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We investigate the critical behavior of the entanglement transition induced by projective measurements in
(Haar) random unitary quantum circuits. Using a replica approach, we map the calculation of the entanglement
entropies in such circuits onto a two-dimensional statistical-mechanics model. In this language, the area- to
volume-law entanglement transition can be interpreted as an ordering transition in the statistical-mechanics
model. We derive the general scaling properties of the entanglement entropies and mutual information near the
transition using conformal invariance. We analyze in detail the limit of infinite on-site Hilbert space dimension
in which the statistical-mechanics model maps onto percolation. In particular, we compute the exact value of
the universal coefficient of the logarithm of subsystem size in the nth Rényi entropies for n � 1 in this limit
using relatively recent results for the conformal field theory describing the critical theory of two-dimensional
(2D) percolation, and we discuss how to access the generic transition at finite on-site Hilbert space dimension
from this limit, which is in a universality class different from 2D percolation. We also comment on the relation
to the entanglement transition in random tensor networks, studied previously in Vasseur et al. [Phys. Rev. B 100,
134203 (2019)].
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I. INTRODUCTION

Quantum entanglement plays a crucial role in modern
condensed-matter physics, both in equilibrium and nonequi-
librium settings. Under unitary evolution, the entanglement
of generic isolated many-body quantum systems tends to
increase to a volume-law scaling of the entanglement en-
tropies of subsystems [1–9], as required by the eigenstate
thermalization hypothesis [10,11] (ETH). It is then natural
to ask whether different dynamical phases with different
entanglement scaling can exist, and about the nature of the en-
tanglement transitions separating these entanglement phases.
An example of such an entanglement transition is provided by
the many-body localization (MBL) transition [12–23], which
occurs in the presence of random or quasiperiodic potentials,
and separates the volume-law thermal dynamical phase from
an area-law (nonthermal) MBL phase [24–31].

A completely different way to obtain an entanglement
transition of a different kind between area- and volume-law
states was introduced in Ref. [32]. There the transition was
induced by tuning the bond dimension of a state obtained at
the boundary of a two-dimensional random tensor network.
This entanglement transition can be described by an effective
two-dimensional statistical-mechanics model.

Shortly after, another type of entanglement transition was
proposed using projective measurements: If a many-body
quantum system is subjected to enough local measurements,
such measurements can collapse the many-body wave func-
tion into an area-law entangled state, while with a low den-

sity of measurements, volume-law entanglement can survive.
Such measurement-induced transitions in random unitary cir-
cuits [6,33–40] subjected to random local measurements were
introduced in Refs. [41–43], and were studied numerically
both for Haar and Clifford random gates. Despite the growing
interest in this transition [44–48], it remains poorly under-
stood, with the majority of results stemming from numerical
observations. There have been only two exceptions: (i) A
fine-tuned transition between area- and volume-law entangled
phases was shown in Ref. [32] to be in the universality class
of critical two-dimensional (2D) percolation described by an
exactly solvable conformal field theory (CFT). This provided
an existence proof for such a transition. Relaxing the fine-
tuning induces a crossover to a transition in an analytically
so-far not tractable universality class. (ii) Subsequently, the
behavior of the zeroth Rényi entropy S0 in the problem of
the projective measurement-induced transition was mapped in
Ref. [41] onto an exactly solvable “geometric” optimization
problem for “minimal cuts” in 2D percolation. Since in the
same reference critical behavior of the zeroth Rényi entropy
S0 was observed at a parameter value (probability of measure-
ment) different from the one where all nth Rényi entropies Sn

with n � 1 became critical, the significance of the minimal
cut results for S0 for the measurement-induced entanglement
transition remains to be better understood.

In this paper, we provide a theory of the projective
measurement-induced entanglement transition (with Haar
random unitary gates) by mapping the calculation of entan-
glement entropies onto a statistical-mechanics model. Our
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approach relies on a replica trick which allows us to deal
with the intrinsic nonlinearities of projective measurements.
The area- to volume-law entanglement transition then corre-
sponds to an ordering transition in the statistical-mechanics
model. This naturally explains the emergence of conformal
invariance at the transition, and leads to universal scaling
forms for the entanglement entropy and mutual information.
In the limit of infinite on-site Hilbert space dimension d = ∞,
we find that the entanglement transition is in the percolation
universality class, and we compute the exact value of the
universal coefficient of the logarithm of subsystem size in
all nth Rényi entropies for n � 1 from the exactly known
CFT, obtaining the value =1/6 for the entanglement of half of
the system and open boundary conditions. This is in contrast
to the value of the universal coefficient of the logarithm of
subsystem size of the zeroth Rényi entropy computed in the
same setting, as mentioned above, in Ref. [41] using the
minimal cut method, which was found [49] in that work to
be equal [44,50,51] to = ln 2 × √

3/(2π ). [The latter quantity
is ≈ ln 2 × 0.27 ≈ 0.187.] The fact that these two universal,
exactly known numbers 1/6 and ln 2 × √

3/(2π ) are different
appears to indicate that, while in the limit of infinite on-site
Hilbert space dimension, the nth Rényi entropies for n � 1
and the zeroth Rényi entropy S0 happen to become critical
at the same parameter value (probability of measurement),
they describe rather different and unrelated properties of
the system. (This is in line with the observation, mentioned
above, that these two quantities become critical at different
parameter values in the generic case of finite on-site Hilbert
space dimension.) The limit of an infinite on-site Hilbert space
dimension also allows us to identify the generic transition for
a finite on-site Hilbert space dimension as that generated by
a crossover from the percolation conformal field theory by a
single (renormalization group) relevant perturbation.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the model of random unitary circuits
with random projective measurements, and explain how to
compute the entanglement entropy using a replica approach.
In Sec. III, we map the calculation of the entanglement
entropy onto a statistical-mechanics model, and discuss the
large d limit. Section IV describes the consequences of con-
formal invariance for scaling of various quantities for any d ,
while Sec. V addresses the d = ∞ limit in detail. Finally,
Sec. VI deals with the nature of the transition at finite d
and the close relation to the entanglement transition [32] in
random tensor networks [32,52,53], and Sec. VII contains
concluding remarks.

II. RANDOM QUANTUM CIRCUITS

We study the discrete-time dynamics of a 1D “qudit” chain.
That is, each site of this 1D qudit chain has a local Hilbert
space of dimension d . The discrete-time dynamics we focus
on is generated by the quantum circuit with a “brick-wall”
configuration shown in Fig. 1 that consists of random unitary
operators and generalized measurements. In Fig. 1, the 1D
qudit chain is along the x direction while the vertical direction
represents time (or discrete time steps). Each green block
represents an independently Haar-random two-site unitary

FIG. 1. Random unitary dynamics of a 1D qudit chain. The blue
circles represent one-site generalized measurements, while the green
blocks represent Haar-random two-site unitary gates that act on pairs
of neighboring sites in the 1D qudit chain.

gate that acts on a pair of neighboring sites in the 1D qudit
chain.

Each of the blue blocks represents a one-site generalized
measurement. Such generalized measurements can be most
conveniently described using the language of quantum chan-
nels [44,54], which we review in the following. In general,
a quantum channel is a completely positive trace-preserving
map, which can be described by a set M = {Mα} of Kraus op-
erators Mα (with α = 1, 2, . . .). The Kraus operators are nor-
malized according to a generalized normalization condition∑

Mα∈M w(Mα )M†
αMα = 1 with w(Mα ) a non-negative real

number for each Kraus operator Mα ∈ M, which is the weight
of realizing Mα in the quantum channel. The left-hand side of
this normalization condition can be viewed as the weighted
sum of M†

αMα’s with non-negative weights w(Mα ). In the
following, we will denote this weighted sum as EMα∈M. For
example, we can rewrite the generalized normalization con-
dition as EMα∈M M†

αMα = ∑
Mα∈M w(Mα )M†

αMα = 1. Given
the set M and the weights, the quantum channel is defined
as the map from any density matrix ρ to EMα∈M MαρM†

α . In
fact, in the standard definition of the Kraus operators and their
normalization (see [54] for example), the weights w(Mα ) are
all taken to be 1. Here, we have made a generalization to
nonunity weights and to the corresponding weighted sum for
the convenience of later discussion. Given the set M (and the
weights of the Kraus operators), the quantum channel can also
be understood as a “probabilistic evolution.” If one starts with
a pure quantum state |ψ〉, for every Kraus operator Mα ∈ M,
the quantum channel evolves |ψ〉 to Mα |ψ〉

‖Mα |ψ〉‖ with a probability

of w(Mα )‖Mα|ψ〉‖2 = w(Mα )〈ψ |M†
αMα|ψ〉. Note that this

probability is normalized due to the generalized normalization
condition of the Kraus operators. Since we only consider one-
site generalized measurements in the quantum circuit shown
in Fig. 1, we then restrict the Kraus operators in M to be
localized on the site where the corresponding blue block is
acting.

The quantum channel description of generalized mea-
surements can easily recover the standard projective mea-
surement. For example, the one-site projective measurement
with respect to a (orthonormal) set of basis vectors |i〉
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(with i = 1, 2, . . . , d) of the d-dimensional local Hilbert
space on a given site can be described by the quantum channel
with the set of Kraus operators M1 = {P1, P2, . . . , Pd} and
the weights w(Pi ) = 1 for i = 1, 2, . . . , d . Here, Pi = |i〉〈i| is
the projection operator on the ith basis vector. The quantum
channel with the set M1 evolves (or collapses) a pure state
|ψ〉 to Pi|ψ〉

‖Pi|ψ〉‖ with a probability of w(Pi )‖Pi|ψ〉‖2 = ‖Pi|ψ〉‖2,
which is as expected for the standard projective measurement.

Using the language of quantum channels, one can study
more generalized forms of measurements. References [41]
and [43] studied quantum circuits with d = 2 in similar con-
figurations as Fig. 1 in which a quantum state, when it encoun-
ters a blue block in the quantum circuit, undergoes a standard
one-site projective measurement with a classical probability p
and stays intact with a classical probability 1 − p. In this sce-
nario, the associated quantum channel is described by the set
of Kraus operators Mp = {1, P1, P2, . . . , Pd} equipped with
the weights w(1) = 1 − p and w(Pi ) = p for i = 1, 2, . . . , d .
In the following sections, we also study this type of gener-
alized measurement (or quantum channel) given by the set
of Kraus operators Mp and the corresponding weights given
above. We would also like to introduce a closely related
generalized measurement given by the set of Kraus operators
M′

p = {1} ∪ {√dPU |U ∈ U(d )} with PU ≡ U †P1U , which is

an (uncountable) infinite set. The subset {√dPU |U ∈ U(d )}
of M′

p is continuously parametrized by a (one-site) unitary
matrix U ∈ U(d ). The weight on the operator 1 ∈ M′

p is
still 1 − p, which has the same physical interpretation as the
weight of the operator 1 in Mp. The weight on the infinite
subset {√dPU |U ∈ U(d )} is naturally given by the Haar mea-
sure: w(

√
dPU ) = p dU where dU represents the Haar mea-

sure on U(d ), normalized such that
∫

U∈U(d ) dU 1 = 1. The
weighted sum of Kraus operators in M′

p is defined accord-
ingly. For example, the generalized normalization condition of
the Kraus operator is given by EM∈M′

p
M†M = (1 − p)1†1 +

p
∫

U∈U(d ) dU (
√

dPU )†(
√

dPU ) = 1. The relation between the
generalized measurements defined by Mp and M′

p will be
studied in the following section.

Before we focus on a specific choice of generalized mea-
surements, let us rephrase the construction of the quantum
circuit of interest to us in this paper using the quantum-
channel language we introduced above. In a random quantum
circuit of the configuration shown in Fig. 1, each green block
is an independently Haar-random two-site unitary gate that
acts on a pair of neighboring sites in the 1D qudit chain. Each
of the blue blocks is independently and randomly drawn from
the ensemble given by the set of Kraus operators M (and
the associated weights) that is associated with the generalized
measurement one wants to study. For each realization of the
green and blue blocks, we can build a random quantum circuit,
denoted as C, following Fig. 1. Such a quantum circuit evolves
an initial pure state |ψ〉 of the 1D qudit chain to the pure
state C|ψ〉

‖C|ψ〉‖ . The probability for this evolution to occur is

the product of three factors: (i) the squared norm ‖C|ψ〉‖2 =
〈ψ |C†C|ψ〉 = Tr(C|ψ〉〈ψ |C†), (ii) the weight for each Kraus
operator in each blue block, and (iii) the Haar-measure prob-
ability for realizing each random two-site unitary gates in
each green block. In [55], the evolution from |ψ〉 to C|ψ〉

‖C|ψ〉‖ is

also referred to as a quantum trajectory. Different realizations
of the random quantum circuit C lead to different quantum
trajectories.

We are interested in the average quantum dynamics in-
duced by this random quantum circuit. We denote the average
over all realizations of the random quantum circuit as EC . . . .
The precise meaning of EC is the following. First, for each
two-site random unitary gate (green block), EC contains an
independent integration over the Haar measure [of the U(d2)
group]. This integration will be denoted as EU in the fol-
lowing. For each generalized measurement (blue block), EC

includes the weighted sum over the set of Kraus operators,
EM, as explained before.

One example of an averaged quantity under the quantum
dynamics induced by this random quantum circuit is the
averaged expectation value Ō of an observable O in the state
obtained from evolving the initial state |ψ〉 by the random
quantum circuit:

Ō = E
C

( 〈ψ |C†OC|ψ〉
‖C|ψ〉‖2

× Tr(C|ψ〉〈ψ |C†)

)

= E
C
〈ψ |C†OC|ψ〉, (1)

where 〈ψ |C†OC|ψ〉
‖C|ψ〉‖2 is the quantum-mechanical expectation

value of the observable O in the state C|ψ〉
‖C|ψ〉‖ , and the factor

Tr(C|ψ〉〈ψ |C†) is, as explained, one of the factors in the
probability of the corresponding quantum trajectory. We see
that Eq. (1) naturally agrees with the evolution of an observ-
able O under a quantum channel (constructed from Fig. 1
by viewing each of the green and blue blocks as a quantum
channel). The more interesting quantity we want to study is
the (averaged) dynamics of subsystem entanglements under
the random quantum circuit. Consider a subsystem A and its
complement Ā of the 1D qudit chain. The nth Rényi entropy
Sn,A[|ψ〉] on the subsystem A of a pure state |ψ〉 follows the
standard definition

Sn,A[|ψ〉] = 1

1 − n
ln Tr

A

(
ρn

A

)
, (2)

where ρA = TrĀ |ψ〉〈ψ | is the reduced density matrix on the
subsystem A. Here, TrA (or TrĀ) represents the partial trace
over the degrees of freedom in the subsystem A (or Ā).
Alternatively, Sn,A[|ψ〉] in Eq. (2) can be expressed in terms
of the expectation value of a permutation operator Sn,A acting
on the the n-fold replicated state as

Sn,A[|ψ〉] = 1

1 − n
ln Tr((|ψ〉 〈ψ |)⊗nSn,A), (3)

where Sn,A depends on the choice of entanglement region A
and is defined as

Sn,A =
∏

x

Xgx , gx =
{

(12 . . . n), x ∈ A,

identity = e, x ∈ Ā.
(4)

gx labels the permutation on site x, and Xgx =∑
[i] |igx (1)igx (2) . . . igx (n)〉 〈i1i2 . . . in| is its representation on

the replicated on-site Hilbert space, i.e., on its n-fold tensor
product [56]. Here, as indicated in the equation above, gx is
the cyclic (identity) permutation when x is in the region A
(when x is in the region Ā). We are interested in the averaged
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nth Rényi entropy S̄n,A of the final state after the random
quantum circuit evolution:

S̄n,A = E
C

Sn,A

[
C|ψ〉

‖C|ψ〉‖
]

× Tr(C|ψ〉〈ψ |C†), (5)

which can be rewritten as

S̄n,A = 1

1 − n
E
C

(
ln

Tr
(
(C |ψ〉 〈ψ |C†)⊗nSn,A

)
Tr(C|ψ〉〈ψ |C†)⊗n

)
Tr(C|ψ〉〈ψ |C†),

= lim
m→0

1

m(1 − n)
E
C
{[Tr(C |ψ〉 〈ψ |C†)⊗nSn,A]m − [Tr(C|ψ〉〈ψ |C†)⊗n]m} Tr(C|ψ〉〈ψ |C†),

= lim
m→0

1

m(1 − n)
E
C

Tr
[
(C |ψ〉 〈ψ |C†)⊗nm+1(S⊗m

n,A − 1
)]

, (6)

where we have introduced a second replica index m to re-
solve the ensemble average of the logarithm using lnx =
limm→0(xm − 1)/m and Tr(X ⊗m) = (Tr X )m. This replica
trick was introduced in Ref. [32] in the context of random
tensor networks, and in Ref. [38] for random unitary circuits.
In this double replica scheme, the total number of replica
is Q = nm + 1, and the replica limit m → 0 corresponds to
Q → 1. As can be seen from Eq. (6), the additional replica
apart from nm originated from the probability Tr(C|ψ〉〈ψ |C†)
of obtaining a measurement outcome. As a side comment,
if we reweight this probability by a power q, i.e., replacing
Tr(C|ψ〉〈ψ |C†) → Tr(C|ψ〉〈ψ |C†)q, we could also realize
other replica limits, Q = mn + q → q as m → 0.

To evaluate Eq. (6), we will need to calculate the ensemble
average EC C⊗Q ⊗ C†⊗Q of the tensor product of Q copies of
the random quantum circuit C and Q copies of its conjugate
C†. In the next section, we will show that the calculation of
the average EC C⊗Q ⊗ C†⊗Q can be mapped onto a statistical-
mechanics model in 2 + 0 dimensions. By imposing different
boundary conditions corresponding to fixing permutations at
the boundary [following Eq. (4)] to S⊗m

n,A or 1, the statistical-
mechanics model results in different partition functions,

ZA = E
C

Tr
[
(C |ψ〉 〈ψ |C†)⊗QS⊗m

n,A

]
,

(7)
Z∅ = E

C
Tr(C |ψ〉 〈ψ |C†)⊗Q,

from which the averaged nth Rényi entropy S̄n,A can be
obtained in the replica limit via

S̄n,A = n

1 − n
lim
Q→1

ZA − Z∅
Q − 1

. (8)

Using the fact that ZA = Z∅ = 1 in the replica limit m → 0
(Q → 1), this can be rewritten in a more intuitive form as the
free-energy cost of the domain wall associated with changing
the boundary condition in the entanglement region:

S̄n,A = lim
m→0

FA − F∅
m(n − 1)

= lim
m→0

ln(ZA/Z∅)

m(1 − n)
, (9)

with FA = −lnZA and F∅ = −lnZ∅. Also, from the statistical-
mechanics model perspective, we will see that the choice of
the initial state |ψ〉 is not essential when the depth, namely the
number of discrete time steps, of the random quantum circuit
becomes large.

III. STATISTICAL-MECHANICS MODEL

Let us derive the statistical-mechanics model for generic
replica number Q first, before taking the replica limit Q → 1.
The evaluation of the expectation value EC C⊗Q ⊗ C†⊗Q boils
down to the ensemble average of the unitary gates and the
generalized measurements in the circuit. Let U be a two-site
Haar-random unitary gate. The average of the tensor product
of Q identical copies of U and U † under the Haar measure is
given by (using standard graphical notations [57]):

=
∑

g1,g2∈SQ

Wgd2

(
g−1

1 g2
)

(10)

where WgD(g) denotes the Weingarten function of the permu-
tation g,

WgD(g) = 1

Q!

∑
λ�Q

χλ(e)χλ(g)∏
(i, j)∈Y (λ)(D − i + j)

, (11)

where the sum is taken over all integer partitions λ of Q
[denoted in the above equation by the notation λ � Q,
such that λ = (λ1, λ2, . . .) with λ1 � λ2 � · · · , λi ∈ N, and∑

i λi = Q], and the product is taken over all cells (i, j) in
the Young diagram Y (λ) of the shape λ. Here e denotes the
identity group element, and χλ(g) is the irreducible character
of the symmetric group SQ indexed by the partition λ.

As we average over all two-site unitary gates in the circuit,
the partition function will break up into a product of indepen-
dent contributions from the generalized measurements. Each
generalized measurement is associated with the following
partition function weight:

WM (g1, g2) = = TrXg1 M⊗QXg2 M†⊗Q

(12)

where M is an element of a set of Kraus operators. For M = 1,
we have W1(g1, g2) = Tr Xg1Xg2 = d |g−1

1 g2|, where |g| denotes
[58] the number of cycles in the permutation g (including
cycles of length 1). We consider two scenarios of the gen-
eralized measurement, described by the previously discussed
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FIG. 2. (a) Geometry of the statistical-mechanics model of SQ

spins. The red sites correspond to the boundary spins to be pinned by
the boundary condition. (b) In the d = ∞ limit, the model reduces to
a Potts model on a square lattice.

sets of Kraus operators Mp and M′
p, respectively. They lead

to seemingly different ensemble averages:

E
M∈Mp

WM (g1, g2) = (1 − p)d |g−1
1 g2| + pd, (13)

E
M∈M′

p

WM (g1, g2) = (1 − p)d |g−1
1 g2| + pdQ. (14)

However, in the replica limit Q → 1, the two scenarios con-
verge to the same partition function weight, although we
emphasize that these factors can matter if one considers the
limit d → ∞ before the replica limit Q → 1. We will take Eq.
(14) for generic Q, and define the following weight function:

Wp(g) = (1 − p)d |g| + pdQ, (15)

which will be useful in constructing the Boltzmann weight of
the following statistical-mechanics model.

Put together, the partition function ZA in Eq. (7) can be
formulated as a statistical-mechanics model on an anisotropic
honeycomb lattice as depicted in Fig. 2(a) where a permuta-
tion group element gi ∈ SQ, a “spin,” is defined on each site,

ZA =
∑

{gi∈SQ}

∏
〈i j〉∈Es

Wp
(
g−1

i g j
) ∏

〈i j〉∈Ed

Wgd2 (g−1
i g j ), (16)

and where Es (Ed ) denotes the set of solid (dotted) links on the
lattice. In connection with the original network geometry of
the random circuit in Fig. 1, the vertical (dotted) links on the
honeycomb lattice represent the Weingarten functions which
originated from averaging the two-site unitary gates, and the
zigzag (solid) links keep track of the contributions from the
generalized measurements. In the following, we will refer to
the model described by Eq. (16) as the “SQ model,” A similar
statistical-mechanics model was derived in Ref. [38] for Haar
random unitary circuits without projective measurements (i.e.,
p = 0). Here we generalized the model to the case with
projective measurement.

We note a crucial symmetry property of the statistical-
mechanics model that will become important in our discussion
below, arising from the following symmetry of the local
weights Wp(g−1

i g j ) and Wgd2 (g−1
i g j ) which enter the partition

function in Eq. (16): They are invariant under global right and

left multiplication of all group elements,

gi → hLgih
−1
R , g j → hLg jh

−1
R , where hL, hR ∈ SQ. (17)

This invariance follows from the fact that the Weingarten
function in Eq. (11) as well as the “cycle-counting function”
which appears in Eq. (15) and assigns to each permutation g
the number of its cycles |g|, are both “class functions” (i.e.,
depend only the conjugacy class of the permutation group
element).

The SQ “spins” on the boundary, which are permutation
group elements gx ∈ SQ for boundary sites x, are pinned by the
boundary condition, which is specified by the entanglement
region A as follows:

gx =
{

gSWAP ≡ (12 . . . n)⊗m, x ∈ A,

identity = e, x ∈ Ā.
(18)

This equation follows from Eq. (4) by taking into account
the m replica which arises, as discussed above, in addition to
the Rényi replica from rewriting averages of the logarithm.
By tuning the probability of measurement p, we can change
the couplings on the solid links and drive, as we will see,
an entanglement transition. As will be shown below, this
measurement-induced transition can be naturally interpreted
as a simple symmetry-breaking transition of the statistical-
mechanics model.

In the limit where the on-site Hilbert space dimension
d = ∞ is infinite, the SQ model turns out to reduce to a
Potts model with Q! colors. To see this, we evaluate the
partition function weight Jp(gi, g j ; gk ) associated with each
down triangle (in yellow) in Fig. 2(a),

Jp(gi, g j ; gk ) =
∑

gl ∈SQ

=
∑

gl ∈SQ

Wp(g−1
i gl )Wp(g−1

j gl )Wgd2 (g−1
l gk ) (19)

The partition function in Eq. (16) can be equivalently
written in terms of the triangle weight Jp as

ZA =
∑

{gi∈SQ}

∏
〈i jk〉∈�

Jp(gi, g j ; gk ), (20)

subject to the boundary condition that gi should match
gx as specified in Eq. (18) on the boundary. Note that
positivity of this weight is not guaranteed in general.
For example Jp=0((123), (132); e) = −2(d2 − 1)/(d6 + d4 −
4d2 − 4) < 0 (for any realistic on-site Hilbert space dimen-
sion d � 2). This makes the statistical-mechanics nonunitary,
which is not an issue for our approach, as the field theory de-
scribing the entanglement transition is necessarily nonunitary
in any case because of the replica limit (see below). In the
d → ∞ limit, we obtain

Wp(g) = dQ[(1 − p)δg + p],
(21)

Wgd2 (g) = d−2Qδg,

where δg is the delta function that gives 1 if and only if g = e
is the identity element in the permutation group SQ, and gives
0 otherwise. A detailed derivation of Eq. (21) can be found in
the Appendix. Substituting Eq. (21) into Eq. (19), the triangle
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weight reduces to

Jp(gi, g j ; gk ) = [
(1 − p)δg−1

i gk
+ p

][
(1 − p)δg−1

j gk
+ p

]
,

(22)
which further factorizes into partition function weights de-
fined separately on the bonds 〈ik〉 and 〈 jk〉. The partition
function weight across the bond 〈ik〉 equals 1 if gi = gk and p
if gi �= gk , and an analogous weight is assigned to the bond
〈 jk〉. If we treat each on-site group element gi ∈ SQ as a
state (color) in a spin model, the partition function weight
in Eq. (22) precisely matches that of a Q!-state Potts model
on a square lattice, whose links are between sites i and k,
and between sites i and j in each unit cell, as displayed in
Fig. 2(b). By tuning the measurement rate p, the partition
function ZA in Eq. (20) undergoes a phase transition from
the ordered phase (small p) to the disordered phase (large p)
which we will analyze in detail below.

Away from the d = ∞ limit, the weight Wp(g) receives the
following leading corrections: Wp(g) = dQ[(1 − p)δg + p +
1−p

d δ′
g + O(d−2)], where δ′

g = 1 if g is a transposition such
as, e.g., (12), and δ′

g = 0 otherwise. The Weingarten function
will not receive corrections at 1/d order. Using these results,
the triangle weight can be evaluated to the 1/d order (see the
Appendix for details), yielding

Jp(gi, g j ; gk ) = [
(1 − p)δg−1

i gk
+ p

][
(1 − p)δg−1

j gk
+ p

]
+ 1 − p

d
[(1 − p)δ′

g−1
i g j

(
δg−1

i gk
+ δg−1

j gk

)
+ p

(
δ′

g−1
i gk

+ δ′
g−1

j gk

)] + O(d−2). (23)

Moreover, up to this order, we find that the weights of the
SQ model factorize into a product of weights associated with
bonds of the same square lattice, depicted in Fig. 2(b), that
appears in the d = ∞ result (22). Denoting the local weight
on the bond 〈ik〉 as e−E (gi,gk ), the energy function reads (see
the Appendix)

E (gi, gk )

= −ln

[
p + (1 − p)

(
δg−1

i gk
+ 1

d
δ′

g−1
i gk

)
+ O(d−2)

]
.

(24)

We see that, among all the domain walls, the 1/d corrections
favor energetically transposition domain walls in our model,
Eq. (20)—this will turn out to have important consequences
in the following. Crucially, these 1/d corrections break the
artificially large SQ! symmetry of the weights Eq. (22) of
the d → ∞ limit to the SQ × SQ symmetry present for finite
d . Consequences of this reduction of symmetry by the 1/d
corrections will be further analyzed below.

IV. CONFORMAL INVARIANCE

Now that we have mapped the calculation of the entan-
glement entropies of the random circuit with projective mea-
surements onto a (replica) statistical-mechanics model, many
qualitative features of the entanglement transition can be
understood naturally. Our discussion follows closely Ref. [32]
where a similar statistical-mechanics model was found to
describe entanglement transitions in random tensor networks.

At small p, the Boltzmann weights give a ferromagnetic
interaction favoring group elements (spins) on neighboring
sites to be equal, and we thus expect an ordered phase of
the statistical-mechanics model. In that phase, the free-energy
cost FA − F∅ in Eq. (9) associated with “twisting” the entan-
glement region scales with the size LA of A at long times
(many layers in the circuit), corresponding to volume-law
entanglement S̄n,A ∼ LA for sufficiently deep circuits (in the
long-time limit t → ∞). This is clearly the behavior expected
without measurement, i.e., at p = 0. As the measurement rate
p gets closer to 1, the effective temperature of the statistical-
mechanics model is increased, leading to a disordered phase.
The domain-wall condensate present in this phase can freely
absorb the domain wall at the boundaries of the entanglement
interval, such that, for a distance exceeding the correlation
length from the boundary, there is no additional free-energy
cost from the boundary domain. In this limit, the free-energy
cost of the boundary domain will scale like the boundary of
A, corresponding to area-law scaling of entanglement S̄n,A ∼
const.

The entanglement transition separating these two phases
therefore corresponds to an ordering transition in the
statistical-mechanics model. In general, assuming that the
transition is of second order, it should be described by a two-
dimensional conformal field theory (CFT) with central charge
c = 0 in the replica limit Q → 1. (Recall that c measures the
way the free energy changes when a finite scale is introduced;
since here the partition function Z∅ = 1 is trivial in the replica
limit, we have c = 0.) Such CFTs at central charge c = 0 are
nonunitary, and are notoriously hard to tackle even in two
dimensions. Below we will propose a way to approach this
transition from the infinite on-site Hilbert space size d = ∞
limit. Even without identifying the underlying CFT precisely,
there are important consequences that can be deduced from
conformal invariance alone.

First of all, since the bulk properties of the transition only
depend on Q, the location of the bulk transition point at p = pc

as well as all bulk critical exponents are the same for all Rényi
entropies in the replica limit Q → 1. (The Rényi entropies
arise from observables located at the boundary of the system.)
Our statistical model thus naturally explains why all Rényi
entropies with n � 1 have a transition at the same value of pc.
(This was observed numerically in Ref. [41].)

Obviously, conformal invariance implies a dynamical criti-
cal exponent z = 1, so the scaling with time and space should
be the same at the entanglement transition. To analyze the
scaling of the entanglement entropy at the critical point, we
note that the ratio of partition functions ZA/Z∅ that appears
in Eq. (9) corresponds in the CFT language to the two-point
function of a boundary condition changing (BCC) operator
[59,60] φBCC:

ZA/Z∅ = 〈φBCC(LA)φBCC(0)〉, (25)

where the operators are inserted at the boundary of the en-
tanglement interval A. Near criticality, this two-point function
scales as ∼1/L2h(n,m)

A fn,m(LA/ξQ) with ξQ ∼ |p − pc(Q)|−ν(Q)

the correlation length of the statistical-mechanics model and
fn,m are universal scaling functions that depend on n and
m independently. Plugging this expression into the replica
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formula (9), we find the general scaling of the entanglement
entropy,

S̄n,A = 2

n − 1

∂h

∂m

∣∣∣∣
m=0

lnLA + fn

(
LA

ξ

)
, (26)

with ξ ∼ |p − pc|−ν the correlation length in the limit Q → 1.
In particular, conformal invariance predicts that S̄n,A ∼ lnLA

at criticality p = pc, with a universal prefactor that depends
on the Rényi index n. Note that Eq. (26) holds up to addi-
tive nonuniversal constants—in order to isolate the universal
contributions, one can also take the derivative of S̄n,A with
respect to lnLA. This scaling form is in good agreement with
the numerical observations of Refs. [41,42,44].

The BCC operator φBCC can also be used to derive the
scaling of the mutual information of two regions A = [x1, x2]
and B = [x3, x4]: In

A,B = S̄n,A + S̄n,B − S̄n,A∪B, which maps
naturally onto the four-point function of φBCC. As a result of
conformal invariance, we find that the mutual information at
criticality should depend only on the cross ratio [61]

In
A,B = gn(η) with η = x12x34

x13x24
, (27)

where xi j = L
π

sin π
L |xi − x j | for a system of size L with

periodic boundary conditions. This scaling was checked nu-
merically for Clifford unitary circuits in Ref. [44].

V. PERCOLATION LIMIT d = ∞
As we have shown above, the Boltzmann weights of the

statistical model in the limit of infinite on-site Hilbert space
dimension d → ∞ take a very simple form, Eq. (22). This
coincides with the high-temperature expansion of a Potts
model with Q! states on the square lattice, as an expansion
onto the so-called Fortuin-Kasteleyn clusters [62] where an
edge is occupied with weight 1 − p, not occupied with weight
p, and where each connected cluster (including single sites)
carries a weight Q!—the number of Potts states. In the replica
limit Q → 1, this maps onto a bond percolation problem
where 1 − p is the probability for a bond to be occupied.
The partition function is trivial Z∅ = 1, and the transition
occurs for pc = 1/2. The correlation length diverges as ξ ∼
|p − pc|−4/3 at the transition [63], and the central charge is
c = 0 as expected from general considerations.

As just discussed, we have shown that the entanglement
transition driven by projective measurements is in the uni-
versality class of 2D percolation (Q → 1 limit of a Q!-Potts
model). We note that based on earlier results on random uni-
tary circuits without measurement at infinite on-site Hilbert
space dimension [6,38], and based on the description obtained
in Ref. [41] for the zeroth Renyi entropy in terms of a minimal
cut classical optimization problem of paths in 2D percolation,
it was conjectured in Ref. [41] that if the minimal cut classical
optimization problem holds exactly in the projective measure-
ment problem in the limit of infinite Hilbert space dimension
d , then this optimization problem would also describe the
nth Renyi entropies with n � 1, and not only the zeroth
Renyi entropy S0, with the same result. While Ref. [41] thus
anticipated, based on these previous works, a connection of
the projective measurement problem with percolation in the
d → ∞ limit, there are universal quantities that go beyond

this minimal cut picture and which can only be captured using
a detailed analysis that relies on our replica trick formulation,
as well as on detailed properties of the CFT describing the
percolation critical point. In particular, we will show below
that the d = ∞ limit requires a detailed knowledge of the
CFT of 2D percolation, including very recent results [64],
rather than merely a geometric “optimization problem” as in
Ref. [41] for S0.

To illustrate this point, we now provide an exact calculation
of the universal prefactor of the logarithm in Eq. (26) in the
limit d → ∞. To do so, we need to identify the proper BCC
operator in the Q!-state Potts CFT. This is actually a subtle
point: Naively, this would appear to be the BCC operator
which changes the boundary condition that is fixed to the
identity permutation group element to the boundary condition
that is fixed to the “SWAP” group element [second line of
Eq. (18)] of the Q!-state Potts model in the percolation limit
Q → 1. It is well known that this BCC operator has finite
scaling dimension = 1/3 in that limit [59,65,66]. This would
imply an infinite limit for all Rényi entropies in Eq. (9) as
m → 0 using a power law in Eq. (25) with a finite decay
exponent = 2 × 1/3 in that limit.

This issue arises with this naive approach because the limit
d → ∞ was taken implicitly before the replica limit Q → 1.
To remedy this, the key idea is to “soften” the Boltzmann
weights of the statistical-mechanics model in the vicinity of
the boundary in a small “boundary layer” and replace them by
those at a finite value of 1/d . The bulk Boltzmann weights re-
main at 1/d = 0, i.e., they are those of the Potts model. Since
the Boltzmann weights of the boundary layer still favor “fer-
romagnetic” alignment of the SQ-valued spins, the presence
of the boundary layer does not modify the bias for boundary
spins to align to the SWAP and the identity group elements,
respectively, along segments A and Ā of the boundary. The
effect of the boundary layer is that the “sharp” domain wall,
where the group element along the boundary switches directly
from identity to SWAP, splits [67] into a sequence of m(n − 1)
consecutive “elementary” domain walls, each characterized
by a single transposition having just one cycle of length 2
since domain walls with a single transposition are energeti-
cally favored by the finite-1/d correction in the energy func-
tion Eq. (24). Using Eq. (24), it is straightforward to see that
the energy cost of an elementary domain wall is �Eelementary =
lnp−1 − 1−p

p d−1 + O(d−2), which is lower than the energy
cost of the domain wall separating the identity permutation
from SWAP, which has energy �ESWAP = lnp−1 + O(d−2).
Note also that the total energy cost of an extended segment
of the boundary separating uniform boundary conditions fixed
to the identity on one side from uniform boundary conditions
fixed to SWAP on the other of this segment, which consists of a
sequence of m(n − 1) consecutive domain walls (whose group
theory product must be equal to the SWAP group element), is
also less than the cost of a sharp SWAP domain wall located on
a single boundary link, since m(n − 1)�Eelementary � �ESWAP

in the replica limit m → 0. Moreover, since the energy cost
�Eelementary of a single transposition domain wall on a given
boundary link is lower than that of a domain wall on the same
link characterized by any other nonidentity permutation [using
Eq. (24)], the sharp SWAP domain wall localized at a single
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boundary link will split into m(n − 1) elementary domains
walls, each localized on one of the m(n − 1) boundary links.

While the so-defined (n − 1)m elementary domain walls
in the 2D Potts model can branch and touch each other,
they are well-known and well-defined objects in the 2D Potts
model, called “thin” domain walls, whose properties have
recently been studied in great detail [64]. In our context
the corresponding “split” BCC operator inserts � = m(n − 1)
thin domain walls in the Potts theory. Using the results of
Ref. [64], we find that this split BCC operator is �BCC =
�2�−1,4�−1, using standard CFT notations[61,68]. Now, the
Q!-state Potts model is described by a CFT [63,69] with
central charge c = 1 − 6

x(x+1) and x = π

arccos
√

Q!
2

− 1. The scal-

ing dimension of the boundary operator �r,s is then hr,s =
[(x+1)r−sx]2−1

4x(x+1) . The critical exponent h2�−1,4�−1 vanishes as
� = m(n − 1) → 0 in the replica limit m → 0, as it should,
and yields limm→0 h2�−1,4�−1/(n − 1)m = 1/6. In the replica
limit, Eq. (26) therefore yields, for periodic spatial boundary
conditions,

S̄n,A = 1
3 lnLA + · · ·, (28)

and for open spatial boundary conditions,

S̄n,A = 1
6 lnLA + · · ·, (29)

for all nth Rényi entropies n � 1 at criticality in the limit
d → ∞. (In the latter case these are represented by the one-
point function of the split BCC operator.) We remark that
our replica statistical-mechanics model only describes Rényi
entropies with index n � 1, as quantities such as the domain-
wall free energy all change sign at n = 1. While, as already
mentioned above, Ref. [41] anticipated, based on previous
works, a connection of the projective measurement problem
with percolation in the d → ∞ limit, we emphasize that the
universal prefactor in Eq. (28) goes beyond the geometric
minimal cut path optimization picture found in Ref. [41] to
describe the zeroth Rényi entropy, and indicates a different
behavior of the Rényi entropies n � 1. We also note that the
universal prefactor of the logarithm in (28) and (29) is not
purely a property of the 2D percolation CFT, as it depends on
how this CFT is approached in the replica limit m → 0—see
(26).

We end by commenting that the same expression for the
universal coefficient of the logarithm of subsystem size can
be obtained in the random tensor network model of Ref. [32],
when fine-tuned to the percolation critical point.

VI. GENERIC ENTANGLEMENT TRANSITION AT FINITE
HILBERT SPACE DIMENSION d

In closing, we briefly comment on the CFT describing
of the generic entanglement transition at finite Hilbert space
dimension d . While the percolation limit d → ∞ provides
an in essence completely analytically tractable picture of the
projective measurement-induced entanglement transition, this
limit is not generic. The Potts model which is obtained in
the limit d → ∞ has a symmetry SQ!, which is much larger
than the SQ × SQ symmetry (corresponding to left/right mul-
tiplication) of the model (16) describing finite d . The leading
operator in the SQ! Potts model that breaks the symmetry down

to SQ × SQ was identified in Ref. [32] as the so-called two-hull
operator of the Potts model. In the replica percolation limit
Q → 1, this operator has scaling dimension �2−hull = 5

4 < 2
so it is relevant. (In fact, it turns out that this is the only
renormalization-group relevant operator that can appear at the
percolation fixed point, when the symmetry is broken to SQ ×
SQ.) We therefore expect the finite d entanglement transition
to be described by a different CFT, obtained as the IR fixed
point of percolation perturbed by a two-hull operator. More
precisely, let us work with the Landau-Ginzburg formulation
of the Q!-state Potts field theory in terms of the Potts order
parameter field φa with a = 1, . . . , Q!, and

∑
a φa = 0. The

leading perturbation implementing the symmetry breaking
SQ! −→ SQ × SQ is given by [32]

L = LPotts +
∑

a,b∈SQ

W (a−1b)φaφb + · · ·, (30)

where W is a class function of the permutation group SQ.
Crucially the labels a, b are now interpreted as elements of
the group SQ. The only allowed function W (a−1b) that would
respect the SQ! symmetry is W (a−1b) = δa,b, but any class
function of SQ is enough to satisfy the SQ × SQ symmetry.
The fate of this perturbed Potts model in the IR is currently
unknown. However, we note that this field theory has exactly
the same form as the one obtained for entanglement transitions
in bulk random tensor networks in Ref. [32], as they both
correspond to the symmetry breaking SQ! −→ SQ × SQ. It is
therefore tempting to conjecture that they correspond to the
same bulk universality class, although we caution that the two
transitions correspond to different replica limits; Q → 1 and
Q → 0 respectively, for the projective measurement transition
studied in this work and for random tensor networks, respec-
tively. In both cases, Q! → 1 in the replica limit, so both
problems correspond to a percolation theory perturbed by a
two-hull operator. However, the different replica limits will
likely yield different (trivial) prefactors, e.g., in Eq. (26).

VII. DISCUSSION

We have derived an exact statistical-mechanics model de-
scription of the entanglement transition that occurs in random
unitary circuits with projective measurements [41,42]. Our
approach relies on a replica trick that allows us to average
entanglement entropies over the realizations of the random
circuits and measurements, and to deal with the intrinsic non-
linearities of the projective measurement problem. Our work
naturally explains the emergence of conformal invariance
at the entanglement transition, and predicts specific scaling
forms for the entanglement entropy and mutual information.
In the limit of infinite Hilbert space dimension d = ∞, we
find that the transition is in the percolation universality class,
and we computed the exact value of the universal coefficient
of the logarithm of subsystem size in the nth Rényi entropies
for n � 1. This limit also provides a natural starting point to
identify the generic entanglement transition at finite Hilbert
space dimension d , as a perturbation of percolation by a
two-hull operator. Identifying the CFT in the generic case
remains a challenging task for future work.

Note added. While we were finalizing this paper, a related
work appeared on the ArXiv [70]. This work also derives a
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statistical-mechanics model for the transition driven by weak
measurements.
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APPENDIX: 1/d EXPANSION

In this Appendix, we derive the 1/d expansion of the triangle weight in Eq. (19). Let |g| be the number of cycles in the
permutation g for g ∈ SQ. We define the following group functions: δg and δ′

g,

δg =
{

1 if |g| = Q, i.e., g = e,
0 otherwise; δ′

g =
{

1 if |g| = Q − 1, i.e., g is a transposition,

0 otherwise. (A1)

Then the function d |g| can be expanded as

d |g| = dQδg + dQ−1δ′
g + · · · = dQ[δg + d−1δ′

g + O(d−2)]. (A2)

With Eq. (A2), the weight function Wp(g) in Eq. (15) admits the following expansion:

Wp(g) = (1 − p)d |g| + pdQ = dQ

(
(1 − p)δg + p + 1 − p

d
δ′

g + O(d−2)

)
. (A3)

The Weingarten function WgD(g) in Eq. (11) (with D = d2) has an alternative definition that it is a class function satisfying
the following equation: ∑

g2∈SQ

WgD

(
g−1

1 g2
)
D|g−1

2 g3| = δg−1
1 g3

. (A4)

Given Eq. (A2), one can verify that the following expansion:

WgD(g) = D−Q[δg − D−1δ′
g + O(D−2)], (A5)

is a solution of Eq. (A4) to the order of 1/D, as∑
g2∈SQ

WgD

(
g−1

1 g2
)
D|g−1

2 g3| =
∑

g2∈SQ

[
δg−1

1 g2
− D−1δ′

g−1
1 g2

+ O(D−2)
][

δg−1
2 g3

+ D−1δ′
g−1

2 g3
+ O(D−2)

] = δg−1
1 g3

+ O(D−2). (A6)

Using Eqs. (A3) and (A5), we can now evaluate the 1/d expansion for the triangle weight J (gi, g j ; gk ),

Jp(gi, g j ; gk ) =
∑

gl ∈SQ

Wp
(
g−1

i gl
)
Wp

(
g−1

j gl
)
Wgd2

(
g−1

l gk
) =

∑
gl ∈SQ

dQ

(
(1 − p)δg−1

i gl
+ p + 1 − p

d
δ′

g−1
i gl

+ O(d−2)

)

× dQ

(
(1 − p)δg−1

j gl
+ p + 1 − p

d
δ′

g−1
j gl

+ O(d−2)

)
d−2Q

(
δg−1

l gk
− d−2δ′

g−1
l gk

+ O(d−4)
)

= (
(1 − p)δg−1

i gk
+ p

)(
(1 − p)δg−1

j gk
+ p

) + (
(1 − p)δg−1

i gk
+ p

)1 − p

d
δ′

g−1
j gk

+ (
(1 − p)δg−1

j gk
+ p

)1 − p

d
δ′

g−1
i gk

+ O(d−2)

= (
(1 − p)δg−1

i gk
+ p

)(
(1 − p)δg−1

j gk
+ p

) + 1 − p

d

(
(1 − p)δ′

g−1
i g j

(
δg−1

i gk
+ δg−1

j gk

) + p
(
δ′

g−1
j gk

+ δ′
g−1

i gk

)) + O(d−2).

(A7)

The result matches Eqs. (22) and (23) as claimed in the main text.
To the same order O(d−2), this triangle weight can be rewritten as a product of Boltzmann weight on the links of the square

lattice in Fig. 2 (b):

Jp(gi, g j ; gk ) =
(

(1 − p)δg−1
i gk

+ p + 1 − p

d
δ′

g−1
i gk

)(
(1 − p)δg−1

j gk
+ p + 1 − p

d
δ′

g−1
j gk

)
+ O(d−2). (A8)
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This can be checked by expanding the product explicitly and using the identity δg−1
i gk

δ′
g−1

j gk
= δg−1

i gk
δ′

g−1
j gi

. Therefore, at this order,

the weights of the SQ model can be factorized into a product of local weights over links of the square lattice, that we rewrite as
e−E (gi,gk ), with the energy function

E (gi, gk ) = −ln

[
p + (1 − p)

(
δg−1

i gk
+ 1

d
δ′

g−1
i gk

)
+ O(d−2)

]
. (A9)
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