Out-of-plane electric polarization in double-fan magnetic phase of Y-type hexaferrite

Yuma Umimoto ©, ${ }^{1}$ Nobuyuki Abe, ${ }^{1}$ Shojiro Kimura, ${ }^{2}$ Yusuke Tokunaga, ${ }^{1}$ and Taka-hisa Arima ${ }^{1}$
${ }^{1}$ Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561, Japan
${ }^{2}$ Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received 24 July 2019; accepted 30 January 2020; published 10 March 2020)

Abstract

It has been revealed that a Y-type hexaferrite $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$ hosts not only an in-plane $\left(P_{a b}\right)$ but also an out-of-plane $\left(P_{c}\right)$ component of magnetically induced electric polarization in the double-fan magnetic phase. With an increasing in-plane magnetic field, the magnitude of P_{c} reaches a maximum at around 2 T and decreases as approaching the critical field (3.8 T) of the transition to the collinear ferrimagnetic phase. P_{c} has also been verified to show a 120°-period oscillation as a function of the in-plane magnetic field direction. These results are reproduced by a model combining the inverse Dzyaloshinskii-Moriya interaction and the spin-dependent $p d$ hybridization mechanisms.

DOI: 10.1103/PhysRevB.101.100403

A directional filter is one of the possible applications of magnetoelectric (ME) coupling between electric polarization \boldsymbol{P} and magnetization \boldsymbol{M}. In the view of symmetry, a ferroic order of the cross product $\boldsymbol{P} \times \boldsymbol{M}$ can be coupled with a scalar current such as light, microwave, and electric current. In experiments, it has been confirmed that the absorption coefficient of light depends on whether it propagates parallel or antiparallel to $\boldsymbol{P} \times \boldsymbol{M}$ [1-5]. Similar propagation-direction-dependent absorption of microwaves was observed in a Y-type hexaferrite $\mathrm{Ba}_{2} \mathrm{Mg}_{2} \mathrm{Fe}_{12} \mathrm{O}_{22}$ [6] owing to its antisymmetric ME tensor [7-10] forming the ferroic order of $\boldsymbol{P} \times \boldsymbol{M}$.

Hexaferrites are iron-based oxides with a hexagonal or rhombohedral lattice, and classified into $\mathrm{M}, \mathrm{U}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z types depending on the number and order of stacking layers in a unit cell $[11,12]$. U-, X-, and Y-type (M-, W-, and Ztype) hexaferrites belong to the space group $R \overline{3} m\left(P 6_{3} / m m c\right)$ [11,13]. ME effects in M- [14], U- [13], Y- [7], and Z-type [15] hexaferrites have been reported in relation with the formation of a transverse-cone magnetic structure, which is known to be polar [16]. We focus on a Y-type hexaferrite $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$, exhibiting the ME effect in a wide range of temperature [17].

Figure 1 (a) shows a unit cell of $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$ with the hexagonal basis [17,18]. Many magnetic ions included in the unit cell prevent us from determining their magnetic structures in detail. Efforts were devoted to express them in a simpler way [19-21]. It has led to a block (bunch) approximation [21] as follows. The hexagonal unit cell is divided into two types (L and S) of blocks and all the magnetic moments in each block are assumed to be ferrimagnetically aligned. Each L (S) block has a net magnetic moment $\mu_{\mathrm{L}}\left(\boldsymbol{\mu}_{\mathrm{S}}\right)$. Rather flexible arrangements of $\boldsymbol{\mu}_{\mathrm{L}}$ and $\boldsymbol{\mu}_{\mathrm{S}}$ allow a variety of magnetic structures, some of which are shown in Figs. 1(b)1(e) [22-25]. Successive phase transitions from the alternating longitudinal cone (ALC) to the double fan (DF) and finally to the collinear ferrimagnet (CFi) are induced by increasing a magnetic field perpendicular to the c axis (in-plane magnetic field) [22].

The DF magnetic structure consists of collinear ferrimagnetic (parallel to \boldsymbol{M}) and commensurate cycloidal (perpendicular to \boldsymbol{M}) components propagating along the c axis. In the latter, μ_{L} and $\boldsymbol{\mu}_{\mathrm{S}}$ have phases shifted by $\pm \pi / 2$. The sign corresponds to the sense of the cycloidal component and we hereafter call it just the sense of the DF. The DF induces electric polarization perpendicular to both \boldsymbol{M} and the c axis (in-plane component $P_{a b}$ of electric polarization) [7-10], as expected by the spin-current [26] or the inverse Dzyaloshinskii-Moriya (DM) interaction [27] mechanism. The mechanisms expect a one-to-one correspondence between the direction of $P_{a b}$ and the sense of the DF. On the other hand, the CFi structure produces no electric polarization.

Recently, an out-of-plane component P_{c} of electric polarization was found experimentally in the ALC phase [25]. It was proposed that μ_{L} and μ_{S} should be arranged to form an ALC structure, as shown in Fig. 1(c), where the c components of μ_{L} and μ_{S} are aligned in the sequence of $\uparrow-\uparrow-\downarrow-\downarrow$ and the exchange striction mechanism is expected to induce P_{c}. This magnetic structure is hereafter called ALC-II to distinguish it from the conventional ALC-I shown in Fig. 1(b). P_{c} in the ALC-II phase should be independent of the direction of the helical component of the ALC structure.

We note that P_{c} is also expected to be allowed in the DF phase from the viewpoint of symmetry. Its direction should be determined by the sense of the DF or the direction of $P_{a b}$. The DF magnetic order must break all three crystalline twofold rotation axes, namely, [100], [010], and [110] axes to induce P_{c}. One of the twofold axes is preserved and P_{c} is forbidden when \boldsymbol{M} is perpendicular to the crystalline twofold axis. It is because the DF is symmetric for the twofold rotation about the axis normal to both \boldsymbol{M} and the c axis followed by the time-reversal operation, as shown by $2_{\perp M}^{\prime}$ in Fig. 1(e). In contrast, all of the twofold rotation symmetries are broken and P_{c} can be induced with \boldsymbol{M} oriented along one of the twofold axes, since the twofold rotation of the DF about the axis parallel to \boldsymbol{M} switches sense and is not a symmetric operation [2 $2_{\| M}$ in Fig. 1(e)]. P_{c} should be kept by the 120° rotation of the DF about the c axis because of the crystalline threefold
(a) Crystal structure

(b) ALC-I

(c) ALC-II
(d) CFi

(e) Magnetic unit cell of the DF

(f) In the DF phase

Mirror plane || (110)

FIG. 1. (a) Crystalline unit cell of $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$ with the hexagonal basis [17,18] drawn by VESTA [29]. Orange dashed lines express the boundaries between the L and S blocks, and red spheres denote oxygen ions on the boundaries. (b)-(e) Schematics of magnetic structures of Y-type hexaferrites within the block approximation, where the net magnetic moments μ_{L} and $\boldsymbol{\mu}_{\mathrm{S}}$ form magnetization \boldsymbol{M} : (b), (c) Alternating longitudinal cone without and with the c components of μ_{S} (referred to as ALC-I and ALC-II, respectively), (d) collinear ferrimagnet (CFi), and (e) double fan (DF). (e) also indicates twofold rotations $2_{\perp M}^{\prime}$ and $2_{\| M}$ of the DF about the axes (red bars) perpendicular to both \boldsymbol{M} and the c axis, and parallel to \boldsymbol{M}, respectively. Only the former is followed by the time reversal. (f) Relation between the directions of \boldsymbol{M} (middle, purple) and the expected P_{c} (outer, red) in the DF phase. The crystallographic symmetries are expressed by the stereogram (center, black).
symmetry. On the other hand, P_{c} should be reversed when the DF is rotated by 180° about the c axis, because this rotation is equivalent to the space inversion about the center of the L block followed by the time reversal. The relation between the directions of \boldsymbol{M} and the expected P_{c} is summarized in Fig. 1(f). P_{c} should be flipped also when the sense of the DF is switched without a change in the \boldsymbol{M} direction, since it is equivalent to $2_{\| \boldsymbol{M}}$. In this Rapid Communication, we perform an experimental study on P_{c} in the DF magnetic phase of $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$. We find that the experimental results cannot be explained by any of the three known ME mechanisms, exchange striction, inverse DM, and spin-dependent $p d$ hybridization [28], alone, but by combining the latter two mechanisms.

Single crystals of $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$ of a nominal composition were grown by the floating-zone method [22]. The starting materials were $\mathrm{BaCO}_{3}, \mathrm{SrCO}_{3}, \mathrm{Co}_{3} \mathrm{O}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$. They were mixed with the stoichiometric cation
ratio and calcined at $1100^{\circ} \mathrm{C}$ in air for 4 h . The reaction products were ground and pressed by a hydrostatic pressure of 24 MPa to form a rod. It was heated at $1200^{\circ} \mathrm{C}$ in air for 18 h . The sintered rod was cut into feed and seed rods. A molten zone was formed between them, and transferred with a speed of approximately $1 \mathrm{~mm} / \mathrm{h}$ under 10 atm of oxygen gas to grow single crystals with the use of a floating-zone furnace (type D , Cannon Machinery).

For the electric and magnetic measurements, crystalline axes of the sample pieces were determined by the backreflection Laue method. Isothermal magnetization along the [110] axis at 100 K was measured by using a superconducting quantum interference device (MPMS3, Quantum Design). In order to measure $P_{a b}$ and P_{c}, two thin samples were prepared with wide surface planes perpendicular to the [$\overline{1} 10$] and [001] axes, respectively. Silver-paste electrodes were formed on the planes. The former (latter) sample had a surface area of $1.0 \mathrm{~mm}^{2}\left(2.2 \mathrm{~mm}^{2}\right)$ and thickness of $96 \mu \mathrm{~m}(49 \mu \mathrm{~m})$. The sample was placed in a cryostat equipped with a superconducting magnet. The sense of the DF was aligned by a poling electric field E_{p} before measuring the magnetic field dependence of $P_{a b}$ and P_{c} as follows. E_{p} of $+2.1 \mathrm{MV} / \mathrm{m}$ $(\pm 4.1 \mathrm{MV} / \mathrm{m})$ was applied parallel to the $[\overline{1} 10]$ ([001]) axis with a magnetic field B of +6 T along the [110] axis forming the CFi structure at 100 K . Next, B was reduced to +0.3 T to induce the transition to the DF. Then, E_{p} was removed. After a relaxation time longer than 30 min , the displacement current was measured by using an electrometer (6517A, Keithley) while sweeping B at 100 K without any electric field. $P_{a b}$ and P_{c} were calculated by integrating the displacement current with respect to time. Here, their values were offset so that their mean values were zero in B higher than 5 T , where the nonpolar CFi structure should be dominant. The [001] sample was also used for measuring displacement current I_{c} along the c axis as a function of the magnetic field direction. E_{p} of $+4.1 \mathrm{MV} / \mathrm{m}$ was applied along the [001] axis during reduction of B from 6 to 1.6 T in the [110] direction at 100 K , and then E_{p} was turned off. After $75-\mathrm{min}$ relaxation, I_{c} was measured by using an electrometer (6517B, Keithley) while rotating the sample at a constant rate of $\pm 0.58^{\circ} / \mathrm{s}$ by using a stepping motor in B of 1.6 T at 100 K without any electric field.

The isothermal magnetization M is shown in Fig. 2(a). The field derivative $d M / d B$ shows steep changes between $+(-) 2.7 \mathrm{~T}$ and $+(-) 3.8 \mathrm{~T}$, and M is almost flat in B higher than 3.8 T. Since the behavior is similar to a previous report [22], we assign the boundaries between the DF and the CFi phases to $\pm 3.8 \mathrm{~T}$.

Figure 2(b) shows $P_{a b}$ and P_{c} as functions of $B . P_{a b}$ decreases monotonically in increasing B. In contrast, P_{c} takes maxima at around $\pm 2 \mathrm{~T}$. The difference ensures that the measured P_{c} is not just a projection of $P_{a b}$ resulting from experimental misalignment. P_{c} is expected to be coupled with the sense of the DF and hence $P_{a b}$, since P_{c} is aligned parallel to E_{p}. Both $P_{a b}$ and P_{c} change their sign upon B reversal, which is also consistent with the expectation. P_{c} is suppressed for $E_{\mathrm{p}}=0$, probably because P_{c} 's induced in DF domains with opposite senses cancel each other. Experimental results of $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$ at 10 and 200 K and those of $\mathrm{Ba}_{0.5} \mathrm{Sr}_{1.5} \mathrm{Co}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$ at 100 K are shown in the Supplemental Material [30].

FIG. 2. (a) Isothermal magnetization M and its field derivative measured at 100 K in a magnetic field B along the [110] axis. Black stars indicate the boundaries of $\pm 3.8 \mathrm{~T}$ between the DF and the CFi phases. (b) Electric polarization $P_{a b}$ and P_{c} measured at 100 K as functions of B along the [110] axis. Before measurement, a poling electric field E_{p} was applied across the phase transition from the CFi $(+6 \mathrm{~T})$ to the $\mathrm{DF}(+0.3 \mathrm{~T})$. A green dashed line shows the $P_{a b}$ value for $E_{\mathrm{p}}=+2.1 \mathrm{MV} / \mathrm{m}$. Orange solid, blue solid, and black dotted lines show the P_{c} data for $E_{\mathrm{p}}=+4.1 \mathrm{MV} / \mathrm{m},-4.1 \mathrm{MV} / \mathrm{m}$, and 0 , respectively. (c) Displacement current I_{c} along the c axis measured at 100 K while rotating B of 1.6 T in the (001) plane at a constant rate of $\pm 0.58^{\circ} / \mathrm{s}$. As shown in the right panel, φ is the azimuth angle of the B direction measured from the [110] axis. Orange circles (blue squares) show data in increasing (decreasing) φ.

Figure 2(c) shows I_{c} as a function of φ. Here, φ is the azimuth angle of the magnetic field direction measured from the [110] axis in the (001) plane. A large background, which might arise from low electric resistivity, prevents us from estimating P_{c}. Nevertheless, I_{c} has a period of 120°, which is consistent with the symmetry-based considerations [Fig. 1(f)]. The periodic behavior cannot be explained by the existence of a possible minor ALC-II phase, since the $\uparrow-\uparrow-\downarrow-\downarrow$ sequence of the c components of μ_{L} and $\boldsymbol{\mu}_{\mathrm{S}}$, and its consequent P_{c} would not be affected by the in-plane magnetic field rotation. The observed 120°-period signal is attributable to the DF magnetic order. The nodes of I_{c} are a little deviated from $60^{\circ} \times$ (integer), possibly due to some misalignment of a crystalline twofold axis [110] or a (001) plane.

FIG. 3. (a) Arrangement of atoms and magnetic moments around the α boundary. Green (blue) thick arrows indicate the directions of local magnetic moments in the $\mathrm{L}(\mathrm{S})$ block, and are parallel or antiparallel to $\mu_{\mathrm{L}}\left(\boldsymbol{\mu}_{\mathrm{S}}\right)$. (b) Two functions included in the predominant component $p_{c}^{(1)}$ of the electric dipole moment as a function of θ.

We propose a model to explain the obtained behaviors of P_{c}. From the viewpoints of symmetry and block approximation, any of the exchange striction, inverse DM interaction, and spin-dependent $p d$ hybridization alone cannot induce P_{c} in the DF phase. We combine the latter two mechanisms. The spin-dependent $p d$ hybridization mechanism [31] gives the out-of-plane component p_{c} of the electric dipole moment in a magnetic unit cell (or two primitive unit cells) as

$$
\begin{equation*}
p_{c}=\sum_{u, i} \tilde{p}_{u i}\left(\hat{\boldsymbol{e}}_{u i} \cdot \boldsymbol{m}_{u}\right)^{2}\left(\hat{\boldsymbol{e}}_{u i}\right)_{c} \tag{1}
\end{equation*}
$$

which P_{c} is proportional to. The summation is taken over pairs of neighboring magnetic (u) and oxygen (i) sites. $\tilde{p}_{u i}$ is a constant, $\hat{\boldsymbol{e}}_{u i}$ is the unit vector pointing from a site u to another i, and \boldsymbol{m}_{u} is a local magnetic moment at the site u. In calculating $\hat{\boldsymbol{e}}_{u i}$, we assume the following displacement \boldsymbol{d}_{i} of an oxygen ion at a site i by the inverse DM interaction between magnetic moments \boldsymbol{m}_{u} and \boldsymbol{m}_{v} around the oxygen ion,

$$
\begin{equation*}
\boldsymbol{d}_{i}=\sum_{u, v} \tilde{d}_{i u v} \hat{\boldsymbol{e}}_{u v} \times\left(\boldsymbol{m}_{u} \times \boldsymbol{m}_{v}\right) \tag{2}
\end{equation*}
$$

where $\tilde{d}_{i u v}$ is a constant. The displacements are expected only on four boundaries α, β, γ, and δ between the L and S blocks, which are shown in Fig. 1(a). In the figure, oxygen ions subject to the displacements are expressed by red spheres while the others are depicted as black ones.

Figure 3(a) shows a magnified view around the α boundary. The directions of the magnetic moments are expressed as
[20,21]

$$
\begin{align*}
\boldsymbol{m}_{\mathrm{L} 1} /\left|\boldsymbol{m}_{\mathrm{L} 1}\right| & =-\boldsymbol{m}_{\mathrm{L} 2} /\left|\boldsymbol{m}_{\mathrm{L} 2}\right| \\
& =\cos \left(\varphi+\theta_{\mathrm{L}}\right) \hat{\boldsymbol{e}}_{[110]}+\sin \left(\varphi+\theta_{\mathrm{L}}\right) \hat{\boldsymbol{e}}_{[\overline{1} 10]} \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
\boldsymbol{m}_{\mathrm{S} 1} /\left|\boldsymbol{m}_{\mathrm{S} 1}\right|= & -\boldsymbol{m}_{\mathrm{S} 2} /\left|\boldsymbol{m}_{\mathrm{S} 2}\right| \\
= & \cos \left(\pi-\theta_{\mathrm{S}}\right) \cos \varphi \hat{\boldsymbol{e}}_{[110]}+\cos \left(\pi-\theta_{\mathrm{S}}\right) \sin \varphi \hat{\boldsymbol{e}}_{[1] 10]} \\
& +\sigma \sin \left(\pi-\theta_{\mathrm{S}}\right) \hat{\boldsymbol{e}}_{[001]}, \tag{4}
\end{align*}
$$

where $2 \theta_{\mathrm{L}}\left(2 \theta_{\mathrm{S}}\right)$ is the fan angle in the $\mathrm{L}(\mathrm{S})$ block $\left(\theta_{\mathrm{L}}=\theta_{\mathrm{S}}=\right.$ 0 corresponds to the CFi structure), $\hat{\boldsymbol{e}}_{[h k l]}$ is the unit vector in the [$h k l]$ direction, and $\sigma(= \pm 1)$ distinguishes the sense of the DF. The DF requires that θ_{L} around the δ boundary should be the same as that around the α boundary, while turned into $-\theta_{\mathrm{L}}$ around the β and γ boundaries. Similarly, $\pi-\theta_{\mathrm{S}}$ should be kept around the β boundary, but turned into $\pi+\theta_{\mathrm{S}}$ around the γ and δ boundaries.

The magnitude $\left|\boldsymbol{d}_{i}\right|$ of the displacement is estimated with the assumption that all oxygen ions are divalent point charges. The inverse DM interaction should displace 16 oxygen ions per magnetic unit cell of the DF. Its volume is $a^{2} c / \sqrt{3}$, where a and c are lattice constants of Y-type hexaferrites and are roughly 6 and $43 \AA$, respectively $[11,18,21]$. The value of $P_{a b}$ is the order of $100 \mu \mathrm{C} / \mathrm{m}^{2}$ at most [7,9,17,22]. It corresponds to $\left|\boldsymbol{d}_{i}\right| \sim 1 \times 10^{-4} \AA$, which is much smaller than the bond length between neighboring oxygen and magnetic ions.

The assumptions give the predominant term $p_{c}^{(1)}$ of p_{c} as follows [30],

$$
\begin{align*}
p_{c}^{(1)}= & -\frac{3}{2}\left(A_{\mathrm{L} 1 \mathrm{O} 1}+A_{\mathrm{L} 2 \mathrm{O} 2}\right) \sigma \cos (3 \varphi) \sin \theta_{\mathrm{S}} \sin 3 \theta_{\mathrm{L}}-\frac{3}{2}\left(A_{\mathrm{S} 1 \mathrm{O} 2}\right. \\
& \left.+A_{\mathrm{S} 2 \mathrm{O} 2}\right) \sigma \cos (3 \varphi) \sin \theta_{\mathrm{S}} \cos ^{2} \theta_{\mathrm{S}} \sin \theta_{\mathrm{L}} \tag{5}
\end{align*}
$$

$A_{u i}$ is a constant determined by $\tilde{d}_{i u v}$ and the crystal structure, and is zero when all $\tilde{d}_{i u v}$ are zero. Note that the $\theta_{\mathrm{L}}, \theta_{\mathrm{S}}$, and φ dependences of $p_{c}^{(1)}$ are the same even though various crystal structures and compositions of Y-type hexaferrites produce a difference in $A_{u i}$. Therefore, Eq. (5) can be applied to $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$, whose occupations of $\mathrm{Ba} / \mathrm{Sr}$ and $\mathrm{Co} / \mathrm{Fe} / \mathrm{Al}$ are not fully identified. Equation (5) explains the 120°-period behavior of P_{c} and I_{c} as a function of φ shown in Fig. 2(c). It also contains the coupling between σ and the direction of P_{c}.

We compare the B dependence of P_{c} shown in Fig. 2(b) to the model with simplification: The DF phase is homogeneous without any domain walls, and fan angles θ_{L} and θ_{S} are both equal to θ. The relation between B and θ is given by the isothermal magnetization as

$$
\begin{equation*}
M(B)=M_{\mathrm{s}} \cos \theta \tag{6}
\end{equation*}
$$

M_{s} denotes the magnetization of the CFi structure and is estimated from the experimental value at +6 T . The magnetic field of +0.3 T , where the measurement of P_{c} was started, corresponds to θ of 43°. Figure 3(b) shows $\sin \theta \sin 3 \theta$ and $\sin ^{2} \theta \cos ^{2} \theta$, which are parts of Eq. (5). The former takes the extremum in the middle range of $\theta\left(\theta \sim 38^{\circ}\right)$ and disappears in the CFi state $(\theta=0)$. It qualitatively agrees with the experimental data. The superposition of $\sin \theta \sin 3 \theta$ and $\sin ^{2} \theta \cos ^{2} \theta$ does not cancel the nonmonotonic behavior for any set of nonzero $\tilde{d}_{i u v}$ although the latter decreases monotonically to zero.

Since the spin-dependent $p d$ hybridization mechanism reflects the crystalline symmetry, P_{c} could be induced in U-, X-, and other Y-type hexaferrites belonging to the space group $R \overline{3} m$ in the presence of the magnetic DF, but not in Z-type hexaferrites with the space group $P 6_{3} / m m c$.

In summary, we have revealed that the DF of the Y-type hexaferrite $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$ shows both the in-plane $P_{a b}$ and out-of-plane P_{c} components of magnetically induced electric polarization. P_{c} has a period of 120° as a function of the in-plane magnetic field direction, as predicted by the crystallographic and magnetic symmetries. The microscopic model employing both the inverse DM interaction and the spin-dependent $p d$ hybridization mechanisms qualitatively explains the observed behaviors of P_{c}.

This work was partly performed using facilities of the High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University (Project No. 18H0035), the Institute for Solid State Physics, the University of Tokyo, and RIKEN. This work is partly supported by Grants-in-Aid for Scientific Research No. 16H01065, No. 18H04309, No. 19H01835, and No. JP19H05826 from the Japan Society for the Promotion of Science.
[1] J. H. Jung, M. Matsubara, T. Arima, J. P. He, Y. Kaneko, and Y. Tokura, Phys. Rev. Lett. 93, 037403 (2004).
[2] M. Kubota, T. Arima, Y. Kaneko, J. P. He, X. Z. Yu, and Y. Tokura, Phys. Rev. Lett. 92, 137401 (2004).
[3] M. Saito, K. Taniguchi, and T.-h. Arima, J. Phys. Soc. Jpn. 77, 013705 (2008).
[4] I. Kézsmárki, N. Kida, H. Murakawa, S. Bordács, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 106, 057403 (2011).
[5] S. Toyoda, N. Abe, S. Kimura, Y. H. Matsuda, T. Nomura, A. Ikeda, S. Takeyama, and T. Arima, Phys. Rev. Lett. 115, 267207 (2015).
[6] Y. Iguchi, Y. Nii, and Y. Onose, Nat. Commun. 8, 15252 (2017).
[7] T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).
[8] K. Taniguchi, N. Abe, S. Ohtani, H. Umetsu, and T.-h. Arima, Appl. Phys. Express 1, 031301 (2008).
[9] S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Science 319, 1643 (2008).
[10] Y. S. Chai, S. H. Chun, J. Z. Cong, and K. H. Kim, Phys. Rev. B 98, 104416 (2018).
[11] P. B. Braun, Philips Res. Rep. 12, 491 (1957).
[12] J. Smit and H. P. J. Wijn, Ferrites, Philips' Technical Library (Cleaver-Hume Press, London, 1959), p. 189.
[13] K. Okumura, T. Ishikura, M. Soda, T. Asaka, H. Nakamura, Y. Wakabayashi, and T. Kimura, Appl. Phys. Lett. 98, 212504 (2011).
[14] Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett. 105, 257201 (2010).
[15] Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Nat. Mater. 9, 797 (2010).
[16] Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett. 96, 207204 (2006).
[17] S. Hirose, K. Haruki, A. Ando, and T. Kimura, Appl. Phys. Lett. 104, 022907 (2014).
[18] W. Wong-Ng, G. Liu, Y. Yan, K. R. Talley, and J. A. Kaduk, Powder Diffr. 30, 139 (2015).
[19] V. A. Sizov, R. A. Sizov, and I. I. Yamzin, Zh. Eksp. Teor. Fiz. 53, 1256 (1967) [Sov. Phys. JETP 26, 736 (1968)].
[20] N. Momozawa, Y. Yamaguchi, H. Takei, and M. Mita, J. Phys. Soc. Jpn. 54, 771 (1985).
[21] N. Momozawa and Y. Yamaguchi, J. Phys. Soc. Jpn. 62, 1292 (1993).
[22] T. Nakajima, Y. Tokunaga, M. Matsuda, S. Dissanayake, J. Fernandez-Baca, K. Kakurai, Y. Taguchi, Y. Tokura, and T.-h. Arima, Phys. Rev. B 94, 195154 (2016).
[23] S. Ishiwata, D. Okuyama, K. Kakurai, M. Nishi, Y. Taguchi, and Y. Tokura, Phys. Rev. B 81, 174418 (2010).
[24] H. B. Lee, Y.-S. Song, J.-H. Chung, S. H. Chun, Y. S. Chai, K. H. Kim, M. Reehuis, K. Prokeš, and S. Mat'aš, Phys. Rev. B 83, 144425 (2011).
[25] S.-P. Shen, X.-Z. Liu, Y.-S. Chai, A. Studer, K. Rule, K. Zhai, L.-Q. Yan, D.-S. Shang, F. Klose, Y.-T. Liu, D.-F. Chen, and Y. Sun, Phys. Rev. B 95, 094405 (2017).
[26] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
[27] I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
[28] Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014).
[29] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
[30] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.101.100403 for experimental results of $\mathrm{BaSrCo}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$ at 10 and 200 K , those of $\mathrm{Ba}_{0.5} \mathrm{Sr}_{1.5} \mathrm{Co}_{2} \mathrm{Fe}_{11.1} \mathrm{Al}_{0.9} \mathrm{O}_{22}$, and calculations in detail.
[31] T.-h. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007).

