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First-principles melting of krypton and xenon based on many-body
relativistic coupled-cluster interaction potentials
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The solid-to-liquid phase transition for krypton and xenon is studied by means of parallel-tempering Monte
Carlo simulations based on an accurate description of the atomic interactions within a many-body ansatz
using relativistic coupled-cluster theory. These high-level data were subsequently fitted to computationally
efficient extended Lennard-Jones and extended Axilrod-Teller-Muto types of interaction potentials. Solid-state
calculations demonstrate that the many-body decomposition of the interaction energy converges well for the
heavier rare gas solids, leading to solid-state properties in good agreement with experiment. The results show
that it suffices to include two- and three-body interactions only for the melting simulation. The melting of the
bulk is simulated for cells with cubic periodic boundary conditions, as well as within a finite cluster approach.
For the latter, melting of spherical magic number clusters with increasing cluster size is studied, and the melting
temperatures are obtained from extrapolation to the bulk. The calculated melting temperatures for the cluster
extrapolation (the periodic approach values corrected for superheating are set in parentheses) are Tm = 113.7 K
(110.9 K) and Tm = 160.8 K (156.1 K) for krypton and xenon, respectively. Both are in very good agreement
with corresponding experimental values of 115.75 and 161.40 K.
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I. INTRODUCTION

Melting is a fundamental process in which a crystal un-
dergoes a phase transition from a solid (ordered) state to
a liquid (disordered) state. Fundamentally understanding the
processes of melting at the microscopic level has proven to
be rather difficult [1], and many theories have been devel-
oped during the past century resulting in a range of different
frameworks that tackle the problem of melting from different
perspectives. For example, as proposed by Lindemann [2],
the first-order phase transition occurs at the temperature at
which the amplitude of atomic thermal vibrations reaches a
characteristic value. At this point melting is triggered by a
mechanical instability, causing the atoms to move from their
ordered state to a disordered fluid. By using this principle,
it is possible to determine the melting point by observing
the average motion of the atoms in a system. For instance,
the Etters-Kaelberer parameter [3,4] and the Berry parameter
[5] are proportional to the fluctuations of the interatomic
distances. These parameters suddenly increase at the melting
point and may therefore be used as the definition of the
melting temperature.
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Although different criteria that define the melting transition
(and quantities that distinguish the solid and the liquid states)
can be formulated, it is clear that the underlying cause of
melting is the minimization of Helmholtz free energy F (or
Gibbs energy G), which is an interplay between minimizing
the inner energy U (enthalpy H) and maximizing the entropy
S at constant volume (pressure). Other quantities such as the
disappearance of shear moduli [6] or increase of fluctuations
of interatomic distance are resulting quantities.

With regards to the minimization of the free energy, that
is, at T < Tm, the free energy of the solid is smaller than the
free energy of the liquid and vice versa at T > Tm, whereas
at the melting temperature the solid and the liquid are in
thermodynamic equilibrium. Thus, at the phase transition,
Fs(V, Tm) = Fl (V, Tm) or Gs(p, Tm) = Gl (p, Tm) for constant
volume or pressure, respectively. The free energies are a func-
tion of volume (pressure) and temperature during the first-
order phase transition, but other quantities, like the internal
energy U or enthalpy H , the entropy S, volume V or pressure
P, and heat capacities C, undergo discontinuous changes. For
example, upon melting, the inner energy suddenly increases
and the heat capacity Cv (Cp) at constant volume (pressure)
will become infinite. For finite clusters and in numerical
simulations, the singularity in the heat capacity shows as
a peak at the phase transition, which allows one to easily
identify the melting point.

When it comes to simulating melting numerically, two
approaches are popular. Molecular dynamics (MD) is a
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time-dependent simulation, in which the positions of the
atoms are determined by solving Newton’s second law or
the equation of motion for a range of different temperatures,
whereas Monte Carlo (MC) approaches are based on random
sampling. Opposed to gaining insight on the time evolu-
tion of a system, an ensemble of statistically representative
configurations is obtained and, consequently, the relevant
thermodynamic observables, such as the free energy or heat
capacity, may be calculated. Both methods have their advan-
tages and disadvantages. The so-called parallel tempering MC
(PTMC) method [7] explores phase space very efficiently by
simultaneously sampling at different temperatures allowing
for information exchange between different trajectories. As
such, this method gives more easily access to the transition
temperature than in MD simulations. In both approaches,
the dynamics of the system studied is described classically,
which is adequate for all but the lightest atomic systems like
helium. For neon, it was shown that quantum effects can be
detected but are still negligible [8]. The heavier bulk rare gases
investigated in this study can thus be described by a classical
treatment of the dynamics.

In contrast to the classical description of the dynamics,
it is important to use a highly accurate quantum-mechanical
description of the interaction energies. A many-body expan-
sion of the total interaction energy provides a successful
approach for weakly interacting systems. By summing up
all two- and, if necessary, three-body contributions, the total
interaction is described reasonably well. Data for the re-
quired two- and three-body interaction potentials are obtained
through high-level quantum-mechanical computations which
are subsequently fitted to computationally efficient functions.
For example, for the heavy rare gases, the two- and three-
body interaction potentials can be obtained via an extended
Lennard-Jones [9] fit to relativistic coupled-cluster data per-
formed prior to the simulation.

The most common method to study melting is by perform-
ing simulations of a perfect lattice with periodic boundary
conditions for increasing temperatures. The temperature at
which the lattice breaks down corresponds to the melting
temperature. The problem with such a method is that due to
the absence of a surface the system melts at a much higher
temperature as observed experimentally, referred to as super-
heating. Similarly, when a liquid is cooled down the phase-
change temperature is underestimated due to the existence
of supercooling. This behavior is a hysteresis phenomenon.
Supercooling and superheating are not just problems in the-
oretical simulations, but are observed experimentally as well
and are currently a matter of intense research [10].

One can determine an approximation to the melting point
Tm from the hysteresis method via Tm = T + + T − − √

T +T −
with T + and T − being the temperatures observed for su-
perheating and supercooling [11,12]. In order to eliminate
superheating in simulations, defects can be introduced into
the bulk system as they are found to lower the observed
melting point [13,14]. That is done by either displacing atoms
from their equilibrium solid-state position or alternatively
by removing atoms from the simulation cell. The impurities
and vacancies introduced in the supercell create nucleation
sites and eliminate the free energy barrier such that the

solid melts at the “true” melting temperature rather then the
superheated temperature. The void method is based on this
principle using supercells with vacancies introduced in the
solid structure [15]. The computed melting point decreases
with the increasing concentration of voids until the melting
point is independent of the number of voids; however, this
method requires large numbers of atoms, N , in the unit cell
for the simulation. For computational affordability, we chose
to perform simulations of periodic cells without impurities
or defects and instead correct the superheated temperature of
the solid-to-liquid phase transition by a superheating factor.
To circumvent hysteresis we also simulated the melting of
krypton and xenon by studying the melting of finite clusters.
Since cluster melting is initiated at the surface of the cluster,
superheating does not occur (instead one might observe pre-
melting at the surface). The melting temperature of the bulk
can then be obtained from extrapolation of the melting points
of the smaller clusters to the bulk.

Experimentally, the triple points of krypton and xenon
were determined in the early 20th century. The first to publish
an accurate value for krypton were Allen and Moore [16]
in 1931, who reported a triple point of 116.7 ± 0.1 K. They
stated that the triple point was best observed by getting solid
krypton in an apparatus “as much as a fluffy and snow-
like form as a possible” and found the melting point from
observation as the temperature rose. Multiple similar values
were later obtained: for example, Keesom et al. [17] reported
a triple point of 115.94 K in 1935 and Freeman and Halsey
[18] reported a value of 115.6 K. Recently the triple point was
confirmed by Hill [19] up to high accuracy, who obtained a
triple point of 115.7755 ± 0.3 mK. The triple-point value of
133.15 K for xenon was first obtained by Ramsay and Travers
[20] in 1901, after which Allen and Moore [16] obtained the
improved value of 157.65 ± 0.5 K. A melting point of 161.3 K
was reported by Kane [21] in 1939 and after that an improved
value was determined to be 161.40 K [22]. A more recent
evaluation of these data can be found in the work by Ferreira
and Lobo [23].

In our previous work we demonstrated that melting tem-
peratures for the lighter rare gases neon and argon can be
obtained within Kelvin accuracy from first-principles theory
[8]. In fact, for solid argon a rigorous expansion of the
interaction energy in terms of many-body potentials derived
from coupled-cluster theory including phonon dispersion led
to an unprecedented μHa accuracy for the cohesive energy
[24]. Such high accuracy in the atomic interactions is crucial
for the simulation of phase transitions [14]; e.g., it is well
known that there is a strong correlation between the cohesive
energies and melting temperatures of a bulk system [25,26].
High-level simulations based on ab initio data led recently
to the confirmation of the much-debated melting temperature
of radon [27,28], and to corrections of measured melting
temperatures of argon at high pressures [29].

In this work we study the solid-to-liquid phase transition
for the heavier rare gas systems krypton and xenon by apply-
ing a many-body interaction potential derived from rigorous
relativistic electronic structure theory in conjunction with
PTMC simulations. These bulk systems are interesting as
the higher n-body contributions in the decomposition of the
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interaction energy become more important with increasing
dipole polarizability for the heavier rare gas atoms [30,31].
We present ab initio many-body potentials derived from rela-
tivistic coupled-cluster theory and apply them to the solid to
obtain bulk properties. Then, the melting temperatures of the
clusters and the extrapolation to the bulk melting temperature
are presented from parallel tempering MC simulations and
compared with the results obtained from experimental work.

II. COMPUTATIONAL DETAILS

The interaction potential. The many-body interaction po-
tential Eint(N ) for an N atomic system can be expanded into
sums over all possible two-body E (2), three-body E (3), and
higher-order E (n) contributions,

Eint(N ) =
N∑

n=2

E (n)(N )

=
N∑

i< j

E (2)(ri j ) +
N∑

i< j<k

E (3)(ri j, rik, r jk ) + · · · , (1)

where ri j is the distance between atoms i and j. The many-
body expansion converges rapidly at normal pressures and
temperatures for the rare gas elements, or more generally
for weakly interacting atoms and molecules [32,33] (it is,
however, well known to converge badly for most other sys-
tems such as metals [34]). For instance, for bulk argon the
two-body interaction overshoots the exact binding energy by
only 8% with each higher n-body contribution diminishing
by an order of magnitude with increasing n [24]. One can
therefore expect that bulk properties of krypton and xenon
at ambient conditions are satisfactorily described by consid-
ering two- and three-body terms only. In order to put this
assumption to the test, we used dimer and trimer potentials
from a relativistic coupled-cluster expansion and fitted the
data to computationally efficient functional forms for our MC
simulation.

For krypton we adopted the already available ab initio
two-body potential calculated by Jäger et al. [35]. The authors
obtained the interaction energies at the complete basis set
limit using the coupled-cluster method with single, double,
and perturbative triple excitations for 36 interatomic distances
between 2.2 and 15 Å. Higher orders of coupled-cluster
terms were also considered in a successive scheme up to full
quadruple excitations. Core-core and core-valence correlation
effects were included. Furthermore, relativistic effects were
also studied not only at a scalar relativistic level using second-
order direct perturbation theory, but also utilizing a full four-
component computation including Gaunt interactions [35].
For xenon an accurate potential energy curve has been derived
by our group using coupled-cluster theory up to quadruple
excitations accounting for both basis set superposition and in-
completeness errors and has been extrapolated to the complete
basis set limit. Scalar relativistic effects were considered via
a second-order Douglas-Kroll-Hess (DKH2) approximation,
and the X2C-Gaunt approximation was employed to obtain
the spin-orbit correction. To construct the xenon pair potential
the dimer interaction energy was determined over 30 distances

TABLE I. Potential parameters for the krypton and xenon two-
and three-body interactions obtained from a fit of ab initio data to an
ELJ and EATM potential, respectively [30]. All potential parameters
are given in atomic units.

ELJ Krypton Xenon

c6 –129.683335093935 –301.700000000000
c8 –158598.441365431 –26816.4020712100
c9 15623507.6830131 –29141425.4118978
c10 –662519888.486613 2525729440.60837
c11 15511005394.0185 –93157553751.1815
c12 –221232142140.590 1958061699137.66
c13 1994087272787.29 –25959609531187.9
c14 –11387455618340.6 225015902487099
c15 39946814675145.8 –1272921381781360
c16 –78619450156252.0 4526862108942420
c17 66546834460178.8 –9182845674164360
c18 8100817151233590

EATM Krypton Xenon

CEAT 1606.77610926838 3471.93012715399
A0 60036.9547561167 886.992268260218
A2 –3670.25288702589 –132.687520259295
A4 25.6338653669989 3.14321647514269
A6 0.30585091087561 –0.01977876625979
α 0.98918853451850 0.68379059500687

selected in the range from 2.5 to 16.0 Å. Details can be found
in Ref. [30].

The data points for those potential curves were pointwise
fitted to an extended Lennard-Jones (ELJ) potential [9] by a
linear least-squares procedure

E (2)
ELJ(ri j ) =

n∑
k=0

ck+6r−(k+6)
i j , (2)

where ri j is the internuclear distance between atoms i and
j and ck are the fitting parameters. To ensure that the long
range is described solely by the attractive c6r−6 part of the
potential, the c7 coefficient is excluded from the ELJ potential.
Furthermore, to ensure correct repulsive asymptotic behavior
in the short range, the highest-order fitting parameter must be
positive. The advantage of this simple potential is that it is
nearly as accurate as the extended Aziz potential in both the
short and the long range, while it performs computationally
as efficiently as the Lennard-Jones potential [36]. Fitting
coefficients are listed in Table I. The root-mean-square errors
(RMSEs) for the fit were 1.29 × 10−7 and 9.32 × 10−7 Ha for
Kr2 and Xe2, respectively.

The nonadditive three-body interaction energies for kryp-
ton were calculated for 14 trimer geometries as equilateral
triangles with bond lengths between 3.0 and 7.5 Å. The
MOLPRO 2015.1 program package [37] was used to com-
pute electronic energies at the CCSD(T)-DKH2(4s4p)/aug-cc-
pwCVQZ-DK2 level of theory. The corrections from correlat-
ing subvalence electrons were estimated from the difference
between all-electron MP2-DKH2/aug-cc-pwCVQZ-DK2 and
MP2-DKH3(4s4p)/aug-pwCVQZ-DK2 calculations.

The three-body correction becomes more important for
the heavier rare gas xenon. Here the nonadditive interaction
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energy for 300 different xenon trimer configurations (with
Xe-Xe distances between 2.1 and 7.9 Å) was computed at the
CCSD(T)(5s5p)/aug-pwCVQZ-DK level of theory. The cor-
relation of subvalence electrons was estimated with second-
order Møller-Plesset perturbation theory (MP2) as [MP2
(AE)-MP2(5s5p)]/QZ. Following the same method as proposed
by Cencek et al. [38], the 300 trimer geometries were then
chosen to represent the most important points on the potential
energy surface. For both krypton and xenon potentials coun-
terpoise correction was applied to account for the basis set
superposition error.

These three-body corrections E (3)(ri jk ) were fitted to
a computer-efficient extended Axilrod-Teller-Muto (EATM)
potential [39]:

E (3)
EATM(ri jk )

= fθ
[
CEATR−9

g + (A0 + A2R2
g + A4R4

g + A6R6
g)e−αRs

]
with fθ = (1 + 3 cos θi cos θ j cos θk ), (3)

Rg = (ri jr jkrik )1/3,

and Rs = ri j + r jk + rik,

where ri j is the distance between atoms i and j, and θi is the
angle between the vectors �ri j and �rik . The fitting parameters
of krypton were obtained by a least-squares fit over the 14
equilateral distances. For xenon, the CEAT parameter was
first obtained from a least-squares fit over the long-range
equilateral ab initio data points. Subsequently, the value of
CEAT was kept fixed and all other parameters were obtained by
a least-squares fit to the 300 ab initio energies including also
the nonequilateral region of space. The parameters CEAT, An,
and α are also listed in Table I. The RMSE of the EATM fit for
the krypton is 3.06 × 10−7 and that for xenon is 5.13 × 10−3.
The ab initio data points are equilateral only for krypton
but also nonequilateral for xenon. The RMSE for krypton is
therefore smaller than the RMSE of xenon, whereas in fact the
xenon potential describes the potential energy surface more
accurately.

Solid-state calculations. The interaction potentials were
used to calculate the lattice constants, cohesive energies, and
bulk moduli for the face-centered cubic (fcc) arrangement
of the bulk to compare with available experimental values.
While the ELJ two-body contribution including vibrational
corrections for the fcc solid was treated analytically through
lattice sums [9], the three- and four-body additive corrections
came from numerical lattice summations using the program
system SAMBA [24]. The three-body forces are of extended
Axilrod-Teller-Muto type from this work, and four-body
forces were obtained from the fourth-order classical dipole
term as described in detail by Bade [40] and by our group [24].
The corresponding parameters were taken from Refs. [31,41].
The dominant interaction terms for dispersion forces come
from dipole-dipole interactions, first derived by Drude [42].
We sum over all atoms in the lattice lying within a sphere of
radius Rmax large enough to guarantee convergence. For the
three- and four-body force we chose Rmax = 60 Å, leading to
converged results to the necessary precision used in this work.

Monte Carlo simulations. As discussed above, the melting
temperature can be determined from two different approaches:

either by direct determination of the Tm of the bulk, or from
finite clusters where the melting temperature is obtained from
extrapolation to the bulk. Similar to our previous work on
rare gases [8,28,29,36], we adapt a Monte Carlo scheme to
obtain the inner energy as a function of temperature. The
temperature at which the solid-liquid phase transition occurs
can be identified from a sudden increase in the inner energy,
which corresponds to the temperature where the heat capacity
curve C(T ) has a peak. The heat capacities Cv (T ) and Cp(T ),
for the cluster and periodic simulations, respectively, are
obtained from the relations

Cv (T ) = ∂U (T )

∂T

∣∣∣∣
V

= 〈U (T )2〉 − 〈U (T )〉2

kBT 2
, (4)

Cp(T ) = ∂H (T )

∂T

∣∣∣∣
P

= 〈H (T )2〉 − 〈H (T )〉2

kBT 2
, (5)

where the enthalpy is given by H (T ) = U (T ) + PV . With Ei

being the total energy of a system of microstate i, the internal
energy U is defined as the statistical mean value of energies
Ei, U = 〈E〉.

For each simulated temperature 3 × 106 MC cycles are
performed and statistical data are collected from the last
1 × 106 cycles. In total, 32 temperature trajectories are prop-
agated simultaneously spanning the temperature interval of
the melting transition. Exchanges of configurations are at-
tempted of near-lying temperatures according to the parallel
tempering method in order to overcome ergodicity problems
and improve convergence. The temperature trajectories are
connected through the parallel tempering method [7]; that is,
an exchange is attempted between two neighboring tempera-
ture configurations with a 10% probability and an acceptance
criteria based on the Boltzmann distribution. The statistical
quantities such as the inner energy U (T ) and the heat capacity
at constant volume, Cv (T ) (for finite cluster simulations),
and volume V (T ), the enthalpy H (T ), and the heat capacity
at constant pressure, Cp(T ) (for periodic simulations), are
calculated using the two-body ELJ and three-body EATM
potentials. These quantities are finally obtained as a continu-
ous function of temperature T from the simulation data using
the histogram reweighting technique [43]. In the following,
specific details for the periodic and cluster simulations are
given.

Periodic approach. Melting of the bulk is simulated using
fcc sample cells with periodic boundary conditions. The sim-
ulations are performed in the isobaric-isothermal ensemble
(NPT ); that is, the number of atoms, N , and temperature T
are held constant, but the sample cells are allowed to change
volume V in order to remain at atmospheric pressure (P =
1 bar) throughout the simulation. During the periodic constant
pressure MC cycle N + 1 configurations are generated, where
N is the number of atoms in the system. The test configuration
is generated by either randomly selecting atom i and changing
its coordinates from ri �→ ri + δi, or by varying the volume V
with a randomly determined scaling parameter ς . The latter
corresponds to the scaling of the volume V with ς3, such that
the new configuration is scaled as ri �→ ςri and the length
of the simulation cell by L �→ ςL. In the NPT ensemble
the probability density P to find a particular configuration of
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N atoms at a given volume V is proportional to

P (V ; ri ) ∝ exp(−β[Ei + PV − Nβ−1 ln V ]) (6)

such that the acceptance criterion for either moving an atom
or scaling the volume is given by

α(x → x′) = min[1, e−β[�E+P�V ]+N ln(V/V ′ )]. (7)

Simulations are performed for fcc cells containing N =
(2k)3 = 32, 108, 256, 500, and 864 atoms considering two-
body ELJ forces.

The total two-body interaction energy E (2) is determined
by summing over all pairwise interactions up to a spherical
cutoff distance of rc = 1

2 L, where L is the length of the simula-
tion cell. This method, known as the minimum image conven-
tion, approximates dispersive interaction between atom i and
all periodic images of atom j by considering only interactions
of an atom i with the closest image of atom j. The cutoff
is introduced to avoid extensive mathematical calculations
and potential energy jumps when one atom involved in the
interaction moves out of the central box [44].

The total two-body energy in a system of density ρ with
radial distribution function g(r) can be split into a sum over
the region {0, rc} and an integral over the long range {rc,∞}:

E (2) = E (2)
MC + E (2)

LRC

=
N∑

i=1

E (rri j ) + 2πNρ

∫ ∞

rc

r2E
(
rri j

)
g(r) dr (8)

Where E (2)
MC is obtained during the MC simulation and the

second part of the energy contribution is the long-range cor-
rection (LRC). The integral over the long range is numerically
evaluated using Gauss-Legendre quadrature [45]. The radial
distribution function g(r) is approximated to be

g(r) = exp[−βE (2)(r)] ≈ 1. (9)

It is sufficient to calculate the integral in the tail correction
only once at the beginning of the simulation, since the cutoff
radius is held constant.

Additional simulations are performed considering two-
body ELJ plus three-body EATM interactions for cells con-
taining up to 256 atoms, with three-body contributions cal-
culated up to a cutoff of r = 2σ and for an N = 32 subcell
as described by Attard [46], where σ is the position of the
maximum of the three-body EATM potential.

The absence of a surface and impurities in the periodic
melting simulations causes the simulated cells to shift the
solid-to-liquid phase-transition temperature to a higher value
due to superheating, TSL > Tm. We adapt the superheating
correction factor as introduced by Belonoshko et al. [47] to
obtain the bulk melting temperature Tm,

TSL

Tm
= 1 + ln 2

3
≈ 1.231, (10)

which worked well in previous simulations [28,29].
Cluster approach. For the rare gas elements the melting

temperature decreases with an inverse dependence on the
cluster radius [8,28], albeit for other elements such as metals

a nonmonotonic behavior can be found at small to medium
cluster sizes [48,49]. In the thermodynamic scaling range,
however [49], it is possible to derive a relation between the
melting temperature of a “spherical” cluster of N atoms,
Tm(N ), and the corresponding bulk melting temperature,
Tm(∞) [50]. One can obtain the relation starting from a first-
order Taylor expansion of the chemical potential around its
value at the triple point:

μ(P, T ) = μ(P0, T0) + ∂μ

∂T
(T − T0) + ∂μ

∂P
(P − P0). (11)

Since the chemical potentials for the solid and liquid phases
are equal at the triple point, μs(P0, T0) = μl (P0, T0), and using
the Gibbs-Duhem equation, −V dP + SdT + Ndμ = 0, we
find

−Sl (T − T0) + 1

ρl
(Pl − P0) = −Ss(T − T0) + 1

ρs
(Ps − P0)

(12)

with ρ = N/V being the cluster density. The Young-Laplace
equation defines the pressure difference between the inside
and the outside of a curved surface [51], which allows us to
distinguish between the pressure Ps = Pext + 2γsν

rs
of a solid

cluster and the pressure Pl = Pext + 2γlν

rl
of a liquid cluster,

where γsν and γlν denote the solid-vapor and the liquid-vapor
surface tensions, respectively. In both expressions the external
pressure, Pext, vanishes since clusters are being modeled in a
vacuum. This, in combination with the latent heat of fusion,
L = (Sl − Ss)T0, the approximation that the triple point is
approximately the melting temperature at ambient conditions,
T0 ≈ Tm(∞), and the geometrical relationship which holds if

FIG. 1. Different orientations of the Mackay icosahedral cluster
containing 309 atoms.
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TABLE II. Solid-state properties for the fcc lattice of 84Kr and 132Xe at different levels of theory. The many-body expansion includes
up to fourth-order terms in the interaction energy with individual contributions denoted as E (n). The nearest-neighbor distance rnn is given
in Å, volume V in cm3/mol, cohesive energy Ecoh in cm−1, and bulk modulus B in GPa. EZPE-H denotes zero-point harmonic vibrational
correction within the harmonic Einstein approximation for the two-body term only, EZPV-AH is the corresponding anharmonic correction
from first-order perturbation theory. The fcc lattice constant a can be obtained from the nearest-neighbor distance through a = √

2rnn. ELJ,
extended Lennard-Jones; JHBV, Jaeger-Hellmann-Bich-Vogel [35]; DS, Deiters-Sadus [58]; HJB, Hellmann-Jaeger-Bich [59]. All three-body
forces are of extended Axilrod-Teller-Muto type from this work, and all four-body forces are obtained from the classical quadruple dipole
term. For the diatomic molecules Kr2 and Xe2 we show for comparison the equilibrium distance re (in Å) and well depth De (in cm−1; not
corrected for zero-point vibration).

Property Approx. Kr (ELJ) Kr (JHBV) Kr (DS) Xe (ELJ) Xe (HJB) Xe (DS)

re E (2) 4.0156 4.0158 4.0123 4.3616 4.3780 4.3748
Expt. 4.008a 4.363,a 4.361,b 4.377(5)c

rnn E (2) 3.9345 3.9347 3.9315 4.2782 4.2911 4.2882
+EZPV-H 3.9584 3.9586 3.9555 4.2941 4.3071 4.3043
+EZPV-AH 3.9583 3.9584 3.9553 4.2940 4.3070 4.3042
+E (3) 4.0199 4.0199 4.0168 4.3296 4.3428 4.3399
+E (4) 4.0190 4.0192 4.0161 4.3283 4.3414 4.3385
Expt. 3.9922(1)d 4.3358(3)e

V E (2) 25.936 25.940 25.877 33.345 33.647 33.580
+EZPV-H 26.412 26.416 26.353 33.717 34.025 33.958
+EZPV-AH 26.409 26.412 26.350 33.716 34.021 33.955
+E (3) 27.663 27.662 27.597 34.560 34.878 34.808
+E (4) 27.645 27.647 27.582 34.530 34.844 34.773
Expt. 27.095(3)d 34.708(8)e

De E (2) 139.6 139.6 139.8 196.3 194.6 194.7
Expt. 139.8, 140.2(5) 195.5(3.0),b 196.1(1.1)c

Ecoh E (2) 1076.3 1076.0 1078.6 1502.3 1489.3 1491.7
+EZPV-H 1019.1 1019.0 1021.1 1451.6 1439.7 1441.8
+EZPV-AH 1018.6 1018.5 1020.6 1451.4 1439.4 1441.5
+E (3) 916.1 916.0 917.2 1359.6 1350.5 1352.0
+E (4) 918.2 917.1 918.4 1362.6 1353.4 1354.9
Expt. 931.9(10),f 934.6(14)f 1319.4(29),f 1326.1(23)f

B E (2) 4.25 4.25 4.31 4.74 4.52 4.58
+EZPV-H 3.89 3.89 3.94 4.48 4.28 4.33
+EZPV-AH 3.89 3.89 3.94 4.48 4.28 4.33
+E (3) 3.50 3.50 3.55 4.21 4.01 4.05
+E (4) 3.55 3.54 3.59 4.15 3.98 4.06
Expt. 3.61(5)g 3.64(8)h

aReference [60].
bReference [61].
cReference [62].
dReference [63].
eReferences [64,65].
fReference [66].
gReference [67].
hReference [68].

the particles have spherical shape rs
rl

= ( ρl

ρs
)1/3 leads to the

equation that describes the melting point depression:

1 − Tm(N )

Tm(∞)
= 2

ρsrsL

(
γsν − γlν

(
ρs

ρl

)2/3)
. (13)

For our simulations, Mackay icosahedral clusters are cho-
sen as initial structures for the solid state which are character-
ized by k complete shells of atoms around a central atom (see
Fig. 1). The sizes of these so-called magic clusters with high

stability are given by

N = 1 + 2
k∑

l=1

(5l2 + 1) (14)

= 10

3
k3 + 5k2 + 11

3
k + 1. (15)

For large clusters, the dominating term of Eq. (14) is k3, where
k is the number of shells in the cluster. Since the radius rs of an
icosahedral cluster is proportional to the number of shells, k,
rs ∝ N−1/3. As ρs and ρl are constant, the melting temperature
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(a) Kr, 2-body (b) Xe, 2-body
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FIG. 2. Heat capacities at constant pressure as a function of simulated temperature per atom for the simulations with periodic boundary
conditions: (a, b) heat capacities obtained considering two-body ELJ interactions only and (c, d) heat capacities obtained considering both two-
and three-body interactions (ELJ+EATM).

of a cluster with N atoms is related to the melting temperature
by

Tm(N ) = Tm(∞)

(
1 − C

N1/3

)
. (16)

This implies that it is possible to linearly extrapolate the
melting temperatures of the different cluster sizes to the bulk
melting temperature with the inverse cluster radius N−1/3.
Smaller clusters (k = 1, 2) are expected to deviate from this
line since the k3 term is smaller than the terms with lower
order in k in Eq. (16) and the error in the obtained bulk value is
expected to reduce when clusters of larger size N are included
in the extrapolation.

Over the years multiple efforts have been made to express
a more accurate equation describing the melting point depres-
sion. A review of these models can be found in Ref. [52].
One improvement can be made by including the possibility of
surface melting, first developed by Reiss and Wilson [53] and
later developed by Hanszen [54], Sambles [55], and Chushak
and Bartell [56]. In this scheme, the clusters are assumed to
have an inner core and an external liquid shell of thickness
δ. The liquid layer over the solid core remains unchanged
until the particle cluster transforms completely to a liquid
at the melting temperature. However, these more accurate
relations are described by more complex functions with more

fitting parameters which give rise to large uncertainties in
the extrapolated temperature when only few data points are
considered.

Melting simulations were performed for Mackay icosahe-
dral clusters of size N = 13, 55, 147, 309, 561, 923, and 1415
atoms considering two-body interactions only; additional sim-
ulations were performed considering two- and three-body
interactions up to clusters containing 923 atoms. To keep the
clusters from evaporating, a hard sphere is defined with a
radius of one diatomic equilibrium distance larger than the
radius of the icosahedral cluster. For this type of simulation
the hard-sphere volume V is thus held constant during the MC
simulation and the acceptance criterion simplifies to

α(x → x′) = min[1, e−β�E ]. (17)

Two-body interactions are considered over the entire sphere,
whereas for the three-body interaction a cutoff radius of r =
2σ is employed, where σ is the position of the maximum of
the three-body EATM potential. Of course, one is not confined
to simulations of magic-number clusters only and the same
simulating procedure can be applied to other particle sizes
and configurations [57]. However, due to their closed-shell
structure, surface effects are minimized with respect to the
clusters with incomplete shells.
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III. RESULTS AND DISCUSSION

Solid-state calculations. The results for the dimer equilib-
rium distances and bulk properties are presented in Table II in
comparison with experimental results (citations as specified
in the table’s caption) and with results obtained from other
accurate diatomic potential curves, namely those of Jäger,
Hellmann, and co-workers (JHBV) [35,59], and Deiters and
Sadus (DS) [58]. We see very good agreement for the bond
distances and the dissociation energies with the other theoret-
ical results and with available experimental data.

Concerning the solid-state results, we see that the desta-
bilizing three-body forces cannot be neglected anymore; i.e.,
they account for −11.2% and −17.4% of the total cohesive
energy for Kr and Xe, respectively. In comparison, vibrational
effects (−6.3% for Kr and −3.7% for Xe) and four-body
forces (+0.2% for both Kr and Xe) contribute much less to
the cohesive energy. Considering all terms we get a bond
distance which is 0.027 Å above and 0.008 Å below the
experimental values for Kr and Xe, respectively, which is
most likely due to the approximations made for the three-
body force. The discrepancies are somewhat larger for the
cohesive energies with a deviation of 13 and 37 cm−1 for
Kr and Xe, respectively. However, these values are in the
acceptable range of the reported experimental uncertainties,
and the three-body contributions are of similar size as those
reported by Rościszewski et al. [33]. We notice, however,
the different sign and order of magnitude of the four-body
contribution by these authors [33]. The bulk moduli are also in
reasonable agreement with experiment. In conclusion, for the
melting simulations discussed below it is sufficient to include
only two- and three-body forces.

Melting temperatures. The heat capacity curves from the
periodic boundary simulations of Kr and Xe are shown in
Fig. 2, where the heat capacities at constant pressure are
plotted against the simulation temperature. The corresponding
melting temperatures, corrected by the superheating correc-
tion factor, Eq. (10), are listed in Table III, and the total two-
and three-body energy contribution for an equilibrated liquid
cell as a function of the cut-off radius is demonstrated in
Fig. 3.

One can immediately observe a correlation between the
melting temperature and the total dispersive interaction for
different cell sizes. However, note that the energy contribution
does not necessarily exactly scale with melting temperature,
as the contribution beyond the cutoff distance is approxi-

TABLE III. Melting temperatures (in K) extracted from the heat
capacity curves obtained by periodic NPT melting simulations and
corrected by the superheating factor introduced in Eq. (10) for the
employed N atomic cells.

N = 32 108 256 500 864

Krypton Two-body 120.81 122.96 124.76 126.22 126.15
Two- and three-body 111.82 106.96 109.56

�3b 8.99 15.99 15.21

Xenon Two-body 173.98 168.98 175.22 177.74 176.84
Two- and three-body 162.33 151.22 154.44

�3b 11.65 17.76 20.78
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FIG. 3. (a) The total two- (solid line) and three-body (dotted
line) contribution as a function of the cutoff radius. The vertical
lines denote the spherical two-body cutoff radius that is implemented
for the different simulated sizes such that the minimum image
convention is satisfied. The vertical dashed line corresponds to the
three-body cutoff radius, which is held fixed for the different sample
sizes. (b) Pair distribution function g(r, β ) of xenon between 150 and
190 K for a simulation with periodic boundary conditions. Near Tm

the fcc lattice breaks down to form a disordered fluid. The gray dotted
line indicates a near-perfect initial fcc structure.

mated by the tail correction. For the smallest cell considered,
containing only 32 atoms, the total energy contribution is
not converged which is manifested in a depression in the
melting point, a reduction in the latent heat of melting,
and a finite broadening �Tm around the melting point [69].
All of the above-mentioned finite-size effects decrease with
increasing cell size. For the largest cell considered, the en-
ergy contribution is converged, and the finite-size effects are
minimal.

For both simulated elements, the N = 864 cell has a very
small difference in melting temperature compared to the N =
500 cell and even lies slightly below the melting temperature
of the N = 500 cell. It is therefore concluded that for the N =
864 cell the melting temperature has converged and lies within
the range of statistical error.

The three-body corrections are estimated from the dif-
ference in melting temperature between the two-body and
the two- and three-body calculation at size N = 256. The
largest contribution to the error is expected to evolve from this
approximation since tail corrections are not considered for the
three-body contributions. Besides, the three-body correction
is determined from a rather small cell with only three-body
contributions considered up to rco = 2σ .

Turning to the cluster simulations, Fig. 4 shows the heat
capacities for KrN and XeN . While these curves are unimodal
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FIG. 4. Heat capacities at constant volume as a function of temperature per atom for the Mackay icosahedral clusters with up to 1415
atoms for krypton and xenon: (a, b) heat capacity curves obtained considering two-body interactions only, using the ELJ potential, and (c, d)
heat capacities obtained considering two- and three-body interactions, computed with the ELJ and EATM potentials, respectively.

up to clusters containing 147 atoms, additional peaks are
also present in the larger simulated clusters. These additional
peaks are associated with surface reconstruction (premelting)
[8,70]. The melting temperatures are determined from the
equilibrium heat capacity as the maximum of the heat capacity
curves and are listed in Table IV. By plotting the melting
temperatures as a function of N−1/3, as shown in Fig. 5, the
melting temperatures exhibit a linear trend at larger N values
and can be extrapolated to the bulk value. The two smallest
clusters of size N = 13 and N = 55 deviate from this line as
to be expected [see the discussion below Eq. (16)] and are
therefore not considered in the extrapolation. The extrapolated
melting temperatures are listed in Table V, where the two-

body melting temperature is obtained by extrapolation for
cluster sizes N = 147−1415. It is computationally too expen-
sive to obtain the three-body corrected melting temperature of
the 1415 cluster. Therefore, three-body corrections are taken
as the difference in melting temperature when extrapolating
clusters of size N = 147–923 including two- and three-body
interactions and including two-body interaction only. This dif-
ference gives the extrapolated three-body correction which is
then added to the extrapolated two-body melting temperature
from the 147–1415 extrapolation.

For krypton, two-body melting temperatures are calculated
to be T p

m,2b = 126.2 and T c
m,2b = 129.7 K for the periodic (p)

and cluster (c) simulations, respectively (see Table VI). The

TABLE IV. Melting temperatures (in K) for the krypton and xenon rare gas clusters extracted from the heat capacity curves.

N=13 55 147 309 561 923 1415

Krypton
Two-body 57.12 58.90 72.07 82.10 92.15 96.80 103.20
Two- and three-body 51.63 53.75 65.18 74.15 82.27 85.72

Xenon
Two-body 79.56 82.66 102.26 115.56 129.85 136.50 144.80
Two- and three-body 72.07 76.22 91.36 102.89 115.50 121.10
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FIG. 5. Extrapolated melting temperatures for (a) krypton and (b) xenon, obtained using two-body ELJ interactions (circles) and three-
body-corrected EATM values (triangles). The blue line corresponds to the linear fit of the melting temperatures of the N = 147−1415 ELJ
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fit through the N = 147−923 clusters including three-body EATM corrections. The experimental melting points of the bulk are indicated as
dotted vertical lines and our computed value by the solid orange vertical lines.

lowering in melting temperature due to the three-body repul-
sive forces is similar for both approaches (T p

m,3b = 15.2 K and
T c

m,3b = 15.9 K, respectively). The final melting temperatures
are determined to be T p

m = 110.9 K and T c
m = 113.7 K. These

values of Tm are slightly lower than the experimental value
of 115.78 K. For xenon the two-body melting temperatures
are determined to be T p

m,2b = 176.8 K and T c
m,2b = 181.5 K.

The lowering in melting temperature due to the three-body
repulsion is for both methods fairly similar (T p

m,3b = −20.8
and T c

m,3b = −20.7 K). The final melting temperatures are de-
termined to be T p

m = 156.1 K and T c
m = 160.8 K, of which the

cluster result is in very good agreement with the experimental
value of 161.40 K.

Densities. The density of frozen polycrystalline krypton
was experimentally obtained by Figgins and Smith in 1960
[71] using x-ray diffractive methods (3.078 g/cm3 at 20 K and
2.893 g/cm3 at 90 K), using the same method to determine the
thermodynamic properties for solidified argon [72]. Calado
and Staveley [73] measured the liquid density of krypton close
to the melting point and determined it to be 2.4517 g/cm3

at 115.77 K. The latest experimental data were obtained in
1980 by Albuquerque et al. [74], who obtained a density of
2.3483 to 2.1983 g/cm3 for the temperature range of T =
129.32−147.08 K. These values are in excellent agreement
with the numerical results obtained from the periodic simula-
tion shown in Fig. 6; before melting starts we obtain a density

TABLE V. Melting temperatures (in K) obtained by linear ex-
trapolation of N−1/3 to the bulk melting temperature. �3b denotes the
difference between the two- and three-body result.

N Two-body Two- + three-body �3b

Krypton [147–1415] 129.66
[147–923] 126.99 111.05 15.94

� 2.67

Xenon [147–1415] 181.47
[147–923] 178.29 157.60 20.69

� 3.18

of solid krypton of 2.727 g/cm3 (107 K), which slightly
decreases to 2.316 g/cm3 (111 K) for the liquid phase using
a mass of 83.798 g/mol. For comparison, the solid density
at 0 K obtained from the volume in Table II is much higher
compared to the liquid state at 3.031 g/cm3 (experimental
value 3.093 g/cm3) [63].

The densities for xenon at normal pressure are perhaps the
most easy to obtain in comparison to the other noble gases
as xenon is not radioactive and offers the widest accessible
range of temperatures for the solid and liquid states at normal
pressures. The first density measurements of solid xenon date
back to Sears and Klug [64] and Eatwell and Smith [65], who
carried out measurements in the 1960s on the expansivity and
density of frozen polycrystalline xenon according to the same
x-ray diffractive method as for argon and krypton. Densities of
3.694 g/cm3 and 3.689 g/cm3 at 60 K by Sears and Kulg and
by Eatwell and Smith were obtained, respectively. The density
of liquid xenon was determined by Leadbetter and Thomas
[75] according to the bulk density method, where the density
of a liquid is determined by condensing a known mass of gas
into a volume-calibrated glass capillary tube. They obtained
a liquid density of 2.980 g/cm3 at 161.9 K. A summary of
the liquid density of krypton and xenon around the melting
point can be found in Ref. [76]. Regarding the MC results, the
solid density (3.317 g/cm3 at 152 K) is lower than the exper-
imentally obtained values. However, this can be attributed to
thermal expansion at that temperature compared to the 60 K
value. Indeed, the density of the liquid (2.845 g/cm3 at 157 K)

TABLE VI. Periodic and cluster final melting temperatures (in K).

Periodic Cluster Expt.

Krypton 2b 126.15 129.66
�(2b−3b) 15.21 15.94

Tm 110.94 113.72 115.78

Xenon 2b 176.84 181.47
�(2b−3b) 20.78 20.69

Tm 156.07 160.78 161.40
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FIG. 6. Density curves for (a) krypton and (b) xenon. Blue denotes the densities for the MC simulations including two-body ELJ
interactions only, and red denotes the densities obtained including two-body ELJ and three-body EATM interactions.

is in good agreement with experimental results. The solid
density at 0 K obtained from the calculated volume in Table II
is 3.802 g/cm3 and much higher compared to the liquid state
as one expects, and again in excellent agreement with the
experimental value of 3.783 g/cm3 (a mass of 131.293 g/mol
for xenon is used for the calculations).

IV. CONCLUSIONS

We have calculated the melting temperatures of krypton
and xenon using first-principles two- and three-body poten-
tials. The obtained melting temperatures by direct simulation
of the bulk (Kr = 110.94 K and Xe = 156.07 K) and by the
cluster approach (Kr = 113.72 K and Xe = 160.78 K) are in
excellent agreement with experimental findings. Concerning
error estimates there are multiple sources for errors involved.
They come from (i) the choice of the interaction potentials
(e.g., the description of the three-body interactions needs to
be improved), (ii) the algorithm for the melting simulation
used, (iii) the extrapolation to the bulk temperature for finite
clusters, (iv) for a cell with periodic boundary conditions

the number of atoms used in the cell and the estimate of
the superheating correction factor, and (v) the neglect of
quantum and/or vibrational effects. The close correspondence
between the cluster and periodic results, however, implies that
we can confide in the Monte Carlo method. Even though
in a previous paper by our group [8] an accuracy of the
melting temperature within 1–2 K was achieved for neon
and argon, it is in no way trivial to achieve similar accuracy
for the heavier rare gases as large relativistic and corre-
lation effects require higher-order terms in the many-body
expansion. However, while the computational protocol can
still be improved, our results differ at most by 5 K from
experiment.
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