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Nonlinear wave limiters transmit low-amplitude waves while blocking high-intensity ones for efficient target
protection. However, the acoustical limiting effect in nonlinear materials remains hitherto unaddressed. In
addition, tunable bandgap fosters advanced functions for devices, but it is still mostly regarded as a spatial and
temporal invariant feature. In recent years, nonlinear acoustic metamaterials (NAM) have shown extraordinary
properties for manipulating elastic waves. Here we achieve an enhanced nonlinear interaction in a different NAM.
We theoretically and experimentally demonstrate that the NAM features an efficient acoustical limiting, and the
limiting bandwidth adaptively broadens as the propagation distance/time increases. Within a short propagation
distance, an ultrabroad limiting band is formed that overcomes the limitation of linear resonant bandgaps. It
is clarified that the space-amplitude-dependent bandgap dominates the amplitude reduction, and the transient
chaotic responses initialize the adaptive-broadening process. Our study highlights wave physics that could not
obviously be realized in nonlinear optics. The self-adaptive band structures open up opportunities to realize
exotic adaptive elements.
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I. INTRODUCTION

Major technological revolutions in recent decays have
been based primarily on our improved ability to manipulate
sound, heat, light, and electrons [1–3]. A plethora of sensi-
tive elements for agile devices, including diodes, amplifiers,
switches, and limiters, are made of nonlinear materials [4].
The nonlinear optical limiting allows the transmitting of low-
level light while blocking high-intensity pulses [5,6]. It has
been successfully used for protecting sensors and eyes from
lasers in wide swaths of engineering [7]. The limiting effect
can be generated through nonlinear refraction/ scattering,
reverse saturable absorption, free-carrier absorption, and two-
photon/multiphoton absorption [8]. Recently, optical limiters
are realized with nonlinear photonic crystals and metamate-
rials [9,10], and broad bandwidth is desired [11]. Actually,
it is well known that nonlinearity can limit the resonant
amplitudes. Phonons are responsible for the transmission of
sound, vibration, and heat in our everyday life. They cover an
extremely broad spectrum from 1 Hz to 1THz [12]. Acoustical
limiters, if there are, cannot only usefully protect us from
high-intensity elastic/acoustic waves, but also offer new ways
for controlling noise, vibration, and heat. However, acoustical
limiting in nonlinear elastic/acoustic materials has not been
clearly established yet, to the best of our knowledge.
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Moreover, advanced functions can be realized by tuning the
crystal bands [13–15]. For linear monocrystals or metamate-
rials, evanescent waves in bandgaps decay exponentially as
the propagation distance [16], but the attenuation bandwidth
keeps unchanged. Therefore, bandgaps of linear crystals can
only be tuned by altering the material or structural parameters
[17]. The essential reason has been indicated by Bloch theo-
rem: linear band structure is space-time invariant. Bandgaps of
nonlinear crystals are amplitude-dependent for both light and
sound [18–22]. However, it was still regarded as invariable
for specified amplitude, though it is generally described as
tunable with variable amplitude. As is well known, many self-
actions have been reported in nonlinear optics and acoustics
[5,23], like self-focusing, self- trapping, and self-phase mod-
ulation. Those self-actions depend on the propagation distance
and time in materials. However, it is still quite unclear if the
band-gap width can be adaptive.

At last, low-frequency and broad bandgaps are desired
in extensive applications [24,25]. Acoustic metamaterials
[26–28] (AMs) offer unusual functions in manipulating low-
frequency elastic waves [29,30]. However, obtaining broad lo-
cally resonant (LR) bandgaps whose generalized width γ > 1
(i.e., over an octave, see Appendix) remains a great challenge
[31] due to the limitation of the mass ratio [32]. Nonlinear
AMs (NAMs) [19,33,34] can boost the exploration of features
such as nonreciprocity [35,36], harmonic generation [37],
broadband chaotic passbands [38,39] and bridging coupling
[40]. Most recently, Fang et al. realized the ultralow-frequency
and ultrabroad band (double-ultra) wave attenuation in finite
NAMs [38,39] based on the chaotic passband [39]. Bridging
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FIG. 1. Prototype. (a) Experimental metacell. (b) Triatomic
metacell. (c) Transmission of local resonances, i.e., the value P/A
solved with Eq. (4), where curves of nonlinear model (i.e., the dark
blue circles) are calculated with kN = 1 × 1013 N/m3, A = 10 μm
The big red circle is the bifurcation point. The dashed red curve is the
equivalent linear result. (d) Experimentally measured transmission of
a single cell by driving m0 with white-noise signals. The voltage, V,
gives the exciter amplitude. The result for 0.1 V denotes the linear
state. (e) Experimental NAM chain consists of 30 metacells (only 20
cells are shown here). (f) Numerical NAM model.

coupling of nonlinear LR bandgaps offers an efficient way
for manipulating chaotic passbands [40]. However, adaptive
properties in NAM have not been well understood. One key
challenge lies in fabricating a metamaterial whose nonlinear-
ity is strong enough to generate a large bandgap shifting with
achievable amplitudes in general experiments.

Here, we report a NAM with enhanced nonlinear inter-
actions. We present the first theoretical and experimental
demonstration of both the acoustical limiting and adaptive-
broadening band-gap effects. The band structure and bandgap
self-adapt to the propagation distance/time, which induces
an efficient ultralow-frequency and ultrabroad (double-ultra)
acoustical limiting. The limiting band overcomes the band-
width limitation that depends on the mass ratio. The mecha-
nisms for initializing the adaptive-broadening are elucidated.
We state that this work is essentially different from previous
work on the chaotic band [38,39].

II. MODELS AND METHODS

Unusual phenomena occur in a NAM containing strongly
coupled resonators featuring enhanced nonlinearity. A typical
NAM prototype that we fabricated to evidence this is shown
in Fig. 1. In the metacell, the primary oscillator m0 is a
hollowed parallelepiped, and two neighboring m0 units are

coupled through a pair of springs whose entire stiffness is
k0. The hollow cylinder m2 held inside m0 has a hole whose
radius is 4.045 mm. m2 couples to m0 by two springs with total
stiffness k2. A steel sphere m1 is held at the center point of the
cylindroid cavity in m2, and the two are connected by a curved
spring whose stiffness is k1. There is a symmetrical clearance,
δ0 = 45 ± 15 μm, between the sphere and the cylinder wall at
rest. Specifying p(t ) as the relative displacement between m1

and m2, a strongly nonlinear interaction happens if |p(t )| > δ0

because m1 collides with m2 in this case. Therefore, m1 and m2

are vibroimpact oscillators [41], and the force between them,
FN(t ), is a piecewise-defined function. The tiny clearance, δ0,
is paramount to generating enhanced nonlinearity. The NAM
prototype consists of 30 metacells with lattice constant a =
27 mm. The prototype is put on a guide rail and m0 contacts
the sliding rail surface. Its left terminal is connected to a vibra-
tion exciter through k0, and the other end is fixed [Fig. 1(e)].
More experimental images are provided in Ref. [42].

If only the first linear resonances of m0, m1, and m2 in the
x direction are considered, the entire metacell is equivalent
to the triatomic configuration shown in Fig. 1(b). The motion
equations for the nth cell are

m0ün = k0(un+1 + un−1 − 2un)

+ d0k0(u̇n+1 + u̇n−1 − 2u̇n) + k2(zn − un)

m1ÿn = −FN(t ), m2z̈n = −k2(zn − un) + FN(t ). (1)

Here, un, yn, and zn denote the barycenter displacements
of m0, m1, and m2 in the nth cell, respectively. Denoting p =
y − z, the piecewise-defined function FN(t ) for the clearance
nonlinearity can be fitted with a smooth equation k1 p + kN pn,
where k1 (kN) denotes the linear (nonlinear) stiffness coef-
ficient. We specify FN (t ) = k1 p + kN p3 in theories for gen-
erality. Natural frequencies of individual oscillators are ωi =
2π fi = i = 0, 1, 2. If necessary, the damping coefficient c0 =
d0k0 in the primary oscillator is considered. The damping
mainly comes from the friction between m0 and the guide rail
in experiments. Parameters in simulations and experiments
are: m0 = 5.8, m1 = 2.1, m2 = 2 g; f0 = 322, f1 = 100, and
f2 = 390.6 Hz. We take kN = 1 × 1013 N/m3 to show the
nonlinear phenomena in theory.

Moreover, we fabricate a linear metamaterial prototype to
establish the controlled experiment for comparison. This con-
trolled sample removes the sphere in the metacell to eliminate
nonlinearity, so it is a diatomic model.

The nonlinear strength for the cubic nonlinear system is
σ = 3kNA2

0/k1. The value σ = 32.6 for A0 = 30 μm shows
that we reach enhanced nonlinearity for amplitudes approxi-
mate the clearance δ0. In nonlinear case, the coupling between
LR1 and LR2 has been visually defined as the bridging
coupling [40]. In experiments, the transmission spectrum,
H ( f ), of a single cell is measured by inputting different levels
of white noises, as illustrated in Fig. 1(d). By increasing
the excitation, the first resonance notably shifts upwards at
first, and the two resonances ultimately merge into a single
resonance near 270 Hz. This tremendous shift evidences the
enhanced nonlinearity generated by the collisions.

A plane wave in a generic one-dimensional (1D) periodic
medium evolves as a function of time, t , and propagation
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distance, x:

u(x, t ) = Aei(κrx−ωt ), A(x) = A0e−κIx, (2)

where A0 is the source amplitude; the wave number κ = κr +
iκI, andμ = κa = μr + iμI. The dispersion equation of this
NAM is

cos μ = 1 − m0ω
2

2k0

− ω2ω2
2

[
m1ω

2
1eL + m2

(
ω2

1eL − ω2
)]

2k0
[
m2

(
ω2 − ω2

1eL

)(
ω2 − ω2

2

) − m1ω2ω2
1eL

] ,

(3)

where ω1eL denotes the equivalent natural frequency of m1

that associates with the equivalent stiffness k1eL. When con-
sidering damping, we replace k0 in Eq. (3) by k0(1 + iωd0).
The bandgap can be described by |κI = μI/a| > 0 solved with
Eq. (3).

For linear models, ω1eL = ω1. We propose an equivalent
linearized approach based on the bifurcation to solve ω1eL for
nonlinear models. By specifying un = A sinωt , yn = Y sinωt ,
pn = P sinωt in Eq. (1), neglecting the damping effect and
adopting the first-order harmonic balance approach, one can
solve the locally resonant responses by the algebraic equations

ω2m1Y = k1P + 3kN P3/4

(k2 − ω2m2)(Y − P) − ω2m1Y = k2A, (4)

where Y and P denote the amplitudes of y(t ) and p(t ),
respectively. By specifying A in Eq. (4), the curve, P/A,
generates a saddle-node bifurcation near each resonance, as
shown with the dark blue circles in Fig. 1(c). ωJ1 is the first
bifurcation frequency (the big red circle). At the bifurcation
point, P = PJ1. The point (ωJ1, PJ1) is on the response curve
of the equivalent linear model (the dashed red curve), where
the equivalent stiffness of m1 becomes k1eL. Therefore,

k1eL = k1PJ1 + 3kNP3
J1/4, ω1eL =

√
k1eL/m1. (5)

As ω1eL depends on A, the band structure is determined by
the wave amplitude A.

Also, we establish a large numerical model consisting of
500 triatomic cells, as shown in Fig. 1(f). An optimized
perfect match layer is connected to its terminal. The incident
wave u0(t ) is launched from the other end. This model is
available for all frequencies. Furthermore, to separate the
incident and reflected waves in the NAM, a linear phononic
crystal consisting of 240 primary oscillators is connected to
the left terminal of the metamaterial. This linear crystal plays
a “buffer” role. It should be noted that the second model is
only available for frequencies much lower than the band-gap
frequency of the linear phononic crystal, since otherwise the
incident wave is reflected by it. We confirm that the results
solved with the two models are approximately equal for f <

400 Hz here.
In simulations, 15 periods of standard sinusoidal wave

packets are adopted as input sources, u0(t ) = A0sinωt, ω =
2π f . The numerical integration approach is adopted to solve
responses of the model. Wave transmission at the coordinate
x for f is T (x, f ) = Aav(x, f )/A0( f ), where Aav denotes the
average value of all peaks of u(t ) in the 15 periods with

FIG. 2. Amplitude-dependent bandgap. The first and third insets
are dispersion curves of the triatomic and diatomic LAMs. The
second shading image is the distribution of the imaginary wave
vector, μI = κIa, in which the white regions represent μI = 0 for
passbands. Two dashed arrows represent two cases: the combination
(A0, ω) in bandgap and passband.

appropriate time decay. At the nth cell in the chain, T(n)( fe) =
T (x = na, fe).

III. ACOUSTICAL LIMITING AND
ADAPTIVE BANDWIDTH

The amplitude-dependent bandgap is illustrated in Fig. 2.
For the linear AM (LAM) with kN = 0, there is a Bragg
bandgap (from 700 Hz on) and two LR bandgaps, LR1
and LR2. Their ranges are LR1 (96.1, 110.4) Hz, with a
generalized width γ1 = 0.15, and LR2 (373.4, 462) Hz, with
γ2 = 0.24. Thus, LR1 and LR2 are narrow bandgaps (see the
Appendix). Moreover, if k1 → ∞, the triatomic AM degener-
ates to a diatomic AM characterized by a bandgap LRc (254.4,
356.4) Hz near fc = √

k2/mc/2π = 272.8 Hz thus between
LR1 and LR2, mc = m1 + m2, mc/m0 = 0.7, γ = 0.4.

The amplitude-dependent regime in Fig. 2 shows that the
band structure approaches the state of the diatomic LAM
if enhanced nonlinearity is generated when A is large. If
A decreases from a large value, LRc approaches LR1, and
LR2 first decouples from the Bragg gap and then shifts to
lower frequencies. A narrow band referred as leakage band
is never swept by bandgaps. The far-field wave amplitude and
transmission are illustrated as functions of A0 in Figs. 3(a) and
3(b). Frequencies 180, 200, 270, and 600 Hz represent waves
in the passbands of the triatomic LAM, and 350 and 400 Hz
represent waves in the bandgap LR2.

As shown in Fig. 3(c), for an infinite LAM without damp-
ing, we note that T (x) in the bandgaps just gets an finite
value about 0.1 rather than a tiny value (e.g., 10−4) even in
the far field n > 80, because the simulations are performed in
time domain and there are always small responses. Moreover,
T (x) ≈ 1 in passbands in theory, and it is independent of prop-
agation distance. In contrast, the amplitude-dependent band
structure will present great influences on wave propagations
in NAMs.

Properties in passbands are introduced first. For small A0,
the far-field wave amplitude increases linearly with A0, so
T (x) = 1. However, after a critical amplitude A0 > A0c, the
transmitted amplitude remains constant and even decreases
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FIG. 3. Acoustical limiting and adaptive bandwidth of NAM.
(a),(b) Wave amplitude and transmission at the 80th metacell as
functions of A0 under representative frequencies. (c) Transmissions
at the 100th cell, T100. Herein, Land N symbolize the linear and
nonlinear cases, respectively. (d) Wave transmission T (x = na, f )
at different points along the model of fixed length. A0 = 30 μm
in (c), (d).

as A0 increases, which means the responses are saturated.
Therefore, their transmissions decrease as A0 increases. T80

for 200 and 270 Hz reduce to 0.03 at A0 = 50 μm, which is
even smaller than that inside the linear bandgaps.

For waves far from LRc (180 Hz here), the wave ampli-
tudes or transmission at a specified distance may fluctuate
or increase for large A0, but they will decrease at a longer
propagation distance.

In our NAM, the low-amplitude acoustic/elastic waves
can transmit through the material without attenuation, but
the large-amplitude waves are suppressed or attenuated. We
notice that this phenomenon is analogous with the opti-
cal limiting in nonlinear optical materials. Therefore, it is

appropriate to refer to the phenomenon as acoustical limiting.
Acoustical limiting presents an amplitude-dependent filter. It
is not only promising in protecting targets from high-intensity
waves like blast and shock waves, as what has been realized
in laser technologies, but also in innovating new elements for
reduction or isolation of noise/vibration in our everyday life.

For waves inside the bandgaps of LAM (350 and 400 Hz
here), the transmission fluctuates with increasing A0. For large
A0, T = 1, indicating that the bandgap becomes a passband
according to the amplitude-dependent band structure shown
in Fig. 2. Fortunately, the NAM still keeps the ability to limit
wave in LR2 in certain amplitude ranges.

Particularly, the acoustical limiting effect of our NAM is
ultralow frequency and ultrabroadband. As shown Fig. 3(c),
it is surprising that the far-field transmission of the NAM
is greatly reduced (T100 ≈ 0.03) in the multioctave range
160–580 Hz. Its generalized bandwidth reaches γ = 2.63, a
double-ultra bandwidth for acoustical limiting. We note that
if the wave reduction in this band becomes as large as that
in linear bandgaps, one could refer this band as bandgap; but
in general, we denote it as a limiting band. However, present
studies of nonlinear acoustics fail to reveal the mechanisms
for these phenomena.

The evolving process for the double-ultra acoustical lim-
iting is depicted in Fig. 3(d). For large incident amplitudes,
the near-field (x < 20a) attenuating range is not LR1 or
LR2. Instead, it is LRc, indicating that m1 and m2 in the
near-field metacells behave as an integrated resonator, mc,
due to enhanced nonlinearity. Moreover, as x increases, the
initial frequency for the greatly attenuated band, denoted
fst , shifts downwards gradually, and the transmission above
LRc decreases much faster. Thus, the total band for wave
attenuation broadens until the entire range from LR1 to LR2
(even all above LR1) obtains great reduction. In other words,
we cumulate the gap effect in Fig. 2 from the incident source
to the deep inside the NAM. This process shows that the
limiting band in this NAM adaptively evolving from a narrow
one, LRc, into a double-ultra one covering the range LR1–
LR2, γ = 3.5 (at least), which far exceeds the bandwidth
of the LAM with mc/m0 = 0.7. We term this phenomenon
a self-broadening or adaptive-broadening: The bandwidth
self-adapts to the propagation distance. As the propagation
distance depends on the propagation time, a space-dependent
property is also time-dependent. It is also different from the
tunable bandgap by changing the incident amplitude, A0, in
nonlinear crystals. Here, the variable is propagation distance
or time. Actually, adaptive broadening highlights a concept
of band structure that is closely related to the limiting and
self-action mechanisms.

IV. MECHANISMS

This section presents the mechanisms for the acoustical
limiting and its self-broadening band. According to Eq. (2),
the amplitude reduction in propagation distance �x = a�n
denotes e−κI�x = e−μI�n. Bandgaps lead to great attenuation
in short �x caused by the large μI, i.e., μI � 0. This is the
attenuation process of evanescent waves (see the Appendix).
As the bandgap is amplitude dependent, the process for
generating the limiting effect depends on the combination
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FIG. 4. Mechanisms for acoustical limiting in the NAM. (a), (b), (c) Results for 200 Hz. (d), (e), (f) Results for 250 Hz. (a), (d)
Transmissions in different cases vary as functions of propagation distance n = x/a. Herein, L and N in legends symbolize the numerical
results of the linear and nonlinear model, respectively; Equ represents the results solved by the equivalent theory. d0 = 0 and d0 = 4e-5 mean
the damping coefficient d0 = 0 and d0 = 4 × 10−5 s, respectively. In (d), we use 0.55κI in the equivalent theory due to its approximate nature
of the nonlinear model. (b), (e) Spectra of the displacement un(t ) for increasing n. (c), (f) Displacement spectra of the input wave, reflected
wave and waves at the first triatomic cell (n = 1), respectively. Damping is not considered in (b), (c), (e), (f). All numerical results are solved
with the model containing the linear phononic crystal “buffer” shown in Fig. 1(f).

parameters of incident, (A0, ω). There are mainly two cases:
the combination (A0, ω) locates either in (i) the passbands
of LAM, or (ii) in the bandgap LRc shown in Fig. 2. Two
representative frequencies, 200 and 250 Hz, are taken to show
the attenuation processes for cases (i) and (ii), respectively.
A0 = 30 μm is specifically chosen here. The main difference
between the two cases lies in the position for generating the
band-gap effect (see the Appendix). Results are illustrated in
Fig. 4.

If (A0, ω) first appears in the passbands, there are three
steps in the nonlinear attenuation process. In linear regimes,
κI = 0 for d0 = 0, thereby T (x) = 1, the reflection is 0, and
the band structure never varies. In contrast, the wave spectra
in Figs. 4(b) and 4(c) indicate that waves in NAM undergo
harmonic generation [37] (mainly third harmonic due to cubic
nonlinearity) and chaotic responses that pump the fundamen-
tal energy to a broad spectral band. The narrow-band input
becomes a broadband wave featuring a continuous spectrum.
These processes reduce the total amplitude. Defining κN as
the entire attenuation rate induced by them, we have A(x) =
A0e−κNxe−κIx. Simulations and experiments indicate that κN ∝
ω. We adopt κN = dNω to approximate this effect. As shown
by the dashed arrows in Fig. 2, the reduction of A(x) shifts the

bandgaps downwards. When the combination (A, ω) appears
in the bandgap at a critical position, a significant reduction
(more than an order of magnitude) of evanescent waves can be
induced within just 3 ∼ 10 cells because max(μI ) > 3 and av-
erage (μI ) > 0.5 here. For the case shown in Fig. 4(a), the fast
reduction appears in the position range 20 < n < 30. Here,
the band-gap effect occurs inside the material and quite far
from the “surface”. As waves inside a NAM are a superposi-
tion of the forward transmitted and backward reflected waves,
the nontransmitted energy now spectrally broad is actually
reflected by the NAM [see Fig. 4(c)]. Eventually, as shown
in Fig. 4(b), for small A(x) in far-field metacells, nonlinearity
is weak and the linearity plays a dominant role, so dN = 0 and
LR1, LR2, and Bragg bandgaps are active to reflect broadband
energy in the chaotic wave. However, the residual energy
in passbands can still propagate without attenuation. Thus,
the far-field transmission in the self-broadening limiting band
may be greater than that in the LAM bandgap. As depicted in
Fig. 4(a), by specifying dN = 3 × 10−5s m−1rad−1, the ana-
lytical transmission derived from the equivalent theory agrees
very well with the numerical curve for d0 = 0, confirming that
the acoustical limiting effect mainly arises from the moving
band-gap effect.
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FIG. 5. Transmission T (x = na, f ) solved with the equivalent
method, dN = 3 × 10−5s m−1rad−1, A0 = 30 μm. (a) d0 = 0; (b)
Damped case for d0 = 4 × 10−5 s.

If (A0, ω) first appears in LRc, as shown in Fig. 4(f),
most input energy is reflected by several metacells near the
incident boundary, thereby the amplitude decreases rapidly
[see Fig. 4(d)]. The transmission at the fourth cell is as
low as 0.2. Then, harmonic generation and chaotic response
diminish the amplitude slowly. If the third harmonic falls in
the Bragg bandgap above 700 Hz (here 3 f = 750 Hz), it will
diminish within short propagation distance [see Fig. 4(d)]. At
last, linearity plays a dominant role in the aforementioned
process when the amplitude becomes small. The second step
for chaotic responses may not happen if the reduction in
the first step directly leads the AM into the linear regime.
Considering the approximate nature of the equivalent theory,
it still reproduces the numerical trends, which confirms again
that the moving band-gap effect is the main source for trans-
mission reduction.

The analyses above clarify that (i) The acoustical limiting
in this NAM mainly arises from the band-gap effect; (ii) The
ultrabroad limiting bandwidth is induced by the adaptive-
broadening band-gap effect; (iii) Harmonic generation and
chaotic response are key mechanisms to initiate adaptive
broadening.

As shown Fig. 5(a), transmissions T (x, f ) solved with
the equivalent method are in accordance with Fig. 3(d).
These analyses indicate that the position (inside NAM),
where the band-gap effect happens, depends on A0 and fre-
quency. Inversely, the initial and cut-off frequencies of the
bandgap vary with position, i.e., the band structure is space-
amplitude-dependent rather than only amplitude dependent.
It is a self-strengthening process: Once the wave attenuation
begins, band structure varies and broader ranges are swept
by bandgaps, then more energy is reflected. Therefore, the
attenuation bandwidth adaptively broadens as propagation
distance increases, and an ultrabroad limiting band is even-
tually observed. Of particular significance is the fact that this
“adaptive band” is essentially different from the conventional
“invariant band” or “tunable band by changing amplitude”.
The adaptive property indicates that the Bloch theorem is
incompatible with enhanced nonlinearity, where the spatial
and temporal variations have to be considered.

However, if (A0, ω) first appears in passbands, a great
transmission loss induced by the band-gap effect requires a
long propagation distance as dN is small. Higher A0 needs
longer distance (i.e., material thickness) before reaching the

zone of quick reduction where the band-gap effect occurs.
Accelerating the self-broadening needs a greater decay rate.
Fortunately, material damping is unavoidable in practice and
it can exhibit a positive role here. As shown in Figs. 4(a) and
4(d), the wave amplitude in linear metamaterials decays expo-
nentially as the propagation distance increases when d0 	= 0
in Eq. (1). By introducing a weak damping, d0 = 4 × 10−5 s,
in the numerical model and equivalent theory, the critical
distance for obtaining the band-gap effect is greatly short-
ened. The equivalent result still reproduces the shorten critical
distance. For example, n = 5 for the wave (30 μm, 200 Hz)
now. Therefore, the self-broadening can be accelerated by the
presence of weak material damping in practice. By comparing
the linear and nonlinear cases for d0 = 4 × 10−5 s in Figs. 4(a)
and 4(d), we note that the acoustical limiting effect in NAM
still mainly derives from the band-gap effect but not the weak
damping. A clear evidence is that their decaying ratios are like
those observed for n > 15 (where linearity plays a dominant
role) but the amplitude of LAM is 5 ∼ 10 times larger. The
amplitude difference derives from the band-gap effect.

V. EXPERIMENTAL DEMONSTRATIONS

Different experiments were carefully established to
demonstrate the limiting effect, its band-gap mechanisms, and
adaptive-broadening bandwidth. As shown in Fig. 1(e), the
transient velocity responses, Vn(t ), of the primary oscillators
are synchronously measured by three laser Doppler vibrom-
eters, Vn(t ) ≈ 2π f An(t ). By trying to use different incident
wave forms, we find that adding a slowly rising edge and a
slowly trailing edge, expressed as A0 sin(ωt/10) sinωt , at both
ends of the standard sinusoidal wave packet can eliminate the
transient impact responses of the exciter (see the Supplemen-
tal material [42]). Both the maximum and average peak values
of the propagation packet are extracted to calculate the wave
transmission, and we confirm that trends shown by them are
consistent.

A. Controlled experiment

First, we establish a controlled experiment on the diatomic
linear metamaterial prototype whose oscillators m2 are re-
moved to eliminate the influences of nonlinearity. Experimen-
tal and numerical transmissions at different propagation dis-
tances are shown in Fig. 6. Comparing the incident amplitude
used in Fig. 8(a) below, the amplitude A0( f ) adopted in the
controlled experiment is high enough to observe the nonlin-
ear phenomena, if there was nonlinearity. The desired great
wave attenuation appears in the locally resonant bandgap near
400 Hz. However, no acoustical limiting effect is observed
below the bandgap. Small attenuation in this sample results
from the damping. Moreover, by comparing the numerical and
experimental transmissions at different positions we obtain
that the damping coefficient is d0 = (2.5 ± 2) × 10−5 s in
experiments.

B. Demonstrations of acoustical limiting and bandgap effect

Second, we measure the influences of A0 on the trans-
missions of the NAM at different positions, as shown in
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FIG. 6. Experimental and theoretical transmissions of the con-
trolled linear metamaterial model. In legends, “Exp” represents the
experimental results; “Th” denotes the numerical results; the number,
j, represents the transmission at the jth cell. For example, “Exp: 5”
denotes the experimental transmission at the fifth cell. The smaller
inset shows the A0 spectral amplitude from 80 to 600 Hz.

Fig. 7. Moreover, to reproduce the experimental phenomena,
we establish a numerical model consisting of 30 cells contain-
ing clearance nonlinearity. The clearance δ0 = 40 μm and a
weak damping d0 = 1 × 10−5 s are specifically chosen in this
model. As shown in Fig. 7(c), the experimental and numeri-
cal transmissions are perfectly agreeing, which confirms the
validity of experiments again.

For waves below 370 Hz, the transmissions decrease with
increasing A0. The low-amplitude wave can propagate, but the
large-amplitude waves are greatly attenuated. For example,
T8 < 0.1 for A0 = 50 μm. Therefore, an unambiguous acous-
tical limiting effect is observed. For high-frequency waves
(600 Hz here), Fig. 6 shows that damping has larger influence,
and the maximum A0 is limited by the power of the vibration
exciter in experiment, but a nascent acoustical limiting effect
is also observed at the fifth cell for A0 > 30 μm. Moreover, T5

for 250 Hz starts to increase for A0 > 100 μm. For incident
waves inside the bandgap LR2 (400 Hz here), small waves
are suppressed but the large amplitude wave can propagate
through eight metacells with small attenuation. These trends
agree well with those in Fig. 3(b).

Then, we address the proof by contradiction to demonstrate
that the band-gap effect rather than the damping is the key
mechanism for the acoustical limiting. As is well known,
damping effect for high-frequency waves is greater than for
low-frequency waves, though the damping is very weak, as
confirmed in Fig. 6. Therefore, if the wave attenuation mainly
arose from the damping, the attenuation rates of 250 and
270 Hz should be always smaller than the rate of 600 Hz.
However, the attenuation processes in Fig. 7(c) largely mani-
fest the opposite situation. The waves at 250 and 270 Hz un-
dergo great reduction within three metacells near the source,
and then their amplitudes decrease more slowly than waves
at 600 Hz. This process is identical to the attenuation of
evanescent wave in the bandgap shown in Fig. 4(d), and it is
confirmed by the numerical curves in Fig. 7(c). Therefore, this

FIG. 7. Acoustical limiting in experiments. (a), (b) Transmis-
sions at the fifth and eighth cell change as functions of A0. (c) Attenu-
ation processes of representative waves for A0 = 50 μm. Herein, Exp
represents the experimental results. Num represents the numerical
results calculated with the model containing clearance-nonlinearity.
δ0 = 40 μm and d0 = 1 × 10−5 s in the model.

experiment demonstrates that the acoustical limiting is mainly
induced by the band-gap effect.

C. Demonstration of adaptive bandwidth

Eventually, we demonstrate the adaptive bandwidth for
acoustical limiting, as shown in Fig. 8. NAM responses under
three driving levels, 2, 4, and 8 V, are measured. A0 decreases
with f in the experiments [Fig. 8(a)]. If the incident packets
of level 8 V are directly input into the numerical model
containing clearance-nonlinearity, Fig. 8(c) shows that the
experimental and numerical transmissions are approximately
equal. Moreover, the near-field transmission exhibits quite an
abrupt jump at a frequency, fB (420 Hz in this case). By
observing the relative motions in the first cell [Fig. 8(b)], we
find that fB is the grazing bifurcation [41] frequency of the
vibroimpact oscillator. Nonlinearity disappears due to |p| <

δ0 for f > fB.
At a certain propagation distance, a greater transmission

loss in 200–350 Hz is induced by a larger A0 [Fig. 8(d)] due to
acoustic limiting. Figures 8(e) and 8(f) indicates that the near-
field (n < 3) transmission near 273 Hz is greatly reduced, but
waves in 0–255 Hz and 350 Hz- fB can still propagate. This
confirms that the near-field NAM behaves as a quasilinear
diatomic model that leads to the attenuation in LRc. This is
in accordance with the trends in Figs. 7(c) and 3(d). As the
propagation distance/time increases, waves in the near-field
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FIG. 8. Experimental demonstration. Panels (a)–(f) are results for inputting sinusoidal packets. (a) Driving amplitude A0. (b) Phase
diagrams for numerical responses of cell 1 immediately before the bifurcation frequency fB, f < fB, and immediately after fB, f > fB.
ṗ = d p/dt . (c) Experimental, ex, and theoretical, th, transmissions at cell 1 and cell 5 under the same input, level 8 V. (d) Experimentally
measured transmissions at the eighth cell. Here, 2, 4, and 8 V are the three driving levels for the NAM; L represents the result for the diatomic
LAM prototype. (e), (f) Transmissions under 8 V. (g), (h) Transmissions obtained in sweep-frequency experiments. In (c), (e), (g), the number,
n, in legends represents the nth cell; L represents the numerical result of the fifth cell in the linearized model. (f), (h) Transmission T (x = na, fe),
n = x/a.

passbands, 200 Hz- fB, are attenuated gradually due to the
shifting bandgap. The entire limiting band becomes broader
at longer propagation distances, successfully demonstrating
the spatial and temporal adaptive band structure and adaptive-
broadening bandwidth. The limiting band at the 13th cell has
reached 200–500 Hz for levels 8 V (it is 180–500 Hz for level
4 V [42]).

Moreover, this experiment still proves that opening the
bandgap by observing the residual amplitude below 180 Hz
requires a longer propagation distance, which is attributed to
the challenge in attenuating all broadband energy of packets.
The fast sweep-frequency experiment [Figs. 8(g) and 8(h)]
shows a faster self-broadening speed, especially for f <

250 Hz. Herein the band-gap successfully expands to 130 Hz
at the 13th cell, which is close to LR1. Certain weak peaks
at high frequencies correspond to the standing waves arising
from the boundary reflection of the finite NAM. Images of
Figs. 8(f) 8(h) also agree with the equivalent analytical image
show in Fig. 5.

These experiments demonstrate that the bandgap can adap-
tively expand to at least 130 ∼ 500 Hz (γ = 2.85) within
9 ∼ 13 cells. Comparing with the linear metamaterial with
mc/m0 = 0.7, the unusual double-ultralimiting band extends
far beyond the limitation dictated by mass ratio of a conven-
tional LR bandgap.

VI. CONCLUSIONS AND DISCUSSIONS

This paper introduces a NAM containing enhanced nonlin-
ear interaction. We present the theoretical and experimental

demonstrations of the efficient and broadband acoustical
limiting effect in nonlinear acoustic/elastic media, and we
report that the band-gap effect can adaptively broaden as the
propagation distance/time increases. Of particular relevance
is that the adaptive-broadening band-gap effect dominates
the broadband acoustical limiting. The limiting efficiency can
reach 97%. The self-action occurs because the band structure
is distance-amplitude-dependent inside the NAM rather than
only amplitude dependent. As clarified, harmonic generation
and chaotic responses play key roles in initializing the
adaptive process, and weak damping can somehow counterin-
tuitively accelerate the broadening speed. In experiments, an
ultrabroad acoustical limiting band (also the band-gap effect)
is performed within a short propagation distance, which
overcomes the limitation of the mass ratio for conventional
locally resonant bandgaps in linear metamaterials.

The limiting band here is different from the chaotic pass-
band because the broadband resonance attenuations in chaotic
passbands originate from the chaotic vibrations but not the
adaptive band-gap effect [38,39]. Although a triatomic NAM
is considered here, we anticipate that the self-broadening
bandgap occurs in NAMs containing enhanced nonlinearly
coupled oscillators, for example, diatomic NAMs. Actually, a
crystal (no matter phononic or photonic) whose bandgaps can
be greatly shifted by amplitude could possess this adaptive
property. Here, we state two easily satisfied preconditions
for self-broadening: The material is “monocrystal” and the
spatial distribution of its nonlinear coefficient is uniform. In
a nonlinear metamaterial, “monocrystal” means the metacells
along the wave propagation path are same. The uniform
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nonlinear coefficient in this paper means the parameter kN

in every unit cell is same; in nonlinear optics, it means the
nth-order electric susceptibilities at different positions inside
the crystal are same.

The two fundamental principles provide the first step to-
wards extensive potential applications in innovating devices
for protecting targets from high-intensity elastic waves, for
wave isolation, and for self-modulating waves. Moreover, it
will be interesting to extend this line of study to higher dimen-
sions (2D and 3D). Due to the analogous properties of elastic,
optical, and electromagnetic waves, expanding the scope of
the self-broadening bandgap is also desirable. Therefore, we
expect that our study will be of interest for the broader wave
physics community.
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APPENDIX: DEFINITIONS OF CONCEPTS

1. Bandgap effect

The amplitude reduction in a bandgap depends on the
accumulated exponential decay in a certain propagation dis-
tance, exp(−κI�x). Here, the band-gap effect means the
wave attenuation due to κI > 0 in the undamped case, but
the accumulating distance �x is not considered. In our NAM,
the �x may be short in some cases. Therefore, the amplitude
reduction range is directly defined as limiting band instead of
bandgap.

2. Generalized width of a bandgap

The generalized width of a bandgap is γ = ( fcut − fst )/ fst,
where fst ( fcut ) is its initial (cutoff) frequency. A LAM’s LR
bandgap obeys the law γ ≈ √

1 + mc/m0 − 1, where mc (m0)
denotes the mass of the local resonator and primary oscillator.

A smaller mass ratio mc/m0 is better for most applications.
For example, γ ≈ 0.3 for mc/m0 = 0.7, and a huge value,
mc/m0 = 3, is required to obtain γ = 1 in LAM. Therefore,
γ > 1 can be regarded as a double-ultra bandgap because
there is γ << 1 generally.

3. Piecewise nonlinear functions

In experiments, the nonlinear force FN(t ) generated by the
contact between the sphere and the hollow cylinder is

FN(t ) =
⎧⎨
⎩

k1 pn for |pn| � δ0

k1 pn + Ac(pn − δ0)3/2 for pn > δ0

−k1 pn − Ac(−pn − δ0)3/2 for pn < −δ0

.

(A1)

Here, δ0 denotes the width of the clearance and Ac =
2Es

√
rs/[3(1 − ν2)], where Es and v represent the elastic mod-

ulus and Poisson’s ratio of the softer medium, respectively.
Here, Es = 70 GPa, v = 0.3. The piecewise function FN(t )
described by Eq. (8) can be fitted with a smooth equation
k1 p + kN pn. The linear coefficient, k1, is constant but the
nonlinear coefficient, kN, depends on the clearance, δ0. By
fitting the curve, we obtain kN = αδ−n

0 and α = 0.3 for δ0 =
45 μm, so kN ≈ 3.3 × 1012 N/m3 for cubic nonlinearity.

4. Nonlinear strength

The nonlinear strength σ < 0.1 is weak nonlinearity and
σ = 0.3 can generate strongly nonlinear phenomena [19]. In
our experiments, if we approximate the clearance nonlinearity
with the smooth cubic nonlinearity, we obtain kN = 3.3 ×
1012 N/m3. The amplitude under 8 V reaches 533 and 53 μm
for 100 and 300 Hz, respectively, and their σ = 3392 and
33.5. They are huge numbers relative to σ = 0.3. Therefore,
it can generate enhanced nonlinear responses.

5. Evanescent wave

The evanescent wave intensity decays exponentially (rather
than sinusoidally) with distance, x, from the interface at which
they are formed according to E=E0e−γ x, where γ is the
attenuation coefficient and E0 is the initial intensity.
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