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Crossband versus intraband pairing in superconductors:
Signatures and consequences of the interplay
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We analyze the paradigmatic competition between intraband and crossband Cooper-pair formation in two-
band superconductors, neglected in most works to date. We derive the phase-sensitive gap equations and describe
the crossover between the intraband-dominated and the crossband-dominated regimes, delimited by a “gapless”
state. Experimental signatures of crosspairing comprise notable gap splitting in the excitation spectrum, non-BCS
behavior of gaps versus temperature, as well as changes in the pairing symmetry as a function of temperature.
The consequences of these findings are illustrated on the examples of MgB2 and Ba0.6K0.4Fe2As2.
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I. INTRODUCTION

Multiband superconductivity is known to promote novel
quantum phenomena of great fundamental importance and
versatility [1]. Among recent examples are optically excited
collective modes in multiband MgB2 [2], the emergent phe-
nomena at the BCS-BEC crossover in FeSe [3], and at oxide
interfaces [4]. The strong scientific appeal of multiband super-
conductivity stems from its pronounced tunability. External
pressure, lattice strain effects, gating, chemical doping, pho-
toinduction, quantum confinement, and surface effects are all
able to move and change the band dispersions and the position
of the chemical potential with respect to Lifshitz transitions
[4–9], where superconducting properties can radically change.

To date, the multiband electronic structure has proven to be
of crucial importance in rather versatile superconducting sys-
tems, such as MgB2 [10], iron-based compounds [11–16], su-
perconducting nanostructures [17–21], two-dimensional (2D)
electron gases at interfaces [22–24], metal-organic supercon-
ductors [25–27], etc. In such multiband superconductors, the
pairing interaction and the proximity/hybridization of two or
more bands can result in the formation of Cooper pairs with
electrons originating from different bands, a phenomenon
termed “crossband pairing” or simply “crosspairing.” Partic-
ularly, the proximity of the bands allows one to justify the
Cooper instability driven by an attractive interaction with a
sizable enough energy scale as the mechanism behind cros-
spairing. Moreover, in the case that the pairing interaction
strongly depends on the momentum, then one is able to
connect different Fermi-surface pockets [28], which promotes
crosspairing. This pairing is to be distinguished from the
Josephson-like pair transfer between intraband condensates,
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which is usually taken as their sole coupling in multiband
superconductors. Crosspairing and intraband pairing are in-
tuitively competitive, therefore it is necessary to understand
their interplay qualitatively and quantitatively, together with
associated changes in physical properties and observables.
Such an understanding is far from established, as crosspair-
ing in competition with intraband pairing has been predom-
inantly neglected in studies to date. In superfluid systems
with at least two fermionic species, the partially overlapping
bands at the Fermi level are prone to crosspairing, as dis-
cussed in Refs. [29,30]. In superconductors, the hybridiza-
tion of multiple bands close to the Fermi level is favorable
for crossband pair formation. This occurs in the iron-based
superconductors (FeSCs) which present hybridized orbitals
[31,32], cuprates with the hybridization of dx2−y2 and dz2

orbitals [33,34], and also in the heavy-fermion compounds,
where crosspairing between electrons with f and d orbital
character has been considered [35]. However, even without
hybridization, the plain proximity of multiple bands can
facilitate crosspairing, as illustrated in Fig. 1 for bulk and
atomically thin MgB2 or field-effect doping in strained MoS2

nanolayers [36].
In this paper, we examine the interplay between intra- and

crossband pairing in two-band superconductors and its experi-
mental signatures. The paper is organized as follows. In Sec. II
we present our theoretical model. Section III contains the
obtained results, starting from the startling behavior of the ex-
citation gaps in the presence of crosspairing and the discussion
of a possible “gapless” state. Further discussion comprises
the quantification of the reported effects in cases of some
exemplified multiband (and multigap) materials, and possible
emergent phase-dependent (phase-frustrated) phenomena as
a function of temperature. Our findings are summarized in
Sec. IV, where an outlook to possible further studies is also
given.
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FIG. 1. The relevance of crosspairing is illustrated based on the
band structure of (a) bulk MgB2 [37] and (b) 6-monolayer MgB2

[38]. Only σ bands close to the � point of the Brillouin zone are
shown, with chemical potential μ = 500 meV and energy scale of
the pairing � = 75 meV. In (b), each interior monolayer contributes
a pair of holelike bands σ1 and σ2, and the surface band is denoted by
S′. The (purple) overlapping shadows project the momentum states
where crossband pairing between opposite momenta states among
the σ bands is feasible.

II. THEORETICAL FORMALISM

We reformulate the mean-field equations for the supercon-
ducting order parameter, going beyond the Suhl, Matthias, and
Walker (SMW) extension of the BCS theory [39]. This results
in an extended self-consistent and phase-dependent set of
equations for the several components of the order parameter,
with strongly hybridized excitation spectra. The mean-field
Hamiltonian including both intraband and crossband pairing
reads

H =
∑
i,k,σ

εi(k)c†i,kσ
ci,kσ + Hint, (1)

Hint =
∑
i, j

∑
k

[�i j (k)c†i,k↑c†j,−k↓ + H.c.], (2)

where i, j = 1, 2 represent the band index, and σ =↑,↓ the
spin. Here, �i j (k) = ∑

k,l=1,2

∑
k′ Vi j,kl (k, k′)〈ck,−k′↑cl,k′↓〉

are the pairing amplitudes, and εi(k) is the band-dependent
kinetic energy of the electrons. We note that Eq. (1) re-
sembles the Hamiltonian of a two-band system with hy-
bridization upon the change from orbital to the band ba-
sis [32]. The full k-dependent form of the interaction ma-
trix is given by Vi j,kl (k, k′) = −gi j,kl�(� − |ζi(k)|)�(� −
|ζ j (k)|)�(� − |ζk (k′)|)�(� − |ζl (k′)|), where � is the
average energy scale of the effective interaction, and
ζi(k) = εi(k) − μ with chemical potential μ. In gi j,kl =
(

g11,11 g11,22 g11,(12)
g22,11 g22,22 g22,(12)

g(12),11 g(12),22 g(12),(12)

), the upper left 2 × 2 inner matrix

corresponds to the well-established SMW case [39], and
the third row and column include the crosspairing [where
(12) indicates symmetrization under given indices, so that,
e.g., g(12),(12) = g12,12 + g21,21]. In the interaction matrix the
effective attraction between electrons is given by its diagonal

elements, and the off-diagonal ones describe the Josephson-
like coupling between intraband and crossband condensates.

In what follows, we simplify our indices as 11 ≡ 1, 22 ≡ 2,
and (12) ≡ 3. Next, we use the Gor’kov Green’s function
formalism to obtain the pair amplitude equations [19,40]. In
momentum space the two excitation spectra without cross-
pairing (i = 1, 2) are ε2

i = ζ 2
i + |�i|2 and the pair amplitudes

are given by �i(k) = |�i|eiϕi�(� − |ζi(k)|), where ϕi is the
phase of the pair amplitude.

The crosspairing pair amplitude �3 hybridizes the energy
spectra of the two BCS-like excitation branches,

E±(θ ) =
√

1
2

[
ε2

1 + ε2
2 + 2|�3|2 ± b(θ )

]
, (3)

b(θ ) =
√(

ε2
1 − ε2

2

)2 + 4|�3|2r(θ ), (4)

where r = (ζ1 − ζ2)2 + |�1|2 + |�2|2 + 2|�1||�2| cos θ and
θ = 2ϕ3 − ϕ1 − ϕ2. We emphasize here that the angle θ will
introduce other degrees of freedom in our system depending
on the combination of the couplings, as will be shown later.
The excitation gaps �±(θ ) coincide with the minimum energy
of the excitation branches E±(θ ). These are the two gaps
�± present in the density of states (DOS), however, these
gaps no longer correspond to the energy needed to break
intraband Cooper pairs (as is conventionally the case). Instead,
they describe the energy needed to disallow either intra- or
crossband pairing.

The self-consistent equations for the pair amplitudes are
given by

�i = 1

2

∑
j

gi j

∫
d3k

(2π )3
� j[χ

+
j f (E+) + χ−

j f (E−)], (5)

where f (E ) = 1
2E tanh ( βE

2 ), χ±
i = 1 ± 1

b(θ )χi, χ1(2) = ε2
1(2) −

ε2
2(1) + 2|�3|2(1 + |�2(1)|eiθ /|�1(2)|), χ3 = (ζ1 − ζ2)2 +

|�1|2 + |�2|2 + 2|�1||�2|e−iθ , and β = 1/kBT . Note that
these pairing amplitudes (i.e., the order parameters in the
problem) do not correspond to the experimentally measurable
gaps �±.

III. RESULTS AND DISCUSSION

Before solving the above formalism to reveal the differ-
ent physics brought by crosspairing, we introduce parabolic
bands and dimensionless effective couplings, λi j = gi jNj (0),
where Nj=1,2(0) is the band-dependent density of states and
N3(0) = N1(0) + N2(0). We start by solving Eq. (5) when all
couplings λi j are positive and with the same phase, i.e., θ = 0.
To visualize the effect of crosspairing we fix all parameters
but λ33: EF = 200 meV, � = 30 meV, λ11 = 0.4, λ22 = 0.3,
λi j,i �= j = 0.05.

A. Excitation gaps in the presence of crosspairing

In Figs. 2(a) and 2(b), we show the excitation gaps and all
three pairing amplitudes at 4.2 K. As crosspairing coupling
λ33 is increased, the two excitation gaps �+ and �− are split
further apart: Increasing �3 strengthens �+ and suppresses
�−. In other words, �3 interacts constructively with �1 and
destructively with �2, generating �+ and �−, respectively.
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FIG. 2. Effect of crosspairing for the same phase. (a) Excitation
gaps with their (b) corresponding pair amplitudes as a function of
λ33 at T = 4.2 K. The three miniplots above (a) show the density
of states for λ33 = 0.1, 0.15, and 0.2, illustrating the behavior in
the intraband-dominated regime, gapless state, and the crosspairing
dominated regime, respectively. (c) Mean-field critical temperature
vs λ33.

This occurs up to a characteristic value λ33 = λc (roughly
half the average of λ11 and λ22). This characteristic value
marks the maximal competition between the intraband and
the crossband pairing channels and separates the two regimes:
the intraband-dominated regime (IDR) for λ33 < λc, and a
crosspairing-dominated regime (CDR) for λ33 > λc. In the
CDR, both gaps increase at the same rate, similarly to the
one-band scenario. Therefore the CDR describes a two-gap
system which is characterized by a sole order parameter �3,
while the intraband pair amplitudes participate only passively,
by proximity [41,42]. Figure 2(c) shows that superconducting
critical temperature Tc increases with λ33 faster than expected
considering the range of values of λ33 alone.

In the miniplots above Fig. 2(a), we show the density
of states [as a measurable quantity in scanning tunneling
microscopy (STM)/scanning tunneling spectroscopy (STS)]
for the IDR, CDR, as well as for the crossover point λ33 = λc.
Note that in the latter situation the inner coherence peak
approaches zero energy, and may disappear at exactly zero
for a favorable combination of parameters. That case would
mark a gapless regime, where the weaker gap is no longer
directly detectable, but all contributing pair amplitudes still
play a role in all observables in, e.g., applied magnetic field
or transport measurements. Note that this situation is very
different from the gapless state in a two-band superconductor
at the symmetry-breaking transition due to impurity scattering

FIG. 3. Energy dispersions corresponding to Fig. 2, for λ33 in-
creased towards the gapless state.

[43,44]. In the present case, we consider a clean system where
superconducting gaps extracted from the tunneling spectra of
STM would no longer coincide with the ones extracted from
low-temperature angle-resolved photoemission spectroscopy
(ARPES) [45] using a normal-state band structure as a refer-
ence. Moreover, the lowest-energy excitation branch exhibits
a linear V-shaped dispersion in our gapless state (see Fig. 3).
Such a multiband system has a peculiar multicomponent com-
position, with the coexistence of a large-gap condensate and
the in-gap states having a free-particle character. This leads to
a finite DOS at low energies (without any disorder present),
and a radically changed temperature dependence of all su-
perconducting properties with respect to the gapped state.
These emergent properties make the gapless state induced by
crosspairing a unique feature of multiband superconductors,
worthy of further investigation.

B. Example of MgB2

To quantify the effects of crosspairing, it is instructive to
take the example of the best-known two-gap superconductor
MgB2 [46]. This superconductor has four contributing bands,
two σ bands for the stronger gap and two π bands for the
weaker one. The distance of two σ bands in the vicinity
of the Fermi level is approximately 75 meV [see Fig. 1(a)].
Taking the parameters μ = 500 meV and � = 75 meV from
Refs. [37,47], we consider the crosspairing between the σ

bands, with the coupling matrix

λi j =

⎛
⎜⎝

0.275 0.032 λi3 0.032
0.032 0.274 λi3 0.032
λi3 λi3 0.1 0.01

0.01 0.01 0.01 0.22

⎞
⎟⎠. (6)

The above matrix is asymmetric because of different DOS
associated with each band. λi4 is the coupling to the π bands,
and the third column and row correspond to the coupling to
the crosspairing channel, with λi3 as a free (small) parameter.
Other coupling constants are taken from the literature, and
yield the experimentally verified gaps of MgB2 (≈7 and
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FIG. 4. Superconducting gaps of bulk MgB2 as a function of
temperature, for intraband pairing only (solid lines), and in the
presence of weak crosspairing (dashed lines).

3 meV) in the absence of crosspairing (λi3 = 0, see Fig. 4).
Even a small λi3 = 0.01 yields a 2 meV split of the two σ

gaps and a 1 K increase in Tc. This gives confidence that
crosspairing effects, even if seemingly small, can lead to
significant modifications of the gap spectrum without sig-
nificantly changing Tc. That in turn calls for the revisiting
of theoretical approaches, e.g., to include crosspairing in
anisotropic Eliashberg calculations even for materials that
seemed previously well described [48,49], as well as revis-
iting the available experimental data (bearing in mind the
nonequivalence between �± and the pairing amplitudes in the
presence of crosspairing). Conducting more refined ARPES
measurements (e.g., in the case of crystalline MgB2, on two
σ bands separately) can provide evidence for the gap splitting
caused by crosspairing.

C. Phase-frustrated phenomena

Last but not least, we discuss the phase-frustrated solutions
of Eq. (5), with nonzero angle θ . For example, in the family
of FeSCs one can have two cases where a nontrivial phase dif-
ference is present. The first is the conventional s± case, which
contemplates a π -phase difference between electronlike and
holelike pair amplitudes [50]. The second is the orbital an-
tiphase s± case, with a π -phase difference between bands
of the same type (electronlike or holelike), as reported in
the optimally doped (BaK)Fe2As2 (Tc = 36 K) [51–53]. This
compound presents two holelike bands (α, β) stemming from
two nested Fermi sheets at the � point, and two electronlike
bands (γ , δ) stemming from two nested Fermi sheets at the
M point. The proximity of both pairs of bands to the Fermi
level and the smallness of their interband distance justifies
the assumption of crosspairing between bands α and β or γ

and δ. To identify the emergent effects, we will consider the
effect of crosspairing only between α and β (assuming similar
consequences for crosspairing between γ and δ). We take
the interband distance between α and β as 10 meV and the
Fermi level at μ = 50 meV, following Ref. [54]. To obtain the
gaps (�±) as measured in the low-temperature experiments of
Ref. [16] (≈12.4 and 6.2 meV extrapolated to T = 0), we take

FIG. 5. (a) Excitation gaps �±, and (b) real part of the pair
amplitudes �R

i as a function of temperature, for parameters of
(α, β ) bands in (BaK)Fe2As2, with nominal s± antiphase and in the
presence of crosspairing. Data points with error bars are the exper-
imentally measured gaps of Ba0.6K0.4Fe2As2 [16]. For microscopic
parameters reproducing the experimentally measured gaps at zero
temperature (see text), an s± → s++ transition is found at 36 K,
corresponding to the critical temperature of the measured gaps at the
� point of Ba0.6K0.4Fe2As2 [16].

for the coupling matrix

λi j =
⎛
⎝ 0.51 λ12 λ13

0.5λ12 0.39 λ13

0.5λ13 0.5λ13 0.25

⎞
⎠. (7)

Here, λ12 is taken negative, which is the standard way to ob-
tain the sign change in the band-dependent order parameters
(as reported in Ba0.6K0.4Fe2As2 [55]). We introduce a weak
repulsion λ12 = −0.005, which induces a phase shift between
the two intraband pair amplitudes, ϕ1 − ϕ2 = π . In such a
case, the coupling of the crosspairing pair amplitude with the
intraband pair amplitudes (for λi3 > 0) will introduce frustra-
tion on the phase of the crosspairing order parameter ϕ3. Phase
frustration of a similar sort is known in three-band systems
[56–58] and can lead to skyrmionic vortex states [59–61],
but is not possible in a two-band system unless crosspairing
is present. In the present case, we reveal additional different
physics, as crosspairing induces an s± → s++ transition as a
function of temperature, as shown in Figs. 5(a) and 5(b) for
exemplified parameters of (BaK)Fe2As2. Here, it is important
to differentiate our results from the s± → s++ transition found
earlier due to impurities [62] or due to symmetry breaking at
the sample surface of a two-band s± superconductor [63]. The
transition reported here is solely caused by crosspairing, and
presents an entirely different aspect in the analysis of time-
reversal symmetry breaking in multiband superconductors.
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In the example shown in Figs. 5(a) and 5(b) based on
(BaK)Fe2As2, after the s± → s++ transition, the pair ampli-
tudes recover the same phase (θ = 0) up to the expected BCS
critical temperature of ≈80 K. However, in the experiment
of Ref. [16], the superconducting gaps abruptly cease at Tc ≈
40 K, for reasons not understood to date. Without claiming to
describe the experimentally observed non-BCS temperature
behavior of the gaps, we notice that our gaps �+ and �−
in Fig. 5(a) very closely match the experimentally measured
ones up to the experimentally observed Tc of 36 K, and the
temperature of the crosspairing-driven s± → s++ transition
exactly matches the experimentally observed Tc where super-
conductivity abruptly ceases. In other words, an s± two-band
system, with substantial crosspairing present, can exhibit a
non-BCS-like temperature dependence of the gaps in cases
when the transition from the s± to the s++ order is disallowed
in any way.

IV. CONCLUSIONS AND OUTLOOK

In summary, although mostly neglected to date, the cross-
band pairing in multiband superconductors is certainly of
importance in materials with hybridized or energetically close
bands in the vicinity of the Fermi level. In this regime,
the interplay between intra- and crossband pairing leads to
several unique effects. For one, crossband pairing increases
the splitting between intraband gaps, with a tendency to de-
crease the weaker gap towards an entirely different “gapless”
state, signatures of which will still be observable since a
vanishing gap does not imply vanishing order parameter(s) in
this regime. The crosspairing also introduces the possibility
of a phase frustration between the pairing channels, leading
to other transitions as a function of temperature (such as
s± → s++), and a likely nontrivial response of the super-
conductor to, e.g., the magnetic field [64]. Our results call
for revisiting the existing theories and experimental data for
multiband superconductors with close bands, bearing in mind

also that the band dispersions and chemical potential can be
tuned towards a parameter regime where the above-mentioned
signatures of crosspairing can be detected. In that context, we
point out the most recent measurements of Ref. [4], where the
tunability of multiple gaps has been achieved at the oxides’
interface by gate doping around a Lifshitz transition, as the
closest experimental system to our present model.

Besides the needed generalization to the case of multiple
(3+) bands, the outlook of the present study is very broad. It
includes understanding the effects of impurities, particularly
magnetic ones where DOS signatures of crosspairing near
a gapless state can overlap with the Majorana zero-energy
bound state [65,66]. It is also of interest to further examine the
intra- to crosspairing competition in the presence of spin-flip
scattering [67], oddness in parity [15], and photoinduced phe-
nomena [9,68]. Even beyond superconductivity, crosspairing
and its competition with intraband pairing remains insuffi-
ciently explored in molecular optics [69], multicomponent
superfluidity [29], and quantum chromodynamics [30].
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