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Motivated by the recent observation and argument on a large half-quantum vortex (HQV) pair connected
by a Kibble-Lazarides-Shafi wall in superfluid 3He in nematic aerogels, we numerically study to what extent
a huge HQV pair can intrinsically occur in the polar-distorted B (PdB) phase of superfluid 3He. First, the
“impurity”-scattering model used in a previous study is extended to a form interpolating the weakly and strongly
anisotropic cases, and it is found that, within the Ginzburg-Landau (GL) approach, Anderson’s theorem is
satisfied in the strongly anisotropic case. By taking account of the Fermi-liquid (FL) corrected gradient terms and
solving numerically the resulting GL free energy, the anisotropy dependence of the vortex structure minimizing
the free energy is examined within the weak-coupling approximation. It is found that, close to the transition
between the polar and PdB phases, an interplay of the strong anisotropy and the FL correction makes possible
the emergence of a large HQV pair in the PdB phase, and that, nevertheless, such a large pair easily shrinks upon
deeply entering the PdB phase, indicating that a pinning effect due to the aerogel structure is necessary in order
to keep a large pair size there. The obtained result indicates the validity of the London limit for describing the
vortex structure, and a consistency with the picture based on the NMR measurement is discussed.
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I. INTRODUCTION

The recent observation of half-quantum vortices (HQVs)
[1] in the novel polar phase of superfluid 3He has created a
new avenue for studying possible vortices in a fermionic su-
perfluid phase. The emergence of the three-dimensional (3D)
polar phase in anisotropic aerogels has been proposed through
a model calculation [2] assuming a weak anisotropy, and it
has been experimentally verified in nematic aerogels [3]. A
nematic aerogel has its strands aligned to one direction and
can be regarded, broadly speaking, as a collection of linelike
obstacles. The HQV was originally expected to be realized
in the thin-film configuration of the chiral superfluid A phase
with its orbital angular momentum locked perpendicular to
the film plane [4,5]. However, the chiral A phase is realized
with the help of the strong-coupling correction, which is
effective at higher pressures, while it has been clarified [6]
that the HQV tends to be destabilized by the strong-coupling
correction. Fortunately, the polar phase realized in the nematic
aerogel has a wider temperature range of its stability at
relatively lower pressures, and hence superfluid 3He in the
nematic aerogels becomes the best playground for studying
this novel topological object.

Recently, an experimental investigation of the vortices in
nematic aerogels was extended to lower temperatures [7],
and HQVs have also been detected in the A and B phases
realized at lower temperatures in the nematic aerogels. Since
such A and B phases in nematic aerogels are distorted by an
anisotropy in the scattering events due to the aerogel structure,
the resulting A and B phases will be referred to hereafter as the
polar-distorted A (PdA) and polar-distorted B (PdB) phases
following Ref. [7]. It has been suggested that the detected
HQV-pairs do not change their positions upon both cooling

from and warming to the polar phase, and hence that, since
in their rotated experiments the rotation axis is parallel to
the direction in which the strands are aligned, the realization
of such surprising observations is largely supported by a
strong pinning effect due to the linelike aerogel structure [7].
However, just the method of analyzing the NMR data in the
PdB phase on the basis of a hypothetical description of the
vortex structure in the London limit has been presented in
Ref. [7], and the validity of their London description has not
been examined there. Once we take into account the fact that
the core structure of the stable vortex, called the double-core
vortex, in the bulk B phase at lower pressures is regarded
[8,9] as a pair of HQVs, it is natural to imagine that the core
structure of the double-core vortex has transformed to a HQV
pair loosely connected by a nontopological Kibble-Lazarides-
Shafi (KLS) wall defect [7,10] in the PdB phase. A couple
of questions then arise: How does the vortex core structure,
in which variations of the various components of the order
parameter are usually remarkable [11,12] in the bulk B phase,
change to a simple HQV-pair, for which the London descrip-
tion [5,7] is valid, in the PdB phase? Further, do the huge
HQV pairs detected in the PdA and PdB phases disappear if
the pinning effect of the aerogel structure becomes negligible?

In the present work, we start by reformulating the
Ginzburg-Landau (GL) approach for describing superfluid
3He in anisotropic aerogels by extending the weakly
anisotropic model [2] of the impurity-scattering potential to
the strongly anisotropic case appropriate for the situations in
the nematic aerogels [1,3,13]. The uniaxial anisotropy will
be introduced in this work via the size of the correlation
length on the impurity potential. Using the GL free energy
following from our microscopic analysis, stable vortex solu-
tions are studied in both the polar and PdB phases in strongly
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anisotropic cases. Throughout this work, we focus on the
weak-coupling approximation, neglecting the strong-coupling
correction to the bulk free-energy terms because a theory
of the strong-coupling correction in the impure and strongly
anisotropic case has not been formulated so far. For this
reason, the PdA phase never appears in the present results,
and we have only a direct continuous transition between
the polar and PdB pairing states. Since superfluid 3He in
globally isotropic aerogels, which has essentially the same
vortex solution as in the bulk liquid case, can be consistently
studied within our model, we examine how the tightly bound
HQV pair forming the vortex core in the bulk B phase is
changed to a simple HQV pair connected by a KLS wall upon
increasing the anisotropy. It is found that, as the anisotropy
is increased, the description based on the London limit of
the order-parameter profiles of one HQV-pair becomes better.
Furthermore, as the anisotropy is increased, the separation
between the two HQVs forming one pair is increased and
becomes macroscopic, particularly close to the transition tem-
perature TPB between the polar and PdB phases. However,
this size rapidly shrinks upon cooling from TPB, reflecting the
resulting increase upon cooling of the tension of the KLS wall,
which is in the polar-distorted planar state [14]. This implies
that, deep in the PdB phase, a HQV pair with a macroscopic
size is not naturally stabilized, and hence that the survival of
a huge HQV pair there justifies the picture [7] of a HQV pair
stabilized by the pinning due to the linelike aerogel structure.

The present paper is organized as follows. In Sec. II, the
vertex correction to the pairing process is explained in detail
together with the model of the impurity scattering used in this
work. In Sec. III, the resulting GL free energy affected by
the impurity effects is explained. In Sec. IV, it is explained
how a HQV pair in the PdB phase is stabilized within the
description in the London limit. Our numerical results and
detailed discussions about them are presented in Sec. V, and
a summary and discussions are given in Sec. VI. Details on
the impurity-induced vertex correction and its effects on the
O(|�|4) gradient terms are explained in two Appendixes.

II. MODEL OF IMPURITY SCATTERING

Our microscopic analysis for deriving the GL free energy
is based on a BCS Hamiltonian with the nonmagnetic and
random scattering potential term of the form

Himp =
∫

r
ψ†

σ (r)u(r)ψσ (r), (1)

where u(r) is a spin-independent random potential, and ψσ

is a fermion operator with the spin index σ . Hereafter, we
focus on the case in which the scattering process is nonmag-
netic, since, in the experiments where the HQVs have been
observed, the local surface of the aerogel is believed to be
entirely coated by 4He so that the spin-flip scattering between
the 3He atoms solidified on the surface and the quasiparticles
of liquid 3He is ineffective. Regarding the random averaging
over u(r), the Fourier transformation uk of u(r) is assumed to
have zero mean and the mean-squared average,

|uk|2 = 1

2πN (0)τ
w(k). (2)

In the original work [2], a weak stretched anisotropy has
been incorporated in w(k) in the form

w(k) = 1 + δuk̂2
z , (3)

where k̂z = kz/kF, and we have followed the notation in
Ref. [2] where, when δu < 0, a narrow range of the polar
phase has been proposed to appear in an aerogel sample
stretched along the z-direction. For this reason, the z-axis will
be referred to hereafter as the polar axis, and, as an extension
of this impurity-scattering model to the case in a strongly
anisotropic aerogel, the following model on w(k) will be
used:

w(k) = 1 + (
√|δu| − 1)�(|δu| − 1)

1 + |δu|k̂2
z

, (4)

where �(x) is the step function: �(x > 0) = 1, and �(x <

0) = 0. The factor
√|δu| in Eq. (4) in |δu| � 1 is necessary

to obtain a physically reasonable limit of the quasiparticle
relaxation rate in |δu| → ∞.

We note that the Fourier transformation of Eq. (4) is given
by

W (r) = 2πN (0)τ u(r)u(0) = kF

2
δ(2)(r⊥)

× e−|z|/Lz [1 + �(1 − |δu|)(|δu|−1/2 − 1)], (5)

where |δu| = k2
FL2

z . Thus, the anisotropy parameter |δu| is a
measure of the correlation length Lz defined along the polar
axis of the impurity potential.

In the weakly anisotropic limit where |δu| � 1, this ex-
pression reduces to Eq. (3), while in the opposite strongly
anisotropic limit where |δu| → +∞, i.e., Lz → +∞, Eq. (4)
approaches the quantity

w∞(k) = πkFδ(kz ), (6)

or equivalently, Eq. (5) becomes z-independent. Equation (6)
implies that, in the limit of strong anisotropy, the scattering
event is specular along the polar axis. This corresponds to the
model proposed by Fomin [15] regarding the nematic aerogels
as a collection of columnar defects.

To derive a GL free energy incorporating the scattering
processes due to the aerogel structure with any strength of
the anisotropy, we need a renormalized pairing vertex 	 j

replacing the bare pairing vertex p̂ j = p j/kF, which depends
not only on the relative momentum p but also on the center-
of-mass momentum Q and the fermion Matsubara frequency
ε. The Bethe-Salpeter equation sketched in Fig. 1,

	 j (p̂; Q) = p̂ j + 1

2πN (0)τ

∫
p′

	 j (p̂′; Q)

×Gε(p′ + Q/2)G−ε(−p′ + Q/2)w(p − p′), (7)

for 	 j can be solved in a closed form by assuming 	 j to take
the expression

	i(p̂; Q) = p̂ j
{
δ

(z)
i j + ẑ j[ẑiC(Q) + vQivQzC1z]

}
− isεvQj

{
δ

(z)
i j B( p̂z ) + ẑi ẑ j[B( p̂z ) + D( p̂z )]

}
, (8)

where

Gε(p) = (iε̃p − ξp)−1 (9)
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FIG. 1. Diagram expressing the Bethe-Salpeter equation that the
vertex function 	 (triangle) obeys. The straight solid lines denote
normal Green’s functions, and the impurity average of the squared
random potential is expressed by a dashed line with a cross.

is the Matsubara Green’s function with the self-energy term
including the impurity scattering, ξp is the quasiparticle en-
ergy, and ε̃p will be given by Eq. (A1) in Appendix A.
Furthermore, δ

(z)
i j = δi j − ẑi ẑ j , sε = ε/|ε|, v p̂ j is the Fermi

velocity, and

C(Q) = C0(ε) + C21(ε)v2Q2 + C2z(ε)v2Q2
z ,

B( p̂z ) = B0(ε) + �B(ε) p̂2
z , (10)

D( p̂z ) = D0(ε) + �D(ε) p̂2
z .

The general form of 	 j is involved and will be presented
in Appendix A. Here, just its limiting behaviors will be
explained. First, in the isotropic limit where δu → 0, C0 → 1,
and other coefficients except B0 vanish. Then, 	i reduces to

	
(0)
i = δi j

(
p̂ j − isεvQj

1

12τ |εε̃0|
)

, (11)

where |ε̃0| = |ε| + 1/(2τ ). As stressed elsewhere [16], the
divergent behavior proportional to |ε|−1 in the second term
of Eq. (11) is a consequence of cancellation between the
quasiparticle relaxation rate and the impurity-ladder vertex
correction, and it can be seen as being of the same origin as
the impurity scattering-independent transition temperature in
the s-wave superconductor [17].

In the opposite limit where |δu| → +∞, i.e., the limit
of strong anisotropy, the coefficients in 	 j approach the
following expressions:

B0 � −�B = −D0 = π

16|εε̃∞|τ ,

�D � −D0 + π

8ε2τ
,

C0 � |ε̃∞|
|ε| ,

C21 � − π

32ε2|ε̃∞|τ , (12)

C1z � − π

16ε̃2∞|ε|τ
(

1 + π

8|ε|τ
)

,

and C2z = −C21 − C1z, where |ε̃∞| = |ε| + π/(4τ ). Then, 	 j

reduces to

	
(∞)
i = δ

(z)
i j

(
p̂ j − isε

π

16|εε̃∞|τ vQj p̂2
⊥

)
+ ẑi ẑ j

|ε̃∞|
|ε|

×
[

p̂ j

(
1 − π

32ε̃2∞|ε|τ v2Q2
⊥

)
− isε p̂2

z

π

8|εε̃∞|τ vQj

]

− δ
(z)
i j Q j

π

16ε̃2∞|ε|τ
(

1 + π

8|ε|τ
)

v2 p̂zQz, (13)

where p̂2
⊥ = 1 − p̂2

z . We note that the second term of |ε̃∞|
corresponds to the imaginary part of the self-energy of the
normal Green’s function. The Q2

⊥ term in Eq. (13) suggests
the presence of a diffusion pole (2|ε| + v2τQ2/π )−1. Each
coefficient in Eq. (8) is reflected in each term of the GL
free energy, which will be given in the next section and
Appendix A.

III. RESULTING GL FREE ENERGY

We will use an appropriate GL free energy to numerically
study the vortex solutions stable in anisotropic aerogels. For
our purpose of studying the vortex excitation with the low-
est energy, the terms arising from spatial variations of the
superfluid transition temperature Tc and acting as a pinning
potential of a vortex will be neglected in the free energy
written in terms of the order parameter field Aμi. Further-
more, any term accompanied by the repulsive channel of the
quasiparticle interaction will not be considered in this section.
Then, the GL free energy FGL = F2 + F4 in the presence of the
impurity-scattering effect, as usual, consists of the quadratic
term

F2/� =
∑

Q

{
N (0)

3

[
ln

(
T

Tc0

)
+ T

∑
ε

π

|ε|
]
δi, j

− T
∑

ε

∫
p

p̂i	 j (p̂, Q)Gε(p + Q/2)G−ε(−p + Q/2)

}

× A∗
μi(Q)Aμ j (Q), (14)

and the quartic term

F4/� = 1

2
[A∗

μiAμ jA
∗
νkAνl − A∗

μiAν jA
∗
μkAνl + A∗

μiAν jA
∗
νkAμl ]

× T
∑

ε

∫
p1

∫
p2

∫
p3

∫
p4

	i(p̂1; 0)	 j (p̂2; 0)	k (p̂3; 0)	l (p̂4; 0)Gε(p1)G−ε(−p1)Gε(p3)G−ε(−p3)

× (δp1,p2δp1,p3δp1,p4 + δp1,p4δp2,p3Gε(p1)Gε(p2)|up1−p2 |2 + δp1,p2δp3,p4Gε(p1)Gε(p3)|up1−p3 |2), (15)

where Tc0(P) is the normal to superfluid transition temperature of the bulk liquid at each pressure P, � is the volume,
and, for simplicity, F4 was written here by assuming the order parameter to be spatially uniform. Up to the lowest order in
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the spatial gradient, one can separate F2 + F4 into the bulk
energy contribution Fbulk = ∫

r fbulk, where

fbulk = [α + (αz − α)δiz]AμiA
∗
μi + β

(0)
1 |AμiAμi|2

+β
(0)
2 (AμiA

∗
μi )

2 + β
(0)
3 A∗

μiA
∗
νiAμ jAν j

+β
(0)
4 A∗

μiAνiA
∗
ν jAμ j+β

(0)
5 A∗

μiAνiAν jA
∗
μ j+βz|AμzA

∗
μz|2

+ [
β

(1)
1 AμiAμiA

∗
νzA

∗
νz + β

(1)
2 AμiA

∗
μiAνzA

∗
νz

+β
(1)
3 A∗

μiA
∗
νiAμzAνz + β

(1)
4 A∗

μiAνiA
∗
νzAμz

+β
(1)
5 A∗

μiAνiAνzA
∗
μz + c.c.

]
, (16)

and the gradient terms. In the case of weak anisotropy where
|δu| � 1, the β (1)

n (n = 1, . . . , 5) terms appear in O(|δu|),
while the βz term first appears in O(δ2

u).
Among the gradient terms, the free-energy density corre-

sponding to the contributions from F2 consists of the following
seven terms:

fgrad = 2K1∂iAμi∂ jA
∗
μ j + K2∂iAμ j∂iA

∗
μ j + K3∂zAμi∂zA

∗
μi

+ K4∂iAμz∂iA
∗
μz + K5(∂iAμi∂zA

∗
μz + c.c.)

+ K6∂zAμz∂zA
∗
μz. (17)

General expressions on the coefficients in the GL free
energy are involved and will be presented in Appendix A.
Here, their limiting behaviors in the limits of weak anisotropy,
δu → 0, and of strong anisotropy, |δu| → ∞, will be ex-
plained together with their implication. In the case of a small
|δu|, βz vanishes up to O(|δu|), and then the remaining GL
coefficients of fbulk reduce to those given in Ref. [2]. In the
isotropic (δu → 0) limit, the four coefficients of fgrad, Kj ( j =
3, . . . , 6), vanish, while K1 and K2 coincide with those given
in Ref. [16]. Among them, K1 logarithmically diverges upon
cooling, reflecting the cancellation between the relaxation rate
and the pairing vertex mentioned in Sec. II.

In contrast, in the |δu| → ∞ limit, the coefficients in fbulk

have the following limiting values:

α � 1

3
N (0)

[
ln

(
T

Tc0

)
+ ψ

(
1

2
+ 1

8τT

)
− ψ

(
1

2

)]
,

αz � 1

3
N (0) ln

(
T

Tc0

)
, (18)

β
(0)
3 = −2β

(0)
1 � πT

15
N (0)

∑
ε>0

1

|ε̃∞|3 ,

β
(0)
2 = β

(0)
4 = −β

(0)
5 � β

(0)
3 − π2T

60τ
N (0)

∑
ε>0

1

ε̃4∞
,

β
(1)
3 = −2β

(1)
1 � −β

(0)
3 + πT

15
N (0)

∑
ε>0

1

ε2|ε̃∞| , (19)

β
(1)
2 = β

(1)
4 = −β

(1)
5 � β

(1)
3 + π2T

60τ
N (0)

∑
ε>0

1

ε̃4∞

(
1 − ε̃2

∞
2ε2

)
,

β
(0)
12345 + 2β

(1)
12345 + βz � πT

10
N (0)

∑
ε>0

1

|ε|3 ,

where β12345 = β1 + β2 + β3 + β4 + β5. It can be verified
that β (1)

n and βz vanish in the limit with no impurity scattering,
i.e., when τ−1 = 0.

The fact that αz approaches its result for the bulk liquid in
|δu| → ∞ is a consequence of the specular scattering along
the polar axis [see Eq. (6)] and implies that the superfluid
transition temperature Tc between the normal phase and the
polar pairing state is not affected by the impurity scattering
in the limit of strong anisotropy. Thus, this αz-expression
can be regarded as one analog of Anderson’s theorem [17]
in the s-wave superconductor [15,18,19]. Consistent with
the behavior of αz, the last line of Eq. (19), which is the
coefficient of the quartic bulk term associated with the po-
lar order parameter Aμz, also becomes independent of τ .
Therefore, the mean-squared amplitude of the polar order pa-
rameter |�polar|2 = A∗

μzAμz, which becomes −αz/[2(β (0)
12345 +

2β
(1)
12345 + βz )] within the present GL treatment, is also inde-

pendent of τ [18–20]. Such an impurity-free nature associated
with the polar pairing does not hold in the transition tempera-
ture to another pairing state at lower temperatures [15,19].

As will be discussed in detail elsewhere [19], the above-
mentioned impurity-free thermodynamic behavior of the polar
pairing state at finite temperatures is approximately satisfied
beyond the GL approach as far as, say, |δu| � 10. So, even for
superfluid 3He in aerogels to be modeled by a finite |δu|, the
model in the limit of strong anisotropy can be conveniently
used for theoretical descriptions.

Due to the nonvanishing δu, as seen in Eq. (17), the
quadratic gradient energy fgrad consists of the six invariants,
and the corresponding six coefficients remain nonvanishing
even in the limit of strong anisotropy (|δu| → ∞). In the
low-T limit, all coefficients remain nonvanishing, and their
leading terms in the low-T limit become

K1 � π2T v2

120
N (0)

∑
ε>0

1

|ε|τ |ε̃∞|3 ,

K4 � π2T v2

48
N (0)

∑
ε>0

1

|ε|2τ |ε̃∞|2 , (20)

K5 � π2T v2

480
N (0)

∑
ε>0

1

|ε|2τ |ε̃∞|2
(

1 + 5

4

π

|ε̃∞|τ
)

.

Further, the coefficient of ∂zA∗
μz∂zAμz, which arises from the

sum of the K4, K5, and K6 terms, approaches

π2T v2

80
N (0)

∑
ε>0

1

ε2ε̃2∞τ
. (21)

The divergent behaviors ∼ε−2 in the low-T limit of Eq. (21)
correlate with the τ -independent ∼ − |ε|−1 behavior leading
to the |lnT | contribution in αz. In contrast, K2 and K3 reduce
to finite values in the low-T limit.

IV. DESCRIPTION OF THE HQV PAIR IN THE PDB
PHASE IN THE LONDON LIMIT

To correctly understand the order parameter structures of
a HQV pair obtained numerically, it is useful to have an
intuitive image of a HQV pair by describing it in the London
limit where the order parameter Aμ j is described in terms
of the angle variables while keeping the overall amplitude
fixed.
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y

x-a a

FIG. 2. (a) A single HQV (solid dot) in a B phase described in
the x-y plane. To make the order parameter Aμ, j single-valued, its
one component must vanish on the string (solid line). (b) A pair of
HQVs in a B phase is accompanied by the string on which Aμ, j takes
the form of the two-dimensional planar state. This planar string has
a finite length � 2am and a width 2ξw if the two HQVs are well
separated. In the double-core vortex in the bulk liquid, the string
shrinks so that the planar pairing state is realized only close to the
center of the vortex, i.e., the origin (see the discussion on Fig. 5 in
Sec. V).

Hereafter, we focus on the HQV lines extended along
the polar axis ẑ. Thus, the vortex lines will be described as
point vortices on the 2D plane, and the KLS wall [7,10] (see
Sec. I) connecting two separated HQVs with each other will
be referred to as a string defect.

First, let us review how to describe a single HQV [8].
By expressing a relative rotation around the x-axis between
the orbital and spin frames in terms of the rotation matrix
[Rx(θ )]μν = x̂μx̂ν + δ(x)

μν cosθ − εxμνsinθ , the order parameter
in the PdB phase in an environment with a uniaxially stretched
anisotropy is expressed following the notation in Ref. [21] as

Aμ j = |�|ei�[Rx(θ )]μν

(
c√
2
δ

(z)
ν j +

√
1 − c2ẑν ẑ j

)

= |�|√
2

ei�

⎛
⎜⎝

c 0 0
0 c cosθ −

√
2(1 − c2) sinθ

0 c sinθ
√

2(1 − c2) cosθ

⎞
⎟⎠ (22)

[see also Eq. (4) in Ref. [7]], where c (0 � c � √
2/3) is

the parameter playing the role of the order parameter of the
PdB phase, δ(x)

μν = δμν − x̂μx̂ν , and the overall phase � was
introduced. In the polar limit where c → 0, Eq. (22) reduces
to the order parameter of the polar phase with dμ = ẑμcosθ −
ŷμsinθ [6].

A single HQV localized at the origin is expressed by choos-
ing � = θ = φ/2. Then, the corresponding order parameter
becomes

Aμ j = |�|√
2

[
c eiφ/2x̂μx̂ j +

√
1 − c2

2
(eiφ ê−μê′

+ j + ê+μê′
− j )

]
,

(23)

where the unit vectors ê±μ = (ŷ ± iẑ)μ/
√

2 and ê′
± j = [cŷ ±

i
√

2(1 − c2)ẑ] j/
√

2 − c2 were introduced. The fact that only
Axx does not become a single-valued component upon circling
the vortex center implies that, as sketched in Fig. 2(a), Axx

inevitably vanishes on a string corresponding to a branch cut
with a fixed φ-value. In other words, a polar-distorted planar
state is realized on the string [8,14].

The above expression of the order parameter in the London
limit is easily generalized to the case with a HQV pair. Since

we should consider a HQV pair to be compared with the
ordinary phase vortex with an integer winding number of the
phase, the angle variables � and θ will be chosen in the
manner

� = φ+ + φ−
2

, θ = φ+ − φ−
2

, (24)

where φ± = tan−1[y/(x ∓ a)]. Then, Eq. (23) is replaced by
Eq. (22) with Eq. (24), i.e.,

Aμ j = |�|√
2

[
c ei(φ++φ− )/2x̂μx̂ j

+
√

1 − c2

2

(
eiφ+ ê−μê′

+ j + eiφ− ê+μê′
− j

)]
. (25)

In this case, sketched in Fig. 2(b), the expression of Axx

implies that the order parameter in |x| > a is continuous
through the x-axis, while the string is necessary in |x| < a.
In relation to the results in Sec. V, it is valuable to point out
that the solution of Eq. (24) on the y-axis is given by � = π/2
and

cosθ =
[

1 +
(

a

y

)2]−1/2

. (26)

Next, the dependence of the HQV pair’s energy on the
HQV pair size 2a will be considered [8] using the gradient
energy terms. The a-dependent contribution of the vortex
energy will be denoted as �FL(a) = F (a) − F (ξc), where ξc

is a cutoff length corresponding to the core size of a HQV over
which the London limit may be used. Since only the vortex
lines extending along the z-axis are considered, the three
gradient terms with coefficients K3, K5, and K6 in Eq. (17) are
neglected. Then, using Eq. (25), the contribution of Eq. (17)
to �FL(a) becomes

�F (2)
L (a) = −π

2
c2|�|2(K1 + K2) ln

(
2a

ξc

)
(27)

in a clean limit where τ−1 = 0, K1 + K2 �
7ζ (3)ξ 2

0 N (0)T 2
c0/(30T 2), and ξ0 = v/(2πTc0). The two

limiting forms of Eq. (27) are already known: Such an
energy gain of the double-core vortex relative to the so-called
o-vortex [22] in the bulk B phase is given by Eq. (27) with
c2 = 2/3 [8,16]. Further, the factor c2 in Eq. (27) is consistent
with the vanishing �F (2)

L (a) in the opposite polar limit where
c = 0 [6]. It can be checked that the nonvanishing Eq. (27)
proportional to c2 follows only from spatial variations of Axx,
which is absent in the polar phase.

As shown in Ref. [6], the negative �FL(a) in the polar
limit occurs only from the gradient term expressing the Fermi-
liquid (FL) or spin-fluctuation correction. It is known [5]
that, in the London limit, such a negative �FL(a) for a HQV
pair in the A phase occurs from a difference due to the
FL correction between the superfluid density and the spin
superfluid density. Within the framework based on the GL
expansion, the gradient terms due to the FL correction arise
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FIG. 3. (a) Diagram giving the FL correction to the gradient
energy. The rectangle denotes the vertex part representing the renor-
malized interaction between the quasiparticles. (b) One example of a
vertex correction to the weak-coupling quartic order term (Gor’kov
box).

in O(|�|4) terms sketched in Fig. 3(a) and, in a clean limit
where τ−1 = 0, they are given by [6]

f (4)
FL = N (0)

450
�s

1(πv)2

(
T

∑
ε>0

1

ε3

)2

{(∇ · Aμ)(∇ · A∗
λ)A∗

μiAλi

+ (∇Aμi ) · (∇A∗
λ j )A

∗
μiAλ j + (Aλ · ∇)A∗

λi(A
∗
μ · ∇)Aμi

− ((∇A∗
μi ) · (∇A∗

λ j )AμiAλ j + (Aμ · ∇)A∗
μi(Aλ · ∇)A∗

λi

+ (∇ · A∗
μ)(∇ · A∗

λ)AμiAλi ) + 2[(∇ · Aμ)

× [A∗
μi(Aλ · ∇)A∗

λi + Aλi(A
∗
μ · ∇)A∗

λi]

+ A∗
μi[(Aλ · ∇)A∗

λ · ∇]Aμi − ((∇ · A∗
μ)[Aλi(Aμ · ∇)A∗

λi

+ Aμi(Aλ · ∇)A∗
λi] + Aλi[(Aμ · ∇)A∗

μ · ∇]A∗
λi )] + c.c.},

(28)

where ε is the fermion Matsubara frequency, and the spin-
antisymmetric Landau parameter �a

1 was assumed to be neg-
ligibly small [5,6]. Applying Eq. (25) to Eq. (28), the corre-
sponding contribution to �FL(a) becomes

�F (4)
L (a) � c−2

30
�s

1|ψ (2)(1/2)|
(

Tc0|�|
πT 2

)2

�F (2)
L (a)

� −0.1π�s
1

(
Tc0|�|2
πT 2

)2

ξ 2
0 N (0) ln

(
2a

ξc

)
, (29)

where the next-order terms of O(c2) were neglected.
Here, ψ (2)(1/2) = −14ζ (3), and �s

1 = F s
1 /(1 + F s

1 /3) is the
pressure-dependent constant of order unity with a Landau
parameter F s

1 (> 0). Thus, the energy gain corresponding to a
repulsion between two HQVs composing a pair is dominated
by the FL correction term rather than the ordinary weak-
coupling terms in the strongly anisotropic PdB phase with a
low enough |c|-value.

In the present PdB phase, we also have an energy cost due
to the KLS string (wall). This contribution due to the nonzero
Axx is estimated like

�Fw(a) � 0.1N (0)ξ 2
0 |�|2 c2a/ξ (T ), (30)

where ξ (T ) = ξ0[N (0)/|α|]1/2. The coefficient �Fw(a)/a
measures the line tension of the string. By optimizing the sum
�F (2)

L + �F (4)
L + �Fw with respect to a, the pair size to be

realized is given by

2am � c−2 2�s
1

π

( |�|
T

)2

ξ (T ). (31)

In this way, it is expected in the London limit that the size of
a HQV pair, am, i.e., the longer radius of the elliptical core of
the double-core vortex, is a microscopic scale in the bulk B
phase, while in a strongly anisotropic PdB phase close to TPB

where |c| � 1, the pair size may become a macroscopic one.
This result will be used to discuss the content of our numerical
results in the next section.

Since the GL free energy is written in the form of expand-
ing in powers of the order-parameter field, it is not clear to
what extent the results in GL theory are quantitatively reliable
deep in the superfluid states. We expect that the present
approach [6] has improved such a defect of the GL approach
to superfluid 3He by including the FL correction terms. In
fact, if, as in the conventional GL approach [11,12,21–24],
the FL-corrected gradient terms are neglected, no HQV pair is
stabilized in the polar phase [6], and, even in the PdB phase,
the size of an assumed HQV pair would remain microscopic
so that the presence [7] of a macroscopic HQV pair in the PdB
phase could not be naturally explained. As mentioned above,
a macroscopic HQV pair can be realized in the PdB phase as a
combined effect of a strong anisotropy and the FL correction
to the gradient energy.

V. NUMERICAL ANALYSIS AND RESULTS

In our numerical study, the GL model we use consists of the
three contributions to the free-energy density, fbulk, fgrad, and
the additional O(|�|4) contributions f (4)

grad. Before proceeding
to discussing our numerical results, comments on the two
contributions, sketched in Fig. 3, to O(|�|4) gradient terms
[6] should be given.

The contribution f (4)
FL , given in Eq. (28) in the case of

a clean limit, arises through the repulsive channel of the
interaction between the quasiparticles. In the limit of strong
anisotropy, the corresponding free energy density is given by
replacing ε in Eq. (28) by ε̃∞. Although Eq. (28) does not
include the anisotropy parameter δu explicitly, the anisotropy-
induced vertex correction with C0 − 1 as a coefficient is, as is
explained in Appendix A, safely negligible even in the limit of
strong anisotropy. Therefore, in the temperature range where
|ε| � 1/τ , Eq. (28) may be safely used for our numerical
purposes.

Another contribution to f (4)
grad arises from the ordinary

weak-coupling O(|�|4) term, the so-called “Gor’kov box,”
unaccompanied by a repulsive interaction between quasi-
particles [see Fig. 3(b)]. This contribution includes all the
terms including those expressed by C21, B0, and �B in the
vertex correction 	 j . As is explained in relation to Fig. 7(a),
however, these vertex corrections are also safely negligible.
This has been concluded through the full numerical results,
although it is already known [6] that these anisotropy-induced
terms in the weak-coupling diagrams do not affect the result-
ing size of the HQV pair irrespective of the anisotropy value.
Therefore, regarding f (4)

grad to be added to fbulk and fgrad, its
expression in the isotropic case, i.e., Eq. (52) in Ref. [6], has
been used to obtain numerical results even in the case with a
strong enough anisotropy.

To numerically examine how the double-core vortex in the
PdB phase is stabilized in the form of a HQV pair, we follow
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the same route as in other works where the HQV pair in
equal-spin pairing states [6] and the double-core vortex in the
B phase in the isotropic aerogel [16] have been studied. First,
Eq. (25) is used as the initial condition for obtaining a HQV
pair with the lowest energy at fixed values of the temperature
and pressure. The London solution, Eq. (25), has a fixed size
2a of the HQV pair as a parameter. The variational equations
of the GL free energy explained above are solved to obtain
the solution minimizing the energy for each a-value according
to the direct two-dimensional method [11], i.e., by assuming
the vortices to be straight line objects extending along the
z-axis. For each run of our computation, we have checked
that the size of the HQV pair of the resulting double-core
vortex solution almost coincides with the 2a value set initially.
This means that, by using Eq. (25) as the initial condition,
the vortex texture at the outer boundary under a fixed a-value
is also kept fixed during each run. Thus, in examining the
dependence of the vortex energy

�F (a) = F (a) − F (0) (32)

on the a-value introduced as the initial condition, this a can
be identified with half of the resulting size of the HQV pair.
Here, �F (a) corresponds to �FL(a) introduced in the London
limit. In the language of the vortices in the bulk B phase,
F (0) corresponds to the free energy of the so-called o-vortex
[22]. As our numerical results for some δu-values, x and y
dependences of each component of the order parameter Aμ, j

of the vortex solution minimizing �F (a) will be presented
together with �F (a) data hereafter. The τ−1-value will be
fixed to 0.13 (mK) throughout this work.

Regarding the system sizes in the x-y plane perpendicular
to the polar axis, we have assumed in most of our compu-
tations that the system size in the x (y) direction is fixed to
24 (1.2) (μm) in the layout sketched in Fig. 2(b), i.e., by
assuming a HQV pair growing along the x direction. Results
in the case with a larger system size [2.4 (μm)] in the y
direction will be commented on later for each |δu|-value. The
pressure dependence of the system is incorporated through
the bulk transition temperature Tc0 and the Fermi velocity v

[23]. The dimensionless strength of the impurity scattering
is (τTc0)−1, which is enhanced upon decreasing the pressure
reflecting the pressure dependence of Tc0 [16,24].

Throughout the present study, the dipole energy is not
taken into account. The neglect of the dipole energy is justified
in the case of weaker anisotropy where the resulting size
of the core composed of a HQV pair is much smaller than
the dipole length ξD ∼ 10 (μm). In contrast, a HQV pair
resulting from a strong enough anisotropy may have a size of
the order of ξD over which the dipole energy affects spatial
patterns of the θ -variable, defined in Eq. (22), in the PdB
phase [7]. However, one will see below in this section that the
London limit becomes a better description upon increasing the
anisotropy. Then, one has only to take the dipole energy into
account later by, in turn, choosing the London limit [7] as the
starting model for description.

First, the |δu| = 0.05 case is discussed as a typical example
of superfluid 3He in a weakly anisotropic aerogel. Figures
4(a) and 4(b) express the corresponding phase diagram and
the a versus �F (a) curves at T = 1.469 (mK) close to TPB

and at 1.447 (mK) under a fixed pressure P = 9 (bar), while
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FIG. 4. Numerical results for |δu| = 0.05. (a) P vs T/Tc0(P)
phase diagram, where Tc0(P) is the superfluid transition line of the
bulk liquid at each P. The red solid curve means the superfluid
transition curve Tc(P) between the polar and normal phases, while
the blue curve denotes TPB(P) and is quite close to Tc(P). (b) The a
vs �F (a) curves at P = 9 (bar) and at T = 1.447 (mK) (red plus
symbols) and 1.469 (mK) (blue cross symbols) close to TBP. The
a-value, am, minimizing �F (a) in the former is 0.38 (μm), while
the corresponding one in the latter is 0.6 (μm) (see also Table I). For
comparison, the corresponding curve at T = 1.447 (mK) obtained by
neglecting the FL correction is shown by the solid red curve, which
indicates am = 0.24 (μm).

Figs. 5(a) and 5(b) present spatial variations of each compo-
nent of Aμ, j at T = 1.469 (mK) upon sweeping along the
x and y axis, respectively. Here, the HQV pair is always
assumed to be initially set as in Fig. 2(b), and the origin is

TABLE I. Resulting am values at different temperatures for var-
ious δu-values at 3 and 9 (bar). The c/cM-value in each case is also
shown, where cM = c(T = 0).

|δu| 0.05 0.05 4.4 4.4 4.4 300 300

P (bar) 9 9 9 3 3 3 3
T (mK) 1.447 1.465 1.28 0.815 0.8466 0.61 0.6396
c/cM 0.628 0.403 0.391 0.369 0.094 0.363 0.157
am (μm) 0.36 0.48 0.54 0.9 5.28 1.02 6.24
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FIG. 5. Spatial variations of Aμ j components for |δu| = 0.05 on
sweeping (a) along the x-axis and at y = 0 at a = am � 0.6 (μm)
when T = 1.469 (mK) and P = 9 (bar), and (b) along the y-axis and
at x = 0. Here, the vortex center is at (0, 0). The Aμ j components
other than the nonvanishing five components in the London represen-
tation, Eq. (22), are expressed by the dotted curves and a red dashed
curve.

the center of the HQV pair. Furthermore, by symmetry, just
the region in x � 0 and y � 0 is shown [6,11,12,16].

As Fig. 4(a) shows, the polar phase region in this |δu| =
0.05 case is extremely narrow, and TPB and Tc curves are
quite close to each other. The decrease of Tc/Tc0 at lower P
is a consequence of [τTc0(P)]−1 increasing with decreasing
P. In Fig. 4(b), the dependence of the vortex core energy
�F on the initial value 2a of the HQV pair size is pre-
sented for the two values of c(T ). As Fig. 6(b) shows, the
parameter c(T ) playing the role of the order parameter in
the PdB phase grows upon cooling. The 2a value minimizing
�F corresponds to the HQV pair size 2am to be realized.
Closer to the phase boundary TPB at which c vanishes, the am

 10

 0.2 1 T/Tc0 0.4  0.6  0.8
 0

 20

 (bar)P

PdB Polar

(a)

 0.6

c

T( ) 1.0  1.4  1.8
 0

 0.2

 0.4

 0.6

 3.0  9.0  15.0(bar)

(b)

FIG. 6. Numerical results for |δu| = 4.4. (a) Pressure P vs
T/Tc0(P) phase diagram. The red curve denotes the superfluid tran-
sition curve Tc(P) between the polar and normal phases, and the blue
curve denotes TPB/Tc0. No remarkable shift of Tc from Tc0 is seen.
(b) Temperature dependence of the “order parameter” c in the PdB
phase at the pressures P = 3.0 (bottom), 9.0, and 15.0 (top) (bar).

value becomes divergent as suggested by Eq. (31). Further,
as the solid curve in Fig. 4(b) shows, the conventional GL
free energy with no FL correction term, Eq. (28), results
in a smaller size 2am = 0.48 (μm) of the HQV pair [9,16].
Such a correlation-induced growth of the HQV pair size has
been pointed out elsewhere [9,16]. Further, although we have
also performed the computation using a larger system size
[2.4 (μm)] in the y direction, the obtained results have shown
no size dependence.

Figures 5(a) and 5(b) show spatial variations of Aμ j upon
sweeping along the x and y axis, respectively, for c = 0.2 and
|δu| = 0.05. Broadly speaking, the midpoints of the Ayz and
Azz curves in Fig. 5(a) correspond to the position of the HQV,
i.e., x = am. In the isotropic case where c2 = 2/3 irrespective
of the temperature, |Ayz| and |Azy| at the origin coincide with
each other. A large difference between them at x = 0 appears
in Fig. 5 due to the “anisotropy” value, c = 0.2. This can be
understood from Eq. (22) with φ+ = π and φ− = 0. Upon
approaching the vortex center along the x-axis, Axx decreases.
However, Axx seems to be nonvanishing even close to x = 0.
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FIG. 7. Numerical results for |δu| = 4.4 at 3 (bar). In (a), the a vs
�F (a) curves are expressed by the blue solid curve at 0.8 (mK) and
by the red solid curve at 0.8466 (mK) close to TPB, and they have
am = 0.78 (μm) and 5.28 (μm), respectively. For comparison, the
results (plus and crossed symbols) in the case with additional vertex
corrections (see the text) are also shown. Part (b) is the extended view
of the red symbols around a = 5.28 in (a).

This means that, as in the bulk liquid, the polar-distorted
planar state is realized only in the close vicinity of the origin
(see also the caption of Fig. 2). Further, according to Fig. 5(b),
the width ξw indicated in Fig. 2(b), i.e., the range of y over
which Axx linearly decreases, is large (� 0.3). These behaviors
of Axx imply that, in spite of a substantial size 2am [� 1.2
(μm)] of the HQV pair (see Table I), the core structure of the
double-core vortex for |δu| = 0.05 is similar to that of the bulk
liquid. On the other hand, we note that, as Fig. 5(b) indicates,
the y dependences of the four order-parameter components
except Axx are slow and seem to be consistent with Eqs. (22)
and (26) following from the London limit.

Next, the corresponding results in a case with a moderately
strong anisotropy, |δu| = 4.4, are presented in Figs. 6 and 7.
The P-T phase diagram and the temperature dependence of
the order parameter c of the PdB phase are given in Figs. 6(a)
and 6(b), respectively. Figure 6(a) shows that a moderately
wide region of the polar phase is realized in this case. The
feature that Tc/Tc0 is almost P-independent and takes values
close to unity at any P indicates that the |δu| = 4.4 case is not
far from the limit of strong anisotropy in which Anderson’s
theorem is strictly valid [15].

  

1
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μ

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(a)

1
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y ( m)
0 0.2 0.4 0.6 0.8 1.0
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FIG. 8. Part (a) expresses the data, at a = am = 0.78 of the blue
solid curve in Fig. 7(a), of spatial variations of Aμ j components on
sweeping along the x-axis and at y = 0. Part (b) corresponds to (a) on
sweeping y and at x = 0. Here, the vortex center is at (0,0).

In Figs. 7(a) and 8, we focus on the P = 3 (bar) case and
on the results at the two temperatures, 0.8466 (mK) at which
c = 0.0456 (or c/cM � 0.094) and 0.8 (mK) at which c =
0.214 (or c/cM � 0.439), where cM(P) is the c value in the
T → 0 limit at each pressure. Figures 8(a) and 8(b) express
the spatial variations of the components of Aμ j at 0.8 (mK) in
P = 3 (bar) when |δu| = 4.4. Some clear differences between
Figs. 8(a) and 5(a) are seen. First, in the notation of Eq. (25),
the following relations are satisfied in Fig. 8(a); θ � 0 and
|Axx| � c/

√
2 in x > am, while θ � π/2 and |Axx| = 0 in

0 � x < am. Next, the linearly vanishing behavior of Axx (red
solid curve) upon lowering |y| and at x = 0 is seen only in a
narrow region of about 0.1 (μm) near the origin. In addition,
the linear behavior �F (a) ∝ a is nicely seen in a > am in
Figs. 7(a) and 7(b). These features lead to the conclusion that
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the (polar-distorted) planar string is well-defined and has a
length comparable with the size 2am of the HQV pair. In fact,
Figs. 7(a) and 7(b) show that such a linear behavior approx-
imately obeys the relation S(T )c2a where the T -dependent
coefficient S(T ) slowly increases upon cooling, i.e., a relation
consistent with the London result, Eq. (31). Furthermore,
except in the vicinity of each HQV, other components of Aμ j

than the five nonvanishing ones in Eq. (22) can be regarded as
being zero.

Based on these features, in contrast to the |δu| = 0.05 case,
the double-core vortex for |δu| = 4.4 is consistent with the
description in the London limit and can be regarded as a
well-defined HQV pair. Its origin seems to consist in the
simple structure of the HQV in the c → 0 limit, i.e., in the
polar phase. As shown in Ref. [6], the spatial variations
of the order parameter are surprisingly simple and are well
represented by Eq. (25) with c = 0 and Axx = 0 except in
the close vicinity of each HQV. A smaller c-value effectively
implying a stronger anisotropy leads to a structure closer to
that in the London limit. In Fig. 7(a), we have also presented
the �F (a) versus a curves (plus and crossed symbols) in the
case where the O(|�|4) gradient energy includes all of the
vertex corrections accompanied by C, B, and D in Eq. (8).
The deviation from the case with no such vertex corrections
in the O(|�|4) gradient energy is negligibly small, and the
resulting am value is not affected much by including such
vertex corrections. Therefore, we judge that the neglect of the
vertex corrections to the O(|�|4) gradient terms, mentioned in
the beginning of this section, is valid in all of the other results
presented here.

We have also examined how the obtained results are
changed using larger system sizes, and we found a size
dependence of the resulting HQV pair size. First, the use of
a larger system size in the x-direction does not change the
results in this section. In contrast, the size 2am of a HQV pair
in |δu| = 4.4 and 300 cases is increased 1.15 times when the
system size in the y direction is 2.4 (μm), which is twice the
corresponding size used in the figures in this section. Such
a size dependence is never seen for |δu| = 0.05. The size
dependence mentioned above does not change our conclusion
that, as the anisotropy is increased, the core structure of the
double-core vortex in the bulk B phase is changed to a simple
HQV pair consistent with the description in the London limit.
In fact, the spatial variations of the Aμ j components shown in
Figs. 8 and 9 are not affected qualitatively by the change of
the system size in the y direction.

The corresponding results for a much stronger anisotropy,
|δu| = 300, are given in Fig. 9. Figures 9(a) and 9(b) express
spatial variations of Aμ, j for |δu| = 300. Here, to examine the
anisotropy dependences of the obtained results at the same
pressure, we have compared the results at the same value of
c(T )/cM with each other, because c(T )/cM seems to become
a common measure of the distance in the phase diagram from
TPB at a fixed P (see also the next paragraph). Surprisingly,
Fig. 9 is qualitatively similar to Fig. 8, suggesting that the
|δu| = 4.4 case is already close to the limit of the strong
anisotropy. Nevertheless, as can be seen in Table I, the re-
sulting size am of the HQV pair minimizing the energy at the
same pressure and at the same c/cM-value slightly increases
upon increasing the anisotropy |δu|. This is understood as a
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FIG. 9. (a) Spatial variations of Aμ j at 0.61 (mK) (or c = 0.127)
below TPB at 3 (bar) for |δu| = 300 obtained on sweeping along the x
axis and at y = 0. (b) Corresponding results to (b) taken along the y
axis and at x = 0.

result of a weak temperature dependence of the amplitude of
the order parameter when noting that Eq. (31) can be rewritten
in the form

am ∝ c−2
M

(
Tc

T

)2
√

1 − T

Tc
(33)

at a fixed pressure and fixed c/cM-value, and that, when |δu| =
4.4, the cM-value is already close to its value for |δu| = 300.
In Table I, we have also shown the pressure dependences of
the resulting am value. The results in P = 3 (bar) and 9 (bar)
at a fixed c/cM value show the tendency that the obtained
am becomes smaller with increasing P. As mentioned above,
however, the obtained am-value is likely to be underestimated
due to the smallness of the system size in the y-direction used
in our computation. Thus, it is not clear to what extent the
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TABLE II. Resulting thickness ξw of the KLS wall obtained
based on the definition given in the text and for the same values as in
Table I of the temperature, |δu|-value, and the pressure.

|δu| 0.05 0.05 4.4 4.4 4.4 4.4 300 300

P (bar) 9 9 9 9 3 3 3 3
T (mK) 1.447 1.465 1.28 1.33 0.815 0.8466 0.61 0.6396
c/cM 0.628 0.403 0.391 0.058 0.369 0.094 0.363 0.157
ξw (μm) 0.2 0.278 0.073 0.121 0.108 0.226 0.092 0.299

present numerical results on the am-value are quantitatively
reliable.

VI. SUMMARY

In this work, we have numerically examined the stability
of a HQV pair in the PdB phase of superfluid 3He in a
strongly anisotropic aerogel by assuming the weak-coupling
approximation and based on the hypothesis that the double-
core vortex in the bulk B phase corresponds to the HQV
pair detected in the PdB phase. Due to the weak-coupling
approximation, the presence of the PdA phase in real systems
is neglected, and the transition between the PdB and the polar
phases becomes inevitably continuous in the present analysis.
However, such a continuous transition is found at low enough
pressures in real systems [25], and in this sense the present re-
sults may be directly applicable to the experimental situations.

Our main result in the present work is that the double-core
vortex [11,12] in the PdB phase under a strong anisotropy
can be regarded as a HQV pair described in the London
limit, reflecting the fact that the HQV in the pure polar phase
is well described in the London limit [6]. We expect based
on this result that a HQV pair detected in the real PdB
phase is not induced but just supported by the vortex pinning
effect.

In Fig. 10, the color maps expressing the spatial dis-
tribution of the squared amplitude of the order parameter∑

μ, j |Aμ j |2 are presented for different anisotropy values. In
|δu| = 0.05 (top figure), the two HQVs are tightly bound by
a negligibly short planar string (wall), and the two HQVs
accompanied by a broad region with a diminished amplitude
of the order parameter are realized. In contrast, for larger
anisotropies such that |δu| = 4.4 and 300, the two HQVs
take the form connected only by a thin polar-distorted planar
string on which the amplitude of the order parameter is faintly
diminished, and the core size of each HQV is diminished upon
increasing the anisotropy. In this manner, the description in the
London limit becomes better upon increasing the anisotropy.

Here, the present result will be compared with the exper-
imental result in Ref. [7], where the HQV pairs in the PdB
phase have been detected. To understand the structure of the
resulting HQV pair better, we have estimated the width of
the polar-distorted planar string ξw [see Fig. 2(b)]. Broadly
speaking, this length is estimated by comparing the mass
term and the gradient one of O(A2

xx) with each other, to be
of the order of ξ (T )/c [7,8]. From the numerical data, ξw

will be defined by assuming that the y dependence of Axx

close to the origin is approximated by c tanh(y/ξw )/
√

2 [7]
[see also Eq. (22)]. As shown in Table II, ξw indeed grows
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FIG. 10. Spatial profiles of the squared amplitude of the order
parameter, i.e.,

∑
μ, j |Aμ j |2 in the x-y plane in the cases of |δu| = 0.05

(top), |δu| = 4.4 (middle), and |δu| = 300 (bottom). The c-value is
0.5 in the top figure. The middle figure corresponds to Fig. 8, while
the bottom one corresponds to Fig. 9. A dim string representing the
KLS wall connecting the two HQVs is seen in the middle and bottom
figures, and the core size of each HQV is found to become smaller
with increasing |δu|.
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with decreasing c/cM. This is roughly consistent with the
c−1 dependence mentioned above. On the other hand, the |δu|
dependence of ξw is not anticipated easily and is found only
through the present numerical analysis. Tables I and II suggest
that, upon increasing the anisotropy |δu|, the aspect ratio
2am/ξw becomes large enough to make the polar-distorted
planar string a rigid and well-defined object. We note that this
ratio is inversely proportional to c(T ), reflecting the proximity
to the polar phase in which the size of a HQV pair is infinitely
long in the present analysis where the dipole energy has been
neglected.

The results on the vortex energy shown in Figs. 4 and 7
imply together with the data in Table I that the size of the
HQV pair, am, is highly sensitive to the c-value. On the other
hand, according to Ref. [7], huge HQV pairs have appeared
in the PdB phase in spite of a reasonable T dependence of c
corresponding to

√
2q there [see the supplementary Fig. 5 in

Ref. [7], which is qualitatively comparable with the present
Fig. 6(b)]. It is evidence of the presence of a strong pinning in
nematic aerogels keeping the size of a HQV pair significantly
large [7].

In the experiment under rotation [1], the rotation axis
has been fixed to the anisotropy (polar) axis, which is the
z-direction in our notation. Furthermore, as mentioned above,
the vortices created under a rapid quench [7] are also pinned
along the polar axis because, due to the anisotropy, the coher-
ence length is effectively the longest in this direction. Thus, it
is possible that, if the aerogel is rotated with a rotation axis
perpendicular to the polar axis, a pinning of the resulting
vortices to the aerogel structure may be avoided. Then, the
shrinkage of the HQV pair upon cooling might be observed in
such a situation. There is another motivation regarding a study
of HQVs extending along a direction perpendicular to the
polar axis. Recently, NMR measurements for 3He in a nematic
aerogel squeezed by 30% in a direction perpendicular to the
polar axis have been reported [26]. There, it has been found
that the l-vector in the chiral PdA phase is largely directed
along the squeezed direction. In this situation, the Majorana
fermions may remain stable [27] in the core of a HQV in the
PdA phase. For these reasons, it will be valuable to extend the
present study on HQVs to the situation with the vortex axis
perpendicular to the polar axis.
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APPENDIX A

In this Appendix, details of the pairing vertex correction
due to the impurity scattering and of the coefficient of each
term in the resulting GL free energy are explained.

The impurity scattering potential does not carry the Mat-
subara frequency, and consequently, the corresponding self-
energy term can be incorporated through the replacement of

f
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FIG. 11. (a) f ≡ XC0 vs X curves for |δu| = 1 × 1010 (top), 300,
30, 4.4, and 1 × 10−10 (bottom), where X = 4τ |ε|/π . Note that f
obeys 1 + X in |δu| → ∞, while it approaches X in the δu → 0
limit. (b) g ≡ πXB0/τ vs X curves corresponding to those in (a). In
|δu| → ∞, g obeys 1/(1 + X ), while it approaches 2/[3(1 + πX/2)]
in δu → 0 in agreement with Eq. (9).

the Matsubara frequency |ε| with

|ε̃p| = |ε| + 1

2τ
〈w(p − p′)〉p′

= |ε| + 1 + (|δu|−1/2 − 1)�(1 − |δu|)
4τ

×{tan−1[|δu|1/2(1− p)]+ tan−1[|δu|1/2(1 + p)]} (A1)

(|p| < 1), where p = p · ẑ/pF, and 〈 〉p implies the average
over the polar angle cos−1(p).

The coefficients composing the vertex part 	 are given in
the form(

B0 D0

�B �D

)

= 1

2

(
1 − Id11 −|δu|−1(Id10 − Id11)

−|δu|(3Id12 − 4Id13) 1 − 3Id11 + 7Id12 − 4Id13

)−1

×
(

e1 −Id21 + 2|δu|−1C0(Id20 − Id21) − e1

e2 2C0(3Id21 − 7Id22 + 4Id23) − e2

)
, (A2)
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where

e1 = Id21 + |δu|−1(Id21 − Id20), (A3)

e2 = |δu|(3Id22 − 4Id23) − 3Id21 + 7Id22 − 4Id23, (A4)

and

C0 = 1

d
,

C21 = −Id31 + Id32 + |δu|−1(Id30 − 2Id31 + Id32)

d2
,

C1z = 2dC21 − 2

d
[B0(Id21 − Id22)

+�B(Id20 − 2Id21 + Id22)], (A5)

C2z = 1

d
[(2 + C0)(Id31 − Id32) − 2D0(Id21 − Id22)]

− 1

d|δu| [(2 + 3C0)(Id30 − 2Id31 + Id32)

+ 2�D(Id20 − 2Id21 + Id22)].

Further,

d = 1 − 2(Id11 − Id12),

Idmn =
〈

1 + (
√|δu| − 1)�(|δu| − 1)

(2|ε̃p)mτ (1 + |δu|p2)n

〉
p

. (A6)

Among these coefficients, the |ε| dependences of C0 − 1
and B0 are presented in Figs. 11(a) and 11(b), respectively.
Here, f = XC0, g = πXB0/τ , and X = 4τ |ε|/π . Broadly
speaking, the functions f and g decrease with decreasing |δu|-
values. Since, more or less, we focus on the temperature range
in which 2τ |ε| � 1, any impurity-induced vertex corrections
become negligible in our numerical analysis.

Next, the coefficients in the GL free energy are given by

α = 1

3
N (0)

[
ln

(
T

Tc0

)
+ 2πT

∑
ε>0

(
1

|ε| − 3

2
(I10 − I11)

)]
,

αz = 1

3
N (0)

[
ln

(
T

Tc0

)
+ 2πT

∑
ε>0

(
1

|ε| − 3I11C0

)]
, (A7)

where

Imn =
〈

p2n

|ε̃p|m
〉

p

, (A8)

β
(0)
3 = −2β

(0)
1 = πT

8
N (0)

∑
ε>0

(I30 − 2I31 + I32),

β
(0)
2 = β

(0)
4 = −β

(0)
5 = β

(0)
3 − πT

64τ
N (0)

∫ 1

−1
d p1

∫ 1

−1
d p2

∑
ε>0

(
1 − p2

1

)(
1 − p2

2

)
ε̃2

p1
ε̃2

p2
[1 + |δu|(p1 − p2)2]

× [1 + (
√

|δu| − 1)�(|δu| − 1)],

βz = −3

2

(
β

(0)
3 + 2β

(1)
3

) + πT

2
N (0)

∑
ε>0

C4
0 I32 − πT

64τ
N (0)

×
∫ 1

−1
d p1

∫ 1

−1
d p2

∑
ε>0

(
1 − p2

1 − 2p2
1C

2
0

)(
1 − p2

2 − 2p2
2C

2
0

)
ε̃2

p1
ε̃2

p2
[1 + |δu|(p1 − p2)2]

[1 + (
√

|δu| − 1)�(|δu| − 1)],

β
(1)
3 = −2β

(1)
1 = −β

(0)
3 + πT

2
N (0)

∑
ε>0

C2
0 (I31 − I32),

β
(1)
2 = β

(1)
4 = −β

(1)
5 = β

(1)
3 + πT

64τ
N (0)

×
∫ 1

−1
d p1

∫ 1

−1
d p2

∑
ε>0

(
1 − p2

1

)(
1 − p2

2 − 2p2
2C

2
0

)
ε̃2

p1
ε̃2

p2
[1 + |δu|(p1 − p2)2]

[1 + (
√

|δu| − 1)�(|δu| − 1)], (A9)

K2 = πT v2

16
N (0)

∑
ε>0

(I32 − 2I31 + I30), (A10)

K3 = πT v2

16
N (0)

∑
ε>0

(−5I32 + 6I31 − I30), (A11)

K1 = K2 + πT v2

4
N (0)

∑
ε>0

[(I20 − I21)B0 + (I21 − I22)�B],

(A12)

K4 = −K2 + πT v2

4
N (0)

∑
ε>0

[(I31 − I32)C0 − 8I11C21], (A13)

K5 = 2K3 + πT v2

8
N (0)

∑
ε>0

[(3I21 − I20)B0 + (3I22 − I21)�B

+ (I20 − I21)D0 + (I21 − I22)�D + 2(I31 − I32)(C0 − 1)

− 8I11C1z],
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K6 = −7K3 + πT v2

4
N (0)

∑
ε>0

[(3I21 − I20)D0

+ (3I22 − I21)�D + (5I32 − 3I31)(C0 − 1) − 8I11C2z

+ 3I31 − I30]. (A14)

APPENDIX B

Here, the possible effects of the pairing vertex correction,
peculiar to the anisotropic scattering, on the O(|�|4) gradient

energy arising from the Fermi liquid repulsive interaction
will be discussed. In our previous work [6], such a vertex
correction was not taken into account there by assuming a
weak anisotropy.

Since, in the present work, only a straight vortex line
extending along ẑ is considered, the z-derivative does not have
to be included in the gradient terms. Then, the only vertex
correction in the FL-corrected gradient terms is the factor
C0 − 1 accompanying Aρz in Eq. (28). For instance, the terms
including Aμz in the first line of Eq. (28) have to be replaced
by

f (4)
FL1 = N (0)

225
�s

1(πv)2

[(
T

∑
ε>0

1

ε3
C0

)2[
(∇ · Aμ)(∇ · A∗

λ)A∗
μzAλz + (Aλ · ∇)A∗

λz(A∗
μ · ∇)Aμz

]

+
(

T
∑
ε>0

1

ε3

)(
T

∑
ε>0

1

ε3
C2

0

)[ ∑
j=x,y

(∇Aμz ) · (∇A∗
λ j )A

∗
μzAλ j + c.c.

]
+

(
T

∑
ε>0

1

ε3
C2

0

)2

(∇Aμz ) · (∇A∗
λz )A∗

μzAλz

]
. (B1)

As can be seen in Fig. 11, however, C0(ε) − 1 remains
almost zero irrespective of the δu-value except at low enough
values of 2πT τ , and it is quantitatively negligible in the
temperature region where 2πT τ � 1 is satisfied. Therefore,
we can proceed with our analysis without incorporating the
impurity-induced vertex correction to the pairing process in
the FL gradient term even in the limit of strong anisotropy.

In another gradient terms stemming from the “Gor’kov
box,” i.e., the ordinary weak-coupling O(|�|4) term unac-

companied by a repulsive interaction between quasiparticles,
the vertex corrections other than C0 − 1 are also present. As
shown in Sec. V of Ref. [6], this weak-coupling diagram
does not contribute to the stability of HQVs in the polar
and A phases irrespective of how the gradients operate onto
the order parameter fields. Furthermore, as explained in re-
lation to Fig. 7, the weak coupling O(|�|4) term plays only
negligible roles for the stability of a HQV-pair occurring in
the B phase.
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