
electric field). The disorder averaging amounts to replac-
ing Green’s functions in Eq. (B2) with the corresponding
disorder-averaged Green’s functions and to replacing one
of the operators, ŝα or F̂ , with the corresponding vertex-
corrected operator.

Disorder-averaged Green’s functions become diagonal in
the momentum space due to restored translational invariance
and take the form GR(A)

p = [ε − H − �R(A)]−1, where the
Hamiltonian H is defined in Eq. (9) of the main text, while
the self-energy �R(A) is evaluated in the Born-approximation
depicted schematically in Fig. 4(a).

We find that the real part of the self-energy does renormal-
ize the Fermi energy ε and the s-d exchange coupling strength
�, while the imaginary part reads

Im �R(A) = ∓παd

2
(ε − �z�z n · σ). (B4)

To evaluate linear response tensors in the leading order
with respect to the metal parameter ετ � 1, one also needs to
sum up the ladder diagrams as shown in Figs. 4(b) and 4(c).

To do that, one defines the vertex corrected operator

F̂ vc = F̂ + F̂ (1) + F̂ (2) + F̂ (3) + · · · , (B5)
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FIG. 4. Diagrammatic illustration. (a) Born approximation.
(b) Ladder approximation. (c) Disorder-averaged polarization bub-
ble. (d) Perturbative expansion of the disorder-averaged polarization
bubble.

where we denote by F̂ (i) the operator F̂ that is dressed by the
number of i disorder lines,

F̂ (i) = 2παd

∫
d2 p

(2π )2
GR

p F̂ (i−1)GA
p . (B6)

It appears that the summation in Eq. (B5) can be reduced to a
geometric series in a finite operator space. Indeed, let us define
the operator space that is spanned by 16 operators in each of
the valleys,

Bi = 1
2ζ�ασβ, i = {ζ , α, β}, (B7)

where i is a cumulative index with ζ = 0, z a valley parity
index, and α, β taking on the four values {0, x, y, z} each.

For B = (B1, B2, . . . , B32), we define the vertex corrected
operator vector as

Bvc = B + FB + F2B + F3B + · · · = 1

1 − F B, (B8)

where F stands for a matrix of vertex corrections. Using the
normalization condition Tr BiBj = 2δi j , we find

Fi j = παd

∫
d2 p

(2π )2
Tr

[
GA

p BiG
R
p Bj

]
, (B9)

where Tr stands for the usual matrix trace in the valley, spin,
and sublattice spaces.

It easy to imagine that the matrix inversion in Eq. (B8)
might be a daunting analytical task. We note, however, that
the matrix F is evidently diagonal in the valley space, and it
can also become block-diagonal in sublattice and spin spaces
by choosing a more convenient basis.

A particularly useful choice of basis corresponds to in-
plane rotation of both spin and sublattice Pauli matrices to the
frame associated with the in-plane projection n‖ of the Néel
vector. For spin Pauli matrices, this transformation is given by

σx → z
nxσx + nyσy√

n2
x + n2

y

, σy → z
nyσx − nxσy√

n2
x + n2

y

, (B10)

where we took advantage of the fact that the direction of
n is opposite in the two valleys. The same transformation
Eqs. (B10) has to be applied to �x and �y.

The matrix F is instrumental for the analysis of all linear
response tensors in Eqs. (B1). Indeed, using the definition of
Eq. (B9) in Eq. (B2) and summing up the diffusion ladders,

we find

δs±
α = J2Sv2A

2παd

∑
β

∑
i j

Tr[ŝ±
α Bi]Ri j Tr[F̂βBj]

∂Xβ

∂t
, (B11)

where R = F (1 − F )−1. Thus, the computation of all re-
sponse tensors is reduced in the diffusive approximation to the
computation of the vertex correction matrix F and subsequent
matrix inversion.

APPENDIX C: VERTEX CORRECTION

Still, finding an inverse matrix (1 − F )−1 is not that
straightforward due to a pair of eigenvalues (one per valley)
that equal exactly 1. The presence of such eigenvalues roots
in the particle conservation and is, therefore, not an artificial
problem. The unit eigenvalues do evidently prevent the matrix
inversion in Eq. (B8). Nevertheless, it can be shown that the
corresponding eigenvectors do not enter the final equations
of motion for localized spins. In the next section, we briefly
illustrate how one can formally avoid the particle conservation
divergence in the computation of vertex corrections.

Let us define by aζ the eigenvectors of F that correspond
to two unit eigenvalues, Faζ = aζ , with ζ = 0, z. For the
normalized vector aζ , we define special operators

B̄ζ = aζ · B = ε − �ζ�z n · σ

2
√

ε2 + �2
, (C1)

which are conserved with respect to impurity dressing B̄ζ =
B̄(i)

ζ for any order i. This means that the vertex-corrected oper-
ator B̄vc

ζ is formally diverging in the DC limit. In what follows,
we formally write B̄vc

ζ = R∞B̄ζ , where the limit R∞ → ∞ is
taken at the end of the calculation.

The response tensors defined by Eqs. (6) consist of dif-
ferent correlators of the operators �α , s+

α = σa, and s−
α =

z�zσα . It is evident that most of these operators are already
orthogonal to B̄ζ ,

Tr[�αB̄ζ ] = Tr[s+
α B̄ζ ] = Tr[s−

α B̄0] = 0, (C2)

while the only dangerous sector is related to the projection

Tr[s−
α B̄z] = − 4� nα√

ε2 + �2
, (C3)

which is evidently finite. The result of Eq. (C3) leads to a
formally diverging contribution δs−

div that is generally present
in all components of δs−:

δs−
div,α ∝ R∞

∑
β

Tr[ŝ−
α B̄z] Tr[F̂β B̄z]

∂nβ

∂t
. (C4)

One can immediately see, however, that such a diverging
contribution corresponds to a particular vector form,

δs−
div,α ∝ R∞nα n · ∂n

∂t
= 0, (C5)

that manifestly vanishes due to the constraint |n| = 1, which
is exact in the limit m = 0. Thus, the divergency in Bvc

div
(which originates in the diffusion pole of the density-density
response) is, in fact, harmless for the response tensors we
are discussing.
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It is interesting to note that the irrelevance of the diver-
gency in the Bvc

div operator extends to higher orders in m,
even though it becomes much harder to see. We touch on this
problem in Appendix D.

APPENDIX D: FINITE MAGNETIZATION

The deviation from a collinear AFM order can be ac-
counted by considering a finite net magnetization term in the
Hamiltonain perturbatively:

H = H eff + U, U = −� m · σ. (D1)

In the paper, we build the first-order perturbation theory with
respect to U .

First, it can be shown that the self-energy acquires the
linear in m contribution as

Im �R(A) = ∓παd

2
(ε − �z�z n · σ + � m · σ ). (D2)

Second, the Dyson expansion of the disorder-averaged
Green’s functions GR(A) with respect to m reads

GR(A) → GR(A) + GR(A)U R(A)GR(A), (D3)

where U R(A) = U (1 ± iπαd/2) and we disregarded terms
starting from quadratic order in m. Note that we have kept the
notations GR(A) for the disorder-averaged Green’s functions of
the unperturbed system.

The computation of linear response tensors amounts to
considering an additional contribution to the response tensor
represented by a complex class of diagrams depicted schemat-
ically in Fig. 4(d). Before ladder summation is applied, the
diagrams of Fig. 4(d) correspond to a contribution to the
correlator of two operators Bi and Bj of the type

Ui j = 2παd

∫
d2 p

(2π )2
Tr[GAU AGABiG

RBj

+ GABiG
RU RGRBj], (D4)

which has yet be dressed. The dressing amounts to replacing
both Bi and Bj operators with the corresponding vertex cor-
rected operators Bvc

i and Bvc
j , respectively.

The final result for the response of spin density is still given
by Eq. (B11), where the matrix R = F (1 − F )−1 is, however,
replaced with

R = F
1 − F + 1

1 − F U 1

1 − F , (D5)

which corresponds to diagrams Figs. 4(c) and 4(d). It is again
convenient to consider a particular basis for the matrix F as
defined in Eqs. (B10) to simplify analytical computation.

The problem of divergence in the operators B̄ζ does now
become less trivial. Careful analysis shows that the linear
terms in m included in Eq. (D5) lead to additional diverging
contributions to δs− of the form

δs−,(1)
div,α

∝ −R∞nα m · ∂m
∂t

, (D6)

which is analogous to the one in Eq. (C5) for a finite m. (We
remind that the constraint n2 + m2 = 1 provides a relation be-
tween these terms). The contribution in Eq. (D6) is, however,
of too high order in m in Eq. (5a) and cancels out completely
in Eq. (5b).

The terms linear in m are also responsible for diverging
contributions in δs+

α of the type

δs+
div,α ∝ R∞mα n · ∂n

∂t
= −R∞mα m · ∂m

∂t
, (D7)

which appear to be of higher than linear order in m, thus
exceeding our working precision.

Overall, one can show that the operators B̄ζ can be formally
excluded by projecting the operator space of Bi operators on
the corresponding subspace. The latter is facilitated by the
transformation F → PFP, where

P = 1 −
∑
ζ=0,z

aζ a†
ζ (D8)

is the projection operator. Here, a stands for the column
vector and a† for the corresponding conjugated string vec-
tor. Equation (D8) facilitates the regularized computation of
the vertex corrections and lead to the results presented in
the paper.
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