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‘We numerically study level statistics of disordered interacting quantum many-body systems. A two-parameter
plasma model which controls the level repulsion exponent 8 and range 4 of interactions between eigenvalues is
shown to reproduce accurately features of level statistics across the transition from the ergodic to many-body
localized phase. Analysis of higher-order spacing ratios indicates that the considered -k model accounts
even for long-range spectral correlations and allows us to obtain a clear picture of the flow of level statistics
across the transition. Comparing the spectral form factors of the B-4 model and of a system across the
ergodic-many-body-localized transition, we show that the range of effective interactions between eigenvalues
h is related to the Thouless time which marks the onset of quantum chaotic behavior of the system. Analysis of
level statistics of the random quantum circuit which hosts chaotic and localized phases supports the claim that
the B-h model grasps universal features of level statistics in transition between ergodic and many-body-localized
phases also for systems breaking time-reversal invariance.
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I. INTRODUCTION

Many-body localization (MBL) [1,2] manifesting ergod-
icity breaking in disordered interacting quantum many-body
systems [3—6] has attracted vivid attention over the last
decade. Important results include an emergent integrability
of the MBL phase due to the existence of local integrals
of motion (LIOMs) [3,7-10] and the associated logarithmic
growth of the bipartite entanglement entropy after a quench
from a separable state [11,12]. A wide regime of subdiffusive
transport on the ergodic side of the transition was found
[13—15]. Signatures of MBL have been observed experimen-
tally in one-dimensional (1D) [16,17] and two-dimensional
[18] systems (see, however, [19]). Recently, the very existence
of MBL in the thermodynamic limit has been questioned [20],
opening a new debate [21-23]. While the status of MBL
in the thermodynamic limit is of utmost importance for the
understanding of this phenomenon from a purely theoretical
viewpoint, the real systems studied in this respect are finite
[16,18,24,25], often reaching very modest sizes that enable
precise studies [26-28]. In this work we concentrate on sys-
tems of such a size.

Spectral statistics of ergodic systems with and without
time-reversal invariance follow predictions of a Gaussian
orthogonal ensemble (GOE) and a Gaussian unitary ensem-
ble (GUE), respectively, of random matrices [29,30], while
eigenvalues of localized systems are uncorrelated, resulting
in Poisson statistics (PS). A ratio of consecutive spacings
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between energy levels

(O {Ei+2n - Ei+n Ei+11 — Ei }
r;” = min ,
Ei+n - Ei Ei+2n - Ei+n

was proposed as a simple probe of the level statistics in [31]
with n = 1 and employed in the investigation of ergodicity
breaking in various settings [32—40]. Higher-order spacing
ratios (n > 1), studied in [41-45], are valuable tools to assess
the properties of level statistics. In contrast to standard mea-
sures such as level spacing distribution and number variance
[29,30] they do not require the so-called unfolding, i.e., the
procedure of setting the density of energy levels p(E) to
unity, which can lead to misleading results [46]. Recently, an
analytical understanding of the appearance of random matrix
theory statistics in systems without a clear semiclassical limit
was developed in a periodically driven Ising model [47,48]
and in random Floquet circuits [49]. Variants of such systems
have been argued to undergo ergodic-MBL transition [50,51].
In this work we introduce a two-parameter B-h model
which assumes a level repulsion determined by the exponent
B between h neighboring eigenvalues. Our model is a natural
extension of the so-called B-Gaussian model [45] claimed
to represent the level statistics in the transition to MBL. We
show that the second parameter, the interaction distance #,
is essential for understanding the transition and reproducing
the numerical results obtained for various physical models. In
particular, we demonstrate that distributions of higher-order
spacing ratios " across the ergodic-MBL transition in the
disordered XXZ spin chain are faithfully captured by the
B-h model and the obtained B and h parameters provide
a simple perspective on short-range and long-range spectral
correlations. The latter, captured effectively by the interaction
range h, are further investigated by means of the spectral form
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factor (SFF), revealing a link between & and the Thouless
time. We demonstrate that the B-Gaussian model fails to
describe long-range spectral correlations. An analysis of a
local Haar-random unitary nearest-neighbor quantum circuit
system introduced in [50] indicates that in such a generic
system the spectral statistics can also be grasped with the 8-h
model, demonstrating the robustness of the observed features
of level statistics.

This paper is organized as follows. In Sec. II we introduce
the B-h model and discuss the properties of its level statistics.
In Sec. IIT we show that the 8-k model accurately reproduces
level statistics of the disordered XXZ spin chain across the
many-body localization transition. In Sec. IV we show that
the B-h model also grasps level statistics of the disordered
Bose-Hubbard model. In Sec. V we demonstrate that 8-k also
applies to the ergodic-MBL transition in systems with broken
time-reversal symmetry and without local conservation laws
by considering level statistics of a random quantum circuit.
We conclude in Sec. VI.

II. THE B-h MODEL

The joint probability density function (JPDF) of eigen-
values of the matrix from GOE (GUE) with 8 =1 (8 = 2)
can be written as a partition function of a fictitious 1D gas
of particles P(E\, ..., Ey) = Zy'e PEEEN) | where Zy is
a normalization constant and the energy &£ includes a trap-
ping potential U(E) oc E? and pairwise logarithmic interac-
tions V(|E — E’'|) = —In(|E — E’|). Eigenvalues E; < --- <
Ey lie on a ring of length N which confines them, rendering
the trapping potential U (E) unnecessary. The JPDF can be
written as

N
Pf(El’u-vEN) =Zy' 1_[|Ei —Eilf B — EialP.
i=0

@)

The GOE (GUE) case is obtained when 7 — oo with the
appropriate value of 8. The form of (2) suggests various
models of intermediate level statistics between GOE (GUE)
and PS. For instance, one can keep & — oo and vary S,
obtaining the so-called B-Gaussian ensemble [45]. When &
is an integer number which sets the number of correlated
neighboring eigenvalues, one arrives at the so-called short-
range plasma model introduced in [52] (see also [53,54]).

In this work we extend this model by allowing & to
be a real number. Denoting by |.] the floor function,
the factor in (2) becomes |E; — Ei11? - |E; — Ei ) 1P |E; —
Eivny+1/P"~"D | hence defining the B-h model where h €
[1,00) and B € [0, 1] (B € [0, 2]) for GOE- (GUE-) PS tran-
sition. Varying continuously /4 and B allows us to capture
spectral statistics of disordered quantum many-body systems
across the ergodic-MBL transition, while a simple form of
the JDPF of the §-h model yields insight into correlations
between eigenvalues. Semianalytical results for the -4 model
are available only for integer values of i and 8 [52]. In
particular, the number variance, defined as the variance of the
number of eigenvalues in an interval (£, E + L), reads

»3(L) = xL 3)

for L > 1, where x = 1/(Bh+ 1). The spectral rigidity of
GOE (GUE) which manifests itself in the logarithmic growth
of the variance ¥?(L) is replaced by a finite spectral com-
pressibility x. Thus, a profound change in long-range spectral
correlations happens when & < oo. Interestingly, we find that
(3) is fulfilled with excellent agreement with the 8-# model, as
our Monte Carlo simulations (obtained sampling the JPDF of
the B-h model with the Metropolis-Hastings algorithm [55])
show for arbitrary real 8 € [0, 2] and & € [1, 40].

A straightforward application of the method of [52] shows
that distributions of higher-order spacing ratios P(r™) for
h = 1 are given by

(r)B+=D(E+D)
BT G @

(1 + r(n))Z(ﬂ+1)n

where N, g = LFi(n(1 + B), 2n(1 + B), L + n(B + 1), —=1)/
(B + Dn]~! is a normalization constant and ,F; is Gauss
hypergeometric function. Such distributions of higher-order
spacing ratios P(r™) at h = 1 constitute a very good approx-
imation for systems close to the MBL phase where i = 1
and provide analytical expressions for average higher-order
spacing ratios 7™ (including PS for 8 = 0). To obtain P(r™)
for arbitrary i € [1, 00) and S € [0, 1] we again sample the
JPDF of the 8-h model with the Monte Carlo approach.

P(r™y = N,

A. Spectral form factor of the 8- model

Consider the spectral form factor [29,30]:
2

1 )
K(t) = 7 Zg(ej)e”EfT , (5
J

where Z ensures that K(t) "1, the spectrum is unfolded
(for remarks on unfolding see the Appendix), and g(¢) is
a Gaussian function which vanishes at the edges of the
spectrum, reducing their influence (see also the Appendix).
The SFF allows us to identify two important timescales in
disordered systems: the Heisenberg time ty equal to the
inverse level spacing, beyond which the discrete nature of the
energy spectrum manifests itself, and the Thouless time 7ry,
which is the timescale beyond which SFF admits universal
GOE (GUE) form K(t) &~ 2t [20,50]. The existence of two
timescales is reflected in the JPDF of the -4 model, where
the correlations between eigenvalues are of the GOE (GUE)
form on energy scales smaller than £ level spacings so that try,
inversely proportional to # (for § = 1, 2), provides a physical
interpretation of the interaction range 4 in the 8-h model.

The SFF of the S-h model is shown in Fig. 1. For
B =1, the SFF of the B-h model follows the prediction
for GOE down to Thouless time 7y, which depends on the
interaction range h [roughly, T, &~ 2/(h + 1)]. The SFF for
B < 1 shows that it is possible to have spectral statistics with
h>1and ttp =ty = 1.

We note that (3) implies that K(0) = 1/(8h + 1), an an-
alytical prediction for integer 8 and & which is very well
confirmed by numerical data for arbitrary 8 and &, as shown
in Fig. 1.

Figure 2 shows a comparison of SFFs of the -4 model
and of the pB-Gaussian ensemble. The two parameters of
the B-h model allow us to reproduce the typical behavior
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FIG. 1. The SFF K(t) of the 8-h model. For t < 0.003, K(7)
was replaced by an analytically determined value of K(0). Gray
dashed lines correspond to GOE and PS.

of the SFF of a disordered many-body system across the
ergodic-MBL transition [20,22]—the Thouless time tr, of a
physical quantum many-body system increases with disorder
strength W, which, in the 8-k model is reflected by a decreas-
ing range h of eigenvalue interactions. The vanishing level
repulsion in the vicinity of the localized phase is reflected
by a sufficiently small value of the exponent 8. This is not
the case for the B-Gaussian ensemble. As soon as 8 < 1, the
deviation from the SFF of GOE is observed for all T < 1, as
Fig. 2 illustrates. Thus, the S-Gaussian ensemble is unable to
reproduce the typical behavior of the SFF K (7) in a disordered
system in which K () deviates from the universal GOE curve
only for times smaller than the Thouless time #r,. Moreover,
for B < 1 the predictions of the B-Gaussian ensemble fail to
reproduce a small T behavior, showing a rapid decrease with
decreasing t instead of a saturation as expected closer to the
Poisson regime.

III. XXZ SPIN CHAIN

Let us go beyond a comparison of the statistical models
among themselves and compare their predictions with differ-

100 o o o o

T ®
|
FrQaQ
ST ®
e e
SO
S ro

-
>

1024”7

—
o A
[=}

102 10!
0

FIG. 2. Comparison of SFFs of the -h model (lines with dots)
and of the S-Gaussian ensemble (solid lines). Gray dashed lines
correspond to GOE and PS.
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FIG. 3. Distributions of higher-order spacing ratios of the dis-
ordered XXZ spin chain (6) of size L = 18 for various disorder
strengths W are denoted by symbols. Lines correspond to the S-h
model with parameters shown in (c). Gray dashed lines correspond
to P(r™) distributions for GOE and PS.

ent physical models. As a starting point for testing purposes
we consider a standard disordered XXZ spin-1/2 chain with
the Hamiltonian given by

L L
H = JZ S:,' . §i+1 + thslz, (6)
i=1 i=1

where S; are spin-1/2 matrices; J = 1 is fixed as the energy
unit; periodic boundary conditions are assumed, §L+1 = §1;
and h; € [-W, W] are independent, uniformly distributed ran-
dom variables. The model (6) has been widely studied in the
MBL context [11,32,35,56-62], and its level statistics were
addressed in [63—66]. Recently, the S-Gaussian ensemble was
suggested to describe the ergodic-MBL transition [45]. As the
analysis in Sec. II showed, this claim is questionable. Further,
we shall show that the 8-Gaussian ensemble reproduces level
correlations only on a single-level spacing scale while miss-
ing longer-range spectral correlations. Both aspects of level
statistics are grasped by the §-h model.

Eigenvalues of the XXZ spin chain (6) are obtained by
an exact diagonalization for small sizes or with the shift-
and-invert method [67] for L = 18, 20. For each W we ac-
cumulate eigenvalues from 2000 (400) disorder realizations
for L < 18 (L = 20). The higher-order spacing ratios (1) are
calculated using 500 eigenvalues from the middle of the spec-
trum. The resulting exemplary distributions P(r™) of higher-
order spacing ratios for n =1, 3,5, 8 are shown in Fig. 3.
Parameters for the S-h model are obtained by minimizing
the deviation between P(r™) distributions for the XXZ spin
chain and the B-h model. Very good agreement between the
distributions obtained for the model (6) and predictions of
the B-h model is observed in the whole transition region
between the ergodic and MBL phases. Note that both param-
eters B and h are needed to reproduce P(r) distributions
for n > 1. To demonstrate that the agreement between the
B-h model and level statistics of the XXZ spin chain in
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FIG. 4. Symbols show the average higher-order gap ratios
AF" (see text) as s function of n for disorder strengths W =
1.8,2,2.2,2.4,2.6,2.8,3,3.4,4 (from top to bottom) for an XXZ
chain of size L = 18. Corresponding fits of the S-h model
are drawn by solid lines; the B and h parameters are the
same as in Fig. 3, and additional W =2.2,2.8,3.4 are fit-
ted by 8 = 0.90,0.46,0.18 and h = 3.60, 1.70, 1.30, respectively.
Red lines correspond to the p-Gaussian ensemble with =
0.98, 0.94,0.84, 0.68, 0.52, 0.38, 0.26, 0.12, 0.05 (from top to bot-
tom). Gray dashed lines show A7™ for GOE and PS.

ergodic-MBL crossover persists to larger energy scales, we
calculate AF™ = 7™ — 7). where 7™ is the average value
of the nth-order spacing ratio 7™ and 7y is the nth-order
average gap ratio for PS. The resulting values of A7™ as a
function of n are shown in Fig. 4. Even though the parameters
of the B-h model are determined by the fit of P(r™) for only
n=1,3,5,8 (fits for all n are taken with the same weight),
the good agreement between A7™ for the XXZ spin chain
and for the 8-k model persists up to n = 50. Interestingly, on
the ergodic side of the transition, for W < 2.4, the values of
A7™ for n > 20 predicted by the B-h model consequently
overestimate the values for the XXZ spin chain. Since the
larger value of A7"™ implies stronger level correlations at the
scale determined by n, this means that energy levels of the 8-k
model, not coupled directly in the JPDF (6), are still correlated
more strongly than energy levels of the system across the
ergodic-MBL transition. For comparison, we also show the
predictions of the B-Gaussian ensemble [45] in Fig. 4. Only
the values of A7 are well reproduced by this approach; for
n > 2, the values of A7™ are overestimated, showing that
finite 4 is an essential feature of level statistics in the MBL
transition.

A. Scaling of the level repulsion exponent 8 and range of
interactions /4 at the ergodic-MBL transition

The B and h parameters characterizing level statistics
across the ergodic-MBL transition are shown in Fig. 5. In the
ergodic phase, at small disorder strengths W, GOE describes
level statistics well; hence, B = 1 and & — oo. Upon increas-
ing W, the range of interactions 4 and the level repulsion expo-
nent B decrease, leading to PS for sufficiently strong disorder.
Notably, the system size dependences of 2(W) and (W) are
very different. The data for S(W) collapse upon rescaling
W — (W — W)LY’ with We =~ 3.4 and v & 1, similar to the
average gap ratio 71 [35], indicating that 7" (W) and B(W)
contain similar information. In particular, both measures lead

1.00 1
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0.25
0.001

T3 35 1 5 ¢ 01 02 03 04
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FIG. 5. (a) Level repulsion exponent 8 and (c) the range h of

interactions of eigenvalues as a function of disorder strength W in

the XXZ chain. The collapse of the data (b) for (W) upon rescaling

W — (W — W)L’ and (d) for h(W) using W — W/L rescaling.

The inset in (d) shows the dependence A(8) for various system sizes.

to the exponent v < 2, violating the Harris bound [68—70]. On
the other hand, data for /(W) collapse upon rescaling W —
W/L. As the inset in Fig. 5(d) demonstrates, the decrease
of the level repulsion exponent § in the transition region is
accompanied by the interaction range 4 increasing with L for
a given value of 8. Therefore, our data indicate the presence of
the transition to the MBL phase with vanishing level repulsion
exponent B = 0 at disorder strength Wy even though the
interaction range admits a certain fixed value hy = h(W™) at
disorder strength W* increasing linearly with the system size
L. The linear dependence W* ~ L persists steadily up to the
largest available system size L = 24, but since the values of &
in the transition region do not exceed 10, we cannot conclude
whether /i diverges or stays finite at the transition in the
thermodynamic limit. Nevertheless, in either case, the level
repulsion vanishes at the transition in the L — oo limit, in
accordance with recent phenomenological treatments [71,72].
We note that a linear with system size dependence for the
deviation of 7! from the value characteristic for GOE was
found recently in [20]. This observation is related to our find-
ing that W* ~ L since disorder strength for which  becomes
of the order of, e.g., hyp = 10 is, at the same time, the moment
for which 71 departs from the value characteristic for GOE.
While the 8-k model puts the long-range spectral statistics
examined in [20] in another perspective, we emphasize that
the presented data suggest a transition to the MBL phase at
disorder strength We in the thermodynamic limit.

B. The spectral form factor of the XXZ spin chain

Let us now consider the SFF of the XXZ spin chain, which
is shown in Fig. 6 along with the predictions of the §-h model.
Beyond the Heisenberg time ty, K(t) = 1. For smaller 7, the
SFF of the XXZ spin chain follows the GOE prediction down
to the Thouless time 7y, which increases monotonically with
disorder strength W. The behavior is captured by the SFF of
the B-h model. For T < 7y, an increase in the SFF of the XXZ
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FIG. 6. SFF for system (5) of size L = 18 for various disorder
strengths W. Predictions of the §-h model with the same parameters
as in Fig. 4 (data for W = 1.5 fitted with 8 = 1, h = 30) are denoted
by red dashed lines (for © < 0.005 SFF was replaced by the exact
value in T = 0). Gray dashed lines correspond to GOE and PS.

chain is observed for disorder strengths W corresponding to
the ergodic side of the transition, whereas the SFF remains
constant for the §-h model. The latter behavior signals weak
correlations between eigenvalues of the B-4 model beyond
energy scale determined by %, whereas the behavior of the SFF
of the XXZ spin chain indicates even weaker correlations of
its eigenvalues.

C. Level statistics and number variance across the
ergodic-MBL transition

We revisit now the level spacing distribution and the
number variance of the disordered XXZ spin chain in the
ergodic-MBL crossover, shown in Fig. 7. Level spacing dis-
tributions are very faithfully reproduced by the B-h model
in the whole crossover regime. There are, however, slight
deviations in the number variance $%(L) of the XXZ spin
chain and the 8-k model. On the ergodic side of the crossover
(W < 2.4) the 8-h model underestimates the number variance
of the XXZ spin chain, indicating weaker long-range spectral
correlations of the latter, in agreement with the analysis of
A7™ in this regime. For large W, the prediction of the 8-h
model overestimates the number variance of the XXZ spin
chain, which is probably related to the effects of a finite
number of eigenvalues n, from a single disorder realization,
which are known to contribute as —L?/n, to the number
variance X%(L) [66].

We note that results for the number variance X*(L) are
strongly dependent on the way the level unfolding is per-
formed; in view of that we conclude that the higher-order
spacing ratios are more reliable in extracting information
about spectral correlations beyond single-level spacing. Fur-
thermore, when one inspects tails s = 4 of the level spacing
distribution on the logarithmic scale, deviations from pre-
dictions of the B-h model are found. As demonstrated in
[66], such behavior at large s is associated with the large
intersample randomness associated with the ergodic-MBL
transition in random potentials.

The weighted short-range plasma model for level statis-
tics in the ergodic-MBL crossover was considered in [66].
This model takes into account intersample randomness, an

W =18 e W =26
W=2 e =28
W =22 eV =3

W =24 eV =34

——e

FIG. 7. (a) Level spacing distributions P(s) of the XXZ spin
chain of size L = 18 for various disorder strengths W are denoted
by markers. Lines correspond to predictions of the -4 model with
parameters as in the main text. (b) Number variance $?(L) of the
XXZ spin chain and prediction of the 8-k model.

important feature of the MBL transition in random potentials
[73]. The JPDF of the weighted short-range plasma model is
a weighted superposition of the JPDF of the form (2), and
as such, it is related to the S-h model. However, the neces-
sity of reproducing the intersample randomness requires an
introduction of many weight parameters. This makes using the
weighted short-range plasma model complicated. The simple
picture of changes in interaction range between eigenvalues
and its relation to Thouless time cannot be easily extracted due
to the complexity of the model. It must be noted, however, that
taking into account the intersample randomness determined
by a sample-averaged spacing ratio [66] could diminish the
(small) deviations in P(r"") between the B-h model and
the XXZ spin chain for disorder strengths W = 2.4, 2.6, for
which the intersample randomness is the largest at L = 18.

A two-stage [63] picture of the flow of level statistics
between GOE and PS proposes that on the ergodic side of the
crossover level statistics are described by a plasma model with
power-law interactions between eigenvalues which yields the
following expressions for the level spacing distribution and
the number variance:

P(s) = CisPe™ @, Eo(L) x L7, )
with C| , determined by normalization conditions (1) = (s) =
1. The exponents B8 and y play a role similar to the 8 and
h parameters of the S-h model. In the transition from the
extended to the localized regime in the first stage y changes
from O to 1, leading to a Poissonian tail of P(s) followed, at
the second stage, by a change in level repulsion 8. However,
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FIG. 8. Distributions of higher-order spacing ratios for the Bose-
Hubbard model (8) of size L = 8 with N = 12 particles are denoted
by markers; fits of the §-h model to data with W > 7 are denoted
by solid lines. Higher-order spacings distributions (n = 1, 3, 5, 8) for
W = 3 are indistinguishable from appropriate distributions for GOE.
Dashed lines correspond to GOE and PS.

as demonstrated in [64], the predictions of (7) are not valid
as the number variance X2(L) in the ergodic-MBL transition
grows linearly (or superlinearly; see Fig. 7), contrary to the
prediction of (7) where 0 < y < 1 in the crossover regime.
Moreover, (7) is obtained on the mean-field level [74]; no
other predictions for this model such as the JPDF are avail-
able. The second stage of the flow [63] coincides with the
B-h model with & = 1. However, as shown above, the h(f)
dependence is such that the interaction range % for a fixed
value of B is increasing; hence, 4 becomes equal to unity only
deep in the MBL regime.

IV. LEVEL STATISTICS OF THE DISORDERED
BOSE-HUBBARD MODEL

To provide further evidence that the -h model is able to
reproduce level statistics of interacting disordered quantum
many-body systems, we analyze higher-order spacing ratios
in the ergodic-MBL transition in a disordered Bose-Hubbard
model [75,76] with the Hamiltonian

e U A
Hy =) aja;+ = 3 hilh = D+ Y i, )
(i) i i

where a;}', a; are bosonic creation and annihilation operators,
respectively, the tunneling amplitude J = 1 sets the energy
scale, U =1 is the interaction strength, and the chemical
potential p; is distributed uniformly in the interval [—W; W1].
This model undergoes a transition to MBL phase beyond
critical disorder strength W, which depends on the interaction
strength U.

Distributions of higher-order spacing ratios (n = 1, 3, 5, 8)
for the disordered Bose-Hubbard model are shown in Fig. 8.
The B-h model faithfully reproduces distributions P(r™) in
the whole crossover regime. We note that the dependence h(8)
is markedly different compared to the XXZ spin chain; here
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FIG. 9. Average higher-order spacing ratios for the Bose-
Hubbard model with disorder strengths W = 3,7, 8.5, 10, 12, 15, 25
(from top to bottom) denoted by markers; predictions of the g-h
model fitted to data with W > 7 with the same parameters as in
Fig. 8 are denoted by solid lines. Level statistics for W = 3 are
indistinguishable from GOE statistics on the considered energy scale.
Gray dashed lines correspond to GOE and PS.

we find 7 = 2 even when the level repulsion exponent S is
close to zero. Average higher-order spacing ratios shown in
Fig. 9 indicate that long-range spectral statistics are also well
reproduced by the B-h model. In particular, the tendency of
the B-h model to overestimate long-range spectral correlations
in the XXZ spin chain is reversed in the case of the Bose-
Hubbard model, indicating that this is a model-dependent
feature.

V. RANDOM QUANTUM CIRCUIT

Consider a 1D chain of g-level systems of length L with
the Floquet operator given by [77]
Wa vy = UL U 2 (9)
ay,ay ap,ay
where U are unitary matrices that generate rotations at
each site, chosen independently of the Haar distribution, and
®a,.a,,, are independent Gaussian random variables with zero
mean and standard deviation € that determine the coupling
between neighboring sites. The SFF is related to the Flo-
quet operator via K(t) = (Tr[Wt]Tr[(WT)’]), where ¢ is an
integer and (5) is recovered with g(¢) =1 for v o t. The
analytic calculation [77] in the limit ¢ — oo shows that the
system is chaotic in the thermodynamic limit and SFF follows
the prediction for GUE: K(t) = 2t. For ¢ = 3, numerical
calculations indicate that the system undergoes a transition
between the ergodic phase at € 2 0.25, where the statistics
of eigenphases 0; are well described by GUE, and the MBL
phase at € < 0.25, with PS statistics. We now turn to an
analysis of level statistics of (9) at finite L and g = 3.
Distributions of higher-order spacing ratios (1) calculated
for eigenphases 0; are shown in Fig. 10. The B-h model
with level repulsion exponent 8 € [0, 2] and an appropriately
chosen range of interactions / reproduces the distributions of
higher-order spacing ratios P(r‘™), despite the broken time-
reversal symmetry in the system. Average higher-order gap
ratios for the random quantum circuit are shown in Fig. 11.
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FIG. 10. Distributions of higher-order spacing ratios for model
(9) with L = 8 and g = 3 for various € are denoted by symbols. Lines
correspond to the B-h model. Gray dashed lines correspond to P(r™)
distributions for GUE and PS.

The B-h model gives a good account of the spectral correla-
tions reflected by A7"™. Notably, deviations at n > 20 suggest
also in this case that correlations between eigenphases of the
Floquet operator W in the crossover regime are weaker than
correlations predicted by the 8-h model.

This suggests a similar behavior of level statistics at larger
energy scales as in the case of the XXZ spin chain. Figure 12
shows the SFF of the considered Floquet operator (9) with
predictions of the B-h model. The behavior of the SFF is
qualitatively very similar to the case of the XXZ spin chain;
K(7) follows the prediction for GUE down to the Thouless
time Ty, and for smaller t, K(t) flattens, matching SFF of
the 8-h model. On the ergodic side of the transition the SFF of
the Floquet operator increases, indicating weaker correlations
between eigenvalues than in the -h model.

FIG. 11. The average higher-order spacing ratios A7™ as a
function of n for € =0.8,0.5,0.4,0.33,0.26,0.15 (from top to
bottom) for the random quantum circuit are denoted by markers.
Corresponding fits of the B-h model are denoted by solid lines; the
B and h parameters are the same as in the text. Gray dashed lines
correspond to A7™ for GUE and PS.

e =0.8
e =0.5
e=04
€ =0.33
e =0.26
e =0.15
10°

FIG. 12. SFF for the random circuit (9) of size L = 8 for various
value of €. Predictions of the -4 model with the same parameters
as in Fig. 10 are denoted by red dashed lines. Gray dashed lines
correspond to GUE and PS.

VI. DISCUSSION AND OUTLOOK

We have analyzed level statistics across the ergodic-MBL
transition. The proposed S-h model provides a simple frame-
work that allows one to reproduce universal features of level
statistics of disordered interacting quantum many-body sys-
tems. The model captures the ergodic-MBL transition in the
XXZ spin chain. Similarly, the -h model is able to repro-
duce level statistics of disordered Bose-Hubbard models that
undergo the ergodic-MBL transition [75,76]. The 8-h model
grasps also level statistics of the random quantum circuit
across the transition between ergodic and MBL phases in spite
of broken time-reversal symmetry. Notably, the only feature
encoded in the Floquet operator (9) is the locality of gates in
the circuit, and as such, the random circuit can be regarded as
a toy model of a generic disorder interacting quantum system.
All this taken together allows us to conjecture that the -h
model grasps universal, robust features of level statistics of
interacting disordered quantum many-body systems, indepen-
dent, for instance, of local conservation laws [77,78].

The transition between chaotic and integrable regimes in
systems with chaotic classical counterparts [30,79] is system
specific as it is determined by the structure of the underlying
classical phase space [80]. Our analysis with the 8-k model
indicates that spectra of disordered interacting quantum many-
body systems are effectively parametrized with good accuracy
by only the level repulsion exponent B and the range of
interactions between eigenvalues h, suggesting the existence
of a robust mechanism of delocalization of LIOMs that ensure
integrability and PS statistics in the MBL phase. A detailed
understanding of such a mechanism remains an open problem.
Spectral properties of disordered interacting many-body sys-
tems resemble level statistics at the single-particle Anderson
localization transition [81,82] which could be expected as
the MBL can be regarded as an Anderson localization in the
Hilbert space [83-85].

The B-h model is capable of reproducing distributions of
higher-order spacing ratios, level spacing distributions, and
the number variance of systems across the ergodic-MBL
transition. The range of interactions between eigenvalues h
sets the Thouless time 77, at which the SFF deviates from the
universal random matrix theory predictions. It would be in-
teresting to compare this timescale to Thouless time extracted
from matrix elements of local operators [86,87] or from the
return probability [88]. The considered S-A model can also
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be used to probe the entanglement spectrum in MBL systems
[89] or random fractonic circuits [90], as it has been shown to
host similar local correlations between energy levels. It would
be interesting to relate it to the associated multifractality
observed deep in the MBL phase [91] or to properties of
level dynamics across the ergodic-MBL transition studied
recently in [92].
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APPENDIX: REMARKS ON UNFOLDING

One of the advantages of the analysis of level statistics
with higher-order spacing ratios ™ is that they do not require

spectral unfolding; that is, the level density p(E) cancels out.
This is, of course, valid only when n is such that p(E;) and
p(Ei12,) are not significantly different, which seems to be a
plausible assumption when the dimension of the Hilbert space
is larger than a few thousand.

The calculation of the SFF of the XXZ spin chain requires
application of spectral unfolding. To this end we consider
40 000 eigenvalues from the center of the spectrum and
fit the level staircase function [30] with a polynomial of
degree 10. To calculate K(t) we use g(E) o exp[—(E —
E)?/(0.18AE?)] (following [20]), where E is the average
of the ground state and highest excited state energies and
AE is the standard deviation of the energy in the given
spectrum.

In order to obtain the level spacing distribution and the
number variance of the XXZ spin chain we consider 500
eigenvalues from the middle of the spectrum, and we perform
unfolding by fitting the level staircase function with a third-
order polynomial.

Eigenphases 6; of the random quantum Haar-measured
circuit are distributed uniformly in the interval [0, 277 ]; hence,
no unfolding is required, and the SFF can be calculated
directly from K(t) = (Tr[W']Tr[(W ) ]).
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