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We present a theory of superconducting p-n junctions. To this end, we consider a two band model of doped
bulk semiconductors with attractive interactions between the charge carriers and derive the superconducting
order parameter, the quasiparticle density of states, and the chemical potential as a function of the semiconductor
gap �0 and the doping level ε. We verify previous results for the quantum phase diagram for a system
with constant density of states in the conduction and valence band, which show BCS-superconductor to
Bose-Einstein-condensation (BEC) and BEC-to-insulator transitions as a function of doping level and the size of
the band gap. Then, we extend this formalism to a density of states which is more realistic for 3D systems and
derive the corresponding quantum phase diagram, where we find that a BEC phase can only exist for small band
gaps �0 < �∗

0. For larger band gaps, we find rather a direct transition from an insulator to a BCS phase. Next,
we apply this theory to study the properties of superconducting p-n junctions. We derive the spatial variation of
the superconducting order parameter along the p-n junction. As the potential difference across the junction leads
to energy band bending, we find a spatial crossover between a BCS and BEC condensate, as the density of charge
carriers changes across the p-n junction. For the two-dimensional system, we find two possible regimes, when
the bulk is in a BCS phase, a BCS-BEC-BCS junction with a single BEC layer in the space charge region, and
a BCS-BEC-I-BEC-BCS junction with two layers of BEC condensates separated by an insulating layer. In three
dimensions we find that there can also be a conventional BCS-I-BCS junction for semiconductors with band gaps
exceeding �∗

0. Thus, we find that there can be BEC layers in the well controlled setting of doped semiconductors,
where the doping level can be varied to change and control the thickness of BEC and insulator layers, making
Bose-Einstein condensates thereby possibly accessible to experimental transport and optical studies in solid-state
materials.

DOI: 10.1103/PhysRevB.101.094514

I. INTRODUCTION

The existence of a superconducting state below a critical
temperature Tc is not restricted to materials which are typical
metals at higher temperatures, but can also occur in materials
that are known to be semiconductors [1,2]. For example,
superconductivity has been observed at doping concentrations
as small as 4 × 1017 cm−3 in SrTiO3, with a critical tem-
perature of Tc = 0.1 K [3], and in a wide range of doped
semiconductors, such as B-doped diamond [4–6] and in doped
silicon under high pressure [7], with critical temperatures up
to Tc = 10 K.

The BCS theory of superconductivity [8–10] can be ex-
tended and applied to such materials. Eagles [11] has solved

the BCS equations within a single-band semiconductor model
and found a crossover to a BEC condensate as the doping
concentration is lowered. There, the charge carriers form local
pairs which condense into a Bose-Einstein condensate at low
temperatures [12]. Nozieres and Pistolesi [13] have extended
this theory to a two-band semiconductor model and studied
the superconducting-insulator transition as a function of the
semiconductor energy gap, for a constant density of states
in each band, as well as for a particular nonconstant density
of states with an exponential dependence on energy. BCS-
BEC crossover in multiband systems has been further studied
in Refs. [14–16]. Experimentally, the BCS-BEC crossover
has first been studied in artificial atom systems [17,18]. Re-
cently, the BCS-BEC has been experimentally studied in the
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Fe-Based superconductor Fe1+ySexTe1−x [19] by chemical
variation of the doping level and in single-crystalline lithium-
intercalated layered nitrides by gate controlled doping [20].
Superconductivity has been discovered in magic angle twisted
bilayer graphene at low carrier concentrations, which is tun-
able by gate controled doping [21] and might open another
venue to study the BCS-BEC crossover experimentally.

Junctions between p- and n-doped semiconductors form
the basic element of semiconductor devices whose rectifying
behavior is based on the energy band bending and on the
different majority charge carriers, holes, and electrons, re-
spectively on either side of the junction. As superconductivity
has been observed both in p- and n-doped semiconductors,
intriguing questions arise about the physical properties of
superconducting p-n junctions [22]: How does the supercon-
ducting order parameter vary spatially across the junction?
Does a p-n junction form a Josephson contact, and how large
is the supercurrent across the p-n junction? Such questions
have been explored for YBa2Cu3O7/Nd1−xCexCu2O4 junc-
tions [23], with an estimated depletion width of less than 1 nm
[22], for the p-type superconductor YBa2Cu3O (YBCO) over
the n-type superconducting cuprate Pr2CexCuO4 (PCCO)
[24], as well as for iron pnictide p-n junctions, where the
redistribution of charges could possibly lead to the suppres-
sion of the local superconducting order parameter near the
interface for both single crystals. This may play a role in the
junction formation itself [25]. The superconductivity in magic
angle twisted bilayer graphene has been obtained both for
electronic and hole gate controlled doping [21], which might
allow us to form superconducting p-n junctions from twisted
bilayer graphene.

Here, we study superconducting p-n junctions within a
two-band model, based on a self-consistent solution of the
BCS equations, the Poisson equation, and the particle number
conservation. In the next section, we first review the two-band
theory of superconductivity for a constant density of states.
Then, we generalize it to a more realistic three-dimensional
density of states. We derive the pairing amplitude, the chem-
ical potential, the quasiparticle density of states, and the
coherence length ξ as functions of the semiconductor band
gap �0 and the doping level ε. We identify the crossover
between superconductivity (SC) and Bose-Einstein conden-
sation (BEC) and derive the corresponding phase diagram in
the ε-�0 parameter space. Based on this model, in Sec. III
we derive the properties of a superconducting p-n-junction
homojunction (with same parent material on both sides of
the junction), in particular the spatial dependence of the order
parameter, the quasiparticle excitation energy, and the pairing
coherence length across the p-n junction.

II. TWO-BAND THEORY OF SUPERCONDUCTIVITY

In order to derive the superconducting order parameter �

and the chemical potential μ, we need to solve the BCS self-
consistency equation along with the equation for the conserva-
tion of particle number N . The particle number conservation
at T = 0 gives [13]

2
∫

dξkρ(ξk )v2
k = N = 2

∫ εF

dξkρ(ξk ), (1)

FIG. 1. Left: two-band model with valence-band edge EV =
−�0 and conduction-band edge EC = �0, semiconductor band gap
2�0, total bandwidth 2D. Energy range with attractive pairing 2ωD

around Fermi energy εF = Ec + ε with doping level ε. Right: model
densities of states as a function of energy: two-dimensional (2D)
density of states (DOS) (blue) and 3D DOS (green).

where ρ(ξk ) is the density of states, v2
k = [1 − (ξk −

μ)/E (ξk )]/2 with electron energy dispersion ξk , E (ξk ) =√
(ξk − μ)2 + �2 is the quasiparticle energy. εF is the Fermi

energy at T = 0 K. At T = 0, there are no thermally excited
charge carriers. Doping introduces additional electrons or
holes. However, in the dilute doping limit, electrons and holes
are trapped at low temperature by the donor and acceptor
atoms, respectively. As the concentration of donor atoms ND

or acceptor atoms NA increases, their eigenstates hybridize
and eventually delocalize into impurity bands, which at larger
doping concentrations merge with the conduction or valence
band, respectively. Here, we model the doping in a simplified
way by a continuous variation of the Fermi energy, for donor
doping by εF = EC + εn and for acceptor doping by εF =
EV − εp (see Fig. 1).

These doping parameters are related to the donor concen-
tration ND and the acceptor concentration NA, respectively, for
the 2D DOS via ND = 2ρ0εn, NA = 2ρ0εp, where the factor 2
accounts for the spin degeneracy. For the 3D DOS, one finds
ND = 2 2

3ρ0 ε3/2
n , NA = 2 2

3ρ0 ε3/2
p .

The BCS weak-coupling theory gives for T = 0 K the self-
consistency equation for the order parameter �,

1 = U

2

∫ μ+ωD

μ−ωD

dξk
ρ(ξk )√

(ξk − μ)2 + �2
, (2)

where U is the attractive interaction strength, and 2ωD is
the size of the typical energy window around the chemical
potential μ where the effective interaction is attractive.

Quasiparticle density of states. The quasiparticle density of
states is defined by

N (E ) = − 1

π
Tr ImĜE , (3)

where E is the quasiparticle excitation energy relative to the
chemical potential μ, and ĜE is the quasiparticle propagator.

Noting that in the presence of the pairing gap �, the prop-
agator is given by [26] GE (ξk ) = (E + iδ + ξk − μ)/[(E +
iδ)2 − �2 − (ξk − μ)2], and thus we get via complex integra-
tion

N (E ) = Re

(
ρ(μ +

√
E2 − �2)

|E |√
E2 − �2

)
. (4)
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FIG. 2. 2D (top) and 3D (center) quasiparticle density of states,
Eq. (4), as a function of quasiparticle energy E , when the chemical
potential is in the conduction band. Bottom: quasiparticle density of
states as function of quasiparticle energy E for the 3D DOS, when
the chemical potential is in the semiconductor band gap.

When the chemical potential is within a band, e.g., in the
conduction band, �0 < μ < D, the quasiparticle density of
states N (E ) diverges at E = ±�, the coherence peak, and
is zero for smaller energies, so that � is the quasiparticle
gap [see Fig. 2 (top and center panels)]. Remarkably, in the
case when the chemical potential is in the semiconductor gap,
−�0 < μ < �0, the quasiparticle density of states N (E ) does
not diverge for any E ; see Fig. 2 (bottom), but it is still peaked.
This is an indication that the system is in a Bose-Einstein con-
densate, as we discuss below. Moreover, the quasiparticle gap
is then enhanced to �̃ =

√
�2 + (�0 − |μ|)2 > � exceeding

the pairing order parameter �.
BCS-BEC crossover. There is a crossover from BCS su-

perconductivity to Bose-Einstein condensation (BEC) as the
concentration of charges carriers is lowered by decreasing the
doping level ε [13]. Let us study this BCS-BEC crossover
in more detail. One way to distinguish between BCS and
BEC is to measure the coherence length ξ of the condensate
pairs. When ξ > λF , where λF is the Fermi wavelength, many

electron pairs overlap with each other, which is typical for
a superconducting condensate. When ξ < λF , however, the
electron pairs do not overlap, but they instead form well-
defined bosons which condense below the transition temper-
ature Tc. Therefore, let us next calculate ξ in the two-band
model. ξ can be derived by calculating the expectation value
of the distance between two electrons with opposite spin in
the ground state,

ξ 2 =
∫

drr2g(r)

/∫
drg(r). (5)

Here, g(r) is the pair-correlation function in the ground state,
defined by

g(r) = |〈ψ |ψ†
+(r)ψ†

−(0)|ψ〉|2, (6)

where |ψ〉 is the BCS trial ground state given by

|ψ〉 =
∏

k

(uk + vkc†k+c†k−)|0〉. (7)

Here c+
kα

are the fermion creation operators in a state with
momentum k and spin α = ±. |0〉 is the vacuum state, and
2ukvk = �/

√
(ξk − μ)2 + �2. The electron field operators

are given by ψ+
α (r) = ∑

k eıkrc+
kα

. Thereby we find

ξ 2 = −
∑

k

ukvk∇2
k ukvk

/∑
k

u2
kv

2
k . (8)

We will calculate ξ below for the two-band model explicitly.

A. Two-band model with 2D DOS

Let us first review the theory for the two-band model with
a constant density of states ρ in both the valence and the
conduction band, separated by an energy gap 2�0 as shown
in Fig. 1. This corresponds to a two-dimensional system, as
considered in Ref. [13]. As we will mostly be interested to
understand the BCS-BEC crossover limit where the Fermi
energy relative to the band edge is small, we will first follow
Ref. [13] in assuming that ωD is a large energy scale. This
means that we assume that the electron-electron interaction is
attractive in both bands, so that we can set ωD = D. Thereby,
the BCS self-consistency equation simplifies to

1 = ρU

2

(∫ ωD

�0

+
∫ −�0

−ωD

)
dξk

1√
(ξk − μ)2 + �2

, (9)

which gives

2

ρU
= ln

(
ωD − μ +

√
(ωD − μ)2 + �2

�0 − μ +
√

(�0 − μ)2 + �2

×−�0 − μ +
√

(−�0 − μ)2 + �2

−ωD − μ +
√

(−ωD − μ)2 + �2

)
. (10)

For the limiting case of a gapless, metallic system, i.e.,
�0 = 0, we can express the interaction factor ρU in terms
of the superconducting order parameter �m via

�m ≡ �(�0 = 0) = 2ωD exp

(−1

ρU

)
, (11)
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and rewrite Eq. (10) as

�2
m = [(�0 − μ) +

√
(�0 − μ)2 + �2]

× [(�0 + μ) +
√

(�0 + μ)2 + �2]. (12)

Particle conservation in the doped semiconductor implies that
the number of particles does not change as superconductivity
sets in. Therefore, we need to ensure the equality between the
number of particles in the normal and in the superconducting
state: For an n-doped semiconductor, electrons are released
into the conduction band by donor atoms. We model this by
adding an extra number of electrons δN , which for a constant
density of states in the conduction band can be written as
δN = 2ρε. Here, ε = εF − �0 is the Fermi energy measured
from the conduction-band edge �0,

2ρε︸︷︷︸
δN

+ 2ρ

∫ −�0

−D
dξk =

(∫ −�0

−D
+
∫ D

�0

)
dξk

(
1 − ξk − μ

E (ξk )

)
.

(13)

Here, 2D represents the total bandwidth of the semiconductor.
For large D + μ � � and D − μ � �, integration gives

2ε = 2μ −
√

(�0 + μ)2 + �2 +
√

(�0 − μ)2 + �2. (14)

Equations (12) and (14) are the set of equations that describe
the BCS superconducting state of semiconductors with con-
stant density of states.

By numerically solving these equations we obtain plots
for the superconducting order parameter �, Fig. 3, top, and
the chemical potential μ Fig. 3, bottom, as functions of the
semiconductor gap �0. We thereby reproduce the results of
Ref. [13]: In the undoped semiconductor there is a sharp
superconductor-insulator transition at a critical �0c, which
occurs at half of the superconducting order parameter in a
metallic superconductor, �0c = �m/2. Here �m parametrizes
the strength of the attractive interaction via Eq. (11). We note
that this result holds in the limit of ωD � �0 only, where the
energy range of attraction extends beyond the energy gap �0.
In the opposite limit, the undoped system would remain in the
insulator phase. At finite doping, the pairing amplitude � is
finite for any value of the semiconducting gap �0, since there
are always charge carriers present, which can be paired for
any value of �0.

As mentioned above, there is a crossover to BEC at low
concentration of charge carriers. This can be seen by the fact
that as the pairing sets in, the chemical potential μ drops
below the conduction-band edge even when it has been in
the conduction band before; see Fig. 3, bottom. We obtain the
correlation length for the 2D density of states for D � �0,

ξ 2 = 1

4m�
h

(
s = μ

�
, t = �0

�

)
, (15)

where

h(s, t ) = [π − arctan(t − s) − arctan(t + s)]−1

〈
2 − πt

+
∑
α=±1

(
(t − αs) arctan(t − αs) + 1

(t − αs)2 + 1

)〉
.

(16)

FIG. 3. Top: superconducting order parameter �. Bottom: chem-
ical potential μ as functions of the semiconductor band gap �0, at
different doping levels ε for T = 0 K and 2D constant density of
states. �m is the superconducting order parameter for the metallic
(�0 = 0) case, Eq. (5). The dashed line is the conduction-band edge
Ec. When μ crosses below Ec, a crossover from BCS to BEC occurs.

For μ > �0 we recover the BCS coherence length ξ given
by ξ 2 = μ−�0

4m�2 [27]. When the chemical potential is at the
band edge μ = �0, we find ξ 2 = 1/(πm�), which is the size
of a single bound electron pair with pairing energy �. For
the undoped semiconductor with symmetric bands, μ = 0,

the coherence length is given by ξ 2 = 1/(3m�0) for � → 0,
which coincides with the size of a single bound electron pair
with binding energy �0. For |μ| < �0 and � → 0 one finds
ξ 2 = 1/(3m�0)(�2

0 + μ2)/(�2
0 − μ2). We note that while

this defines the smallest size of the bound pair in this simple
two-band model with band gap 2�0, the actual size of the
bound electron pair is modified by the fact that the states in
the tails of the band of a doped semiconductor are localized
with a finite localization length Lc, which in the dilute dopant
limit becomes the effective Bohr radius of the ground state of
the dopant levels. Thus, as the doping is reduced there occurs a
metal-insulator transition to Anderson localized states, which
has to be implemented in the pairing theory to obtain a more
realistic description of the BCS-BES crossover and may result
in a localization transition to localized bosons [28].

We conclude that there is a crossover from supercon-
ductivity to dilute bound electron pairs when the chemical
potential is at one of the band edges, μ = ±�0. Inserting
that condition into Eqs. (12) and (14) we find ε = �0 +
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FIG. 4. BCS-BEC crossover diagram: doping parameter ε vs
semiconductor band gap �0 in units of �m, as obtained by the
crossover condition μ = �0 for 2D DOS.

�/2 −
√

�2
0 + �2/4, where � is the positive solution of the

quartic equation �4/�4
m + 4��0/�

2
m − 1 = 0. In Fig. 4, the

quantum phase diagram in the parameter space of the doping
ε and the semiconductor gap �0 shows a regime where Bose-
Einstein condensation occurs below a critical temperature Tc.
This diagram has already been obtained for the two-band
model with a 2D density of states in Ref. [13]. For �0 � �,
one obtains that the BCS-BEC crossover occurs for ε/�m =
1/(8�0/�m) (dashed line in Fig. 4). For �0 
 �, one ob-
tains that the BCS-BEC crossover occurs for ε/�m = �0/�m

(dotted line in Fig. 4).

B. Two-band model with 3D DOS

Next, we consider a density of states (DOS) which is more
realistic for three-dimensional semiconductors, shown in
Fig. 1 (right) (green): the DOS has a square-root dependence
on the energy, in the conduction band, ρ(ξk ) = ρ0c

√
ξk − Ec,

for Ec < ξk < D, whereas in the valence band ρ(ξk ) =
ρ0v

√−ξk + Ev , for −D < ξk < Ev, and ρ(ξk ) = 0 in the band
gap for Ev < ξk < Ec. Here, ρ0c/v =

√
2m3

c/v/(h̄3π2), where
mc/v is the effective mass in the conduction/valence band,
respectively. We assume mc = mv in the following. As out-
lined in the Appendix the BCS equation yields then, assuming
that ωD is a large energy scale, Eq. (A4) and the particle
conservation yields Eqs. (A3). This defines the set of equa-
tions that model the three-dimensional BCS superconduct-
ing semiconductors yielding the order parameter � and the
chemical potential μ. We solve these equations numerically
to obtain the superconducting order parameter �, Fig. 5, top,
and chemical potential μ, Fig. 5, bottom, as functions of
the semiconductor gap �0, the attractive interaction U via
�m = 2ωD exp [−1/(ρU )], and the doping parameter ε/�m.
Without doping, ε = 0, the superconducting order parameter
� drops to zero when the semiconductor gap reaches the criti-
cal value �0c = 0.29�m. Thus, this superconductor-insulator
transition occurs already at a smaller semiconducting band
gap, than for the step function DOS, as expected, since the
density of states is smaller when approaching the band edges
compared to the 2D case, and thus fewer quasiparticles are
available to pair and participate in the condensate. For finite

FIG. 5. Top: superconducting order parameter �. Bottom: chem-
ical potential μ as function of semiconductor band gap �0, at
different doping levels ε for T = 0 K for 3D density of states. �m is
the superconducting order parameter for the metallic (�0 = 0) case,
Eq. (5). The dashed line is the position of the conduction-band edge
Ec. When μ crosses below Ec, a crossover from BCS to BEC occurs.

ωD, there would only be a superconducting phase when ωD >

�0. For finite doping ε, the order parameter � persists for all
values of the semiconductor gap �0, but is for the same values
of (�0, ε) substantially smaller than for the step function
DOS. As discussed in the previous section, the condition μ =
±�0 gives the BCS-BEC crossover line in parameter space
spanned by the doping parameter ε and the semiconductor
gap �0. In Fig. 6 we plot the resulting phase diagram as
obtained by a numerical solution of the above equations
for the 3D DOS for μ = �0. Remarkably, we find that for
large semiconductor band gaps �0 > �∗

0 = 0.5�m, there is
no solution with μ = �0 for finite doping ε > 0, within the
numerical accuracy of at least 10−4, so that there exists no
BEC, but rather a direct transition to a BCS superconductivity
phase as shown in Fig. 6.

III. SPATIAL VARIATION ALONG
A SUPERCONDUCTING p-n JUNCTION

Having derived the superconducting order parameter �

and chemical potential μ as functions of the semiconductor
gap �0 and the doping level ε, we can study the effect of
pairing on the properties of p-n junctions in the presence of
an attractive interaction U . For doping levels εn,p the potential
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FIG. 6. BCS-BEC Crossover diagram: doping parameter ε vs
semiconductor band gap �0 in units of �m as obtained by the
crossover condition μ = �0 for 3D DOS.

drop across a conventional p-n junction is given by

e �φ = εn + εp + 2�0. (17)

The charge density drops in the depletion region which has on
the n side a width dn and on the p side the depletion width
dp. Using Poisson’s equation, d2φ

dx2 = �(x)/ε, where �(x) is
the charge density and ε is the dielectric constant, one finds
in the depletion approximation, which assumes, when solving
the Poisson equation, that there are no charge carriers in the
depletion region,

−eφ(x) = e�φ

ND + NA

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−NA, x > dn,

−NA
[
1 − (

x
dn

− 1
)2]

, dn > x > 0,

ND
[
1 − (

x
dp

+ 1
)2]

, −dp < x < 0,

ND, x < −dp.

(18)

Here, the depletion lengths in the n, p regions are respectively
given by dn/p = {NA/D/ND/Aε�φ/[2πe(ND + NA)]}1/2, where
ε is the bulk dielectric constant of the semiconductor. For a
given energy gap of the semiconductor �0, we thus obtain the
spatial variation of the conduction- and valence-band edges
across the p-n junction,

EC (x) = −eφ(x) + �0, EV (x) = −eφ(x) − �0, (19)

as plotted in Fig. 7 (black lines). The electrochemical potential
is given by μem(x) = μ + eφ(x). For simplicity we assume
that both, the n and p sides are equally doped, εn = εp =
ε, NA = ND, d = dn = dp = d = [ε�φ/(4πeN )]1/2. As we
consider the p-n junction without an external bias, the chem-
ical potential μ remains independent of the position x across
the junction, μ = 0 (blue line in Fig. 7).

Turning on superconductivity takes charge carriers into
the condensate, changing the electrochemical energy on both
sides of the junction by an amount which equals the supercon-
ducting binding energy. Thereby, the potential energy drops
across the p-n junction in the presence of superconductivity

FIG. 7. Energy-band diagram of p-n junction with spatial vari-
ation of band edges EC (x), EV (x) (black). Superconductivity caused
by the attractive interaction shifts of the band edges to ECS (x), EV S (x)
(red). The chemical potential remains constant without external bias
(blue). Inset: geometry of the p-n junction.

by an amount given by

e �φS = eφS (x 
 −dp) − eφS (x � dn)

= 2μem(�0, ε,�m), (20)

where the parameters �0, ε,�m are the semiconductor band
gap, the doping level, and the superconducting order parame-
ter in the metallic limit, as defined above.

This change of the potential drop changes the spatial
dependence of the potential φS (x), accordingly, resulting in
the new spatial variation of the band edges,

ECS (x) = −eφS (x) + �0, EV S (x) = −eφS (x) − �0. (21)

In depletion approximation this yields

−eφS (x) = e�φS

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1, x > ds,

−1 + (
x
ds − 1

)2
, ds > x > 0,

1 − (
x
ds + 1

)2
, −ds < x < 0,

1, x < −ds,

(22)

with the depletion width reduced to ds = [ε�φs/(4πeN )]1/2.
The spatial variation of �(x) at junctions can be derived

from the Gorkov equations [29], or equivalently from the
Bogoliubov–de Gennes equations [30,31]. For Josephson con-
tacts, such as junctions of superconductors with an insulating
oxide layer in between, it was found that �(x) varies in close
vicinity of the junction on length scales of the order of the
insulator thickness, as imposed by the drop of the charge
density in the oxide layer. Further away from the junction,
however, �(x) varies on length scales of the order of the bulk
coherence length ξ [30,31], since the variations on shorter
length scales in the bulk superconductor are energetically
suppressed by long-range order. Thus, when the coherence
length is larger than the depletion length, ξ = vF /� > d ,
we can assume that the spatial variation of �(x) at the p-n
junction is dictated by the electrostatics at the junction, and
thereby the reduced charge-carrier density as parametrized by
the the electrochemical potential μem(x). While the chemical
potential μ is constant in the p-n junction without external
bias, the chemical potential entering in the pairing Eq. (12)
for the 2D system and Eq. (A4) for the 3D system is rather the
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FIG. 8. Order parameter �(x), quasiparticle gap �̃(x), and the
coherence length ξ (x) across two types of 2D p-n junctions. Top:
BCS-BEC-BCS with semiconductor gap �0 = 0.48�m and doping
ε = 0.26�m. Bottom: BCS-BEC-I-BEC-BCS with semiconductor
gap �0 = 0.6�m and doping ε = 0.26�m.

electrochemical potential μem(x) as measured relative to the
middle of the semiconductor gap at the respective position x,
which is for μ = 0 in depletion approximation given by

μs
em(x) = μem(�0, ε,�m )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, x > ds,

1 − (
x
ds − 1

)2
, ds > x > 0,

−1 + (
x
ds +1

)2
, −ds<x<0,

−1, x < −ds.

(23)

Therefore, to get the spatial variation of �(x) on length scale
d along the length of the p-n junction for different values of
�0 and ε, we can in a first, local-density approximation, insert
μem(x) as given by Eq. (23) into the pairing equation Eq. (12)
for the 2D system, and in Eq. (A4) for the 3D system, and
solve for �(x) for every position x.

p-n junction of 2D systems. For the 2D system we find
thereby two different kinds of superconducting p-n junctions
when the bulk is in the BCS phase:

(1) BCS-BEC-BCS junction. For �0 < �m/2 the order
parameter �(x) decreases in the space charge region, but
remains finite with a minimum in the middle of the p-n
junction, as shown in Fig. 8 (top). However, we find that even
when the bulk system is in the BCS superconducting phase,
there emerges a BEC layer at the p-n junction as the chemical
potential moves into the band gap at the p-n junction. This
BEC condensate extends throughout the p-n junction in a

regime of width dBEC = 2ds(1 − √
1 − �0/μem ), as obtained

by the condition μem(x = ±dBEC/2) = ±�0. The quasiparti-
cle excitation gap �̃(x) remains for the condition �0 < �m/2
finite throughout the p-n junction, decreasing first as the order
parameter �(x) decreases, reaching a minimum, and increas-
ing again, as the chemical potential moves in the middle of the
semiconductor band gap. Interestingly, the coherence length,
which we calculate approximately using Eq. (15), in the BCS
phase increases with the decrease of �(x), but converges to a
finite value in the BEC phase, and decreases to a minimum in
the middle of the p-n junction.

(2) BCS-BEC-I-BEC-BCS junction. For �0 > �m/2 the
order parameter �(x) is found to decrease in the space-charge
region to 0, as shown in Fig. 8 (bottom), with a finite layer
of an insulator phase in the middle of the junction. Thus, as
the chemical potential moves into the band gap at the p-n
junction, there is a BEC condensate at each of the two surfaces
of the p-n junction, each of finite width dBEC = ds[(1 −
�0
μem

√
1 − �2

m/(4�2
0))1/2 − (1 − �0

μem
)1/2], separated by an in-

sulating layer, where � = 0. The quasiparticle excitation gap
�̃(x) remains finite throughout the p-n junction, decreasing
first as the order parameter �(x) decreases, reaching a min-
imum at the boundary between the BEC and the insulator
phase and increasing again in the insulator layer, as the
chemical potential moves in the middle of the semiconductor
band gap. Interestingly, the coherence length, as approximated
with Eq. (15) which in the BCS phase increases with the
decrease of �(x), converges to a finite value at the boundary
between the BEC and the insulator phase, where the order
parameter vanishes.

p-n junction of 3D systems. In the 3D systems we find that,
when the bulk is in the BCS phase, a BEC layer at the p-n
junction occurs only for sufficiently small semiconductor gaps
�0 < �∗

0. Thus, we find in three dimensions three different
kinds of superconducting p-n junctions, when the bulk is in
the BCS phase:

(1) BCS-BEC-BCS junction. For small semiconductor gaps
�0 < �0c = 0.29�m the order parameter �(x) decreases in
the space-charge region, but remains finite with a minimum
in the middle of the p-n junction, as shown in Fig. 9 (top).
Thus, as the chemical potential moves into the band gap at
the p-n junction, there appears a BEC condensate, where the
chemical potential is outside of the band edges, which extends
throughout the p-n junction in a regime of width dBEC, as
obtained by the condition μem(x = ±dBEC/2) = ±�0. The
quasiparticle excitation gap �̃(x) remains finite throughout
the p-n junction, decreasing first as the order parameter �(x)
decreases, reaching a minimum and increasing again, as the
chemical potential moves into the middle of the semiconduc-
tor band gap.

(2) BCS-BEC-I-BEC-BCS junction. For large semiconduc-
tor band gaps �0 > �0c = 0.29�m the order parameter �(x)
decreases in the space-charge region to 0, as shown in Fig. 9
(center), with a finite layer of an insulator phase in the middle
of the junction. Thus, as the chemical potential moves into the
band gap at the p-n junction, there is a BEC condensate at each
of the two surfaces of the p-n junction, each of finite width
dBEC, separated by an insulating layer, where � = 0. The
quasiparticle excitation gap �̃(x) remains finite throughout
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FIG. 9. The spatial variation of the order parameter �(x) and the
quasiparticle gap �̃(x) across the 3D p-n junction. Top: BCS-BEC-
BCS junction with semiconductor gap �0 = 0.285�m < �0c and
doping ε = 0.26�m. Center: BCS-BEC-I-BEC-BCS junction with
semiconductor gap �0 = 0.3�m > �0c and doping ε = 0.26�m.
Bottom: BCS-I-BCS junction with semiconductor gap �0 = 0.52�m

and doping ε = 0.26�m, showing the appearance of gapless quasi-
particle excitations at the boundary between the BCS and the insula-
tor phase.

the p-n junction, decreasing first as the order parameter �(x)
decreases, reaching a minimum at the boundary between the
BEC and the insulator phase and increasing again in the insu-
lator layer, as the chemical potential moves into the middle of
the semiconductor band gap.

3. BCS-I-BCS junction. For still larger semiconductor band
gaps, �0 > �∗

0 = 0.5�m, there is no BEC layer anymore;
the order parameter �(x) decreases to zero as the chemical
potential reaches the band edge, as shown in Fig. 9 (bottom),
reaching directly an insulator phase as the chemical potential
moves into the band gap at the p-n junction. Remarkably, the
quasiparticle excitation gap �̃(x) vanishes at the boundary of
the space-charge region, decreasing first to zero as the order
parameter �(x) decreases to zero, and increasing again in
the insulator layer, as the chemical potential moves into the
middle of the semiconductor band gap. Thus, there appear
gapless quasiparticle excitations at the boundary to the space-
charge region.

IV. CONCLUSIONS AND DISCUSSION

Thus, we have shown that in superconducting p-n junc-
tions there can appear layers of BEC condensates even when
the bulk is in the BCS state. This opens the possibility to
create layers of BECs and study their properties in the well
controlled setting of doped semiconductors, where the doping
level can be varied to change and control the thickness of BEC
and insulator layers. The BEC condensate can be detected by
scanning tunneling microscopy, where instead of the sharp co-
herence peaks in the BCS phase, a maximum in the tunneling
density of states in the band which is closest to the chemical
potential is expected, as plotted in Fig. 3 (bottom). Also,
the fact that the quasiparticle excitation gap remains finite
throughout the p-n junction when there is a BEC layer, while
there are gapless excitations in a conventional BCS-I-BCS
junction, might be amenable to experimental detection.

Moreover, attaching sufficiently small leads in lateral di-
rection, the superconducting p-n junction may enable one to
study the transport properties of the BEC layers directly.

As qualitatively outlined in Ref. [22], the superconductor
critical current Ic is expected to be still dominated by the
bulk superconducting order parameter � and the normal small
voltage resistance of the p-n junction Rn, as in a conventional
Josephson contact, yielding for identical � on both sides of
the junction, IcRn = π�/(2e). The presence of a BEC layer
might modify that product due to the spatial variation of
the order parameter and the quasiparticle excitation gap; see
Figs. 8 and 9. We will leave the derivation as a task for further
studies.

For a conventional semiconductor with ε = 10, �� = 1V ,
and ND = NA = 1018 cm−3, the depletion width is d ≈ 50 nm
[22], whereas in p-n junctions of cuprate semiconductors
�� can be several volts, ND = NA = 5 × 1021 cm−3, yielding
only d ≈ 1 nm which is the same order as the thickness of
oxide barriers in typical Josephson junctions. Indeed, cuprate
semiconductors with a superconducting phase for both hole
and electron doping have been found; see Ref. [32] for a
review, which may therefore be realizations of homogeneous
p-n junctions, where we can expect BEC layers of the thick-
ness of the order of dBEC ≈ 1 nm.

The theory can be extended to heterojunctions with two
different host materials with different band gaps on the n- and
p-doped side of the junctions, resulting in band discontinuities
at the junction to study what effect this has on the existence of
a BEC layer.
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The I (V ) characteristics of superconducting p-n junctions
has been discussed qualitatively in Ref. [22]. We leave it for
future work to extend our theory to include a potential dif-
ference and thereby allow a quantitative derivation of current
voltage characteristics, and to study what consequence BEC
layers have for the I (V ) characteristics.

Recently, Josephson junctions in the BCS-BEC crossover
range have been reviewed in Ref. [31] by solving the
Bogoliubov–de Gennes equations for this problem. These
authors did not discuss the appearance of a BEC layer at
the junction when the bulk is in the BCS phase. However, we
expect, that, since the carrier concentration is reduced in the
vicinity of an oxide layer, a BEC layer may also appear at such
BCS-Josephson junctions with an oxide layer, a question we
leave for future research.

An extension of the Bogoliubov–de Gennes equations
[30,31] to the two-band model and its application to the su-
perconducting p-n junctions will lead also to further insights
into the spatial variation of the order parameter, when solved
self-consistently with the Poisson equation. This calculation,
where the condensation amplitude as well as the charge re-
distribution are self-consistently computed can be performed
within the tight-binding framework [33–35]. In particular, one
can expect deviations from our result for the spatial change of
�(x) on length scales of the order of the bulk coherence length
ξ . Also, additional discrete states might appear as solutions of
the Bogoliubov–de Gennes equations at the junction, similar
to the Andreev bound states found in Josephson junctions
[31]. This raises interesting questions for future research,
as the change from electronlike to holelike charge carriers
across the junction challenges the conventional interpretation
of Andreev bound states.

In our study we have assumed zero temperature T = 0 K,
and it remains to be extended to finite temperatures T . Fur-
thermore, while our study employs the mean-field approxi-
mation of the many-body physics, the effect of fluctuations of
the order parameter amplitude and phase need to be included
to get a better understanding of the stability of the long-range
order at finite temperature and in the thin film, 2D limit
[13,36,37].

The disorder introduced by the dopants will furthermore
lead to Anderson localization of charge carriers and accord-
ingly may result in a layer of disorder localized Bosons at
the p-n junction, reducing the thickness of the extended BEC
layer. These issues will be a subject for future research.
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APPENDIX: 3D TWO-BAND MODEL

Following an approach similar to Eagles [11], who solved
the BCS equation and particle conservation equation for a

single-band semiconductor, we rearrange the particle conser-
vation equation (1) of the two-band model to get

2

3

(
ε

�

)3/2

= Q(λ1) − Q(λ2), (A1)

where Q(λi ) = ∫∞
0 x2dx(1 − (x2 − λi )/

√
1 + (x2 − λi)

2 ) for
i = 1, 2 with λ1 ≡ (μ − �0)/�, and λ2 ≡ (−�0 − μ)/�.
Here, we changed the integration parameters to x2 = (ξ −
�0)/� for i = 1 and x2 = (ξ + �0)/� for i = 2. We approx-
imated D/� → ∞. As in the 2D limit, we assume that ωD

is a large energy scale, for simplicity. This means that we
assume that the electron-electron interaction is attractive in
both bands. Therefore, we can set ωD = D so that the BCS
self-consistency equation simplifies to

1  ρ0U�1/2

[
P(λ1) + P(λ2) +

√
4ω

�

]
, (A2)

where P(λi ) = ∫∞
0 dx(x2/

√
1 + (x2 − λi )

2 − 1), i = 1, 2.

We follow the approach by Pistolesi [38] to rewrite Eqs. (A1)
and (A2) in terms of elliptical integrals and obtain for the
equation ensuring particle conservation

2

3

(
ε

�

)3/2

=
∑
i=1,2

σiλi
(
1 + λ2

i

)1/4
E

(
π

2
, ki

)

+
∑
i=1,2

σi

(
1 + λ2

i

)1/4

2
(
λi +

√
1 + λ2

i

)F

(
π

2
, ki

)
, (A3)

where σ1 = 1, σ2 = −1, and

k2
i =

√
1 + λ2

i + λi

2
√(

1 + λ2
i

)
for i = 1, 2. Here, F (ϕ, k) are E (ϕ, k) the incomplete elliptic
integral of the first and second kind, respectively. The pairing
equation becomes

1 = 2ρ0U
√

�
∑
i=1,2

[
−(

1 + λ2
i

) 1
4 E

(
π

2
, ki

)

+ F
(

π
2 , ki

)
2
(
1 + λ2

i

)1/4

(
λi + 1√

1 + λ2
i + λi

)
+
√

ωD

�

]
. (A4)

We denote the metallic limit by �(�0 = 0) = �m, as defined
by Eq. (A4), when substituting there �0 = 0, � by �m,

and λi by λ̃1 = λi|�0=0,�=�m and k̃2
i =

√
1+λ̃2

i +λ̃i

2
√

1+λ̃2
i

for i = 1, 2.

Since we assume that the local attraction U between the
fermions does not depend on �0, we can equate the right-hand
side of Eq. (A4) with finite �0 to the one obtained in the
metallic limit. This equation gives, together with Eqs. (A3),
the new set of equations that model the three-dimensional
BCS superconducting semiconductors.

094514-9



NIROULA, RAI, HAAS, AND KETTEMANN PHYSICAL REVIEW B 101, 094514 (2020)

[1] M. L. Cohen, Rev. Mod. Phys. 36, 240 (1964).
[2] W. Hanke and M. J. Kelly, Phys. Rev. Lett. 45, 1203

(1980).
[3] X. Lin, Z. Zhu, B. Fauqué, and K. Behnia, Phys. Rev. X 3,

021002 (2013).
[4] E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Melnik, N. J.

Curro, J. D. Thompson, and S. M. Stishov, Nature (London)
428, 542 (2004).

[5] X. Blase, Ch. Adessi, and D. Connetable, Phys. Rev. Lett. 93,
237004 (2004).

[6] E. Bustarret, J. Kacmarcik, C. Marcenat, E. Gheeraert, C.
Cytermann, J. Marcus, and T. Klein, Phys. Rev. Lett. 93, 237005
(2004).

[7] E. Bustarret, C. Marcenat, P. Achatz, J. Kačmarčik, F. Lévy,
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