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We study the formation dynamics of spinor polariton condensates trapped in ring-shaped confining potentials
created by excitonic reservoirs. We consider in detail the interplay of the effective spin-orbit interaction provided
by transverse electric and transverse magnetic photonic modes splitting (TE-TM splitting) and exciton Zeeman
splitting provided by an external magnetic field. We demonstrate that tuning of the trap size obtained by shaping
of the external nonresonant and depolarized pumping allows formation of pairs of half-vortices of topological
charges ±1/2 in both spin components. Further, we show that the probabilities of the realizations of four possible
vortex configurations strongly depend on the value of the magnetic field. For certain values of the field, the
probability of the formation of a vortex with desired topological charge reaches 90%, which opens the possibility
of on-demand control of angular momentum of quantum fluids of light with a magnetic field.
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I. INTRODUCTION

Application of a magnetic field dramatically changes the
behavior of physical systems. In classical physics, charged
particles placed in a magnetic field move along circular
orbitals. In the quantum case, the presence of the vector
potential affects the phase of a wave function of a charged
particle, leading to such phenomena as splitting of the energy
levels corresponding to the different projections of the angular
momentum and famous Aharonov-Bohm effect [1,2]. In both
cases, initial symmetry of the clockwise and anticlockwise
rotation is broken, and charged particles are rotated by a
magnetic field.

Naturally, for neutral particles, magnetic field cannot di-
rectly change the orbital motion. However, it can still affect
their quantum states by interacting with their spin. If the latter
is coupled to the orbital degrees of freedom via spin-orbit
interaction, the application of a magnetic field can lead to
the appearance of a Berry phase and U(1) synthetic gauge
field, which affects the phase of the wave function of a neutral
particle in a way similar to those real magnetic field affects
the phase of the wave function of a charged particle [3].

In particular, effects of the Berry phase were predicted to
play substantial role in excitonic [4] and polaritonic [5–7] sys-
tems. The latter lies at the interface between condensed matter
physics and optics and will be in focus of the present work.

Exciton-polaritons are hybrid light-matter quasiparticles
emerging in the regime of the strong coupling between a
photonic mode of a planar semiconductor microcavity and
an excitonic resonance in a quantum well embedded in the
antinode of a cavity mode [8]. From their photonic compo-
nent, polaritons inherit extremely small effective mass (about
10−5 of the mass of free electrons) and large coherence length
(in the mm scale) [9]. On the other hand, the presence of
an excitonic component results in efficient polariton-polariton
interactions and leads to the extremely strong nonlinear op-

tical response. This makes quantum microcavities a unique
laboratory for the study of quantum collective phenomena,
such as polariton Bose-Einstein condensate (BEC) and super-
fluidity, at surprisingly high temperatures [10].

An important property of cavity polaritons is their spin
(or pseudospin) [11], inherited from the spins of quantum
well (QW) excitons and cavity photons. Similar to photons,
polaritons have two possible spin projections on the structure
growth axis corresponding to the two opposite circular po-
larizations which can be mixed by effective magnetic fields
of various origin. A real magnetic field applied along the
structure growth axis and acting on the excitonic component
splits in energy the polariton states with opposite circular po-
latizations, while transverse electric and transverse magnetic
splitting of the photonic modes (TE-TM splitting) of a planar
resonator couples these states to each other via a k-dependent
term, thus playing a role of an effective spin-orbit interaction
[11]. The interplay between Zeeman and TE-TM splittings
leads to a plethora of intriguing phenomena, in particular in
artificial polariton lattices [12–19].

Importantly, polariton-polariton interactions are also spin
dependent. Indeed, they stem from the interactions of their
excitonic components, which are dominated by the ex-
change term [20]. This leads to the fact that polaritons of
the same circular polarization interact orders of magnitude
stronger then polaritons with opposite circular polarizations
[21]. Polarization-dependent interactions render the system
strongly nonlinear, which enables formation of self-sustained
nonlinear topological defects such as solitons [22–26] and
vortices [27–31]. Their robustness is topologically protected,
which makes them readily observable in experiments even in
the presence of pump and decay [32,33], and attractive from
the point of view of the potential applications [34–36].

In the current work, we study a remarkable effect of spin-
ning of polariton vortices formed in nonequilibrium localized
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polariton condensates. We show that this effect occurs due to
the delicate interplay between driven-dissipative nature of the
system, polarization-dependent nonlinearity, and breaking of
the time-reversal symmetry provided by cumulative effect of
Zeeman and TE-TM splittings.

The paper is organized as follows. The model for confined
nonequilibrium polariton condensates formulated in terms
of coupled generalized Gross-Pitaevskii equations and rate
equations for the incoherent excitonic reservoir density is
presented in Sec. II. Sections II A and II B report on formation
of the four stable states in numerical simulations and their
corresponding probabilities in the absence and in the presence
of an external magnetic fields respectively. These observations
are discussed in detail in Sec. III and are qualitatively com-
pared to the results of the semiphenomenological toy model,
introduced in Sec. III A. Section IV contains the conclusions.

II. THE MODEL

Polariton condensate is a driven-dissipative multistable
system for which the probabilities of the formation of differ-
ent macroscopically ordered states from uncondensed phase
depend on their occupation growth rates. Typically, the fastest
growing mode wins the mode competition and suppresses the
others. This can be used in particular to monitor the absolute
value of the angular momentum of spontaneously forming
condensates [37–39].

In this paper, we investigate the prospect of control over
rotation of an emerging condensate by application of an exter-
nal magnetic field. In contrast to the previous work [37–39],
we demonstrate an additional possibility for the selection of
preferential rotation direction provided by spinor nature of the
polaritons.

We consider the case of a spinor condensate simultane-
ously trapped and excited by a radially symmetric annular
nonresonant pump. The dynamics of the polariton condensate
and the exciton reservoir is described by the standard set of
coupled driven-dissipative equations of Gross-Pitaevskii type
for the order parameter functions ϕ↑(↓) describing the spin-up
and spin-down polaritons (so the basis of circular polariza-
tions is used) and the rate equations describing the density
of incoherent excitons ρ↑(↓) that create both the effective
gain and the repelling potential for the coherent polaritons.
In physical units, these equation read

ih̄
∂ϕ↑(↓)

∂t
=

[
− h̄2

2meff
∇2 + ih̄

2
(Rρ↑(↓) − γc)

+ gRρ↑(↓) + g̃Rρ↓(↑) ± geμB

2
B + gc|ϕ↑(↓)|2

+ gx|ϕ↓(↑)|2
]
ϕ↑(↓) + β(∂y ± i∂x )ϕ↓(↑), (1)

∂ρ↑(↓)

∂t
= P↑(↓) − γRρ↑(↓) − Rρ↑(↓)|ϕ↑(↓)|2, (2)

where ∇ is the nabla operator, meff = 2mt ml
mt +ml

is the effective
mass of the polaritons, mt and ml are the transverse and longi-
tudinal masses of the polaritons, γc and γR are the condensate
and the reservoir dumping rates, gc and gx are coefficients
of nonlinear interaction between the polaritons belonging to
the same and to the orthogonal polarizations, and gR and g̃R

are the coefficients of the polariton-reservoir interactions. The
magnetic field B shifts the eigenfrequencies of the spin-up
and spin-down polaritons in the opposite directions, leading
to the eigenfrequencies difference geμBB, where ge denotes
the effective excitonic g factor and μB is the Bohr magneton.
The interaction between spin-up and spin-down components
appearing because of TE-TM splitting is accounted by the co-
efficient β which can be expresses via the transverse and lon-
gitudinal effective masses of the polartions β = h̄2

4 ( 1
ml

− 1
mr

).
The reservoir of incoherent polaritons is formed by an external
pump with a spatially dependent particle-generation rate P.
The incoherent excitons relaxation rate is γR. The parameter
of coupling between reservoir and condensate is denoted as R.

For theoretical consideration of the problem, it is conve-
nient to introduce dimensionless units. We normalize the time
on the coherent polariton’s relaxation rate γc, the spatial coor-

dinate is normalized on characteristic length Ln =
√

h̄
meff γc

. It

is also convenient to introduce a dimensionless order param-

eter function ψ↑(↓) =
√

gc

h̄γc
ϕ↑(↓) and dimensionless exciton

density n↑(↓) = R
2γc

ρ↑(↓). Then Eqs. (1) and (2) can be written
in the form

i∂tψ↑ =
[

1

2
∇2 + B + gn↑ + g̃n↓ + |ψ↑|2

+ h|ψ↓|2+ i

(
n↑ − 1

2

)]
ψ↑+ σ (∂x − i∂y)2ψ↓, (3)

∂t n↑ = I↑ − (	 + G|ψ↑|2)n↑, (4)

i∂tψ↓ =
[

1

2
∇2 − B + gn↓ + g̃n↑ + |ψ↓|2

+ h|ψ↑|2 + i

(
n↓ − 1

2

)]
ψ↓ + σ (∂x + i∂y)2ψ↑, (5)

∂t n↓ = I↓ − (	 + G|ψ↓|2)n↓, (6)

where B = gμB

2h̄γc
B is the dimensionless magnetic field, g = 2gc

h̄R

and g̃ = 2g̃c

h̄R account for the polariton condensate interaction
with incoherent excitons of the same and the orthogonal po-
larizations, h = gx

gc
is the coefficient accounting for nonlinear

cross-polarization interaction, σ = mt −ml
mt +ml

is the strength of the
TE-TM splitting (photonic effective spin-orbit interaction),
	 = γR

γc
is the decay rate of incoherent excitons, G = h̄R

gc

accounts for the depletion of the exciton reservoir due to
the condensation into the coherent part, and finally I↑(↓) =

R
2γ 2

c
P↑(↓) are the dimensionless optical pumping powers in the

right and the left circular polarizations.
The typical values of the system are the following: po-

lariton mass meff = 10−4me, where me is free electron mass;
the coherent polaritons relaxation rate γc = 0.05 ps−1; the
stimulated scattering rate R = 0.01 μm2/ps; and the effective
nonlinearity (blue shift caused by the coherent polaritons)
gc = 6 × 10−3 meV μm2. Thus, the time is normalized on
the characteristic timescale τ = 1/γc = 20 ps, and the spatial
coordinates are normalized on the length of L = 3.4 μm. All
numerical simulations presented in this paper are obtained for
the parameters g = 3.64, g̃ = −0.364, h = −0.1, σ = 0.03,
	 = 3, and G = 1.1. The values of the coefficients are taken
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FIG. 1. The distribution of the intensity of the external pump is
illustrated in (a) cross section at y = 0 and (b) two-dimensional (2D)
color plot. The distribution of the incoherent excitons n has a similar
structure corresponding to the ring-shaped profile.

to reflect typical experimental conditions. In what follows,
we consider only the case of equal pumping power in both
polarizations I↑ = I↓ = I .

A. Formation of the vortices in zero magnetic field

We consider the case of the radially symmetric annular
pump, with a profile given by

I (r) = AI

[
exp

(
− r − Rp

Wp

)
+ exp

(
− r + Rp

Wp

)]
, (7)

where r is the radius, AI is the intensity of the optical
incoherent pump, Rp is the radius of the pump ring, and Wp

is the width of the pump ring. In our numerical simulations,
these parameters were chosen to be AI = 3.6, Rp = 1.7, and
Wp = 1. The spatial distribution of the pump is shown in
Fig. 1. This pump creates a bath of incoherent excitons, which
produces both trapping ring shape potential and positive gain
for the coherent polariton condensate located in the center
of the ring. Polariton condensation occurs when the exciton
reservoir density exceeds a certain threshold value defined
mostly by the losses in the system.

The state of the condensate formed in the considered
driven-dissipative model strongly depends on the size of the
pumping spot. We chose the pumping parameters to ensure
that only the states with vorticity ±1 in each spin component
can be formed. In the following, we refer to the states with
positive and negative vorticity signs, corresponding to clock-
wise and anticlockwise rotations, as to vortex and antivortex
respectively. Let us mention that in the traps of smaller size
only the states with zero vorticity can form. In the traps of
larger radius, the state with higher topological charges can
form; see Ref. [37] for details. The effect of the magnetic field
on the formation of the multivortex states in the presence of
TE-TM splitting is an interesting problem but is out of the
scope of the present paper and will be considered elsewhere.

As each of the two spin components is characterized by
the topological charge ±1, there are four possible states of
the condensate. We thus denote the probability of formation
of the state with vortices in both polarizations as P+,+, with
antivortices in both polarizations as P−,−, with a vortex in
the first and an antivortex in the second polarization—as P+,−
and the state with an antivortex in the first polarization and an
antivortex in the second polarization as P−,+.

To study the formation of the formation of station-
ary polariton states, we performed a series of numerical

(a) (b)

y y

x x

y y

x x

(c) (d)
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FIG. 2. The distributions of the density and the phase of a
condensate in spin-up polarization is shown in panels (a) and (b) for
zero magnetic field B = 0 and incoherent pump amplitude AI = 3.6
exceeding the condensation threshold. The polarization ellipses
are shown in panel (c) at the points marked by open circles. It is
clearly seen that the polaritons are linearly polarized. To illustrate
the polarization of the polariton field, the Stokes parameters S1 =
2Re(ψ↑ψ∗

↓ )/(|ψ↑|2 + |ψ↓|2), S2 = −2Im(ψ↑ψ∗
↓ )/(|ψ↑|2 + |ψ↓|2),

and S3 = (|ψ↑|2 − |ψ↓|2)/(|ψ↑|2 + |ψ↓|2) are calculated. The
numerical simulations revealed that S3 is very close to zero and
so the optical field is linearly polarized. The distribution of S1

parameter is shown in panel (d). The distribution of S2 is the same as
S1 but rotated by the angle π/4.

experiments. For every run of the numerical simulations, the
initial conditions for both the polariton order parameter func-
tion and the incoherent exciton density were taken in the form
of weak noise (so that all nonlinear terms are negligible at the
initial stage of the condensate dynamics) with spatial correla-
tion length much smaller compared to the characteristic sizes
of the forming polariton and exciton components. For every
iteration, we observed formation of a stable stationary state
and determined topological charges in both spin components.
The statistics of the observed parameters over realizations
with random initial conditions yields the probabilities of the
formation of each of the four possible states.

As expected, in the absence of the polarization splittings
the formation probabilities are the same and equal to 1/4 for
all the states. However, the presence of the effective spin-orbit
coupling, provided by the TE-TM spitting of the photonic
mode and Zeeman splitting produced by external magnetic
field dramatically changes the statistics. We have checked that
the obtained statistics is not sensitive to small variations of the
intensity and the correlation length of the noise taken as the
initial conditions.

Let us first consider the case of zero magnetic field B = 0.
For the chosen parameters in the presence of the spin-orbit
coupling, the probability of the formation of the stable state
(+,−) with the vortex in the right-hand and antivortex in the
left-hand polarization, illustrated by the Fig. 2, exceeds 0.9.
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FIG. 3. The distributions of the densities of the condensates in
up and down spin components for (+, +) state are shown in panels
(a) and (b), respectively. Magnetic field B = 0.2, the incoherent
pump AI = 3.6 exceeds the threshold value and thus the conden-
sation takes place. It is seen that the density distributions are not
radially symmetric; this particularly applies to the density of the
spin-down component. The shape of the state is constant but rotates
as a whole with the frequency equal to the detuning of the spin-up
polarization frequency from the frequency of the spin-down state.

In this case, the vortex and antivortex are phase locked and
thus the intensities and the polarization of the resulting state
do not depend on time. The second most probable stable state
(−,+), on the contrary, is characterized by an antivortex in the
spin-up component and a vortex in the spin-down component.
It is worth noting that the probabilities of the formation of
symmetry-breaking states with nonzero total vorticity (two
vortices or two antivortices) was found to be very low (in
100 numerical experiments we did not register any such
events). Below it will be shown that different probabilities of
the formations are explained by the fact that the states have
different eigenfrequencies.

B. The effect of the magnetic field on the vortex formation

An important observation is that the introduction of the
nonzero magnetic field does not affect the observed statistics
much until the magnetic field exceeds a certain threshold.
However, beyond this threshold, the crossover takes place
and quite surprisingly the state with two vortices of the same
vorticity sign in both polarizations, (+,+) or (−,−), becomes
dominant. The chosen sign of vorticity in this state, illustrated
by Fig. 3, depends on the direction of the magnetic field.

It is also worth mentioning that the frequencies of the
coherent polariton emission in the two circular polarizations,
which correspond to the energies of the two spin components,
are different. The discrepancy in the frequencies produces
beats and results in a periodically rotating polarization pattern
in the orbitally stable state.

One can see that the field distributions in the two spin
components are different and are asymmetric. As seen in
Fig. 3, the spin-up component of (+,+) state is much more
symmetric compared to its spin-down counterpart. This can be
explained by the fact that the vortex in the spin-up polarization
is coupled to a linear mode with negative angular momentum
−1 in the spin-down polarization efficiently by the TE-TM
field. However the spin-orbit interaction, stemming from the
TE-TM splitting of the photonic mode, couples a vortex in
the spin-down polarization to a mode with topological charge
+3 in the spin-up component. The eigenfrequency of this

mode is far detuned from the frequency of the vortex and
thus the excitation is inefficient, so the field in the spin-up
component is nearly a pure vortex but the field of the spin-
down component is a combination of a vortex and a mode with
the opposite angular momentum and low amplitude. Strong
magnetic field suppresses the excitation of the quasilinear
mode in the spin-down state by the vortex in the spin-up state
and so in a strong magnetic field the state becomes symmetric.

The time evolution of the polarization of the optical field
is illustrated in Fig. 4. As seen in Fig. 4(a), all three Stokes
parameters are oscillating and the polarization is not linear
at all times. In Figs. 4(b)–4(j), the spatial distributions of
the Stokes parameters at different times are shown. It is
seen that the optical field is elliptically polarized and the
polarization ellipse rotates with time. The orientation of the
polarization ellipse at a given time does not depend much on
the observation point.

If the magnetic field is decreased after the formation of the
(+,+) state, this state remains stable, but no synchronization
of the spin-up and the spin-down components of the state was
observed in our numerical simulations. This can be explained
by the absence of coupling of the vortices in the two spin com-
ponents by the TE-TM splitting. Such a coupling can appear
if the angular symmetry of the vortex and the antivortex is
broken, but this effect was not observed in our simulations for
the chosen sets of the parameters.

It is worth making a remark about (+,−) state. If we
let this state form in a low magnetic field, then the in-
crease of the magnetic field above the threshold value breaks
the synchronization, spin-up and the spin-down components
desynchronize and split in frequency, and the stationary state
(+,−) is transformed to an oscillating one.

The probabilities of the formation of the four possible
states are plotted as functions of the magnetic field in Fig. 5.
The measured quantities characterizing the condensates are
averaged over 100 numerical solutions of Eqs. (3)–(6), simu-
lating condensates excited by the incoherent pump. The initial
conditions for the simulations are taken in the form of a
weak noise in the photonic and the excitonic components.
The dependence of the averaged topological charge in both
spin components m1 and m2, as well as the total averaged
topological charge defined as mt = (m1 + m2)/2, on the mag-
netic field is shown in Fig. 5(b). The averaged topological
charges in the two spin components have different signs at low
magnetic fields below the threshold, making total topological
charge zero. On the contrary, above the threshold the average
topological charge in the second polarization switches sign,
and average total topological charge rapidly reaches values
close to 0.8. This means that the application of the magnetic
field leads to the spinning of the polariton condensate, which
is a nontrivial effect, as polaritons are electrically neutral
particles and thus their orbital motion is not affected directly
by the magnetic field.

III. DISCUSSION OF THE NUMERICAL RESULTS

To understand the reported effects, we propose a simple
hypothesis that the winning state inherits the properties of
the mode which reaches the regime of gain saturation first.
As mentioned above, normally this is the fastest growing
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FIG. 4. The dynamics of the Stokes parameters for (+,+) state is shown for the polaritons’ places in magnetic field B = 0.2. The
normalized Stokes parameters S1, S2, and S3 measured at x = 0, y = 0.85 are shown in panel (a) as functions of time. The spatial distributions
of S1 are shown in panels (b)–(d) for t = 190, t = 197, and t = 204 correspondingly. The distributions of S2 and S3 at the same moments of
time are shown in panels (e)–(g) and (h)–(j), respectively. It is seen that the optical field is elliptically polarized and that the ellipticity changes
in time periodically. It is also seen that the orientation of the polarization ellipse does not depend on the coordinates strongly.

mode. However, choosing the appropriate initial conditions
it is possible to make a mode with nonmaximal growth rate
win. This explains that in the numerical simulations different
modes win with different probabilities. However, in the case
of the initial conditions in the form of a weak noise, the
fastest growing mode has the highest probability of winning
the competition.

In the following, we represent the spinor condensate wave
function as the series ψ↑(↓) = ∑∞

m=−∞ ψ↑(↓),m with ψ↑(↓),m =
ρ↑(↓),m(r) exp(imθ ), where ρ↑(↓),m are functions of radial co-
ordinate r, θ is the angular coordinate, and m is the integer

orbital index of the corresponding mode. For the chosen set of
parameters, the results of the full 2D numerical simulations
allow us to neglect all modes for which |l| �= 1 in any of
the spin components. Thus, the state of a condensate can be
represented in the spinor form:

 =
(

ψ↑
ψ↓

)
=

[
C↑+

(
eiθ

0

)
+ C↑−

(
e−iθ

0

)

+C↓+

(
0

eiθ

)
+ C↓−

(
0

e−iθ

)]
g(r),
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FIG. 5. Influence of the magnetic field B on statistics of the
forming vortex states. Panels (a) and (b) correspond to the full 2D
model given by Eqs. (3)–(6), while panels (c) and (d) correspond to
the simplified toy model described by Eqs. (9)–(16). Panels (a) and
(c) show the probabilities of the formation of each of the four
possible stable states. Panels (b) and (d) show mean topological
charges. The averaging is done over 100 simulations for panels
(a) and (b) and over 1000 simulations for panels (c) and (d).

where C↑+, C↑−, C↓+, and C↓− are the complex amplitudes of
the components corresponding to the vortex and antivortex in
the spin-up and the spin-down component. The function g(r)
describes the radial structure of the mode and is normalized to
unity.

It is instructive to introduce such quantities as the num-
ber of particles N↑(↓) = ∫ |ψ↑ (↓)|2dxdy and the momentum
M↑(↓) = ∫

ψ∗
↑(↓)L̂amψ↑(↓)dxdy,

L̂am = −i(x∂y − y∂x ),

in each of the polarization. It is straightforward to show that,
under the assumption that the contribution of the excitations
with the angular momentum l �= ±1 can be neglected, the
number of particles can be expressed as N↑(↓) = |C↑(↓)+|2 +
|C↑(↓)−|2 and the angular momentum as M↑(↓) = |C↑(↓)+|2 −
|C↑(↓)−|2. The present paper addresses exactly this case and
it has been checked by direct numerical simulations that the
assumption is valid for the chosen range of the parameters.
Let us note that in the considered case the squared amplitudes
|C↑(↓)±|2 can be expressed in the measured particles numbers
and the momenta |C↑(↓)±|2 = 1

2 (N↑(↓) ± M↑(↓) ).
The behavior of the number of particles and the momenta

of each of the polarizations are presented in Figs. 6(a) and 6(b)
by the solid lines. The simulations are performed for the case
when the magnetic field is absent B = 0. The amplitudes of
the components |C↑(↓)±|2 are shown in Figs. 6(c) and 6(d).

It is seen that the numbers of the particles grow from the
noise in both polarizations and after some time reach steady
states. It is worth noting that initially, when the density of the
coherent polaritons is relatively low, the momenta are close
to zero. Indeed, the density of the polaritons starts to deviate
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FIG. 6. The temporal dynamics of the numbers of particles and
the angular momenta obtained from direct numerical modeling
of Eqs. (3)–(6) are shown in panels (a) and (b) by solid lines
marked as N↑(↓) and M↑(↓). The number of particles and the mo-
mentum are defined as N↑(↓)± = ∫ |ψ↑ (↓)|2dxdy and M↑(↓)± =∫

ψ∗
↑(↓)L̂amψ↑(↓)dxdy, L̂am = −i(x∂y − y∂x ). The dashed lines in pan-

els (a) and (b) show the dynamics of the particle number Ñ↑(↓) =
|C̃↑(↓)+|2 + |C̃↑(↓)−|2 and the angular momentum M̃↑(↓) = |C̃↑(↓)+|2 −
|C̃↑(↓)−|2 obtained from the simulation of the toy model (9)–(16).
The behavior of the squared amplitudes calculated as |C↑(↓)±|2 =
(N↑(↓) ± M↑(↓) )/2 are shown by the solid lines marked as C↑(↓)±
in panels (c) and (d). These amplitudes can be considered as the
amplitudes of the excitations (e±iθ , 0)T , (0, e±iθ )T provided that the
contribution of the excitations with the other angular momenta are
negligible. The dashed lines marked as C̃↑(↓)± in panels (c) and
(d) show behavior of the amplitudes calculated from the toy model
(9)–(16). In the simulation, the magnetic field is absent B = 0.

noticeably from zero at t ≈ 50. The angular momentum in
this regime stays low in both polarizations. Correspondingly,
the amplitudes of the excitations with l = 1 and l = −1 are
equal to each other in both polarizations; see Figs. 6(c) and
6(d). However, at t ≈ 70 the angular momentum starts to
grow. The dependencies of the amplitudes on time show that
this is happening because the excitation with l = −1 gets
suppressed in the spin-up polarization and the excitation with
l = 1 gets suppressed in the spin-down polarization. Thus, the
competition between the excitaions with different vorticities is
the mechanism of the steady-state formation.

To explain the competition between the excitations, we
consider the structure of the eigenmodes of the system. Let us
mention an important fact that in the presence of the TE-TM
splitting none of the vectors (e±iθ , 0)

T
, (0, e±iθ )

T
corresponds

to an eigenmode. However, below we will argue that the
modes g(e−iθ , 0)

T
, g(0, eiθ )

T
are close to the eigenstates. This

is so because TE-TM splitting couples these modes only to
the excitations with topological charge equal to ±3 that are
not supported by the effective potential created by the chosen
incoherent pump and thus the components l = ±3 are small.

In contrast, the TE-TM splitting couples a vortex in the
spin-up polarization with an antivortex in the spin-down
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FIG. 7. The temporal dynamics of the amplitudes C↑(↓),± of the
components (e±iθ , 0)T and (0, e−iθ )T is shown in panel (a). It is
seen that the amplitudes C↑,− and C↓,+ grow exponentially in time
(the vertical axis is in logarithmic scale) which is the indication
that the states (0, eiθ )T , (e−iθ , 0)T approximate the eigenstates of
the system well. At the same time, it is seen that there are beatings
between the amplitudes C↑,+ and C↓,− and therefore (eiθ , 0)T and
(0, e−iθ )T are not the eigenstates of the system. To prove that the
mixed states 1√

2
(eiθ , ±e−iθ )T are the eigenmodes, the dependencies

of the amplitudes D1,2 of these modes are shown in panel (b) as
functions on time alongside with the dependencies of the amplitudes
C↑,− and C↓,+. It is seen that they all grow exponentially but with
slightly different growth rates. This is the indication that they are
the amplitudes of the eigenstates of the system. The simulations are
performed for the case when the magnetic field is absent B = 0.

polarization, provided that the magnetic field is sufficiently
low, so that the Zeeman splitting desynchronizes the two spin
components. In this case, the eigenstates of the systems can
be approximated in the form of the mixed states

g√
a2

1 + a2
2

[
a1

(
eiθ

0

)
± a2

(
0

e−iθ

)]
, (8)

where the complex coefficients a1,2 account for the mutual
phases of the spin-up and spin-down polarizations and for the
difference in the particles numbers in the polarizations.

In zero magnetic field, the mixed eigenstates are
g√
2
(eiθ , e−iθ )

T
and g√

2
(eiθ ,−e−iθ )

T
, reflecting the system

symmetry. The amplitudes of these modes D1 and D2 can
be expressed in the amplitudes C↑,− and C↓,+ as D1 =

1√
2
(C↑+ + C↓−) and D2 = 1√

2
(C↑+ − C↓−).

The dynamics of the amplitudes is shown in Fig. 7(a) in
the logarithmic scale. Note that because of the effective gain
the amplitudes |C1−| and |C2+| grow exponentially in the
linear regime. However, this is not so for the amplitudes |C1+|
and |C2−|, as the states (0, eiθ )

T
, (e−iθ , 0)

T
are close to the

eigenmodes of the system, in contrast to the states (eiθ , 0)
T

,
(0, e−iθ )

T
. At the same time, the dependence of the amplitudes

of the mixed states D1 and D2 show the exponential growth in
the linear regime. This allows us to conclude that the mixed
states 1√

2
(eiθ ,±e−iθ )

T
with a vortex in the spin-up and an

antivortex in the spin-down components are the eigenstates.
We would like to highlight that the “mixed” mode with

amplitude D1 is growing with the fastest rate, and the other
“mixed” mode D2 has the slowest growing rate, the one-
component modes having approximately the same growth
rates. To explain this, we propose a simple hypothesis. Let
us remember the important fact that the exciton bath creates

FIG. 8. The schematic picture illustrating the proposed hypothe-
sis explaining the observed polariton dynamics and modes selection.
The effective potentials for the polaritons is the first and in the second
polaizations are shown in the left and right columns correspondingly.
The blue and magenta horizontal lines show the energy levels of the
polaritons without spin-orbit interaction (without TE-TM splitting).
The red and the black horizontal lines show the energy levels of
the hybrid eigenstates that have components of both polarizations
because of the spin-orbit interaction resulting in the energy splitting
�. The thickness of these lines schematically shows the portion of
the component in the hybrid mode. The upper row illustrates the
case without magnetic field B and the lower row shows it with B.
The oscillating lines denote the radiation appearing because of the
tunneling of the polaritons through the potential barrier of finite
width and height. The amplitude of the oscillations of the lines shows
the intensity of the tunneling and, correspondingly, the radiative
losses of the mode.

an effective potential with finite height and width, allowing
the condensate polaritons to escape the trap, which produces
the mechanism of the condensate decay stemming from tun-
neling outside of the trap. The corresponding contribution
to the decay rate depends on the confinement energy of a
particular state, being more pronounced for higher energy
levels. Assuming that the gain and the radiative losses are
universal for all the modes, one can conclude that the modes
with higher frequencies should experience higher losses. Let
us remark that here by radiative losses we mean not the escape
of the photons from the cavity but the escape of the coherent
polaritons from the area of the effective gain produced by the
incoherent excitons. From the point of view of the formation
of the localized states, this process can be considered as
additional losses.

The coupling between the vortex in the spin-up component
and an antivortex in the spin-down component results in the
splitting of the frequencies of the mixed modes D1 and D2.
The energies of the modes C↑− and C↓+ are not affected by
the spin-orbit interaction and are degenerate in accordance
with the symmetry of the system. Therefore, the first mixed
mode D1 is red-shifted and is characterized with the lowest
frequency of emission and decay rate, while the second mode
mode D2 has the highest frequency and the highest losses,
which is schematically illustrated in Fig. 8.
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FIG. 9. The dynamics of the amplitudes of the eigenmodes in the
linear scale. Panel (a) is for full 2D simulations, and panel (b) is for
the toy model. Comparing the panels, one can conclude that the toy
model reproduces the results of numerical simulations of the full 2D
model well enough. The magnetic field is absent, B = 0.

We can conclude that in the absence of a magnetic field
the fastest growing and subsequently the winning mode is
D1, as can be seen in Fig. 9, showing the dependence of the
amplitudes of the eigenmodes in linear scale for times long
enough for the formation of a stable stationary vortex state.
Both components of the winning mixed mode at zero mag-
netic field have the same absolute values and thus the growth
of this mode results in the establishment of the state with
a vortex in the spin-up component and an antivortex in the
spin-down component. The growth of the other eigenmodes
gets suppressed when the density of the polariton condensates
becomes high enough. It is good to notice here that in the
case of the resonant pump this effect is not possible because
in this case the frequency of the state is fixed by the pump
and thus frequency-dependent radiative losses cannot be the
mechanism responsible for the selection of the winning state.

We now switch to the case of the relatively strong magnetic
fields, where another stationary state wins the mode competi-
tion. Let us take into account that the magnetic field lifts the
degeneracy, shifting the balance of the components C↑+ and
C↓− within the fastest growing mixed mode D1. In the limit of
strong magnetic field, one of the components dominates the
other, so in the stable regime, where the growth of the mode
is saturated, it cannot provide the formation of an antivortex
in the spin-down component. The antivortex in the spin-down
component can potentially be produced by the second mixed
mode, but its growth rate is the lowest. Then it is reasonable
to expect that the final state in the second polarization is
produced by the second fastest growing mode having nonzero
component in the second polarization C↓+, which means that
the angular momentum in the spin-down polarization has to
be l = 1. The vortices form in both of the polarizations.

The dynamics of the angular momenta is shown in Fig. 10.
It is worth mentioning that the absolute value of the angular
momentum of the spin-up component is higher than that of the
spin-down component. Indeed, as it is seen from the panels,
showing the dynamics of the amplitudes, the amplitude C↓−
does not decay to zero but stays at some relatively low level.
Since the angular momentum in the spin-down component is
M↓ = |C↓+|2 − |C↓−|2 the nonzero C↓− reduces the angular
momentum in the spin-down component. The nonzero value
of C↓− is the direct consequence of scattering from the vortex
in the spin-up component due to the spin-orbit coupling.
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FIG. 10. The temporal dynamics of the particle number and the
momenta of the fields in the first and the second polarization. (a) 2D
simulations, and (b) toy model. The dynamics of the components |C|2
are shown in panels (c)–(f). Panels (c) and (e) are for 2D simulations,
and panels (d) and (f) are for the toy model. It is seen that the results
of the modeling of full 2D equations complies very well with the
results obtained by the toy model. The magnetic field B = 0.2.

To summarize, we can conclude that for stronger magnetic
fields we should observe the formation of the vortices in
both spin components. Naturally, by reversing the sign of the
magnetic field it is possible to get antivortices in both spin
components.

A. The toy model

To illustrate the proposed hypothesis, we develop a toy
model based on a system of the rate equations mimicking the
dynamics of the initial two-dimensional system. Our model
consists of four oscillators that are characterized by their
complex amplitudes C̃↑(↓)± describing the components with
l = ±1 angular momentum in each of the polarizations. As
was discussed before, only two of these oscillators interact
linearly because of the spin-orbit interaction; these are the
oscillators C̃↑+ and C̃↓−. However, all oscillators belonging
to the same polarization interact to each other nonlinearly
through the depletion of the common effective gain. This
allows to write the toy model for the oscillators in the form

∂tC̃↑+ = [−γ1 + iB − β(|C̃↑+|2
+ 2|C̃↑−|2)]C̃↑+ + iσeffC̃↓− + μ+, (9)

∂tC̃↑− = [−γ1 + iB − β(|C̃↑−|2 + 2|C̃↑+|2)]C̃↑− + μ−,

(10)
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∂tC̃↓+ = [−γ1 − iB − β(|C̃↓+|2
+ 2|C̃↓−|2)]C̃↓+ + η+, (11)

∂tC̃↓− = [−γ1 − iB − β(|C̃↓−|2
+ 2|C̃↓+|2)]C̃↓− + iσeffC̃↑+ + η−. (12)

The linear losses and gain are proportional to γ1 (γ1 < 0
corresponds to gain). The nonlinear losses (depletion of the
gain) for each polarization depend only on the amplitudes of
the modes belonging to the same polarization. The nonlinear
term has the standard form containing the components with
different angular momenta. Let us mention here that such
a nonlinear term provides competition between the modes
and the stronger mode suppresses the weaker one. The terms
proportional to the magnetic field B account for the Zeeman
splitting.

Now we need to add a key ingredient, the frequency-
dependent losses. The real dependencies of the radiative
losses on frequency is difficult to reproduce by a simple
model and thus we utilize a simplest way to realize such
losses—we couple each of the amplitude C̃↑(↓)± to a detuned
linear oscillator with losses. We stress that this part of the
model is completely phenomenological and we fail to propose
any microscopic justification for it. However, it reproduces
well the results of the direct numerical simulations. Equations
(13)–(16) for the amplitudes C̃↑(↓)± should be thus coupled to
the equations for the auxiliary oscillators μ±, η± having the
form

∂tμ+ = [−γ2 + i(� + B)]μ+ + iαC̃↑+, (13)

∂tμ− = [−γ2 + i(� + B)]μ− + iαC̃↑−, (14)

∂tη+ = [−γ2 + i(� − B)]η+ + iαC̃↓+, (15)

∂tη− = [−γ2 + i(� − B)]η− + iαC̃↓−. (16)

Here γ2 accounts for the linear losses in the detuned oscilla-
tors, � is the detuning, and α is the coupling strength.

The losses introduced by the coupling to this oscillators
depend on the frequency detuning of the modes from the
corresponding “auxiliary” oscillators. It is important to men-
tion that in the initial model the losses must not depend on
the magnetic field in the absence of the spin-orbit coupling.
This is natural because the magnetic field shifts equally the
energy of free propagating and trapped polaritons, so the
probability of the tunneling through the barrier leading to the
additional condensate losses does not change. This means that
in our toy model the resonant frequency of the “auxiliary”
resonators and the resonant frequency of the modes in the
same polarization must depend on the magnetic field B in the
same way. The coefficients of the toy model giving the best fit
of the results of the 2D numerical simulation are γ1 = 0.55,
β = 0.01, σeff = 0.06, γ2 = 0.5, � = 2 and α = 0.9.

The dependencies of the real and the imaginary parts of the
frequencies of the eigenmodes are shown in Figs. 11(a) and
11(b), respectively. It is crucial that the interaction between
the oscillators C̃↑+ and C̃↓− leads to the splitting of the
resonant frequencies and thus one of the mixed modes having
higher frequency is coupled to auxiliary lossy oscillators

FIG. 11. The dependencies of the real (a) and imaginary (b) parts
of the frequencies of the eigenmodes of the toy model as functions of
the applied magnetic field B. It is seen that the coupling between C̃↑+
and C̃↓− results in the formation of the mixed modes having different
real and, more important for the discussed effects, imaginary parts.
The modes C̃↑− and C̃↓+ do not interact to other polariton modes and
thus they have the same frequencies and losses that do not depend on
the magnetic field. The parameters of the toy model are given in the
text.

stronger than the other mode having lower frequency. That
is why the first mode experiences higher losses. Formally,
this follows from the expression of the imaginary part of
the frequency; see Fig. 11 showing the dependencies of the
frequencies on the magnetic field value. The splitting of the
modes decreases with magnetic field and therefore the differ-
ence in the growth rates decreases too. Note that the fastest
growing mode is the mixed mode D̃1 = 1√

2
(C̃↑+ + C̃↓−),

while the slowest growing mode is the other mixed mode
D̃2 = 1√

2
(C̃↑+ − C̃↓−).

The number of particles and the angular momenta calcu-
lated with the toy model are shown in Figs. 6(a) and 6(d)
by dashed lines. It is seen that they are in good agreement
with the 2D numerical simulations. Good agreement is also
achieved for the dynamics of the amplitudes of the compo-
nents and the dynamics of the eigenmodes [see Fig. 9(b)].
Note that, as expected from Fig. 11, the fastest growing and
therefore the winning mode is the mixed mode D1, which
ensures the formation of the vortex in the spin-up compo-
nent and antivortex in the spin-down component. The single-
component modes C↑− and C↓+ in turn have the same growth
rates that are lower than the increment of D1 mixed mode but
higher than the increment of D2 mixed mode.

The example of the temporal dynamics of the toy model
for magnetic field B = 0.2, which is above the crossover
threshold is shown in Figs. 10(b), 10(d) and 10(f), showing
the evolutions of the angular momenta in spin-up and spin-
down polarizations and the dynamics of the amplitudes of the
modes. One may note that the results qualitatively reproduce
those of the direct numerical simulations of full-scale 2D
model. One can see that the angular momentum in the spin-
down component is positive as in the spin-up component. But
the spin-down component also contains an antivortex part,
which manifests itself in the braking of the rotation symmetry
visible in Fig. 3(b).

Finally, we did numerical experiment starting simulations
from random noise and counting the probability of the forma-
tion of different states. The dependencies of the probabilities
and the averaged angular momenta are shown in Figs. 5(c)
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and 5(d). The crossover is clearly seen and the results are in
good agreement with the data obtained from the 2D modeling.

It is worth noting here that it is important that the magnetic
field affect not only the growth rate of the linear modes but
also their polarization structures. In the weak magnetic field,
the fastest growing mode has approximately the same number
of polaritons in the spin-up and the spin-down components
and so both polarizations of the stationary state are defined
by the structure of the mode, but the magnetic field affects
the relative portions of the polaritons in the spin-up and the
spin down components of the modes, so in a relatively strong
magnetic field most of the polaritons in the fastest growing
mode belong either to spin-up or, depending on the sign of the
magnetic field, spin-down polarizations. This is why when the
growth of the fastest mode becomes saturated by the nonlinear
effects the density of polaritons in one of the polarizations
is still small and other modes continue to grow. Thus, if the
magnetic field exceeds the threshold, then the polarization
structure of the most probable stationary state is defined by
the structures of the fastest and the second fastest growing
modes. This explains the existence of the crossover observed
in the numerical simulations.

Let us note that both the results of the full 2D simulations
and the results obtained with the toy model show that at
strong magnetic fields the probabilities of the formation of
different states tend to become equal. This can be understood
from the dependencies of the real and imaginary parts of the
eigenfrequencies on the magnetic field, shown in Fig. 11.
Note, that extremely strong magnetic field suppresses the
intermode coupling, so both the real and the imaginary parts of
the eigenfrequencies become equal. Therefore, in very strong

magnetic fields, all modes have practically the same growth
rates and all states should form with approximately the same
probability. This agrees well with the statistics obtained from
the numerical simulations. Therefore, there exists the value of
a magnetic field, which is optimal for the achievement of the
effect of the spinning.

IV. CONCLUSION

In conclusion, we observed that cumulative effect of pho-
tonic spin-orbit coupling and excitonic Zeeman splitting re-
sults in the selection of the preferable sign of the angular
momentum of the polariton condensates created by incoherent
pump. This opens the way for the magnetic field control of
the topological charges in a system composed of electrically
neutral bosons. At low magnetic fields, a condensate contains
a vortex in one polarization and an antivortex in the other
polarization. However, at some threshold value of the mag-
netic field, a crossover occurs and depending on the sign of
the magnetic field either vortices or antivortices form in both
polarizations.

ACKNOWLEDGMENTS

This work was supported by grants “megagrant” No.
14.Y26.31.0015 and “Goszadanie” No. 3.8884.2017/8.9 of
the Ministry of Education and Science of Russian Federa-
tion. A.V.Y. and I.A.S. acknowledge support from the from
the Icelandic Research Fund, Grant No. 163082-051. A.N.
acknowledges support from RFBR Grant No. 18-32-00434
and from Icelandic Research Fund, Grant No. 196301-051.

[1] W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. London, Ser. B
62, 8 (1949).

[2] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[3] For a review on synthetic gauge fields, see J. Dalibard, F.
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