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Impact of strong anisotropy on the phase diagram of superfluid 3He in aerogels
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Recently, one analog of the Anderson’s theorem for the s-wave superconductor has attracted much interest in
the context of the p-wave polar pairing state of superfluid 3He in a model aerogel in the limit of strong uniaxial
anisotropy. We discuss to what extent the theorem is satisfied in the polar phase in real aerogels by examining the
normal to polar transition temperature Tc and the low temperature behavior of the superfluid energy gap under
an anisotropy of a moderate strength and comparing the obtained results with experimental data. The situation
in which the Anderson’s theorem clearly breaks down is briefly discussed.
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Recent observations on superfluid 3He in anisotropic aero-
gels have clarified profound roles of an anisotropy for the
superfluid phase diagram and properties. The polar pairing
state [1] has been discovered in nematic aerogels with a
nearly one-dimensional structure [2]. It has been found that
this polar pairing state does not occur when the magnetic
scattering effect due to the solid 3He localized on the surface
of the aerogel structure is active [3]. This high sensitivity
to the type of “impurity” scatterings of the superfluid phase
diagram is not easily explained within the original theoretical
model assuming a weak global anisotropy of the aerogel
structure [1,4].

It has been pointed out that, in the limit of strong
anisotropy, i.e., when the orientation of the aerogel strands is
perfectly ordered, the normal to polar transition temperature
Tc(P) should be insensitive to the (nonmagnetic) impurity
scattering strength [5]. Recently, this argument analogous to
the Anderson’s theorem in the s-wave superconductor [6] has
attracted much interest [7,8] in relation to the low temperature
behavior of the energy gap in the polar phase and to the
robustness of the polar phase in relatively dense nematic
aerogels. Previously, various features seen in superfluid 3He
in nematic aerogels [2,7] have been discussed based on the
model assuming the weak anisotropy [1]. Once taking account
of the puzzling result [3] brought by the magnetic impurities
altogether, the approach starting from the side of the strong
anisotropy may be more appropriate. Further, the polar phase
has been detected so far only in the nematic aerogels where
the strands are oriented on average in one direction. Then, one
might wonder whether the polar phase occurs only in the limit
of strong anisotropy.

In this work, consequences of the strong anisotropy in
the phase diagram of superfluid 3He in aerogels with no
magnetic scattering effect are studied in detail within the
weak-coupling BCS approximation. Throughout the present
Rapid Communication, the strength of the anisotropy is as-
sumed to be measured by the size of a correlation length
Lz, defined along the averaged orientation of the strands, of
the random scattering potential. It is found that the impurity-
scattering independent Tc, i.e., the Anderson’s theorem [5,6],

is approximately satisfied even in the scattering potential
model with a finite Lz. Thus, we argue that, consistently
with the original argument [1], the polar phase may be re-
alized even in aerogels where the strands’ orientation is to
some extent disordered. Further, the dependences of the su-
perfluid energy gap |�(T )| on the impurity scattering effect
are also examined, and the T 3 behavior arising from the
horizontal line node of |�(T )| in the polar pairing symmetry
is found to be robust against changes of the impurity strength
and the anisotropy. Further, the situation in which Tc(P) is
also reduced so that the Anderson’s theorem is not satisfied
will also be commented on.

First, let us describe how the Anderson’s theorem occurs in
the context of the p-wave superfluid phase in an environment
with nonmagnetic elastic impurity scatterings. The starting
model of our analysis to be performed below is the BCS
Hamiltonian for a spatially uniform equal-spin paired state in
zero magnetic field

HBCS − μN =
∑
p,σ

[
ξpa†

p,σ ap,σ − 1

2
(�∗

pap,σ a−p,σ + H.c.)

]

+ g−1V |�|2, (1)

where g is the strength of the attractive interaction, V is the
system volume, and ξp is the quasiparticle energy measured
from the Fermi energy μ. Further, �p/� is the form factor,
i.e., the momentum dependence representing the pairing sym-
metry, and � is determined by the gap equation [see Eq. (4)].

The total Hamiltonian H is the sum of Eq. (1) and the
nonmagnetic impurity potential term

Himp =
∫

d3r u(r)n(r), (2)

where n(r) is the particle density operator. As usual, the
impurity scattering can be modeled by the correlator

W (r) = 2πN (0)τ 〈u(r)u(0)〉imp, (3)

or its Fourier transform w(k) = ∫
d3r W (r)eik·r, with

〈u〉imp = 0, where 〈·〉imp denotes the random average, k is the
momentum transfer, N (0) is the density of states on the Fermi
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surface per spin in the normal state, and τ is the relaxation
time of the normal quasiparticle in the case with no anisotropy.
For simplicity, the Born approximation will be used to incor-
porate the impurity-scattering effect in the Green’s functions
for the quasiparticles in an equal-spin paired superfluid state.
Then, we have a mean-field problem for spinless fermions,
and solving the corresponding gap equation can be performed
in quite the same manner as in the s-wave paired case [9]. The
resulting gap equation can be expressed in the form

ln

(
T

Tc0(P)

)
= πT

∑
ε

⎡
⎣−1

|ε| + 3

*
�p�̃p�

−2√
ε̃2

p + |�̃p|2
+

p̂

⎤
⎦, (4)

where ε = πT (2m + 1) with integer m, Tc0(P) is the super-
fluid transition temperature of the bulk liquid, and 〈·〉p̂ denotes
the angle average on the unit vector p̂ over the Fermi surface.
Further, in Eq. (4),

iε̃p = iε − 1

2πN (0)τ

∫
q
w(p − q)Gq(ε),

(5)

�̃p = �p − 1

2πN (0)τ

∫
q
w(p − q)[F†

q (ε)]∗,

and

Gp(ε) = −iε̃p − ξp

ε̃2
p + ξ 2

p + |�̃p|2
,

F†
p (ε) = −�̃∗

p

ε̃2
p + ξ 2

p + |�̃p|2
(6)

are the impurity-averaged Matsubara Green’s functions [9].
As a model of the impurity correlator (3) in the presence

of a stretched anisotropy favoring the polar phase in which
�p = �p̂z, we will use the following expression:

W (r) = kF

2
δ(2)(r⊥) exp(−|z|/Lz )

×[1 + 	(1 − |δu|)(|δu|−1/2 − 1)], (7)

where 	(x) is the step function, |δu| = k2
FL2

z , and Lz is the
correlation length, defined along the axis of the stretched
anisotropy, of the random distribution of the potential u(r).
This anisotropy axis corresponds to the averaged orientation
of the strands of a nematic aerogel and, hereafter, will be taken
as the z axis. The strength of the anisotropy is measured by
|δu|, while the measure of the impurity strength is 1/(τTc0)
[10], where kF is the Fermi wave number. Then, the Fourier
transform w(k) of W (r) becomes

w(k) =
√|δu|

1 + |δu|k̂2
z

(1 + (|δu|−1/2 − 1)	(1 − |δu|)). (8)

Equation (8) has the following limiting cases. For the
weak anisotropy, |δu| < 1, this model reduces to the expres-
sion w(k) � 1 − |δu|k̂2

z , introduced in Ref. [1]. The opposite
Lz → ∞ limit of Eq. (8) corresponds to the case with the
impurity scattering persistent along the z axis. In this case,
w(k) reduces to

w∞(k) = πkFδ(kz ), (9)

FIG. 1. (a) Description of the specular reflection on the wall
parallel to the z axis. That is, the z component of the momentum
is conserved. (b) Example showing that the z component of the
momentum is not conserved through the reflection on a wall tilted
from the z axis. (c) Rough picture of planar scattering centers
positioned randomly and with their surface perpendicular to the z
axis. On each center, the component perpendicular to the z axis of
the momentum is conserved at each scattering event.

implying that, as sketched in Fig. 1(a), the scattering is
specular along the z axis. In contrast, if, as in Fig. 1(b), quasi-
particles are scattered locally by a wall tilted from the z axis,
the correlation length Lz is finite on average. Therefore, the
anisotropy in our model (7) is a measure of the orientational
ordering of the strands. In fact, Lz in real samples seems to
be finite based on the fact that splayed strands and crossings
between straight strands are seen in real images of the nematic
aerogels [2,8]. We also note that the point of view regarding
a tilt of correlated defects with infinite correlation length as a
segmented defect with a finite correlation length has been used
previously to explain a mysterious sign reversal of the vortex
Hall conductivity in superconductors [11]. The model (7)
interpolating the above-mentioned two limits has been used to
study half-quantum vortex (HQV) pairs in the polar-distorted
B (PdB) phase at lower temperatures [12].

The Anderson’s theorem for the polar pairing state with
�p = � p̂z in the perfectly ordered aerogel is easily verified
in terms of Eq. (9). In fact, by applying Eq. (9) to Eq. (5), any
1/(τTc0) dependence in the last term of Eq. (4) is canceled
between the denominator and numerator of the term, and, as
in the s-wave pairing case, the gap equation (4) becomes its
expression in clean limit or for the bulk liquid. As argued
above, however, a partial deviation from the Anderson’s theo-
rem should be present in the polar phase in real aerogels. To
clarify this point, the polar to normal transition temperature
Tc(P) and the superfluid gap |�(T )| in the polar phase will
be numerically examined using Eqs. (4) and (8) for various
values of the anisotropy δu and the impurity strength 1/(τTc0).

Besides Tc(P), let us determine where the polar phase
becomes unstable on cooling. The polar to the polar-distorted
A (PdA) transition [1,2,8] is continuous as well as the polar
to PdB transition [12], and, in the present weak-coupling
approximation, both of them has the same transition temper-
ature [13]. Thus, it may be allowed to identify hereafter the
polar to PdB transition line TPB(P) with the real polar to PdA
transition line. The TPB(P) line is easily obtained according to
the diagrams sketched in Fig. 2 representing the gap equation
linearized with respect to the order parameter of the PdB state
by using the quantities characterizing the polar pairing state.
Then, TPB is given by the temperature T satisfying

ln

(
T

Tc0(P)

)
= πT

∑
ε

⎡
⎣−1

|ε| + 3

2

*
1 − p̂2

z√
ε̃2

p + |�̃p|2

+
p̂

⎤
⎦. (10)
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FIG. 2. Diagrams expressing the gap equation linearized with
respect to the order parameter of the PdB phase. The parameter
c means the order parameter of the PdB phase, and each vertex
carries a component perpendicular to the z axis of the momentum.
The impurity-averaged Green’s functions G and F† in Eq. (6) are
indicated by a line with a double arrow and that with a left-right
arrow, respectively.

Examples of the Tc(P) and TPB(P) obtained numerically
from Eqs. (4) and (10) are presented in Fig. 3, where the
experimental data on Tc0(P) [14] were used. As is seen in Fig.
3(a) where a moderately large anisotropy |δu| = 30 is used in
common, Tc(P) weakly depends on the impurity strength τ−1.
In general, for a stronger anisotropy, the τ−1 dependence of Tc

becomes weaker, while the corresponding one of TPB becomes
stronger. At higher pressures, the pressure dependence of
Tc/Tc0(P) is quite weak, reflecting the proximity to the limit
of strong anisotropy in which the Anderson’s theorem is
satisfied, while Tc/Tc0 is lowered at low enough P values
because of an increase of the dimensionless impurity strength
1/[τTc0(P)]. In contrast to Tc, however, TPB is quite sensitive
to the impurity strength and rapidly decreases with increasing
1/(τTc0) [5,7]. Thus, the temperature range of the polar phase
is wider for a lower P.

Further, as the solid and dashed curves in Fig. 3(b) show,
an increase of the anisotropy extends the region of the polar
phase: With increasing the anisotropy |δu|, Tc is increased and
approaches Tc0. On the other hand, TPB decreases with in-
creasing the anisotropy. In fact, the TPB values corresponding
to the red open circle data of Tc(P) in Fig. 3(b) are almost
zero so that the superfluid phase is in the polar pairing state
everywhere (see below). In such a manner, the temperature
range of the polar phase at a fixed P becomes wider with
increasing the anisotropy and/or the impurity strength.

The red open circle symbols, obtained in terms of
(2πτ )−1 = 1 (mK) and |δu| = 100, in Fig. 3(b) express
the Tc(P) curve comparable with the data for nafen-243 in
Ref. [2]. Similarly, we have obtained a curve (not shown in the
figures) comparable with the data for nafen-90 [2] in terms of
(2πτ )−1 = 0.15 (mK) and |δu| = 20. By reasonably assuming
that, in aerogels, a lower porosity would result in an en-
hancement of (τTc0)−1 measuring the scattering strength due
to the aerogel structure [3,15], and that a sample anisotropy
should be reflected as an anisotropy on the quasiparticle mean
free paths [7], it is found that these correspondences between
the experimental data and the present results are qualitatively
satisfactory.

Next, as another quantity related to the Anderson’s theo-
rem, let us examine the temperature dependence of the energy
gap |�(T )| of quasiparticles in the polar phase. As indicated
elsewhere [8], the energy gap difference |�(0)| − |�(T )|
estimated from the NMR frequency data in the polar phase
at 29.5 (bars) is proportional to T 3, reflecting the presence
of a line node in |�(T )|. Since the relevant energy scale at
low T is not Tc but |�(0)|, we will express the T 3 behavior
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FIG. 3. (a) Dependence of the pressure (P) vs temperature (T )
superfluid phase diagram on the impurity strength τ−1 under a
fixed magnitude of the anisotropy |δu| = 30, i.e., kFLz = 5.48. The
temperatures Tc(P) (red) and TPB(P) (blue) obtained in terms of the
same set of τ−1 and |δu| are represented by the same line type or
symbol. The thick solid line, the dashed line, and the thin solid curves
are the results for (2πτ )−1 (mK) = 0.3, 0.5, and 0.7, respectively.
Note that the variable of the horizontal axis is T/Tc0(P), i.e., the
temperature normalized by the bulk superfluid transition temperature
Tc0 at each P. (b) Dependence of the two transition curves on the
anisotropy |δu| at a fixed impurity strength (2πτ )−1 (mK) = 0.7
(solid and dashed curves). The thin solid curves are the same as in (a),
and the thick solid curves are Tc (red) and TPB (blue) for |δu| = 4.4.
The dashed red and blue curves follow from the |δu| = 3 × 103

value which is close to the limit of strong anisotropy. The red open
circles obtained in terms of (2πτ )−1 (mK) = 1.0 and |δu| = 100
are comparable with the Tc(P) data of nafen-243 [2]. The corre-
sponding TPB[P = 30 (bars)] value, 0.002Tc0, is not shown in the
figure.

in the form

1 − |�(T )|
|�(0)| = a

T 3

|�(0)|3 . (11)

This relation to be satisfied in the polar phase in aerogels
would indicate that, irrespective of the presence of the im-
purity scattering effect, the line node of |�(T )| in the polar
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FIG. 4. Temperature dependence of |�| (symbols) obtained in
terms of the parameter values |δu| = 100 and (2πτ )−1 = 1 (mK)
(a) at 30 (bars) and (b) at 0 (bars), respectively. For comparison,
the curves (thin solid curves) obtained by substituting a = 9.70 for
(a) and 10.64 for (b) into Eq. (11) are also drawn. In both cases, the
T 3 behavior is nicely seen at least in the range T < 0.65Tc. (Note
that, in the figures, the temperature is represented in units of |�(0)|
in each case.)

phase remains well defined. According to the calculation
[8] in the weak-coupling approximation and clean limit, the
coefficient a takes the value 8.49, while the estimated a value
taken from NMR data in a nematic aerogel at 29.5 (bars) was
0.38[�(0)/Tc]3 [8]. According to Ref. [8], this estimated co-
efficient may become comparable [8] with the weak-coupling
value 8.49 in the limit of strong anisotropy if the strong-
coupling effect [14] enhancing |�(0)| is taken into account. In
a strongly anisotropic case, |δu| = 3 × 103, we have obtained
the value a = 8.97 comparable with the weak-coupling value
mentioned above.

In Fig. 4, our results (symbols) obtained consistently with
the red open circle data in Fig. 3(b), i.e., for the values
(2πτ )−1 = 1 (mK) and |δu| = 100, are shown and are fitted
to an appropriate T 3 curve (thin solid curve) at a high pressure
[30 (bars)] (a) and a low pressure [0 (bars)] (b), respectively.
The T 3 behavior is well defined in T < 0.65Tc0 irrespective of

the pressure value, and the effects of the impurity strength and
the anisotropy value are exclusively reflected in the coefficient
a of the T 3 term. As mentioned in the caption of Fig. 4, the
a value is enhanced especially at lower pressures, reflecting
the fact that the impurity effect is stronger as the pressure
is lowered. This increase of a value for a larger (τTc0)−1

should be expected because |�| should decrease in a more
impure case as far as Lz is finite. If the strong-coupling effect
is taken into account, according to Ref. [8] the coefficient
a ≡ a[Tc/�(0)]3 at 29.5 (bars) would remarkably decrease
so that the estimated value a = 0.38 [8] may be explained.
At zero pressure, however, the strong-coupling effect is not
effective so that the coefficient a of the T 3 behavior at lower
pressures should show a large value of order unity. Hence,
examining the T 3 term of the energy gap at low pressures may
become a test for the present theory.

It is valuable to point out that the p-wave Anderson’s
theorem on the superfluid transition temperature is also sat-
isfied in the case of a normal to (distorted) A phase transition
under planelike defects with no two-dimensional momentum
transfer [see Fig. 1(c)] if the l vector of this A phase is
oriented along the normal of the plane of the defects. In fact,
when the bare pairing vertex is pk (δ j,k − ẑ j ẑk ), and Eq. (9) is
replaced by the form proportional to δ(k̂x )δ(k̂y), the superfluid
transition temperature resulting from Eq. (4) becomes Tc0

irrespective of the strength of the impurity scattering. In
principle, such a situation can be realized in planar aerogels
and would result in an extension of the temperature width
of the distorted A phase region at lower pressures and hence,
according to Ref. [16], in a realization of HQVs in the chiral
A phase.

An extension of the present study should be developed to
investigate the corresponding response and dynamical proper-
ties, because the absence of the impurity scattering effect in
the limit of strong anisotropy no longer holds for the gradient
energies [17]. On the other hand, we note that the Tc(P) data
of the nafen-910 in Ref. [3] showing a remarkable suppression
from Tc0(P) in spite of the presence of the polar phase cannot
be explained within the present theory. As is well known in the
context of the dirty s-wave superconductors, the Anderson’s
theorem itself breaks down due to the impurity scattering
effect enhanced further through the repulsive channels of the
quasiparticle interaction [18]. If this mechanism is effective,
the τ−1 dependence of Tc(P) of the type seen in Fig. 3(a)
should be seen even in the systems with infinite Lz. It is
likely that the remarkably suppressed Tc(P) in the nafen-
910 [3] mentioned above is a reflection of this interaction-
induced mechanism. To clarify to what extent this interaction
effect is relevant to real systems, further comparison between
the theory and experimental data would be necessary in the
future.

In relation to the robustness of the polar phase against
the anisotropic nonmagnetic scatterings studied here, we
note that a generalized Anderson’s theorem has been
discussed theoretically for an interorbital and spin-triplet
paired state [19] and an unconventional s-wave paired state
[20], and that unexpectedly weak impurity effects on su-
perconductivity in Dirac semimetals and other unconven-
tional multiorbital superconductors have been addressed
experimentally [21].
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In conclusion, we have investigated to what extent the
Anderson’s theorem is satisfied in the polar phase by assuming
the correlation length of the random potential in nematic
aerogels to be long but finite. It has been found that the low
temperature behavior of the superfluid energy gap stemming
from the presence of the horizontal line node is robust against

the impurity scattering and that the resulting phase diagram is
qualitatively consistent with the available experimental data.

R.I. is grateful to Vladimir Dmitriev and Bill Halperin for
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KAKENHI (Grant No. 16K05444).
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