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Landauer transport as a quasisteady state on finite chains under unitary quantum dynamics
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In this paper, we study the emergence of a Landauer transport regime from the quantum-mechanical dynamics
of free electrons in a disordered tight-binding chain, which is coupled to finite leads with open boundaries. Both
partitioned and partition-free initial conditions are analyzed and seen to give rise, for large enough leads, to the
same spatially uniform quasisteady-state current, which agrees with the Landauer value. The quasisteady-state
regime is preceded by a transient regime, which lasts for a time proportional to the length of the disordered
sample, and followed by recursions, after a time that is proportional to the lead size. These theoretical predictions
may be of interest to future experiments on transport of fermionic ultracold atoms across optical lattices. We also
observe finite-size current oscillations, superimposed on the quasisteady state, whose behavior depends crucially
on the conditions initially imposed on the system. Finally, we show how a time-resolved Kubo formula is able
to reproduce this Landauer transport regime, as the leads grow bigger.
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I. INTRODUCTION

The study of electronic transport is amongst the main
goals of condensed matter physics. In the regime of small
length scales and low temperatures, the mesoscopic transport
regime, quantum coherence effects play a dominant role in the
propagation of electron states. In such a case, transport can no
longer be seen as a bulk phenomenon, but instead depends on
device-specific details such as the geometry of and nature of
the electrodes, as well as the specific distribution of disorder
in the sample.

A theoretical description of mesoscopic transport was first
developed by Landauer [1] and later generalized by Büt-
tiker [2]. In the now called Landauer-Büttiker formalism,
the problem of stationary mesoscopic transport is recast as
a scattering problem, where single-electron states incoming
from the leads are transmitted across a central device. The
current may then be expressed as a sum over the transmission
probabilities of the occupied incoming lead states. In parallel
to this work, Caroli [3] applied the nonequilibrium Green’s
function formalism of Kadanoff-Baym [4] and Keldysh [5]
to the calculation of mesoscopic transport. The obtained ex-
pression has a structure similar to the Landauer-Büttiker (LB)
one, but with the transmission coefficient now expressed in
terms of Green’s functions of the central device and spectral
functions of the leads. While apparently distinct, the two ap-
proaches lead to the same result, as implied by the Fisher-Lee
relation [6–8] between transmission coefficients and Green’s
functions (for a detailed proof, see Wimmer [9]). Central to
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both approaches are the assumptions that the leads attached to
the central device are semi-infinite and the occupation of the
incoming single-electron states is determined by independent
Fermi energies on each lead. Moreover, both methods are only
able to describe steady-state transport. We also point out that
the Landauer formula has also been derived within the theory
of nonequilibrium steady states [10].

If one is interested in the transient dynamics and how this
steady state is reached, the matter of what the initial condition
of the system was becomes relevant. At the theoretical level,
two initial conditions have been historically considered: (i) In
the partitioned approach [3,11,12], the leads and the central
device are assumed to be initially disconnected, each being in
equilibrium with independent Fermi levels. This Fermi-level
imbalance takes into account the bias applied to the meso-
scopic device. Then, the leads and the device are suddenly
brought into contact allowing a charge current to flow. (ii) In
the partition-free approach [13–15], the leads and the device
are assumed to be connected from the beginning and in global
equilibrium with a common Fermi energy. Then, a potential
bias between the leads is suddenly applied to the connected
system. It has been shown, for the case of a single-level central
device, that the same steady-state current is reached in both
approaches, for the same time-dependent perturbation [14].
Furthermore, the value of the steady-state current does not
depend on the history of the time-dependent perturbation,
provided it reaches the same constant value in the future.
Crucial to this result is the fact that the leads have a continuum
spectrum (as it occurs for semi-infinite leads), which allows a
loss of memory about the initial conditions, provided there are
no bound states in the central device. The existence of bound
states inside the device is known to cause persistent current
oscillations [16–18]. We also point out that, under certain
circumstances, interactions might prevent the formation of a
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steady state [17]. Finally, the equivalence of the steady-state
current reached in the partitioned and partition-free cases
was shown, with rather broad assumptions and including the
presence of interactions, in a mathematically rigorous way in
Refs. [19–21].

Very recently, Purkayastha et al. [22] also discussed the
problem of relating the linear response theory in a general
interacting system coupled infinite leads to the open system’s
Kubo formula. The authors looked at the asymptotic behavior
of the integrated current-current correlators at different times,
in the limit of very large systems and times. This way,
they found a surprising disagreement between the transport
classification given by both approaches [23] for the critical
one-dimensional Aubry-André-Harper model. This was at-
tributed to the noncommutativity of the two referred limits.
Nevertheless, their analysis was always done in a partitioned
setup and in linear response theory.

In more recent years, a significant effort was devoted to
the study of time-dependent transport and transient dynamics
in mesoscopic systems attached to infinite leads [12,24–29].
However, the investigation of time-dependent transport in
systems where the leads are finite (but possibly very large)
has received much less attention. Initial work on this problem
was made in Refs. [30–32], in which a microcanonical method
was developed to deal with quasisteady-state transport in finite
systems, where the leads are initially connected to the device,
but one of them is partially or fully depleted of particles. More
recently, the same problem was considered in Pal et al. [33],
which studied time-dependent transport through a quantum
dot connected to two systems with a quasicontinuum spectrum
(discrete, but dense), which take the role of finite leads, in the
partitioned approach. In all of these works, it was observed
that after the transients died out, a quasisteady-state transport
regime emerges. However, the dependence of the quasisteady
state on the system initial condition has never been explored
so far. Is the quasisteady-state current independent of the
initial preparation of the system? Does the manner in which
the quasisteady state is reached depend on these initial condi-
tions? These are the questions we try to answer in this work.
Notice that these issues are not of mere theoretical interest.
It is true that for realistic electronic devices, consideration
of finite leads is somewhat artificial.1 However, cold atoms
trapped in optical lattices have emerged as a platform for the
experimental study of transport properties [34,35] [also stud-
ied theoretically in Chien et al. [32]]. In these systems, due to
the limited sizes of optical lattices, the “leads” are necessarily
finite. Furthermore, while in realistic low-dimensional elec-
tronic devices, one expects electron-electron interactions play
a significant role [21,27,31,36,37], in optical lattices the inter-
particle interaction can be tuned down to zero, thus enabling a
proper study of transport for noninteracting fermions [34,35].
As such, we expect that our theoretical results will be of
experimental relevance for transport in ultracold-atom setups.

The purpose of this work is to further explore how a
steady-state transport regime emerges from quantum time

1Unless one is interested in times comparable to the discharge time
of a battery, the electrodes and voltage source that are connected to a
mesoscopic device can be seen as infinite.

evolution in noninteracting, fermionic systems with finite, but
large leads, and how the initial state of the system affects
this process. By combining numerical and analytical work, we
study the time-dependent current dynamics in a prototypical
one-dimensional noninteracting tight-binding model with dis-
order, analyzing in detail how the current dynamics depends
on the initial conditions (partitioned vs partition-free) and on
the size of the finite leads. We employ a full quantum time
evolution, starting from both initial conditions, to study the
time-dependent current upon the sudden connection of the
appropriate perturbation. For the partition-free case, we also
derive a time-dependent Kubo formula, which allows us to see
rigorously how a linear Landauer-Büttiker formula, involving
only quantum transmittances, emerges from a unitary time
evolution in the limit of very large leads.

The text is organized as follows. In Sec. II, we introduce
the one-dimensional tight-binding model Hamiltonian that
will be used throughout the rest of the paper and detail both
the partitioned and partition-free approaches. In Sec. III,
we describe the numerical methods used for calculating the
time-dependent local current from the unitary dynamics of the
finite system and also the steady-state Landauer current for
infinite leads. The main numerical results are then presented
in Sec. IV, where the time-evolution of the nonequilibrium
current is systematically analyzed as a function of the bias, the
size of the finite leads, and the central sample’s disorder and
size. Finally, in Sec. V, we provide analytical insight into the
numerical results of Sec. IV, by developing a time-dependent
Kubo formula for the partition-free approach and expressing it
in terms of complex reflection and transmission coefficients of
the central sample. In Sec. VI, we discuss the obtained results
and conclude the paper.

II. MODEL HAMILTONIAN AND INITIAL CONDITIONS

We will study the current dynamics of noninteracting
electrons in a finite one-dimensional tight-binding model,
with nearest-neighbor hoppings. The tight-binding chain is
composed by a total of L sites, with the central Ls sites, the
sample, having an onsite Anderson disorder and being subject
to a constant electric field. The sites outside the sample region
form the left and right leads [each with Ll = (L − Ls)/2 sites],
are not disordered and hold a constant electrostatic potential.
They will refer to the different regions in the chain as left
lead (LL), sample (S), and right lead (RL). An illustrative
scheme of this setup is shown in Fig. 1. For times t > 0, the
dynamics of the system is governed by the time-independent
Hamiltonian

H(t > 0) =
L−1∑
n=0

(
εd

n − eve
n

)
c†ncn − w

L−2∑
n=0

(c†n+1cn + c†ncn+1),

(1)

where c†n (cn) are creation (annihilation) operators for an
electron at the chain site n, w is the nearest-neighbor hopping
amplitude, e > 0 is the fundamental charge, and ve

n is the
electrostatic potential. According to the previous discussion,
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FIG. 1. Scheme of the setup used to simulate the time-dependent
LB transport using a one-dimensional sample coupled to finite leads.
The red dots stand for the places where there is a disordered potential
and the blue curve represents the profile of the externally applied
potential. The chain has open boundary conditions.

ve
n has the form

ve
n =

⎧⎪⎨
⎪⎩

�V
2 , n ∈ 0, . . . , Ll − 1(
1
2 − n−Ll +1

Ls+1

)
�V, Ll � n < Ll + Ls

−�V
2 , n ∈ Ll + Ls, . . . , L

(2)

where �V is the applied potential bias, and εd
n is the Anderson

onsite potential disorder, which is only present in the sample
sites, and are taken as random numbers uniformly distributed
inside [−W

2 , W
2 ].

We will study the current dynamics in this system both in
the partitioned and partition-free approaches. In both cases,
the dynamics for t > 0 are governed by the Hamiltonian of
Eq. (1), with only the initial state being different.

In the partitioned approach, the initial state is formed
by occupied states for the partitioned system, with the bias
already applied. The partitioned system is described by the
Hamiltonian

HP(t = 0) = HP
LL + HP

S + HP
RL, (3)

with HLL, HS, and HRL the Hamiltonians, respectively, for the
decoupled left lead, sample, and right lead, to wit

HP
LL =

Ll −1∑
n=0

( − eve
n

)
c†ncn − w

Ll −2∑
n=0

(c†n+1cn + H.c.), (4)

HP
S =

Ll +Ls−1∑
n=Ll

(
εd

n − eve
n

)
c†ncn − w

Ll +Ls−2∑
n=Ll

(c†n+1cn + H.c.),

(5)

HP
RL =

L−1∑
n=Ll +Ls

( − eve
n

)
c†ncn − w

L−2∑
n=Ll +Ls

(c†n+1cn + H.c.). (6)

The initial occupation of the single-electron states is deter-
mined by the independent Fermi levels for each region. Hence,
we write εF,LL = εF + �V/2, εF,S = εF and εF,RL = εF − �V/2,
as the chemical potential for the left lead, central sample, and
right lead, respectively. εF is a reference chemical potential.
The initial state is thus described by the reduced density
matrix

ρP(t = 0) =
∑

r=LL,S,RL

∑
αr

f P
r,αr

∣∣�P
r,αr

〉〈
�P

r,αr

∣∣, (7)

where |�P
r,αr

〉 are the independent single-electron eigenstates
of the initial partitioned Hamiltonian belonging to region

r, HP
r , with an energy εP

r,αr
. At any temperature, the ini-

tial occupation of the states is given by the factor f P
r,αr

=
f (εP

r,αr
− εF,r ), with r = LL, S, RL and f (ε) = (eβε + 1)

−1

being the Fermi-Dirac distribution function. Throughout this
work, we will restrict ourselves to the T = 0 case, where
f (ε) = 	(−ε) and 	(x) being the usual Heaviside step func-
tion. The hoppings between the leads and the sample are then
suddenly switched on and the time evolution of these states is
generated by the Hamiltonian in Eq. (1).

In the partition-free approach, the contact between the
sample and the leads is already established in the initial state,
but the bias is not yet applied. Therefore, the initial condition
is determined by populating the eigenstates of the partition-
free Hamiltonian

HPF(t = 0) =
L−1∑
n=0

εd
nc†ncn − w

L−2∑
n=0

(c†n+1cn + H.c.), (8)

up to a commonly defined Fermi energy εF. This initial state
is thus described by the reduced density matrix

ρPF(t = 0) =
∑

α

f PF
α

∣∣�PF
α

〉〈
�PF

α

∣∣, (9)

with |�PF
α 〉 being eigenstates of Eq. (8) with an eigenenergy

εPF
α . The initial occupation factor of the states is similarly

given by f PF
α = f (εPF

α − εF). In this case, the sudden perturba-
tion driving the current is the connection of the bias potential
ve

n at t = 0, after which the time evolution is governed by the
Hamiltonian of Eq. (1).

We end this section, by noting that the charge current
flowing from site n to site n + 1, for the Hamiltonian of
Eq. (1), is given by

In = ew

ih̄
(c†n+1cn − c†ncn+1). (10)

III. NUMERICAL METHODS FOR
CURRENT EVALUATION

A. Time-resolved current from quantum evolution of eigenstates

The dynamics of the system, in the partitioned approach
after suddenly switching on the lead-sample hoppings, or in
the partition-free approach after suddenly switching on the
external bias, is governed by the Hamiltonian (1). Therefore,
in both approaches and for t > 0, the reduced density matrix
of the system evolves according to

ih̄
dρ(t )

dt
= [H(t > 0), ρ(t )]. (11)

The solution for this equation, with initial condition given by
either Eq. (7) or (9), is given by

ρ(t ) =
∑

α

fα|�α (t )〉〈�α (t )|, (12)

with the single-electron states evolving according to Eq. (1):
|�α (t )〉 = e− i

h̄ H(t>0)t |�α〉, with |�α〉 being the single-
electron eigenstates of either HP(t = 0) or HPF(t = 0) (with
occupation fα), for the partitioned and partition-free ap-
proaches, respectively.
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The expected value of the current, as a function of time, is
given by

In(t ) = ew

ih̄

∑
α∈occupied

[〈�α (t )|n + 1〉〈n|�α (t ) 〉

− 〈�α (t )|n〉〈n + 1|�α (t ) 〉], (13)

where |n〉 represents the state localized at site n. We also used
the fact that at t = 0, fα = 1 for initially occupied states and
fα = 0 for empty states. The above expression allows us to
evaluate the current flowing from site n to site n + 1 provided
we know the time evolution of the initial single-electron
states. Although correct, Eq. (13) is not very convenient from
a numerical point of view since for each initially occupied
state, we would have to perform one time evolution. A more
convenient expression is obtained by writing 〈�α (t )|n〉 =
〈�α|e i

h̄ H(t>0)t |n〉 = 〈�α|n(−t )〉, such that instead of evolving
the initial eigenstate forward in time, we evolve the localize
states backward in time.2

The current can therefore be expressed as

In(t ) = 2ew

h̄
Im

∑
α

〈n(−t )|�α 〉〈�α|n + 1(−t )〉. (14)

Despite being equivalent to Eq. (13), this last expression
allows for a great gain in computational efficiency, as the
the number of required time evolutions is reduced from O(L)
to only two, for each single-time calculation of the current
between sites n and n + 1.

Numerically, the time evolution of the localized states |n〉,
for very large chains, is computed efficiently using a poly-
nomial Chebyshev expansion [38,39] of the time-evolution
operator U (t ) = e− i

h̄ Ht (for details, see Appendix A). Finally,
the single-electron eigenstates of H(t = 0) were calculated
“on the fly” using a memory-efficient algorithm developed by
Fernando [40].

B. Landauer-Büttiker formula for the steady-state current

In Sec. IV, the time-resolved current across the sample
with finite leads, calculated using the quantum evolution of the
occupied states, will be compared with the steady-state value
for the current as given by the Landauer-Büttiker formula
for the same sample attached to infinite leads. We evalu-
ate this current using the Caroli-Meir-Wingreen form of the
Landauer-Büttiker formula [3,11], which for a two-terminal
device, at zero temperature, reads as

ILB = e

2π h̄

∫ εF+e �V
2

εF−e �V
2

dε T (ε), (15)

where the energy-dependent transmission function is ex-
pressed in terms of Green’s functions as

T (ε) = Tr[GA(ε) · �RL(ε) · GR(ε) · �LL(ε)], (16)

2Note that, despite being an evolution for negative times, the time-
evolution operator used to do it is the one which includes the external
perturbation: lead-sample hopping in the partitioned approach, and
bias in the partition-free approach.

where �LL/RL(ε) are real-space spectral functions of
the unattached leads and GR/A(ε) are the real-space
retarded/advanced Green’s function of the central sam-
ple, in the presence of the leads. For our particular one-
dimensional model, the leads’ spectral functions are matrices
with the only nonzero elements between boundary sites, i.e.,
�

Ll −1,Ll −1
LL (ε) = �LL(ε) and �

Ll +Ls,Ll +Ls
RL (ε) = �LL(ε), where

�LL/RL(ε) = w2ρLL/RL(ε). The functions ρLL/RL(ε) are sur-
face density of states of the leads which may be computed
analytically, yielding

ρLL/RL(ε) = 	

[
4w2 −

(
ε ∓ e�V

2

)2
]

× 1

w2

√
4w2 −

(
ε ∓ e�V

2

)2

. (17)

Therefore, the final form for the transmission function
reads as

T (ε) = w4ρLL(ε)ρRL(ε)
∣∣GR

Ll −1,Ll +Ls
(ε)

∣∣2. (18)

For each central sample, the retarded Green’s function in
Eq. (18) was calculated by using the well-known recursive
Green’s function method [9,41,42], using the surface Green
function of the semi-infinite one-dimensional leads as bound-
ary conditions, as detailed in Appendix B.

IV. NUMERICAL RESULTS AND COMPARISON WITH
THE LANDAUER FORMULA

We evaluated the time-dependent current in finite open
chains, using the method described in Sec. III A, for both clean
and disordered samples and considering both the partitioned
and partition-free initial conditions. This current was then
compared with the Landauer expression for the steady-state
current flowing through the same sample attached to infinite
leads, as described in Sec. III B.

Our results are summarized in Fig. 2. For both initial
conditions, three transport regimes are clearly distinguished
for large enough leads: (i) initially, we have a transient regime
up to a time tstab, after which (ii) the current tends to an
approximately constant quasisteady-state value, which lasts
up to (iii) a recurrence time tr, after which an inversion of
the current occurs. These three transport regimes have been
previously reported for noninteracting fermions in systems
with finite leads, in Refs. [31,32], with an initial state where
the leads are connected to the device, but one of the leads
is depleted. These transport regimes have also been observed
for interacting fermions (at a TDDFT-ALDA level) with finite
leads by Bushong et al. [31]. These three regimes have also
been discussed in Di Ventra et al. [30] and Pal et al. [33].
However, to the best of our knowledge, the effect of different
initial conditions, in each of the transport regimes, has never
been explored.

In the following, we will analyze in detail each of these
regimes, analyzing how the different timescales depend on the
variables of the problem.

104203-4



LANDAUER TRANSPORT AS A QUASISTEADY STATE ON … PHYSICAL REVIEW B 101, 104203 (2020)

FIG. 2. Comparison of the time-dependent current traversing the center of a sample with Ls = 256 sites, obtained in both the partition-free
[(a) and (b)] and partitioned approaches [(c) and (d)], with the steady-state current obtained from the Landauer formula with semi-infinite leads
(dashed magenta lines). In both approaches, the current is shown for different lead sizes, εF = 0 and a bias of �V = 0.1w, without [(a) and (c)]
and with disorder [(b) and (d)]. The insets represent the zooms of the current in the quasisteady-state regime, with a linear scale in the x axis.
As can be seen, the superposed finite-size oscillations have an amplitude which is less than 1% of the Landauer current in both approaches,
although their nature is different. In the partition-free approach there is a decrease of their amplitude with Ll , while in the partitioned approach,
they die out only as t → +∞. In all four panels, the quasisteady-state regime is limited by the recurrence time tr = 2Ll/vF (vertical dashed
lines). The two transient timescales, the buildup time tb = Lmeas/vF (dotted vertical lines), with Lmeas = 128, and tstab = 2Ls/vF (dashed-dotted
vertical lines) are also represented in the plots.

A. Transient behavior and stabilization times

As one could expect, the transient behavior depends on
the initial preparation of the system, being different for the
partitioned and partition-free approaches, as evident in Fig. 2.

In the partitioned case, as can be seen in Figs. 2 (and
also in Figs. 3 and 4), the current is initially close to zero
up to a buildup time tb, after which the current dramat-
ically increases, overshooting the Landauer current value.
We interpret tb as the time it takes for a fermion close to
the initial reference Fermi level εF to travel from the lead-
sample boundaries to the hopping where the current is being
probed. We will define Lmeas, L and Lmeas, R as the distance
from the point where the current is being measured in the
sample to the left and right lead boundaries, respectively.
We will refer to the smallest of these distances as Lmeas =
min (Lmeas, L, Lmeas, R). According to this interpretation, the
buildup time is given by tb = Lmeas/vF where vF is the velocity
of a state initially at the reference Fermi level (the initial

Fermi level defined for the sample for the partitioned case,
and the initial global Fermi level in the partition-free case). In
Fig. 3, we show the current for different samples, measured at
Lmeas, L = 64. The dashed-dotted vertical lines in Figs. 2 and 3
indicate the time tb = Lmeas/vF. The coincidence of these lines
with the sharp rise of the current confirms our interpretation.
This is further confirmed in the top panel of Fig. 4, where the
current measured at different sites is shown as a function of
time, with the dashed-dotted vertical lines indicating the times
tL/R
b = Lmeas, L/R/vF. Once again, we can see that the current in

the partitioned case is nearly zero up to the tb = min (tL
b , tR

b ).
In the partition-free setup, one observes a gradual increase

of the current from the beginning. As can be seen in the
bottom panel of Fig. 3, the time it takes for a fermion to travel
to the current measuring position, tb, also marks shoulders in
the current (marked by the arrows), a much weaker effect than
in the partitioned case. As a matter of fact, in the partition-free
case, weak features (inflection points or peaks) in the current
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FIG. 3. Plots of the normalized time-dependent current at the
64th hopping, Lmeas, L = Lmeas = 64, of a disordered central sample,
calculated using the unitary quantum dynamics method in the parti-
tioned (upper panel) and partition-free approach (lower panel) for a
bias of �V = 0.1w and different sample sizes. The time coordinate
is rescaled by the stabilization timescale, i.e., tstab = 2Ls/vF, which
turns the onset time of the quasisteady state roughly independent of
the sample’s size in both approaches. The vertical pointed lines mark
the time taken for a Fermi energy state to propagate from the left lead
to the point where the current is being measured, i.e., T = tb/tstab,
where the colored arrows highlight the inflection which occurs at this
point for all the curves in partition-free case. Notice that even though
Lmeas, and consequently tb, is the same for all curves, the vertical lines
are shifted due to the rescaling by tstab, which depends on Ls. In the
lower panel, the dashed curves correspond to current evaluated with
a different central disorder configuration.

can be observed at both times tL
b and tR

b as is shown in the
bottom panel of Fig. 4.

After this initial buildup, in both approaches, the cur-
rent enters a sample-specific damped oscillatory phase which
stabilizes toward an approximately time-independent value.
This stabilization marks the beginning of the quasisteady-state
regime. As indicated in Fig. 2 and shown by the collapse of the
curves in Fig. 3, for different sample sizes, the quasisteady
state exists for times roughly greater than a stabilization time
tstab = 2Ls/vF. Physically, this time can be interpreted as the
one needed for a fermion near the initial reference Fermi level
to make a round trip inside the central sample, thus probing
the existing disorder landscape. The fact that both tb and
tstab are ballistic times (i.e., ∝Lmeas and ∝Ls, respectively) is
consistent with the fact that we are always working in the bal-
listic regime of the mesoscopic central sample. Interestingly,
this timescale is nearly independent of the particular disorder
configuration and the applied bias �V .

B. Landauer quasisteady-state transport, finite-size effects,
and recurrence times

In both approaches, if the leads are large enough, after the
initial buildup and stabilization of the current, a quasisteady-
state is reached for t > tstab, during which the current is
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FIG. 4. Current as a function of time measured at different points
of a disorder sample. The current is measured at the distances Ls/8,
Ls/4, Ls/2, 3Ls/4, and 7Ls/8 from the left lead, and are indicated
in the inset of the bottom panel. The top panel depicts the current
for the partitioned setup, while in the bottom panel the partition-free
configuration was used. The dashed vertical line represents tr and the
dotted line tstab. The dashed-dotted vertical lines mark the times tL

b

and tR
b for the different measuring points. The sample has Ls = 256

sites and disorder strength of W = 0.3w. The leads have Ll = 213

sites and a potential difference of �V = 0.01w is applied.

approximately time independent. As the size of the leads
increases, the value of this quasisteady-state current tends
to the sample-specific Landauer value, independently of the
initial preparation of the system (partitioned or partition-
free). Hence, the present results are numerical checks to an
extension of the memory-loss theorem of Stefanucci et al. [14]
for the case of finite leads. The memory-loss theorem [14]
states that, provided the leads have a continuum spectrum,
a steady-state value of the current is achieved in the t → ∞
limit, and that this value is independent of the initial state of
the system.

As can be seen in Figs. 2 and 5, in our case, and due to
the finite nature of the leads, which makes their spectrum
discrete, a quasisteady state only exists in a finite window of
time: tstab < t < tr. For t > tr, we observe a drop and inver-
sion of the current. Similar behavior has also been observed
previously Bushong et al. [31] and Chien et al. [32]. Pal
et al. [33] pointed out that the recurrence time tr is inversely
proportional to the level spacing of the leads’ spectra, which
measures how close the finite leads are to a true continuous
spectrum. Our results allow for an alternative interpretation.
As demonstrated in Fig. 2, where we show the current for
fixed Fermi energy and different sizes of the leads, and in
Fig. 5, where we show the current for fixed Ll but different
Fermi energies, the recurrence time is roughly given by tr =
2Ll/vF, where vF is the Fermi velocity. Notice that 2Ll/vF

is just the time a fermion close to the Fermi level takes to
perform a round trip inside of a lead, in agreement with what
was previously reported in Ref. [31]. Furthermore, one also
sees that the recursion time is roughly independent of the
disorder on the sample, which is consistent with its previous
physical interpretation.
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One expects that, for sufficiently large leads, the value
of the current in the quasisteady state should approach the
Landauer value, possibly with some small oscillations super-
imposed due to finite-size effects that vanish with increasing
lead size. Indeed, this is what we observe in Fig. 2. However,
the way in which the oscillations vanish depends crucially
on the initial condition of the system. In the partition-free
approach, we observe that the current in the quasisteady-
state regime does not strictly approach the Landauer value.
Instead, there is a small persistent oscillatory component with
a constant amplitude in time, superposed on its steady-state
value, and which persists up to the recursion time tr. Although
constant throughout the quasisteady-state regime, the ampli-
tude of these oscillations is seen to decrease as Ll → ∞,
and the value of the quasisteady-state current approaches the
Landauer value in a nearly uniform way for tstab < t < tr. We
also observed that the period of these oscillations is roughly
inversely proportional to the applied bias, i.e., Tosc ∝ �V −1,
but does not depend on either Ll or Ls. Such dependence
of the oscillation period with the applied bias had also been
reported by Kurth et al. [43], although their focus is on
systems with infinite leads. Nevertheless, this behavior gives a
hint on the physical origin of these oscillations. If we consider
an occupied eigenstate |�(0)〉 of HPF(t = 0), having energy
ε0, this can always be written as a linear combination of
eigenstates |�̃n〉 of H(t > 0). This way, its time-evolved ket,
|�(t )〉, is simply

|�(t )〉 =
∑

n

e−ih̄−1εnt 〈�̃n | �(0)〉|�̃n〉, (19)

where 〈�̃n | �(0)〉 are the wave-function overlaps. Since the
leads are much larger than the central sample and the effect of
applying a bias is to globally shift the energy of all Wannier
states in the leads to ±�V/2, it is reasonable to say that the
two dominant overlaps in Eq. (19) will be with the states |�̃±〉

with energies ε0 ± �V/2. This follows from the fact that these
two are precisely the ones whose real-space wave functions in
either the right or left lead are stationary waves with the same
wavelength as the original one. Assuming this argument to be
true, we may neglect all the other overlaps in Eq. (19) and
write

|�(t )〉 	 e−ih̄−1(ε0+ �V
2 )t 〈�̃+ | �(0)〉|�̃+〉

+ e−ih̄−1(ε0− �V
2 )t 〈�̃− | �(0)〉|�̃−〉, (20)

which behaves as a two-level system, with a Bohr fre-
quency ω = �V/h̄. This argument justifies the presence of the
timescale associated to the period of the observed finite-size
oscillations. Furthermore, as �V is reduced, we expect that
the overlaps 〈�̃± | �(0)〉 will increase, thus, we also expect
that the amplitude of these oscillations will increase when �V
decreases, a point to which we will return.

For the partitioned approach, a rather different behavior is
observed. In this setup, as can be seen in the insets of Figs. 2(c)
and 2(d), the amplitude of the oscillations in the quasisteady
state decays as time increases, provided tstab < t < tr. Further-
more, the amplitude of the oscillations is nearly independent
of the leads’ size at any fixed observation time (provided t < tr
for the compared lead sizes). As Ll increases, tr = 2Ll/vF also
increases and, therefore, the oscillations in the quasisteady
state will decay for a longer time, thus tending toward the
Landauer value as time tends to tr, t → tr → ∞. Note that the
physical argument given above in Eqs. (19) and (20) justifies
why one does not observe persistent oscillations when the
system begins in a partitioned setup.

In a true steady state, the value of the current is not only
time independent but must also be position independent, as no
charge accumulation can occur. Hence, we also investigated
whether or not this emergent quasisteady-state current in finite
chains is homogeneous over the sample. Indeed, we found out
that in the quasisteady state the current is approximately ho-
mogeneous in space, independently of the initial preparation
of the system, for large enough leads and provided we are
far away from the chain’s open extremities. This observation
is exemplified in Fig. 4, where we show the time-dependent
current for a disordered central sample, measured at three
different bonds: center, left, and right boundaries of a ran-
domly picked disordered sample. As can be seen, after the
disappearance of the initial transients, the same quasisteady-
state current is reached at the three positions, apart from the
finite-size oscillations which are out of phase.

Interestingly, the establishment of a well-defined quasis-
teady state, for a large but fixed lead size, might not occur
for very small biases, where we would expect linear response
theory to hold, depending on the initial conditions. This is
illustrated in Fig. 6. There, we can see that for the partition-
free setup, no clear quasisteady state is observed for very
small biases. This occurs because, for a fixed lead size and as
previously explained, the period and amplitude (relative to the
infinite leads’ Landauer value) of the finite-size oscillations
increase with the reduction of the applied bias. Therefore, for
small enough bias, the period of the oscillations might become
larger than the recursion time, and no quasisteady state is
observed. A well-developed quasisteady current only emerges
provided Tosc 
 tr. In the partitioned setup, the situation is
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free case, where the time-dependent Kubo formula is valid. The
value of the current is normalized to the corresponding Landauer
steady-state value.

a bit different and for large times: the current always tends
to the Landauer value with the amplitude of the finite-size
oscillations decreasing over time. These observations seem to
be in agreement with the interpretation of Bushong et al. [31],
where it is put forward that the observation of a quasisteady
state requires the change in the initial spread of the electrons’
momenta. In this reference, this occurs either due to a geo-
metrical constriction at the lead-sample contact, or due to an
initial applied energy barrier. In our case, it seems that the
applied bias is the mechanism by which electrons change their
initial momenta. As a general “rule of thumb,” we can tell that,
in order to observe a quasisteady-state current regime with
minor finite-size effects, one must always consider biases that
are much larger than the level spacing of the whole system’s
spectrum.

C. Sample-specific I-V curves at large biases

We finally point out that the coincidence between the
Landauer value for the current and the value of the current in
the quasisteady state occurs for any value of the bias potential,
as long as it is smaller than the bandwidth and provided a
quasisteady state is established.

This is illustrated in Fig. 7, where we show values for the
time-dependent current in the quasisteady-state regime as a
function of the applied bias, for two random disordered sam-
ples, and compare the results with the value of the Landauer
current. The results clearly confirm that the quasisteady-state
current seen in the quantum dynamics calculations with finite
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FIG. 7. Plots of the I (�V ) curves of two independent disordered
samples. The black curves in the main plots were obtained using
the Landauer formula of Eq. (18). The red dots were obtained from
the quasisteady-state current of a quantum dynamics calculation,
using the partition-free approach with Ll = 214 sites. The use of a
partitioned approach could also be done, but would be redundant
given that we proved the numerical equivalence of both approaches
in the previous discussion. In the insets, we highlight with a red arrow
the time of measurement in a plot of I (t ).

leads indeed corresponds to the Landauer transport predicted
for samples coupled to semi-infinite leads. The agreement
between the two approaches was seen to be perfect for all the
range of bias tested and well beyond linear response.

V. EMERGENCE OF LANDAUER TRANSPORT WITHIN
LINEAR RESPONSE IN THE PARTITION-FREE

APPROACH

The numerical studies of the previous section show that
a quasisteady-state transport regime, with an approximately
uniform and time-independent current, emerges across finite
systems subjected to a potential bias and coupled to finite
but large leads. Moreover, the results also show that for large
enough leads, the value of this quasisteady-state current coin-
cides with the Landauer result for the transport’s steady state
with semi-infinite leads. In this section, we will try to shed
further light on these numerical results using a semianalytical
procedure. In order to make as much analytical progress as
possible, we shall restrict ourselves to the partition-free case
and small biases, such that we can study the current using
Kubo linear response theory in the applied bias �V .

104203-8



LANDAUER TRANSPORT AS A QUASISTEADY STATE ON … PHYSICAL REVIEW B 101, 104203 (2020)

A. Time-dependent Kubo formula for a sudden connection

We will always consider the partition-free Hamiltonian at
t = 0 as the unperturbed Hamiltonian for this case, i.e.,

H0 = HPF(t = 0) =
L−1∑
n=0

εd
nc†ncn − w

L−2∑
n=0

(c†n+1cn + c†ncn+1)

(21)

and treat the applied potential bias as the current-driving
perturbation

V (t ) = −e	(t )
L−1∑
n=0

ve
nc†ncn (22)

with the electrostatic potential profile ve
n given by Eq. (2).

In order to derive a time-dependent Kubo formula for
the current, we will start by writing the equation of motion
for the reduced density matrix (11), in the eigenbasis of the
unperturbed Hamiltonian. Thus, we obtain

d

dt
ραβ (t ) = − i

h̄
(εα − εβ )ραβ (t ) − i

h̄
[V (t ), ρ(t )]αβ, (23)

where Oαβ (t ) = 〈�α|O|�β〉 and |�α〉 is an eigenstate of H0

with energy εα . Within linear response theory, we write the
reduced density matrix as

ραβ (t ) = δαβ f (εα ) + δραβ (t ), (24)

where ραβ (0) = δαβ f (εα ) is the initial equilibrium reduced
density matrix and δραβ (t ) is a small correction, which in
linear response is assumed to be ∝V (t ). Disregarding any
contributions of O(V2) in the equation of motion, we obtain

d

dt
δραβ (t ) = − i

h̄
(εα − εβ )δραβ (t )

− ie

h̄
	(t )�αβ[ f (εα ) − f (εβ )], (25)

where �αβ are the matrix elements of the applied potential
bias,

�αβ =
∑

n

ψ∗
α (n)ψβ (n)ve

n, (26)

and ψα (n) is the amplitude of the eigenstate |�α〉 on site n,
i.e., ψα (n) = 〈n|�α〉. Now, using the fact that δραβ (t < 0) =
0, it is possible to integrate Eq. (25), obtaining

δραβ (t ) = −e�αβ

� fαβ

�εαβ

(
1 − e− i

h̄ �εαβ t
)
, (27)

where � fαβ = f (εα ) − f (εβ ) and �εαβ = εα − εβ . The ex-
pected value of the current that flows from site n to n + 1 is
thus given by

In(t ) = ie2w

h̄

∑
α,β

�n
αβ�βα

� fαβ

�εαβ

(
1 − e− i

h̄ �εαβ t
)
, (28)

where we introduced

�n
αβ = ψ∗

α (n + 1)ψβ (n) − ψ∗
α (n)ψβ (n + 1), (29)

which are the matrix elements of the local current operator
between sites n and n + 1, up to a dimensionful multiplicative
factor.

By further noticing that the amplitudes ψα (n) may be
chosen as all real and �s is an antisymmetric matrix, one can
rewrite Eq. (28) in the following way:

In(t ) = 2e2w

h̄

∑
α

(εα�εF )

∑
β

(εβ>εF )

�n
αβ�αβ

sin
(�εαβ t

h̄

)
�εαβ

, (30)

which is our final time-dependent Kubo formula for the
current.

Obviously, one cannot give a general rule for establishing
the validity regime of Eq. (30) since that will depend crucially
on the properties of the central disordered sample. However,
for each sample, there is always a value of �V sufficiently
small, such that a linear response theory for the current is
valid. We depict such an example in the upper panel of Fig. 6,
where the current traversing the central bond of a disordered
sample, as obtained from Eq. (30), is compared with the
one obtained from the fully nonlinear quantum dynamics of
Sec. III in the partition-free approach. As a further short
comment on the plots of Fig. 6, it is interesting to note that,
for the parameters used, it seems that no quasisteady-state
plateau emerges from the quantum dynamics close to the
linear response regime. As referred before, this is simply a
consequence of a greater relevance of the finite-size oscilla-
tions which, now, have a period larger than the recurrence time
and a much larger relative amplitude.

B. Representation of the eigenstates in terms of the sample’s
quantum reflection/transmission coefficients

In order to make an effective use of Eq. (30) and make
analytic progress, we must be able to find a semianalytical
expression for the matrix elements �n

αβ and �αβ , which, in
principle, requires the knowledge of the eigenfunctions in the
whole chain. These wave functions usually present a very
complicated structure inside the disordered central sample,
but for large enough leads, we actually only need to know their
form in the leads. On the one hand, the �n

αβ matrix elements
only require the knowledge of local amplitudes in the two
adjacent sites across which the current is being measured.
Hence, we can simply choose to measure it outside the sam-
ple. On the other hand, we expect the current to be dominated
by states that are not localized in the disordered sample, but
instead are delocalized in the leads. Hence, we only need to
calculate the �αβ matrix elements between delocalized states.
For such states, and provided the leads are much larger than
the disordered sample region, we can approximate

�αβ =
∑

n

ψ∗
α (n)ψβ (n)ve

n 	
∑

n∈leads

ψ∗
α (n)ψβ (n)ve

n. (31)

This approximation allows us to evaluate the current In(t )
in the leads, without knowing the shape of the eigenwave
functions inside the central sample.

Next, we notice that the form of the scattering eigenstates
in the leads can be expressed in terms of the complex re-
flection and transmission coefficients of the central sample.
For perfect leads, the wave functions of the eigenstates will
have the form of a coherent superposition of left and right
propagating plane waves. With a change of notation from the
previous section, we will relabel sites of the left lead with
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indices n = −Ll , . . . ,−1 and the ones of the right lead with
n = 1, . . . , Ll . Using this notation, the form of the eigenstate
wave function |�k〉 in the leads have the form

ψk (n) = 〈n|�k 〉

=
{

�L
+eik(n−1) + �L

−e−ik(n−1), −Ll � n � −1

�R
+eik(n−Ls ) + �R

−e−ik(n−Ls ), 1 � n � Ll

(32)

being labeled by a crystal momentum k, and with �
L(R)
+/− being

the amplitude of a right/left propagating state in the left (right)
lead. Notice that the time-independent Schrödinger equation
inside the leads still allows us to relate the crystal momentum
k to the energy of the state as E = −2t cos(k), i.e., the same
as for an infinite periodic chain. As usual in one-dimensional
scattering problems, the amplitudes of propagating states on
the left and right leads can be related by a transfer matrix
M(k): (

�R
+

�R
−

)
= M(k)

(
�L

+
�L

−

)
. (33)

In the presence of time-reversal symmetry, the transfer matrix
has the general form

M(k) =
( 1

|t (k)|e
iφ(k) −|r(k)|

|t (k)| e
−iθ (k)+iφ(k)

−|r(k)|
|t (k)| e

iθ (k)−iφ(k) 1
|t (k)|e

−iφ(k)

)
, (34)

where |t (k)|/|r(k)| and φ(k)/θ (k) are the moduli and phases
of the transmission and reflection coefficients, respectively.
Moreover, for any sample one has det M = 1, which im-
plies the conservation of current, i.e., |t |2 + |r|2 = 1. These
coefficients are physical characteristics of the central sample
only and, thus, may be rightfully calculated by assuming
the leads as semi-infinite. The determination of the reflection
and transmission coefficients of a specific sample, in general,
can only be done numerically, using the method detailed in
Appendix B. The great advantage of this method is that, once
this calculation is done, the wave functions in the leads can be
expressed in terms of only a few parameters. Additionally, to
obtain the eigenstates, we must further impose open boundary
conditions at the ends of the leads, i.e.,

ψk (−Ll − 1) = ψk (Ll + 1) = 0. (35)

Combining Eqs. (32)–(35), one arrives at the following gen-
eral expression for the wave functions:

ψk (n) = 1√
Nk

{|t (k)| sin [k(n + Ll + 1)], n < 0

f2(k) sin [k(n − Ll − 1)], n > 0
(36)

where Nk is a normalization factor, which can be determined
in the limit of large leads by approximating, in the same spirit
of Eq. (31), ∑

n

|ψk (n)|2 	
∑

n∈leads

|ψk (n)|2. (37)

This finally leads to

Nk 	 Ll f1(k). (38)
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FIG. 8. (a) Scheme of the procedure of replacing the central
sample by an effective momentum-dependent transfer matrix M(k).
(b) Comparison between the eigenvalues and eigenstates obtained
from the numerical diagonalization of a system with finite leads of
size Ll = 8192 and a sample with Ls = 512 sites, and the ones ob-
tained using the transfer matrix method. The left panels correspond
to a case without disorder, while the right ones to disordered central
sample. The upper panels compare the wave numbers obtained from
the eigenvalues of the numerical diagonalization with the zeros of the
analytical quantization condition [Eq. (40)], while the lower panels
compare the corresponding wave functions of one of eigenstates
(signaled by the red arrow).

The functions f1(k) and f2(k) are defined as

f1(k) = 1 + |r(k)| cos [2k(Ll + 1) + θ (k)], (39a)

f2(k) = cos [2k(Ll + 1) + φ(k)] + |r(k)| cos [θ (k) − φ(k)],

(39b)

and where k is constrained to verify the following quantization
condition:

sin [2k(Ll + 1) + φ(k)] = |r(k)| sin [θ (k) − φ(k)]. (40)

Notice that the solution of this last condition, together with
the relation k = arccos [−E/(2w)], allows us to determine
the eigenenergies corresponding to delocalized states. In the
lower panels of Fig. 8(b), we exemplify the validity of this
statement by comparing the wave functions obtained from
the numerical diagonalization of H0, with Ll = 8192 sites,
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to the semianalytical expressions of Eq. (36). The wave
numbers obtained from the numerical diagonalization, i.e.,
k = arccos (−E/2), are also seen to coincide perfectly with
the roots of Eq. (40) [see the upper panels of Fig. 8(b)].

Note also that Eqs. (36) and (40) reduce to the usual result
for the eigenstates of a finite open chain, when |r(k)| = 0 and
φ(k) = k(Ll − 1) is the phase accumulated by a plane-wave
crossing the internal bonds of an ordered sample, i.e.,

ψk (n) = 1√
Ll

{
sin [k(n + Ll + 1)], n < 0

(−1)p sin [k(n − Ll − 1)], n > 0
(41)

with k = π p/(L + 1) and p = 1, . . . , L. Moreover, these
states are nondegenerate and also alternately symmetrical and
antisymmetrical under parity (n → −n), which just reflects
that same symmetry of the clean Hamiltonian.

With the knowledge of the eigenstates wave functions of
the leads, Eq. (36), we can write the matrix elements �k,q and
�n

k,q. With the approximation of Eq. (31), we can evaluate �k,q

analytically, obtaining

�k,q 	 �V
|t (k)||t (q)| − f2(k) f2(q)

8Ll
√

f1(k) f1(q)

×
{

sin
[
(q − k)

(
Ll + 1

2

)]
sin

( q−k
2

) − sin
[
(q + k)

(
Ll + 1

2

)]
sin

( q+k
2

)
}

.

(42)

As for the matrix elements �n
k,q, from the definition (29),

for bonds in the left lead (n < −1), and after some simple
manipulations, we obtain

�n<−1
k,q = |t (k)||t (q)|

Ll
√

f1(k) f1(q)

×
{

sin

(
k − q

2

)
sin

[
(k + q)

(
n + Ll + 3

2

)]

− sin

(
k + q

2

)
sin

[
(k − q)

(
n + Ll + 3

2

)]}
,

(43)

while for the current in bonds of the right lead (n > 1), we ob-
tain a similar result after replacing |t (k)||t (q)| → f2(k) f2(q)
and Ll → −Ll − 2 in Eq. (43).

C. Continuum regime of the Kubo formula

When analyzing the time-dependent Kubo formula of
Eq. (30), we must take into account that there are actually
two distinct timescales: (1) the observation time, t , and (2) the
scale associated with the spacing between the discrete energy
levels of the finite chain. The latter is proportional to the
length of the leads and, as discussed in Sec. IV, is associated
to the recurrence time tr ∼ 2Ll/vF.

As expected and confirmed in Sec. IV, the quasisteady-
state regime which approximates the Landauer transport
regime of semi-infinite leads emerges when we take T, Ll →
∞ (with T = tw/h̄ being the time in dimensionless units),
but while keeping T 
 Ll . In such case, all the transients
have died out, but the system is still far away from getting
into the regime where current inversions occur. Furthermore,
Eq. (30) includes a factor of sin (�εαβt/h̄)/�εαβ , which is an

emergent δ function in the limit t → +∞, with a broadening
of h̄t−1 in energy. This factor actually acts as a spectral
filter which kills off the contributions coming from pairs
of eigenstates having an energy separation larger than h̄t−1.
Hence, we will show in this section how the approximately
time-independent quasisteady-state current emerges, when we
are in the limit T, Ll → ∞, with T 
 Ll , such that there are
many eigenvalues inside the interval [εF − h̄t−1, εF + h̄t−1].
We will refer to this limit as the continuum regime.

1. Approximate form of �k,q and �n
k,q

matrices in the continuum regime

We start by noting that, in the continuum limit, since only
states close to the Fermi energy contribute, it suffices to obtain
the matrix elements �k,q and �n

k,q between states where k −
q is small and k, q 	 kF. In the limit of k − q → 0, the first
term of Eq. (42) dominates over the second. Therefore, we
can approximate it as

�k,q 	 �V
|t (k)||t (q)| − f2(k) f2(q)

8Ll
√

f1(k) f1(q)

sin[(k − q)Ll ]

sin
( k−q

2

) , (44)

where, in the of limit Ll → ∞, we approximated
sin [(q − k)(Ll + 1

2 )] 	 sin [(q − k)Ll ]. Doing the same
for �n

k,q, we obtain

�n<−1
k,q 	 − |t (k)||t (q)|

Ll
√

f1(k) f1(q)
sin (kF) sin[(k − q)Ll ], (45)

where we assumed that |n| 
 Ll , when approximat-
ing sin [(k − q)(n + Ll + 3

2 )] 	 sin [(k − q)Ll ]. This justifies
why in the quasisteady-state regime, the current is approxi-
mately uniform, if we are away from the chain’s extremities.
For the current on the right lead, we obtain a similar result,
namely,

�n>1
k,q 	 f2(k) f2(q)

Ll
√

f1(k) f1(q)
sin (kF) sin[(k − q)Ll ]. (46)

Now, we note that for a chain without any disorder, the
matrix elements of �k,q will only be nonzero if the states
labeled to k and q have opposite parities. This selection rule
stems from the fact that the fully ordered chain is symmet-
ric under inversion and therefore its eigenstates will have a
well-defined parity. Since the applied potential ve

n is an odd
perturbation, it only couples states of opposite parities. In the
presence of a general disorder in the central sample, we no
longer have inversion symmetry. Nevertheless, one may still
expect that in the limit Ll � Ls, the breaking of the symmetry
is small and an approximate selection rule should emerge.
Indeed, this is the case. In order to obtain this approximate
selection rule for a sample with disorder, we notice that
although we can no longer classify the states as even and
odd, given the quantization condition (40), which involves
sin [2k(Ll + 1) + φ(k)], we can classify the states as + and
− according to the sign of cos [2k(Ll + 1) + φ(k)]:

cos[2k±(Ll + 1) + φ(k±)]

= ±
√

1 − |r(k±)|2 sin2 [θ (k±) − φ(k±)]. (47)

For an ordered or symmetrically disordered sample,
this reduces to a labeling of eigenstates as even or odd,
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FIG. 9. Scatter plot of | sin [(k − q)Ll ]| versus (q − k)Ll for the
allowed values of k, q and different lead sizes (Ll = 216–219 sites).
The different data sets correspond to four different samples, one
ordered (×) and two disordered ones (© and �), which were
randomly chosen. The dashed magenta curves correspond to the
asymptotic limits of k − q → 0 and Ll → ∞, as given by Eq. (48).

respectively, under a parity transformation, n → −n. With
such a classification, it can be shown (see Appendix C) that
in the limits of k − q → 0 and Ll → ∞, one obtains the
following effective selection rule:

lim
Ll →∞

| sin[(kσ − qσ ′
)Ll ]|

= (1 − δσ,σ ′ )
√

1 − |r(kF)|2 sin2 [θ (kF) − φ(kF)] (48)

with σ, σ ′ = ± and which immediately implies that �k,q 	
0, if k, q are in the same class as Ll → ∞. This is an
approximate selection rule, analogous to the one which exists
in the clean case, but which only emerges when Ll → ∞.
In Fig. 9, we represent the values of | sin [(k − q)Ll ]| as a
function of (k − q)Ll , for allowed values of k and q. We
can clearly see that for some data points | sin [(k − q)Ll ]| →
0 as Ll increases, while other data points tend to a fi-
nite value, which is given by the sample-specific value√

1 − |r(kF)|2 sin2 [θ (kF) − φ(kF)].3

3As visible in Fig. 9, there is small deviation of the data points
obtained for the ordered central sample from the theoretical value
| sin [Ll (qσ − kσ ′

)]| = 1 − δσ,σ ′ . These results seem incompatible
with an exact parity selection rule for �k,q, for this case, however,
they are not. This artifact is due to the fact that the data shown
were calculated from the numerical diagonalization of H0 and then
k = arccos (−E/2) was used to obtain the respective wave numbers.
This procedure takes into account the finite dimension of the cen-
tral sample and hence the allowed wave numbers are of the form
kσ = πn/(2Ll + Ls + 1), with σ = (−1)n. Since the expression of
�k,q which is proportional to sin [Ll (q − k)] is only valid under an
approximation which ignores Ls [i.e., Eq. (31)], the parity selection
rule appears to be approximate as well. At any rate, it may be proven,
by symmetry, that this rule is actually true for any value of Ll , if one
considers the full expression for �k,q.

We point out that in the case of symmetric disorder profile,
one can derive from the properties of the transfer matrix that
φ(k) − θ (k) = ±π/2. In this case, one immediately sees that
the scattering wave functions of Eq. (36) reduce to the same
form as in Eq. (41), with the parity determined by the class to
which it belongs. In such a case, the |t (k)| factor of the � and
� matrices comes only from this effect since the functions
f1(k) and f2(k) are exactly the same as in the nondisordered
case. Just the allowed k’s are different.

Having established this effective selection rule, we can
expand the prefactors of Eqs. (44)–(46) around kF. Taking
into account that the only significant contributions come from
pairs of states belonging to different classes, we may use
Eqs. (40) and (47) to write, for k, q 	 kF,

f1(k) f1(q) 	 (1 − |r(kF)|2 sin2 [θ (kF) − φ(kF)])|t (kF)|2,
(49a)

f2(k) f2(q) 	 −|t (kF)|2. (49b)

Using these approximations in Eq. (44), we obtain

�k,q 	 �V
|t (kF)|

4Ll

1

sin
( k−q

2

) 	 �V
|t (kF)|

2Ll

1

k − q
, (50)

and from Eqs. (45) and (46) we obtain

�n<−1
k,q 	 �n>1

k,q 	 −|t (kF)|
Ll

sin (kF). (51)

In the following, we will use Eqs. (50) and (51) to obtain the
Landauer current from the Kubo formula of Eq. (30).

2. Continuum limit expression for the stationary current:
Emergence of Landauer transport

Using Eqs. (50) and (51), we can write the time-dependent
Kubo formula (30) as

In(t ) = e

2

2
′∑

k,q

Pk,q
sin(�εk,qt/h̄)

�εk,q
, (52)

where the primed sum in Eq. (52) means that only pairs of
states (k, q) of opposite classes are included in the sum, due
to the emergent selection rule. We also introduced the quantity
Pk,q, which is defined as

Pk,q = 2w

h̄
�n

k,q�k,q� fk,q 	 − 1

2L2
l

|t (kF)|2v2
F h̄

|�εk,q| �V, (53)

where we approximated vFh̄(k − q) 	 �εk,q, with vF =
2w sin (kF)/h̄. To make Eqs. (52) and (53) more clear, we re-
mark that this definition of the current is no longer dependent
on the condition k < kF < q, and Pk,q is actually symmetrical
upon exchange of the indexesindices. The above equation
also shows that, for k, q 	 kF, the latter approximately only
a function of the difference in eigenenergies. This result was
checked numerically as seen in Fig. 10, where we can see
that for a wide variety of disordered samples and different
values of the Fermi energy, all the values of Pk,q [calculated
directly from the wave functions in Eq. (41)] fall into the
curve (53).

104203-12



LANDAUER TRANSPORT AS A QUASISTEADY STATE ON … PHYSICAL REVIEW B 101, 104203 (2020)

0.0 1.0 10 2.0 10 3.0 10

10

10

10

10

10

10

L
l2  P

(k
-q

)

0.0 5.0 10 1.0 10 1.5 10 2.0 10
10

10

10

10

L
l2  v

F-1
 |t

(
F

)|
-2

P
(k

-q
)

Analytical
  Expression (y = 1/2x)

F
 = -1.9021w

F
 = -1.1756w

F
 = -0.6180w

F 
= 0w

F
 = +0.6180w

F
 = +1.1756w

F
 = +1.6180w

L
l
 = 2

19
sites      L

s
 = 2

9
sites

q - k

      Dying 
Contributions

0.0 5.0 10 1.0 10 1.5 10 2.0 10

10

10

10

10

10

L
l2  P

(k
-q

)

0.0 5.0 10 1.0 10 1.5 10 2.0 10

10

10

10

L
l2  |t

(0
)|

-2
P

(k
-q

)

Continuum Approximation
  y = 1/x

No Disorder (|t(0)|
2
 = 1)

W = 0.1w (|t(0)|
2
 = 0.8336)

W = 0.2w (|t(0)|
2
 = 0.3522)

W = 0.4w (|t(0)|
2
 = 0.0265)

W = 0.2w (|t(0)|
2
 = 0.2007)

W = 0.4w (|t(0)|
2
 = 0.5158)

L
l
 = 2

19
sites      L

s
 = 2

9
sites

q - k

      Dying 
Contributions
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The time-dependent current in the continuum regime can
thus be written as

In(t ) = e2

h̄
|t (kF)|2(vFh̄)2�V

∫ +∞

−∞
d (�ε)

sin (�εt/h̄)

�ε|�ε| �(�ε),

(54)

where we introduced the joint density of contributing states
(JDoCS) � as

�(εF,�ε) = 1

4L2
l

′∑
k,q

δ(�ε − �εk,q ). (55)

The restricted summation in Eq. (55) already takes into ac-
count the emergent selection rule of Eq. (48). In Appendix D,
we show that this quantity, in the limit Ll → ∞, can be written
in terms of the density of states of each class in a fully clean
system and its expression for small enough |�ε| is simply

lim
Ll →∞

[�(εF,�ε)] = |�ε|
2π2

(
4w2 − ε2

F

) + O[�ε2]. (56)

Hence, when Eq. (56) is plugged into Eq. (54), we get

In(t ) = e2

2π2h̄

|t (kF)|2(vFh̄)2�V

4w2 − ε2
F

∫ ∞

−∞
d (�ε)

sin (�εt/h̄)

�ε
.

(57)

Finally, Eq. (57) together with the facts that

lim
T →∞

[
sin [xT ]

x

]
= πδ(x), (58)

and vF h̄ =
√

4w2 − ε2
F , yields a steady-state current

In(t ) = e2

h
|t (kF )|2�V, (59)

which is precisely the linear Landauer steady-state current for
a two-terminal one-dimensional device.

Notice that in the derivation of this result from the time-
dependent Kubo formula, it is essential that t, Ll → ∞ with
wt/h̄ 
 Ll , such that the �(�ε) can be evaluated in the limit
of Ll → ∞, while the factor sin (�εt/h̄)/�ε is treated as as
emergent δ function. When wt/h̄ � Ll , then there will be few
pairs of states with �εk,q ∈ [εF − h̄t−1, εF + h̄t−1], and we
can no longer treat sin (�εt/h̄)/�ε as a δ function. When
this happens, we start observing recurrences in the current as
reported in Sec. IV.

VI. CONCLUSIONS

In this work, we investigated how a quasisteady-state
particle transport regime emerges across disordered samples
coupled to large, but finite leads which are subjected to a
potential bias. In order to do so, we have studied time-
dependent transport, both numerically and semianalytically,
in a noninteracting and one-dimensional tight-binding chain,
with open boundary conditions, where the central region is an
extended disordered sample, and the rest of the chain acts as a
pair of finite, but otherwise perfect, leads.

For large lead sizes, and sufficiently large bias, a
quasisteady-state regime emerges at intermediate times, after
the transient behavior has died out and before inversions in
the current are observed. The current in the quasisteady state
is approximately constant in time and homogeneous in space
(if measured at points far away from the chain’s extremities).
Furthermore, the value of the current in the quasisteady state
coincides with the one predicted by the Landauer formula
for semi-infinite leads, independently of the initial condition
of the system (partitioned or partition free). These results
amount to an exemplification and extension to finite systems
of the results of Stefanucci et al. [14] on the establishment of a
steady-state regime of transport in samples which are attached
to infinite leads.

We have found that the quasisteady state is established, for
both initial conditions, after a stabilization time tstab ≈ 2Ls/vF.
Physically, this can be interpreted as the time taken by a
Fermi-level state to probe the disordered landscape inside the
central sample. The quasisteady state lasts until a recurrence
time tr ≈ 2Ll/vF, where current inversions start happening.
Aside from being related to the inverse spacing of the energy
levels in the system [33], this recurrence time may also be
interpreted as the time taken by a Fermi-level electron to
leave the sample and return to it, by traveling back and forth
inside a lead. This conclusion was seen to be independent of
the central sample’s features, as long as the leads are much
larger than it and transport is ballistic across the disordered
sample.
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During the quasisteady state, persistent finite-size effects
are observed in the partition-free approach as superposed
oscillations, with a period that is inversely proportional to the
bias �V and an amplitude which scales to zero as Ll → ∞
but becomes more relevant (relative to ILandauer) for very small
values of �V . This effect prevents the onset of a quasisteady-
state regime for systems prepared in the partition-free setup,
if the leads are too small. In the partitioned case, the ampli-
tude of the oscillations superposed on the quasisteady-state
plateaus is not influenced by the size of leads, but instead is
damped as the observation time increases (while keeping t <

tr). Similarly to the partition-free case, the amplitude of the
fluctuations increases for smaller biases. These observations
seem to indicate that the observation of a clear quasisteady
state requires some kind of mechanism which scatters the
electron’s momenta [31]. Here it is provided by the applied
potential ramp in the sample, which becomes a less effective
mechanism as �V → 0. In both cases, these finite-size oscil-
lations can be made arbitrarily small if Ll is large enough.

In order to shine light on the numerical results, a time-
dependent Kubo formula for the current in the partition-free
approach, which is suitable for semianalytical treatment, was
developed for describing the local time-dependent current due
to a small applied bias. From this formula, it was possible
to see that an approximately time-independent and spatially
uniform current emerges in the limit of large system’s size
and observation times Ll , t → ∞, provided t 
 v−1

F Ll (in
agreement with the recurrence times observed numerically).
These conditions are necessary to treat the leads as being
effectively infinite, in what respects DC transport. After ex-
pressing the eigenfunctions of the disordered central sample
in terms of complex reflection and transmission coefficients,
all the matrix elements appearing in the Kubo formula were
evaluated semianalytically. The quasisteady-state current thus
obtained was shown to reproduce the linearized Landauer
formula for the current in a two-terminal device.

We hope that these theoretical predictions of the timescales
over which the quasisteady state occurs and the nature of the
finite-size oscillations can be experimentally tested and guide
future research on mesoscopic transport in fermionic ultracold
atomic gases in optical lattices.
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APPENDIX A: REVIEW OF THE RECURSIVE
CHEBYSHEV METHOD FOR QUANTUM

TIME EVOLUTION

In this Appendix, we wish to describe shortly the algorithm
used to time evolve an arbitrary single-particle state with the
full Hamiltonian. As referred in the main text, the Hamiltonian
generating the time evolution for positive times, H(t > 0),
is time independent and, consequently, the time-evolution
operator Ut reads as

Ut = e−iH(t>0)t/h̄. (A1)

The method used to calculate Ut for our systems is based
on its exact expansion as a series of Chebyshev polynomials
in H(t > 0), due to Tal-Ezer et al. [38]. Namely, one has

Ut =
∞∑

n=0

2

1 + δn,0
(−i)nJn(λt )Tn(H̃), (A2)

where H̃ = (1/λw)H is a dimensionless Hamiltonian, rescaled
by a real parameter λ which guarantees that its spectrum
is contained inside the interval ] − 1, 1[, Tn is the nth-order
Chebyshev polynomial of the first kind, Jn(y) is a Bessel
function of the first kind, and t is a time measured in units
of h̄

w
. The key to the method is to avoid the numerical

diagonalization of H(t > 0), and instead use the recursion
relation for the Chebyshev polynomials

Tn+1(x) = xTn(x) − Tn−1(x), (A3)

in order to evaluate all the needed Tn(H̃), recursively. For
a generic review on the application of Chebyshev spectral
method to physical problems, see Ref. [44] and references
within.

Furthermore, the Chebyshev series of Eq. (A2) is known to
converge rather quickly, meaning that a truncated summation
with M terms is usually enough to describe correctly Ut , pro-
vided M > tλ. This convergence is illustrated in Fig. 11and in
all our calculations, we used M = 8tλ.

Notice that, in order to evaluate the current, we only require
to time evolve a given single-particle state |�〉. Therefore, we
do need the full matrix form of Ut , but instead how it acts on
an arbitrary state |�〉. From the expansion of Eq. (A2), we
know that action to be

∣∣�M (t )
〉 =

M∑
n=0

2

1 + δn,0
(−i)nJn(λt )|�n〉, (A4)

where |�n〉 = Tn(H̃)|�〉 and M is the truncation order of
the Chebyshev expansion.4 Finally, the first two |�n〉 can be
directly calculated by the simple forms of T0(x) and T1(x), i.e.,

|�0〉 = T0(H̃)|�〉 = |�〉, (A5a)

|�1〉 = T1(H̃)|�〉 = H̃|�〉, (A5b)

4As this is needed in the main text, we remark that for back-
ward time evolutions, one may simply use the fact that Jn(−x) =
(−1)nJn(x).
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and then the remaining are efficiently calculated by us-
ing the operator generalization of the Chebyshev recursion
[Eq. (A3)], i.e.,

|�n+1〉 = H̃|�n〉 − |�n−1〉. (A6)

APPENDIX B: REVIEW OF THE RECURSIVE TRANSFER
MATRIX METHOD

In this Appendix, we explore a very simple algorithm
which allows us to calculate the transfer matrix M(k) of any
given disordered sample, when it is connected to semi-infinite
leads. This method is the same used in the early papers of
Andereck et al. [45] and Pichard [46] and allows for the
calculation of M(k) with an ∼O(LS ) number of operations.

For these purposes, it is more useful to reexpress the
Hamiltonian of the central sample in a first-quantization lan-
guage, i.e.,

Hs =
Ls∑

n=1

εn|n〉〈n| −
Ls−1∑
n=1

(|n〉〈n + 1| + |n + 1〉〈n|), (B1)

where |n〉 are the Wannier states of the chain and εn is an
onsite energy (in units of the hopping w). To model the con-
nection between the finite sample to the semi-infinite leads,
one has also the following boundary hopping Hamiltonian:

Hs = −|0〉〈1| − |1〉〈0| − |Ls〉〈Ls + 1| − |Ls + 1〉〈Ls|. (B2)

The main purpose of this method is to find the scattering states
associated to a particular disorder realization. For that, one
must fix the leads’ propagating states |�L

±〉 and |�R
±〉, as the

left and right boundary conditions for the problem. This setup
is represented in Fig. 12, with the counterpropagating plane
waves in the leads being represented as arrows.

1. Hamiltonian in real-space and boundary conditions

The first step toward the definition of the present method is
expanding a scattering state (with wave number k) in the basis

FIG. 12. Schematic representation of the setup used in the im-
plementation of the transfer matrix method. Red dots represent the
disordered scattering region. The leads are represented as the lighter
red “ghost” sites on both sides.

of Wannier wave functions, i.e.,

|�k〉 =
∑

n

ψn|n〉, (B3)

and finally rewriting the time-independent Schrödinger equa-
tion, H|�k〉 = Ek|�k〉, in terms of the real-space amplitudes
ψn,

Ekψn = εnψn − ψn−1 − ψn+1, (B4)

where, by definition, εn = 0 outside of the sample.
As shown in Fig. 12, the boundary conditions are to be

set as the plane waves defined in Eq. (32) of the main text.
Reminding, one has

∣∣�L
k

〉 =
−1∑

n=−Ll

[�L
+eik(n−1)|n〉 + �L

−e−ik(n−1)|n〉], (B5)

∣∣�R
k

〉 =
Ll∑

n=1

[�R
+eik(n−Ls )|n〉 + �R

−e−ik(n−Ls )|n〉]. (B6)

These states immediately set the amplitudes on the “ghost”
sites of Fig. 12 to the following values:

ψ−1 = �L
+e−2ik + �L

−e2ik, ψ0 = �L
+e−ik + �L

−eik,

ψLS+1 = �R
+eik + �R

−e−ik, ψLS+2 = �R
+e2ik + �R

−e−2ik .

(B7)

2. Review of the transfer matrix recursive method

Despite not having the look of a linear algebra problem,
Eq. (B4) may be turned into a matrix recursion equation, when
supplemented by the trivial condition

ψn = ψn.

Hence, we have(
ψn+1

ψn

)
=

(
εn − Ek −1

1 0

)
︸ ︷︷ ︸

Tn (k)

(
ψn

ψn−1

)
. (B8)

If we now iterate Eq. (B8), we get the following relation:(
ψLs+2

ψLs+1

)
= TLs+1(k) · TLs (k) · . . .T1(k) · T0(k) ·

(
ψ0

ψ−1

)
.

(B9)
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In the same way, we may write the boundary conditions of
Eqs. (B7) as the following matrix relations:(

ψ0

ψ−1

)
=

(
e−ik eik

e−2ik e2ik

)
︸ ︷︷ ︸

BL (k)

(
�L

+
�L

−

)
(B10)

and (
ψLs+2

ψLs+1

)
=

(
e2ik e−2ik

eik e−ik

)(
�R

+
�R

−

)
, (B11)

which can be inverted as(
�R

+
�R

−

)
= BR(k)

(
ψLs+2

ψLs+1

)
. (B12)

Using Eqs. (B10) and (B12) in Eq. (B9), we get to the
following final result:(

�R
+

�R
−

)
= BR(k) · TLs+1(k) · TLs (k)

. . . · T1(k) · T0(k) · BL(k) ·
(

�L
+

�L
−

)
, (B13)

and, by definition, the transfer matrix of the whole sample is
written as

M(k) = BR(k) · TLs+1(k) · TLs (k) . . . · T1(k) · T0(k) · BL(k).
(B14)

This last equation was the one we implemented to calculate
M(k) for any given disordered sample.

APPENDIX C: EMERGENCE OF SELECTION RULE

In this Appendix, we prove the effective selection rule of Eq. (48). In order to do so, we will analyze the factor sin [(k − q)Ll ],
when q, k belong to the same or different classes. More precisely, will calculate its absolute value, which can be written as

| sin[(k − q)Ll ]| =
√

1 − cos[2Ll (q − k)]

2
= 1√

2
{1 − cos[2(Ll + 1)(q − k) + φ(q) − φ(k)] cos[φ(q) − φ(k) − 2(q − k)]

− sin[2(Ll + 1)(q − k) + φ(q) − φ(k)] sin[φ(q) − φ(k) − 2(q − k)]} 1
2 , (C1)

where we summed and subtracted φ(q) − φ(k) in the argument of the cosine and, then, decomposed it using the rule for the
cosine of a sum of angles. The main advantage of this form is that the continuous function φ(k) depends solely in the properties
of the central sample and the effect of increasing the leads is to populate more densely their domains with allowed values of
k. This, together with the fact that we are only interested in what happens near kF, allows us to expand it as Taylor series on
δq = q − kF and δk = kF − k:

φ(q) − φ(k) = d

dk
φ

∣∣∣∣
kF

(δq + δk) + · · · 	 d

dk
φ

∣∣∣∣
kF

(q − k), (C2)

and, consequently,

| sin[(q − k)Ll ]| 	
√

1 − cos[2Ll (q − k) + φ(q) − φ(k)]

2
, (C3)

where the corrections are of order q − k and disappear in the limits Ll → ∞ and h̄t−1 → 0. At this point, all we must do is to
decompose the cosine term in Eq. (C3) using the usual rules for the sum of angles and then resort to the quantization condition
of Eq. (40) to realize that

cos[2(Ll + 1)(q − k) + φ(q) − φ(k)] = ∓
√

[1 − |r(q)|2 sin2(θ (q) − φ(q))][1 − |r(k)|2 sin2(θ (k) − φ(k))]

+ |r(q)||r(k)| sin[θ (q) − φ(q)] sin[θ (k) − φ(k)], (C4)

where the + (−) sign stands for the case when q and k are in the same class (different classes) of states.

Finally, one can evoke the same argument as before to
Taylor expand all the sample-specific functions appear in
Eq. (C4) [to be clear, r(x), θ (x), φ(x)] around kF, but noting
that k < kF < q by definition. Up to corrections irrelevant
correction in the same limits, this gives rise to Eq. (48) of the
main text after expanding the sin functions in powers of q − k.

APPENDIX D: CALCULATION OF THE JOINT DENSITY
OF CONTRIBUTING STATES

In this Appendix, we will proceed to calculate the joint
density of contributing states (JDoCS), for both positive and

negative �ε. For positive-energy differences �ε > 0, the
JDoCS is defined, from Eq. (55), as

�(εF,�ε) = 1

4L2
l

′∑
k,q

(εq<εF�εk )

δ(�ε − �εk,q ), (D1)

which may be written in terms of the usual density of states
for each class, σ = ±, i.e.,

ρσ (ε) = 1

Ll

∑
kσ

δ(ε − εkσ ), (D2)
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FIG. 13. Plots of the DoS calculated using the KPM for a system
with leads of different sizes and a central sample without (black
curve) and with disorder (colored curves). The number of Chebyshev
moments used is M = 4096 for all the cases. The insets are zooms
made to the regions indicated by the black boxes in the main graph,
where one can clearly see the spectral weight of the states in the
sample being outweighed by the states coming from the finite clean
leads.

yielding the expression

�(εF,�ε) = 1

4

∫ 2

εF

dε2

∫ εF

−2
dε1 lim

Ll →∞
{ρ+

Ll
(ε1)ρ−

Ll
(ε2)

+ ρ−
Ll

(ε1)ρ+
Ll

(ε2)}δ(�ε − ε2 + ε1), (D3)

in the limit of semi-infinite leads.
To progress beyond Eq. (D3) in a general fashion, one

starts by recognizing that, since ρ±(ε) is an intensive quantity.
So these must be dominated by the states on the (clean) leads,
as Ll → ∞. Since we know that, for a clean system, the states
of different parities are alternated in k space, with a regular
separation given by π/Ll , one concludes that

lim
Ll →∞

ρ±
Ll

(ε) = ρ(ε) =
{

1
π

√
4w2−ε2 if |ε| � 2w,

0 if |ε| > 2w,
(D4)

where ρ(ε) is the full DoS of a clean infinite chain.
In what follows, we will always assume that the expression

of Eq. (D4) may be used to calculate de JDoCS in the limit
of very large Ll . This intuition is confirmed by the plots of
the DoS in Fig. 13, which were obtained numerically, for a
randomly selected disordered sample, using the well-known
kernel polynomial method with a Jackson kernel and a fixed
number of polynomials M = 4096, enough to resolve the indi-
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(
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, 

)

FIG. 14. Plots of the JDoCS from the numerical integration of
Eq. (D5) for different values of the Fermi energy and positive values
of �ε. The dashed straight lines are plots of the linear approxima-
tions near εF, as calculated in Eq. (D6).

vidual energy levels in the smaller case considered (see Weiße
et al. [44] for more details on the method). Consequently, one
has the following expression for the JDoCS:

�(εF,�ε)

=
∫ 2

εF

dε2
	(|�ε| + εF − ε2)

2π2
√(

4w2 − ε2
2

)
[4w2 − (ε2 + �ε)2]

=
∫ εF+|�ε|

εF

dε2
	(|�ε| + εF − ε2)

2π2
√(

4w2 − ε2
2

)
[4w2 − (ε2 + �ε)2]

,

(D5)

where 	(x) is the Heaviside function and �ε � 0. The inte-
gral in Eq. (D5) can be done numerically and the curves are
shown in Fig. 14 for different values of the Fermi energy εF.
Nevertheless, we are only interested in the shape of �(ε,�ε)
when �ε ≈ 0. For that, we may expand Eq. (D5) in powers of
this quantity, yielding

�(εF,�ε > 0) = �ε

2π2
(
4w2 − ε2

F

) + O[�ε2]. (D6)

Finally, we can generalize Eq. (D6) to �ε < 0, which
is trivial since, by definition [Eq. (55)], we have �(�ε) =
�(−�ε). Hence, our final expression is simply

�(εF,�ε) = |�ε|
2π2

(
4w2 − ε2

F

) + O[�ε2], (D7)

which is the one we use in the main text [see Eq. (56)].
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