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Electromagnetic response of superconductors in the presence of multiple collective modes

Rufus Boyack1 and Pedro L. e S. Lopes2

1Department of Physics & Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
2Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia,

Vancouver, British Columbia, Canada V6T 1Z4

(Received 16 October 2019; revised manuscript received 30 December 2019; accepted 30 January 2020;
published 9 March 2020)

Collective-mode fluctuations play an essential role in ensuring the electromagnetic response of superfluids is
gauge invariant. The contribution of these fluctuations, however, is known to drop out from the Meissner response
of uniform superfluids. The same phenomenon is not so established in the context of nonuniform superfluids. To
clarify this issue, we revisit how collective modes appear in the Meissner effect. We find that their contribution
vanishes both in uniform and nonuniform systems, unless an external length scale is present—as in Fulde-Ferrell
or finite-sized superfluids. As examples, we consider s-wave and chiral p + ip superconductors. To facilitate
this analysis, we formulate a path-integral matrix methodology for computing the response of fermionic fluids
in the presence of multiple collective modes. Closed-form expressions are provided, incorporating effects from
phase and amplitude of the superconducting order parameter and electronic density fluctuations. All microscopic
symmetries and invariances are manifestly satisfied in this approach, and it can be straightforwardly extended to
other scenarios.
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I. INTRODUCTION

Collective modes in superfluids and superconductors play
a pivotal role in understanding gauge invariance in a many-
particle context [1–3]. These modes comprise amplitude and
phase fluctuations of the order parameter [4,5], and in the
context of neutral superfluids the presence of the phase mode
is evinced as a longitudinal sound oscillation [6–8]. Obser-
vation of the amplitude mode in a condensed-matter context,
while possible, is rather challenging [9]. Some particular cases
where this mode was indeed observed include systems with
emergent Lorentz invariance [10–12] and superconductors
coupled to either charge-density waves [13,14] or optical
modes [15,16]. Collective modes in general provide nontrivial
examples of the rich physics associated with broken symme-
tries and nontrivial ordering [17,18].

In contrast, the Meissner effect is conventionally under-
stood as a “transverse” response [19,20], where “longitudinal”
collective modes are not thought to participate. This issue
was addressed, and partly clarified, in Ref. [21]. There it
was shown that in nonuniform superfluids the longitudinal
collective modes can possibly appear in what are termed—in
the context of uniform systems—transverse response func-
tions. In addition, Ref. [22] provided an explicit calculation of
the electromagnetic (EM) response of the Fulde-Ferrell (FF)
superfluid, which consists of finite-momentum Cooper pairs,
and showed that the amplitude mode gives a significant con-
tribution to the superfluid density. These issues motivate the
current work, where we investigate the superfluid response for
systems with nonuniform pairing, such as p-wave superfluids
[23,24] and superconductors [25,26], and we provide a more
general understanding on the type of superconductor where
collective modes can contribute to the Meissner response.

We define a uniform superfluid or superconductor to be
one where the order parameter two-point function is both
translation and rotation invariant. A nonuniform system is
one that is not uniform, and as such it violates either one or
both of the conditions above. In the case of uniform s-wave
superconductors, gauge invariance and the uniformity of the
gap establishes that there is no collective-mode contribution
to the Meissner effect [27]. When isotropy is broken, however,
this argument needs to be revisited [21].

Phase fluctuations of the order parameter must be included
to derive a gauge-invariant EM response [5]. On top of this,
one can also consider amplitude fluctuations of the order
parameter, and these have been shown [5] to be necessary to
satisfy a thermodynamic sum rule, namely the compressibility
sum rule [28,29]. Of particular interest is the response in
p-wave superfluids [23–26] and also in systems with other
pairing symmetries [30]. A complete calculation of the EM re-
sponse for a chiral p + ip system, in the presence of Coulomb
and amplitude and phase fluctuations of the order parameter,
has not been, to the best of our knowledge, presented in the
literature, and the question of the Meissner response for such
a system was unaddressed in Ref. [21]. In this paper we show
that collective modes do not contribute to the Meissner effect
in either uniform s-wave or nonuniform p-wave superconduc-
tors. More generally, our results show that collective modes
do not contribute to the Meissner effect, independent of the
pairing symmetry, in any superconductor that does not display
an external wave-vector scale (e.g., finite-momentum pairing).

In order to derive this result, we develop a method for
computing the gauge-invariant EM response of an electronic
system with multiple collective modes present. Our analy-
sis is based on an extension of the path-integral formula-
tion of Ref. [5] and matrix-linear-response approaches of
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Refs. [4,28,31]. One of our central results is to demonstrate
how these collective modes can be incorporated in compre-
hensive and illuminating EM response tensors using singular-
value decompositions. For pedagogical purposes we con-
sider several examples of application, including the Coulomb
screening in a normal metal and phase fluctuations in the EM
response of a superfluid. We demonstrate the power of our
formulation by obtaining the manifestly gauge-invariant EM
response tensor for superconductors with amplitude, phase,
and Coulomb fluctuations present. More generally, our results
are applicable to a variety of scenarios beyond the scope of
this work. They are relevant in any situation where energy
scales compete, leading to intertwined ordering [17], or where
symmetries provide multidimensional order parameters. The
study of the contribution of distinct collective modes to the
EM response tensor provides a direct method to access signa-
tures of broken symmetries and nontrivial ordering.

The paper is organized as follows: in Sec. II we outline
general formulas for the electromagnetic susceptibility ten-
sors; a careful derivation of these formulas along with their
covariance properties is provided in Appendices A and B.
Following this, Sec. III provides a set of applications of these
formulas, including: Coulomb screening, phase fluctuations in
a superfluid, the gapping of phase modes in a superconductor
by Coulomb screening, and finally the mixing of phase modes
with amplitude-Higgs modes in a charged superconductor.
This section contains our algebraic approach to screening
by use of singular-value decompositions. Finally, Sec. IV
addresses our discussions regarding the Meissner effect and
we conclude in Sec. V. Appendices C–E provide further
details on several relevant calculations.

II. ELECTROMAGNETIC RESPONSE TENSOR

The starting point of our analysis is a fermionic system
subject to a set of collective fluctuating degrees of freedom.
The latter are described by a set of generalized coordinates,
denoted by �, which should be thought of as a vector of
Hubbard-Stratonovich decoupling fields. In the presence of
an external EM probe A, we consider the dynamics of the
EM response at the mean-field level, which is defined by the
following conditions for each component �a of �:

δSeff[�, A]

δ�a(x)

∣∣∣∣
�=�mf[A]

= 0. (2.1)

Here Seff is the effective action for the fluctuating degrees of
freedom, in the presence of the external EM probe, obtained
after integration over the fermionic degrees of freedom [32].
The solutions to the mean-field equations, �mf[A], are no
longer arbitrary fluctuating degrees of freedom to be function-
ally integrated over, but rather they are functions determined
by the external EM probe [4,5,33]. As a result, the mean-field
EM response tensor reads

Kμν

mf (x, y) = δ2Seff[�mf[A], A]

δAμ(x)δAν (y)

∣∣∣∣
A=0

. (2.2)

Note that Kμν (x, y) = Kνμ(y, x). In this paper imaginary time
will be used and thus Aμ = (A0, A) = (iAt , A).

To evaluate these derivatives it is necessary to use a func-
tional chain rule and differentiate all terms with dependence

on the vector potential. This manipulation, together with
an application of the mean-field equations in Eq. (2.1), is
presented in Appendix A; the result is a matrix form for the
mean-field-level EM response, namely,

Kμν

mf (x, y) = Qμν (x, y) −
∫

z,z′
{Rμa(x, z)

× [S−1(z, z′)]abRbν (z′, y)}, (2.3)

where

Qμν (x, y) = δ2Seff[�, A]

δAμ(x)δAν (y)

∣∣∣∣
A=0,�=�mf[0]

, (2.4)

Rμa(x, y) = Raμ(y, x)

= δ2Seff[�, A]

δAμ(x)δ�a(y)

∣∣∣∣
A=0,�=�mf[0]

, (2.5)

and

Sab(x, y) = δ2Seff[�, A]

δ�a(x)δ�b(y)

∣∣∣∣
A=0,�=�mf[0]

. (2.6)

Here the derivatives with respect to the gauge field A act only
on the explicit vector-potential dependence. In the second
contribution of Eq. (2.3), we emphasize that the matrix Sab

must be computed first, as in Eq. (2.6), and then inverted
before being inserted into Eq. (2.3). In other words, Eq. (2.3)
does not involve the inverse of each matrix element of
Eq. (2.6), but rather the elements of the inverse of the matrix
itself.

This expression contains several insightful properties.
First, it manifestly decouples into two contributions which
correspond, respectively, to the bubble and collective-mode
linear responses. Second, as shown in Appendix B, this ex-
pression is reparametrization covariant, i.e., it does not change
form under a basis transformation of �. This means that
all fluctuations are considered symmetrically, in an unbiased
manner. In the context of superconductivity, for example,
Eq. (2.3) can be equally used for considering fluctuations in
the real and imaginary parts of the superconducting pairing
strength [31], or for fluctuations in the radial and phase
degrees of freedom, as we shall do later in the paper. Third,
by writing this expression in real space it affords greater
generality and can thus be used, for example, in the pres-
ence of either impurities or defects occurring in collective-
mode order parameters. For a translation-invariant system, the
momentum-space representation is more tractable and reads

Kμν

mf (q) = Qμν (q) − Rμa(q)[S−1(q)]abRbν (q), (2.7)

where, for example,

Qμν (x, y) = Qμν (x − y) =
∫

q
e−iq·(x−y)Qμν (q). (2.8)

We use the short-hand notation
∫

q = T Ld
∑

i�m

∫ dq
(2π )d , where

L is a length scale, d is the number of spatial dimensions, T
is the temperature, and �m is a bosonic Matsubara frequency.
Natural units c = h̄ = kB = 1 are used throughout the paper.
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III. GENERAL APPLICATIONS

In this section we present several applications of Eq. (2.7).
For the benefit of the reader, in the following subsections we
take a pedagogical approach and start with a rather detailed
calculation of the application of Eq. (2.3) in two familiar
scenarios: Sec. III A electrostatic screening and Sec. III B
gauge-invariant response in superfluids due to phase fluctu-
ations. With the mathematical procedures well established,
we will then move on at a progressively faster pace: in
Sec. III C we study the next simplest possible scenario—a su-
perconductor with phase fluctuations—and here we introduce
the concept of folding the effects of competing fluctuations
using singular-value decompositions. The dénouement of this
section is Sec. III D, where we put all this methodology
together to compute the EM response tensor in the nontrivial
case of concomitantly fluctuating Coulomb and supercon-
ducting phase and amplitude degrees of freedom. To clarify
our terminology, a superconductor is a charged system with
Coulomb interactions present and a superfluid is a neutral
system.

A. Screening due to electrostatic interactions

Consider an interacting electronic system in D = d + 1
space-time dimensions with an action given by

S[A] = −
∫

dDxdDx′ψ†
σ (x)G−1

0 [A](x, x′)ψσ (x′)

+ e2

2

∫
dDxdDx′δn(x)V (x − x′)δn(x′)

+ ie
∫

dDxAt (x)n0, (3.1)

where δn(x) = ψ†
σ (x)ψσ (x) − n0, with n0 the constant back-

ground density, σ =↓,↑ is a spin index (summed if repeated),
and the (bare) inverse Green’s function is

G−1
0 [A](x, x′) = −[∂τ − ieAt (x) + h(p̂ − eA)]δ(x − x′).

(3.2)

The single-particle Hamiltonian, denoted by h(p), is kept gen-
eral at this stage. For concreteness, we assume instantaneous
interactions: V (x − x′) = V (x − x′)δ(τ − τ ′). Throughout
the paper we shall interchangeably refer to electronic density
fluctuations as Coulomb fluctuations. The generating func-
tional for electromagnetic response is then

Z[A] =
∫

D[ψ†, ψ]e−S[A]. (3.3)

We are interested in how nonuniform charge distributions
affect the EM response of this system. Thus it is natural to
consider decoupling the electrostatic interaction terms via a
Hubbard-Stratonovich decomposition as

Z[A] ∼
∫

Dϕe−Seff[ϕ,A]. (3.4)

Defining β = 1/T and G−1
0 [ϕ, A] = G−1

0 [At + ϕ, A], the ef-
fective action is

Seff[ϕ, A] =
∫

dDxdD−1x′ ϕ(x, τ )ϕ(x′, τ )

2V (x − x′)

+ ie
∫

dDx[At (x) + ϕ(x)]n0

− Tr ln
(− βG−1

0 [ϕ, A]
)
. (3.5)

The capitalized trace denotes a trace over all space-
time/momentum-frequency and internal (uncapitalized trace)
degrees of freedom:

Tr ln
(− βG−1

0 [ϕ, A]
) =

∫
dDxtr〈x| ln

(− βG−1
0 [ϕ, A]

)|x〉.
(3.6)

In this language we obtain the building blocks for Eq. (2.3)
(which are tantamount to undressed polarization tensors).
In fact, due to translation invariance, we can focus on the
expressions in momentum space used in Eq. (2.7). For
instance [34],

Qμν (q) ≡ δ2Seff[ϕ, A]

δAμ(−q)δAν (q)

∣∣∣∣
A,ϕ=0

= − δ2Tr ln
(−βG−1

0 [ϕ, A]
)

δAμ(−q)δAν (q)

∣∣∣∣∣
A,ϕ=0

. (3.7)

Similarly, noticing that A0 = iAt and that all terms involving
ϕ appear in the Green’s function as iAt + iϕ, one finds

Rμϕ (q) ≡ δ2Seff[ϕ, A]

δAμ(−q)δϕ(q)

∣∣∣∣
A,ϕ=0

= iQμ0(q), (3.8)

Sϕϕ (q) ≡ δ2Seff[�, A]

δϕ(−q)δϕ(q)

∣∣∣∣
A,ϕ=0

= V −1(q) − Q00(q). (3.9)

Conveniently, all building blocks can be expressed in terms
of the undressed polarization tensor Qμν (q). An in-depth
analysis of these expressions is provided in Appendix C.

Applying Eq. (2.7) now becomes a simple matter (we drop
the q-dependence label for simplicity):

Kμν

mf = Qμν − (iQμ0
)
(V −1 − Q00)−1(iQ0ν )

= Qμν + Qμ0V Q0ν

1 − V Q00
≡ Q̃μν. (3.10)

The last definition will be used throughout later sections of
the paper. The above result reproduces the screening effect
of Coulomb fluctuations. In particular, the RPA charge-charge
susceptibility [29] is obtained:

K00
mf = Q00

1 − V Q00
. (3.11)

B. EM response for superfluids (with no amplitude fluctuations)

Another simple application of Eq. (2.7) concerns the
gauge-invariant EM response tensor for superfluids with phase
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fluctuations of the order parameter. In superfluids where the
mean-field order parameter takes on a finite vacuum expecta-
tion value the global U(1) symmetry is spontaneously broken.
To restore gauge invariance, the phase fluctuations of the
order parameter must be included. In this section we consider
a superfluid where the amplitude of the order parameter is
rigidly pinned down to its mean-field value, but allow the
phase to depend on the external EM probe.

It is straightforward to analyze this scenario with our
present approach. Consider a set of nonrelativistic spin- 1

2
particles, with free Hamiltonian h(p) = p2/(2m) − μ, inter-
acting instantaneously with each other via an attractive, trans-
lation invariant but possibly anisotropic potential g(x − x′). In
the presence of an external probe field A, the action reads

S[A] = −
∫

dDxdDx′ψ†
σ (x)G−1

0 [A](x, x′)ψσ (x′)

−
∫

dDxdDx′ψ†
↑(x)ψ†

↓(x′)g(x − x′)ψ↓(x′)ψ↑(x)

+ ie
∫

dDxAt n0. (3.12)

Here g(x − x′) = g(x − x′)δ(τ − τ ′).
Preparing again for the mean-field treatment of the prob-

lem, we now perform a Hubbard-Stratonovich decomposition
in the Cooper channel to arrive at the generating functional

Z[A] ∼
∫

D[�,�∗]D[ψ†, ψ]e−Sbos e−Sel , (3.13)

where the bosonic contribution to the action is

Sbos = ie
∫

dDxAt n0 +
∫

dDxdD−1x′ |�(x, x′, τ )|2
g(x − x′)

(3.14)

and the electronic contribution is

Sel = −
∫

dDxdDx′ψ†
σ (x)G−1

0 [A](x, x′)ψσ (x′)−
∫

dDxdD−1x′

× [ψ†
↑(x, τ )�(x, x′, τ )ψ†

↓(x′, τ ) + H.c.]. (3.15)

Before integrating out the fermions, remember that the sym-
metry of the interaction potential g(x − x′) is decisive in
determining the symmetry structure of the pairing field. Due
to the homogeneity of the problem (in the absence of strong
driving external EM fields), it is advantageous to use relative

and center-of-mass coordinates to describe the pairing field:

�(x, x′, τ ) → �

(
x − x′,

x + x′

2
, τ

)
. (3.16)

We ignore spin-orbit coupling. In this case, spherical
anisotropy in the pairing potential can be captured in a gra-
dient expansion of �,

�

(
x − x′,

x + x′

2
, τ

)
=
∣∣∣∣�s

(
x + x′

2
, τ

)∣∣∣∣eis

(
x+x′

2 ,τ

)
δ(x − x′)

+
∣∣∣∣�p

(
x + x′

2
, τ

)∣∣∣∣eip

(
x+x′

2 ,τ

)
(∂x+ i∂y)δ(x − x′) + · · · ,

(3.17)
where we favor an amplitude-phase coordinate choice. In
general, the pairing potential will select only one term in
Eq. (3.17); the structure we chose for the interaction, in fact,
favors opposite-spin pairing by construction. Nevertheless, we
can remain fairly general and write

Sbos = ie
∫

dDxAt n0 +
∫

dDx
|�(x, τ )|2

g̃
, (3.18)

where g̃ is a renormalized value for g, and

Sel = −
∫

dDxdDx′ψ†
σ (x)G−1

0 [A](x, x′)ψσ (x′)

−
∫

dDx[�(x, τ )ψ†
↑(x, τ )D̂ψ

†
↓(x, τ ) + H.c.], (3.19)

where �(x, τ ) = ρ(x)eiθ (x) for a general amplitude and phase
and D̂ corresponds to a differential operator that depends on
the symmetry channel. In Appendix D we consider an explicit
application of this to a spinless p-wave problem.

We are now ready to integrate out the fermions; introducing

the Nambu spinor � = (ψ↑, ψ↓, ψ
†
↑, ψ

†
↓ )

T
, the electronic part

of the action becomes

Sel = −1

2

∫
dDxdDx′�†(x)G−1[A](x, x′)�(x′), (3.20)

where the (inverse) Nambu-space Green’s function is

G−1[A](x, x′) = −

⎛⎜⎝
[
∂τ − ieÃt +

(
[p̂−eÃ]2

2m − μ
)]

−ρ(x)iσyD̂

ρ(x)iσyD̂†
[
∂τ + ieÃt −

(
[p̂+eÃ]2

2m − μ
)]
⎞⎟⎠δ(x − x′), (3.21)

σy acts on the spin degrees of freedom. As customarily per-
formed [25,35,36], we have rotated away the superconducting
phase, which is conveniently absorbed by the gauge fields as
Ãμ = Aμ − 1

2e∂μθ . The generating functional thus becomes

Z[A] ∼
∫

D[�,�∗]e−Seff [�,�∗,A], (3.22)

where the effective action is (dropping the A-dependence
label)

Seff[�,�∗, A] = Sbos − 1
2 Tr ln (−βG−1), (3.23)

with Sbos as in Eq. (3.18) and one should keep in mind the
factor of 1

2 due to Nambu doubling.
At this point we consider the mean-field response. In this

section, we will neglect fluctuations of the superconducting
amplitude, setting ρ(x) → ρ0. It is then possible to use the
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relationship between Ãμ and Aμ to write

δSeff[θ, A]

δθ (x)
=
∫

dy
δSeff[θ, A]

δ∂αθ (y)

δ∂αθ (y)

δθ (x)

= −∂α

δSeff[θ, A]

δ∂αθ (x)

= 1

2e
∂α

δSeff[θ, A]

δAα (x)
. (3.24)

The factor of 2e can be safely absorbed as it will drop out from
the correlation functions; we will omit it from now on. This
allows us to once again write all the momentum-space tensors
in terms of the undressed polarization tensors Qμν , namely,

Rμθ (q) = iQμβ (q)qβ, (3.25)

Rθν (q) = −iqαQαν (q), (3.26)

Sθθ (q) = qλQλσ (q)qσ . (3.27)

At the mean-field level θ is a constant and drops out from the
Green’s functions. Notice that the Green’s functions appearing
in Qμν (q) in this case correspond to Eq. (3.21) with Ãμ = 0
and ρ(x) → ρ0. Implementing Eq. (2.7), the EM response is
then

Kμν

mf = Qμν − (iQμβqβ

)(
qλQλσ qσ

)−1(−iqαQαν
)

= Qμν − QμβqβqαQαν

qλQλσ qσ

≡ �μν. (3.28)

This is the general form of the EM response tensor for a
neutral superfluid, independent of the pairing symmetry. The
gapless fluctuating phase degree of freedom is crucial to
ensure gauge invariance, which the form above manifestly
obeys: qμKμν

mf (q) = Kμν

mf (q)qν = 0. Setting qλQλσ qσ = 0 re-
covers the well-known result of Anderson and Bogoliubov
[37,38]: The EM response has a pole corresponding to a
long-wavelength sound mode (with speed cs = vF /

√
3 at

T = 0) induced by phase fluctuations of the order parameter.
An equivalent result has been found in previous literature
[35,39], where gauge invariance is recovered by including,
and integrating over, the fluctuations of the phase of the order
parameter. In our approach no such functional integration
is necessary; gauge invariance is guaranteed by the implicit
dependence of the order parameter on the external vector
potential in Eq. (2.1).

C. EM response for superconductors
(with no amplitude fluctuations)

With the previous results established, for our first nontrivial
application of Eq. (2.7) we consider a charged superconductor
with both phase and Coulomb fluctuations present. This prob-
lem was also considered in Ref. [25], in the context of the
EM response of a chiral p + ip superconductor, via sequential
functional integration of the Coulomb and phase degrees of
freedom. It is natural to ask what the form of the EM response
would be if this procedure were performed in the opposite
order, and this will be addressed in what follows. In our case,
the results from the previous sections allow the response to be

written as

Kμν

mf = Qμν −
(

iQμ0

iQμβqβ

)T

×
(

V −1 − Q00 −Q0βqβ

qαQα0 qλQλσ qσ

)−1(
iQ0ν

−iqαQαν

)

= Qμν − 1(
V −1 − Q00

)
qλQ̃λσ qσ

(
Qμ0

Qμβqβ

)T

×
(−qλQλσ qσ Q0βqβ

qαQα0 V −1 − Q00

)(
Q0ν

qαQαν

)
. (3.29)

The Coulomb-screened EM response tensor Q̃λσ of Sec. III A
naturally appears here in the denominator.

While Eq. (3.29) treats the Coulomb- and phase-screened
responses of a charged superconductor in a symmetric fash-
ion, the present form is not totally satisfactory. In particular,
gauge invariance is not manifest, and it may be advantageous
to recover similar results found in the previous section, as well
as the polaritonic resonances of the EM response. To accom-
plish this, we have to “bias” the above expression towards
either a Coulomb-screened type of object or a phase-screened
type of object. An analogy from the process of Ref. [25] would
be to consider integrating out first either the electrostatic
Coulomb field or the phase degree of freedom.

Let us make this procedure more explicit. With a few
manipulations, we may explicitly rewrite Qμν in terms of its
Coulomb-screened version Q̃μν so that Eq. (3.29) then has the
form

Kμν

mf = Q̃μν − qαqβ

qλQ̃λσ qσ

(
Qμ0

Qμβ

)T

×
⎛⎝ Qα0Q0β

(V −1−Q00 )2
Q0β

V −1−Q00

Qα0

V −1−Q00 1

⎞⎠(Q0ν

Qαν

)
. (3.30)

A natural question to consider is how to best simplify
the expression above; how can one extract a concise and
manifestly gauge-invariant formula from which the physical
phenomena can be deduced? Naively expanding the above
expression is an unwieldy endeavor, which would also be
increasingly intractable as the number of order-parameter
degrees of freedom enlarges. The pivotal realization is that
the 2 × 2 matrix appearing in the EM response now has zero
determinant: it is a singular matrix, which can be expressed
using a singular-value decomposition (SVD). Consider the
following matrix:

M =
(

ab a
b 1

)
. (3.31)

Define the matrices U,V , and D by

U =
(

a a
|a|

1 −|a|
)

, V =
(

b∗ b∗
|b|

1 −|b|
)

, D =
(

1 0
0 0

)
.

(3.32)

The matrix M can then be written as M = UDV †. By match-
ing the coefficients a and b with the coefficients in Eq. (3.30),
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one obtains

Kμν
mf = Q̃μν − Q̃μβqβqαQ̃αν

qλQ̃λσ qσ

≡ �̃μν. (3.33)

Here we have “biased” the matrix expression in Eq. (3.30)
into the simpler equation above. It assumes the form of an
EM response tensor in the presence of phase fluctuations,
as in Eq. (3.28), but now the EM polarization tensors are
substituted by their Coulomb-screened versions: Qμν → Q̃μν .
This expression is manifestly gauge invariant as in Eq. (3.28).
Interestingly, this biasing process can be easily done in the
reverse manner. In performing similar manipulations to arrive
at Eq. (3.30), if we had first exchanged Qμν for �μν , instead
of Q̃μν , then it is a simple exercise to show that by an analog
SVD the EM response tensor obtained reads

Kμν
mf = �μν + �μ0V �0ν

1 − V �00
. (3.34)

This expression assumes a Coulomb-screened form, where
each tensor participating has been replaced by its phase-
screened version: Qμν → �μν . Evidently, since each �μν is
gauge invariant by itself, the whole expression above is gauge
invariant again. Naturally, both expressions for Kμν

mf above are
equivalent.

Thus, we have introduced a process of folding the effects
of each fluctuating field via an SVD of the response tensors.
This process clearly biases the form of Kμν

mf , although it brings
simplification. The denominators of the final form of these
response tensors contain the polaritonic resonances of the di-
electric functions [28,31,40]. Equating the two denominators
to zero

qλQ̃λσ qσ = 0 = 1 − V �00, (3.35)

one obtains the well-known Carlson-Goldman (CG) mode
[31,41,42], where plasmons dress the phase fluctuation poles,
gapping the phase modes of charged superconductors. At
T = 0 this results solely in a (double) plasmon mode, whereas
in the vicinity of T ∼ Tc there is a soft mode (which was orig-
inally [41,42] termed the CG mode) and a plasmon mode [31].
Note that the exact relation between the two denominators is:
qλQ̃λσ qσ (1 − V Q00) = qλQλσ qσ (1 − V �00).

The CG mode arises from the mutual contributions of
Coulomb and phase fluctuations to the EM response. The
standard approach to consider this, as implemented for ex-
ample in Refs. [31,36,43–45], involves studying the phase
fluctuations using a real-imaginary representation for the su-
perconducting order parameter components. Here we have
used the amplitude-phase parametrization, which disentan-
gles the important phase fluctuations from the nonfluctuating
amplitude. As discussed in Sec. II, the response formulas
are reparametrization covariant, and as demonstrated in
Appendix B the collective-mode resonances, which arise from
the vanishing of the determinant of the matrix Sab in Eq. (2.6),
are also preserved.

D. EM response for superconductors
(with amplitude fluctuations)

Returning to Eq. (3.21), we now include the fluctuations
in ρ(x). Contrary to the phase and Coulomb responses, the
amplitude part cannot be written solely in terms of the un-
screened EM response bubble Qμν (q). The additional objects
which must be defined for calculating the EM response func-
tions read as follows:

Sρρ (q) ≡ δ2Seff[�, A]

δρ(−q)δρ(q)

∣∣∣∣
A=0,�=�mf[0]

, (3.36)

Rρμ(q) ≡ δ2Seff[�, A]

δρ(−q)δAμ(q)

∣∣∣∣
A=0,�=�mf[0]

, (3.37)

and similarly

Sρθ (q) ≡ δ2Seff[�, A]

δρ(−q)δθ (q)

∣∣∣∣
A=0,�=�mf[0]

= iRρβ (q)qβ, (3.38)

Sρϕ (q) ≡ δ2Seff[�, A]

δρ(−q)δϕ(q)

∣∣∣∣
A=0,�=�mf[0]

= iRρ0(q). (3.39)

Also note that just as V −1(q) contributed to Sϕϕ (q)
[cf. Eq. (3.9)], the “mass” contribution for ρ(x) in the
Hubbard-Stratonovich field in Eq. (3.18) implies that g̃−1

contributes to Sρρ (q).
The EM response tensor now becomes

Kμν

mf (q) = Qμν − (Rμρ iQμ0 iQμβqβ

)⎛⎜⎝ Sρρ iRρ0 iRρβqβ

iR0ρ V −1 − Q00 −Q0βqβ

−iqαRαρ qαQα0 qαQαβqβ

⎞⎟⎠
−1⎛⎜⎝ Rρν

iQ0ν

−iqαQαν

⎞⎟⎠. (3.40)

The SVD approach can also be implemented for this situation.
First note that, with some manipulation and SVD biasing,
the determinant can be reduced to two possible forms. The
calculation is outlined in Appendix E and results in

det S(q) = (V −1 − Q
00

)SρρqαQ̃
αβ

qβ

= (V −1 − Q00 )̃SρρqαQ̃
αβ

qβ, (3.41)

where tilde variables are screened as in Eq. (3.10); for
example,

S̃ρρ = Sρρ + Rρ0V R0ρ

1 − V Q00
. (3.42)

Similarly, the process of “folding” the amplitude fluctuations
also leads to “screened” tensors—the ones with a bar on
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top. Repeating the calculation in Eq. (3.10), now with only the
amplitude contributions, one verifies

Q
αβ ≡ Qαβ − RαρRρβ

Sρρ
. (3.43)

Finally, tensors with both a bar and a tilde are interpreted
to mean first evaluate the tensors with respect to the outer
screening symbol and then with respect to the inner screening
type. To be concrete, as examples we have

Q̃
αβ = Q̃αβ − R̃αρ R̃ρβ

S̃ρρ
, (3.44)

Q̃
αβ = Q

αβ + Q
α0

V Q
0β

1 − V Q
00 . (3.45)

From the two ways of writing the determinant above, and
noticing that

(V −1 − Q00)Sρρ + Rρ0R0ρ = (V −1 − Q
00

)Sρρ

= (V −1 − Q00 )̃Sρρ, (3.46)

we find an important identity:

qαQ̃
αβ

qβ = qαQ̃
αβ

qβ. (3.47)

Using these expressions we can now perform the SVD process
as in the previous sections, the only requirement is to choose
a biasing order in which we want to take into account the
influence of each type of fluctuation. For example, taking into
account the inversion of the matrix S(q) and the determinant
above, we obtain

Kμν

mf (q) = Qμν − qαqβ

qλQ̃
λσ

qσ

⎛⎜⎝Rμρ

Qμ0

Qμβ

⎞⎟⎠
T

⎛⎜⎜⎜⎜⎝
(V −1−Q00 )Q̃αβ

(V −1−Q
00

)Sρρ

Qαβ Rρ0−Qα0Rρβ

(V −1−Q
00

)Sρρ
− (V −1−Q00 )R̃ρβ

(V −1−Q
00

)Sρρ

Qαβ R0ρ−RαρQ0β

(V −1−Q
00

)Sρρ
− Q

αβ

(V −1−Q
00

)

Q
0β

(V −1−Q
00

)

− (V −1−Q00 )R̃αρ

(V −1−Q
00

)Sρρ

Q
α0

(V −1−Q
00

)
1

⎞⎟⎟⎟⎟⎠
⎛⎜⎝Rρν

Q0ν

Qαν

⎞⎟⎠. (3.48)

Now we focus on the first term Qμν . Introducing the effects of amplitude fluctuations first (“bar” variables) and subsequently
the regular screening from Coulomb fluctuations (“tilde” variables), a straightforward calculation and simplification using the
relations in Eq. (3.47) results in

Kμν

mf = Q̃
μν − qαqβ

qλQ̃
λσ

qσ

⎛⎝Rμρ

Qμ0

Qμβ

⎞⎠T

⎛⎜⎜⎜⎜⎝
R̃αρ R̃ρβ

(S̃ρρ )2 − Q
α0

R̃ρβ

(V −1−Q
00

)̃Sρρ
− R̃ρβ

S̃ρρ

− R̃αρQ
0β

(V −1−Q
00

)̃Sρρ

Q
α0

Q
0β

(V −1−Q
00

)2

Q
0β

(V −1−Q
00

)

− R̃αρ

S̃ρρ

Q
α0

(V −1−Q
00

)
1

⎞⎟⎟⎟⎟⎠
⎛⎝Rρν

Q0ν

Qαν

⎞⎠. (3.49)

This matrix is now of the form

M =
⎛⎝ ab −ad −a

−bc cd c
−b d 1

⎞⎠, (3.50)

where

a = R̃ρβ

S̃ρρ
, b = R̃αρ

S̃ρρ
,

c = Q
0β

V −1 − Q
00 , d = Q

α0

V −1 − Q
00 . (3.51)

It displays two linearly dependent rows, thus suggesting
the singular-value decomposition. Performing the SVD and
simplifying the result gives

Kμν

mf = Q̃
μν − Q̃

μβ

qβqαQ̃
αν

qλQ̃
λσ

qσ

≡ �̃
μν

. (3.52)

Setting qλQ̃
λσ

qσ = 0 gives the collective mode dispersion for
the polaritons induced by simultaneous Coulomb, phase, and
amplitude fluctuations. Again, gauge invariance in the SVD-

simplified EM response in Eq. (3.52) is manifest:

qμKμν

mf = qμQ̃
μν − qμQ̃

μβ

qβqαQ̃
αν

qλQ̃
λσ

qσ

= 0. (3.53)

As in the previous section, other equivalent forms for the EM
response can be obtained by reversing the order in the SVD

processes. For example, Kμν

mf = �̃
μν = �̃

μν

.

IV. THE MEISSNER EFFECT IN THE PRESENCE
OF COLLECTIVE MODES

A. Kubo formula

In this section we calculate the superfluid density for su-
perfluid and superconducting systems with amplitude, phase,
and Coulomb fluctuations incorporated. It was shown in the
previous section that the EM response for a system with all
these three types of fluctuations can be compactly written as in
Eq. (3.52). Here we will use this formula to study the Meissner
response for both s-wave and chiral p + ip systems. The Kubo
formula for the superfluid density tensor is [27]

e2

m
nxx

s = lim
q→0

Kii
mf(� = 0, q), (4.1)
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with no implicit index summation. It is crucial that the static
limit � = 0 is taken before the long-wavelength limit q → 0
is considered. This particular order of limits is appropriate for
a thermodynamic quantity, whereas the converse procedure is
apt for the calculation of optical properties, namely the DC
electrical conductivity for instance. For nonuniform systems,
the limit q → 0 must also be carefully specified. To ascertain
the appropriate definition, recall that in the presence of an
external EM vector potential Aν , the EM current is Jμ(x) =∫

x′ Kμν (x, x′)Aν (x′). The continuity equation is ∂μJμ = 0; this
statement enforces conservation of global particle number
[global U(1) symmetry] for a neutral superfluid, whereas for a
charged system it enforces conservation of charge. In terms of
the response kernel, this equation becomes (∂μKμν )Aν = 0.

The solution to this equation, for an arbitrary Aν , is to require
a gauge-invariant EM response: ∂μKμν = 0, which in momen-
tum space reads qμKμν = 0. As shown in the previous section,
the SVD approach enables this to be manifestly satisfied.

To compute ns it is convenient to work in the gauge where
∂μAμ = 0 (Lorenz gauge), which reduces to the Coulomb
gauge ∇ · A = 0 in the static limit. The momentum-space
form of the Coulomb gauge is q · A = 0. In deriving the
superfluid density nii

s , only the ith component of the vector
field must be nonvanishing: Ai �= 0. The Coulomb-gauge con-
dition then reduces to qiAi = 0, demanding qi = 0. The other
momentum components go to zero only in the limit. Thus, the
appropriate Kubo formula for nii

s is

e2

m
nii

s = lim
qi �=qk ,qi=0,qk→0

Kii
mf(� = 0, q). (4.2)

This Kubo formula explains why the superfluid density is
often termed a “transverse” response [27,29]. In the partic-
ular case of nonuniform superfluids, however, the appellation
transverse loses its significance. The importance of computing
the superfluid density in the appropriate limiting fashion was
discussed in Ref. [22], where it was shown that for the Fulde-
Ferrell superfluid the amplitude collective mode contributes to
the superfluid density. A general argument for why collective
modes do not need to be considered in the superfluid density
response of uniform superfluids is as follows [27]. In the pres-
ence of the external vector potential A, the order parameter
can be expanded to quadratic order in A as

�[A] = �[A = 0] + �(1)[A] + O(A2). (4.3)

Since the order parameter � is a scalar, whereas the vector
potential A is a vector, � can depend only on scalar-valued
functions of A. For a uniform superfluid, the only such scalar
quantity is ∇ · A. In the Coulomb gauge, where ∇ · A =
0, it follows that �(1) = 0. Thus, collective modes do not
contribute to the superfluid density in a uniform superfluid. In

the case of a nonuniform superfluid, there are potentially other
scalar quantities that depend on A and thus �(1) need not be
zero. The next section provides an explicit calculation of the
superfluid density for both s-wave and chiral p + ip supercon-
ductors with amplitude, phase, and Coulomb interactions.

B. Explicit superfluid density calculation

First consider the case of a uniform s-wave superfluid.
Without loss of generality, since the system is uniform we only
need to study the response in one direction, say x̂. Using the
formalism developed in the previous sections, the superfluid
density is given by

e2

m
nxx

s = lim
qx=0,qy→0

⎡⎣Q̃
xx − Q̃

xi
qiq jQ̃

jx

qkQ̃
kl

ql

⎤⎦
= lim

qx=0,qy→0

[
Q̃

xx − Q̃
xy

Q̃
yx

Q̃
yy

]
. (4.4)

In the small-momentum limit, Rρ j (0, q → 0) = 0; this
is because in this limit the tensor structure requires
Rρ j (0, q → 0) ∼ q j → 0. Thus, the generalized response
functions are

Q̃
x j = Q

x j + Q
x0

Q
0 j

V −1 − Q
00 = Qx j . (4.5)

As a result, the superfluid density is

e2

m
nxx

s = lim
qx=0,qy→0

Qxx. (4.6)

This proves that without any particular assumptions about
particle-hole symmetry, i.e., whether or not the amplitude
and Coulomb mode decouple (Rρ0 �= 0) [46], the superfluid
density for an s-wave system has no contributions from ampli-
tude, phase, or Coulomb collective modes. This is an explicit
proof of the argument presented in the previous section.

Now consider a spinless-(p + ip) superfluid in two spatial
dimensions. The x and y responses are equivalent, thus we
again only need to consider the former. The superfluid density
is as given in Eq. (4.4). Again Rρ j (0, q → 0) = 0 remains
true, and thus

e2

m
nxx

s = lim
qx=0,qy→0

Qxx. (4.7)

This particular limit is computed as shown below. After
performing the Matsubara frequency summation, the response
function is [25,28]

Qi j (i�m, q) = e2

2

∫
d2p

(2π )2

pi

m

p j

m

[(
1 + ξ+

p ξ−
p + �2

0p+ · p−/p2
F

E+
p E−

p

)
E+

p − E−
p

(E+
p − E−

p )2 − (i�m)2 [ f (E+
p ) − f (E−

p )]

−
(

1 − ξ+
p ξ−

p + �2
0p+ · p−/p2

F

E+
p E−

p

)
E+

p + E−
p

(E+
p + E−

p )2 − (i�m)2 [1 − f (E−
p ) − f (E+

p )]

]
+ ne2

m
δi j, (4.8)
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where p± = p ± q/2, ξ±
p ≡ ξp±q/2, E±

p ≡ Ep±q/2, with ξp =
p2/(2m) − μ, Ep =

√
ξ 2

p + �2
0p2/p2

F , and n is the total num-
ber density. Taking the appropriate frequency and momentum
limits results in

e2

m
nxx

s = e2

[
n

m
+
∫

d2p

(2π )2

(
px

m

)2
∂ f (Ep)

∂Ep

]

= e2
∫

d2p

(2π )2

(
px

m

)2
�2

0p2/p2
F

E2
p

×
[

1 − 2 f (Ep)

2Ep
+ ∂ f (Ep)

∂Ep

]
. (4.9)

In general, for a superfluid system with only one external
momentum, namely the momentum q of the external vec-
tor potential A, the EM response can be decomposed into
terms comprised of δi j and qiq j/q2. In the limit q → 0, as
defined above, it follows that the off-diagonal terms vanish
and thus the superfluid density reduces to the standard un-
dressed bubble term. Unless there are other external vectors
that can couple to the vector potential, the superfluid density
always reduces to the undressed bubble term. This statement
is a generalization of the analysis in the previous section,
which considered only uniform superfluids; here we extend
the veracity of the previous proof to include all kinds of
superfluids without other external vectors that couple to the
vector potential.

C. Transverse and longitudinal responses

In Ref. [21] the EM response for nonuniform superfluids
without amplitude fluctuations was derived. This particular ar-
ticle highlighted that for such superfluids the collective modes
are, in general, no longer solely “longitudinal,” and moreover
these modes can be important in what are conventionally
termed transverse response functions in the case of uniform
systems. In this section we show that our generalized formula
reproduces the particular case considered in Ref. [21], namely,
a neutral system with only phase fluctuations of the order
parameter. Using Eq. (3.52), the response function for such
a system, in the static limit, is given by

Ki j
mf(0, q) = Qi j (0, q) − Qia(0, q)qaqbQb j (0, q)

qcQcd (0, q)qd
. (4.10)

The undressed EM response (for a spin- 1
2 system with e = 1)

reads [27,28]

Qi j (0, q) = 2
∑

p

(
pi

m

pj

m

)
[G(iωn, p+)G(iωn, p−)

+ F ∗(iωn, p+)F (iωn, p−)] + n

m
δi j . (4.11)

The nonbold momenta are four-vectors pμ = (iωn, p) with ωn

a fermionic Matsubara frequency. For simplicity, let us focus
on a system with a general-momentum and angle-dependent
gap �p ≡ �(p̂). The single-particle and anomalous Green’s

functions are [27,28]

G(iωn, p) = − iωn + ξp

ω2
n + ξ 2

p + |�p|2 , (4.12)

F (iωn, p) = �p

ω2
n + ξ 2

p + |�p|2 . (4.13)

A generic static correlation function for a uniform system has
the form

Ki j (0, q) = χL
qiq j

q2
+ χT

(
δi j − qiq j

q2

)
. (4.14)

Here χT and χL denote the transverse and longitudinal part
of the full response function, respectively. By taking the dot
product with qi and q j , the longitudinal part is

χL = qiKi jq j

q2
. (4.15)

The longitudinal part of the total response gives zero con-
tribution to the Meissner effect: the full response is purely
transverse. In the small-momentum limit the collective-mode
part of the response [the second term in Eq. (4.10)] is purely
longitudinal, and thus it gives zero contribution to the super-
fluid density.

Let i = j in Eq. (4.14) and take the trace to obtain
∑

i Kii =
χL + 2χT . Therefore the transverse part is

χT = 1

2

(∑
i

Kii − χL

)
. (4.16)

Let (m/n)χT ≡ χ ′
T . Using Eq. (4.11), this becomes

χ ′
T (q) = 1

mn

∑
p

p2 sin2 (θ )[G(iωn, p+)G(iωn, p−)

+ F ∗(iωn, p+)F (iωn, p−)] + 1. (4.17)

We drop the q dependence in the argument of χT from now
on. To evaluate this quantity we invoke standard Fermi-liquid
theory and assume a constant density of states near the Fermi
surface. Using this approximation, the transverse response
then becomes [27]

χ ′
T = 1 + T

3

4

∑
ωn

∫ π

0
dθ sin3(θ )

∫ ∞

−∞
dξ

× (iωn + ξ+)(iωn + ξ−) + �∗
+�−(

ω2
n + ξ 2+ + |�+|2)(ω2

n + ξ 2− + |�−|2) . (4.18)

Here ξ± ≈ ξp ± 1
2 qvF cos (θ ) with vF = pF /m the Fermi ve-

locity, and we have also used a constant density of states
approximation k3

F = 3π2n. Also, the momentum dependence
of �p is scaled by pF and therefore its external q dependence
can be neglected. As discussed in Ref. [27], the result of
performing the Matsubara frequency summation followed by
the ξ integration leads to the correct normal-state result.
However, performing this procedure in the reverse order leads
to a different answer, in contradiction to the absence of a
normal-state Meissner effect. To circumvent this problem,
the method employed is to add and subtract the normal-state
density expression. This enables performing the integration
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over ξ first, which results in

χ ′
T ≈ 3π

4
T
∑
ωn

∫ 1

−1

dx√
ω2

n + |�p|2
(1 − x2)|�p|2

ω2
n + |�p|2 + 1

4 q2v2
F x2

,

(4.19)
where we performed a small-q expansion. For comparison, the
EM current given in Ref. [21] reads

J(q) =
∫

dSpR(p̂)p̂[p̂ · A(q) − p̂ · q̂φ(q)], (4.20)

with the function R(p̂) ≡ R(p̂; 0, q̂) given by

R(p̂; 0, q̂) = T
∑
ωn

1√
ω2

n + |�p|2
|�p|2

ω2
n + |�p|2 + 1

4 q2v2
F x2

(4.21)
and φ(q) given by

φ(q) =
∫

dSlR(l̂)l̂ · q̂l̂ · A(q)∫
dSkR(k̂)(k̂ · q̂)2

. (4.22)

It is straightforward to check that this expression conserves
particle number: q · J = 0. The corresponding response ker-
nel is thus

Ki j (� = 0, q) = Qi j − QiaqaqbQb j

qcQcd qd
, (4.23)

where Qi j (0, q) ≡ ∫ dSp p̂iR(p̂; 0, q) p̂ j , with dSp the measure
on the Fermi surface. Furthermore, the transverse part of the
response is [47]

χ ′
T = 3π

4

∫ 1

−1
dx(1 − x2)R(p̂; 0, q)

= 3π

4
T
∑
ωn

∫ 1

−1

dx√
ω2

n + |�p|2
(1 − x2)|�p|2

ω2
n + |�p|2 + 1

4 q2v2x2
.

(4.24)

Therefore, we have shown that Eq. (4.19), which followed
from our generalized formula for phase fluctuations, agrees
with Eq. (4.24).

To finish, consider a two-dimensional superfluid where the
current and vector potential are parallel: Jx = KxxAx, Jy =
KyyAy. The ratio of the EM kernels is

λ2
x

λ2
y

= Kxx

Kyy
. (4.25)

In Ref. [21], where the effects from phase collective modes
were the focus, it was pointed out that in the case of a
dipolar superfluid this quantity is not unity. The analysis in
this section shows that, in the static and long-wavelength limit,
the full response is purely transverse, and thus there is no
collective-mode contribution to the above ratio. The reason for
its departure from unity [21] is merely because the undressed
bubble contributions are distinct for the dipolar superfluid.

V. CONCLUSIONS

The rich physics associated with superfluids and supercon-
ductors is most perceptible in the collective fluctuations of the
order parameter. These modes show that superconductors are
more than just gapped fluids of condensed electron-electron
pairs. Rather, superconductors are systems replete with collec-
tive excitations due to coherent many-particle effects. Histori-
cally these modes were first studied in the context of restoring
gauge invariance in a superconductor. More recently, however,
a bevy of literature has studied these excitations in more
general settings, and one particularly important problem has
been understanding their role in the Meissner effect.

The antecedent literature to the present work suggested
that collective modes may be ignored in s-wave systems, but
must be accounted for if the order parameter is anisotropic
(p-wave, d-wave, etc). In this paper we have extended this
analysis by developing a general method for computing the
electromagnetic response in systems with multiple collective
modes. We have shown that, in fact, collective modes do
not contribute to the Meissner effect in either uniform or
nonuniform superconductors. An exception to this scenario
comes about when external wave-vector scales exist, as in
Fulde-Ferrell finite-momentum paired superconductors. The
by-product of our study was to show that through singular-
value decompositions, the electromagnetic response in a sys-
tem with multiple collective modes present can naturally be
computed by folding the various response tensors into dressed
constituents. With all of the details we provided, we anticipate
that this methodology will also prove useful in other contexts
such as charge-density waves and quantum magnetism.
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APPENDIX A: DERIVATION OF THE MEAN-FIELD EM RESPONSE TENSOR

In this excursus we derive in detail the EM response tensor in Eq. (2.3). For concreteness, whenever we write
δSeff[�, A]/δAν (x′) (no A dependence in �), we mean the explicit A dependence is being differentiated, with the collective-mode
fields fixed. The functional chain rule produces

δSeff[�mf[A], A]

δAν (y)
=
(

δSeff[�, A]

δAν (y)

)
�mf[A]

+
∫

z

(
δSeff[�, A]

δ�a(z)

)
�mf[A]

δ�mf
a [A](z)

δAν (y)
. (A1)
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At the end of the calculation the value of � is set to its mean-field value �mf[A]. Similarly, the second derivative of the above
expression reads

δ2Seff[�mf[A], A]

δAμ(x)δAν (y)
=
(

δ2Seff[�, A]

δAμ(x)δAν (y)

)
�=�mf[A]

+
∫

z,z′

δ�mf
a [A](z)

δAμ(x)

(
δ2Seff[�, A]

δ�a(z)δ�b(z′)

)
�=�mf[A]

δ�mf
b [A]

(
z′)

δAν (y)

+
∫

z

δ�mf
a [A](z)

δAμ(x)

(
δ2Seff[�, A]

δ�a(z)δAν (y)

)
�=�mf[A]

+
∫

z

(
δ2Seff[�, A]

δAμ(x)δ�a(z)

)
�=�mf[A]

δ�mf
a [A](z)

δAν (y)

+
∫

z

(
δSeff[�, A]

δ�a(z)

)
�=�mf[A]

δ2�mf
a [A](z)

δAμ(x)δAν (y)
. (A2)

Since we are interested in the mean-field EM response, we can invoke the saddle-point condition

0 = δSeff[�, A]

δ�a(z)

∣∣∣∣
�=�mf[A]

; (A3)

thus the last term in Eq. (A2) gives zero mean-field contribution and can be dropped. If one were to consider the EM response at
the Gaussian order, however, then this term would contribute. It remains to compute the derivatives of the collective-mode fields
�a with respect to the vector potential. This can be done by considering the saddle-point conditions. Differentiating Eq. (A3)
with respect to A gives

0 = δ

δAν (y)

(
δSeff[�, A]

δ�a(z)

)
�=�mf[A]

=
(

δ2Seff[�, A]

δAν (y)δ�a(z)

)
�=�mf[A]

+
∫

z′

(
δ2Seff[�, A]

δ�a(z)δ�b(z′)

)
�=�mf[A]

δ�mf
b [A]

(
z′)

δAν (y)
. (A4)

Inverting the saddle-point integral equation yields

δ�mf
b [A](z′)
δAν (y)

= −
∫

z

(
δ2Seff[�, A]

δ�b(z′)δ�a(z)

)−1

�=�mf[A]

(
δ2Seff[�, A]

δ�a(z)δAν (y)

)
�=�mf[A]

. (A5)

Substituting this into Eq. (A2) and taking A → 0, we then obtain Eq. (2.3) of the main text:

Kμν

mf (x, y) =
(

δ2Seff[�, A]

δAμ(x)δAν (y)

)
�mf[0]

−
∫

z,z′

(
δ2Seff[�, A]

δAμ(x)δ�a(z)

)
�mf[0]

(
δ2Seff[�, A]

δ�a(z)δ�b(z′)

)−1

�mf[0]

(
δ2Seff[�, A]

δ�b(z′)δAν (y)

)
�mf[0]

. (A6)

APPENDIX B: REPARAMETRIZATION COVARIANCE

The expression in Eq. (A6) for the mean-field EM response is general in the sense that it is the same regardless of the
parametrization of the order parameter. We now prove this result. Consider a transformation � → �̃:

δSeff

δ�a(y)
=
∫

z

δ�̃b(z)

δ�a(y)

δSeff

δ�̃b(z)

=
∫

z
Jab(y − z)

δSeff

δ�̃b(z)
. (B1)

Here Seff ≡ Seff[�, A]. At the mean-field level, the second derivative now produces(
δ2Seff

δ�a(y)δ�b(y′)

)
�mf[0]

=
∫

z,z′
Jac(y − z)

(
δ2Seff

δ�̃c(z)δ�̃d (z′)

)
�mf[0]

Jdb(z′ − y′). (B2)

The EM response can thus be written as follows:

Kμν

mf

(
x, x′)−

(
δ2Seff

δAμ(x)δAν (x′)

)
�mf[0]

= −
∫

w,w′,y,y′,z,z′

(
δ2Seff

δAμ(x)δ�̃a′ (w)
Ja′a(w − y)

)
�mf[0]

×
(

Jab′ (y − z)
δ2Seff

δ�̃b′ (z)δ�̃c′ (z′)
Jc′b(z′ − y′)

)−1

�mf[0]

(
Jbd ′ (y′ − w′)

δ2Seff

δ�̃d ′ (w′)δAν (x′)

)
�mf[0]

= −
∫

z,z′

(
δ2Seff

δAμ(x)δ�̃b′ (z)

)
�mf[0]

(
δ2Seff

δ�̃b′ (z)δ�̃c′ (z′)

)−1

�mf[0]

(
δ2Seff

δ�̃c′ (z′)δAν (x′)

)
�mf[0]

. (B3)
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Since the indices and integration variables are all dummy labels, this is exactly the same expression as written previously in
terms of �. Thus the generic formula for the mean-field EM response is basis independent.

An important consequence of this result is that the dispersion of the collective modes is also reparametrization invariant.
Using the notation in Sec. II for brevity, the collective-mode dispersion is given by the condition det S = 0, where S is the matrix
in Eq. (2.6). In terms of the matrix S̃, defined in terms of �̃ variables, this condition becomes

0 = det S = [det (J )]2 det S̃. (B4)

Since J is invertible, det J �= 0; hence it follows that det S̃ = 0 if and only if det S = 0.

APPENDIX C: POLARIZATION TENSOR CALCULATIONS

In this Appendix we provide a short discussion regarding polarization bubbles. If {} collectively describes a set of fields
upon which a fermionic system depends (external electromagnetic fields, Hubbard-Stratonovich auxiliary fields, etc), response
tensors are computed as an expansion around a reference set of values {}:

Q′ (x − x′) = δ2Seff[{}]
δ(x)δ′(x′)

∣∣∣∣
{}={}

= Qbos,′ (x − x′) − 1

2

δ2Tr ln[−G−1[{}]]
δ(x)δ′(x′)

∣∣∣∣
{}={}

= Qbos,′ (x − x′) − 1

2

∫
dDytr〈y|δG[{}]

δ(x)

δG−1[{}]
δ′(x′)

+ G[{}] δ2G−1[{}]
δ(x)δ′(x′)

|y〉
∣∣∣∣
{}={}

= Qbos,′ (x − x′) + 1

2

∫
dDytr〈y|G[{}]δG

−1[{}]
δ(x)

G[{}]δG
−1[{}]

δ′(x′)
|y〉
∣∣∣∣
{}={}

− 1

2

∫
dDytr〈y|G[{}] δ2G−1[{}]

δ(x)δ′(x′)
|y〉
∣∣∣∣
{}={}

. (C1)

Here Qbos,′ (x − x′) is the bosonic part of the response which arises from differentiating the bosonic contribution to the effective
action. Define real-space vertices by

V̂(x, y, x′) ≡ δG−1[](x, x′)
δ(y)

. (C2)

The standard Green’s function representation of the polarization bubbles then follows:

Q′ (x − x′) = Qbos,′ (x − x′) + 1

2

∫
y,y′,z,z′

tr[G(y, z)V̂(z, x, z′)G(z′, y′)V̂′ (y′, x′, y)]= + Qdia(x − x′), (C3)

where  is an arbitrary field in the system. The diamagnetic term Qdia, which arises from the third term in Eq. (C1), contributes
only to the electromagnetic response and is written out explicitly in Eq. (C9). The bare EM vertices are defined by

γ μ(x, y, x′) = δG−1
0 [A](x, x′)
δAμ(y)

. (C4)

For the models of superconductivity with a quadratic free-particle dispersion studied in the main text, the components of the
vertices are explicitly given by

γ 0(x, y, x′) = eτ3δ(x − y)δ(x − x′) (C5)

γ (x, y, x′) = ei

2m
τ0{∇[δ(x − y)δ(x − x′)] + δ(x − y)∇δ(x − x′)} + e2

m
τ3A(x)δ(x − y)δ(x − x′), (C6)

and

δγ ν (x, y, x′)
δAμ(y′)

= −e2

m
τ3δ(x − y′)δ(x − y)δ(x − x′)δμiδν jδi j . (C7)

For the electromagnetic response, the reference value for the external field is A = 0. The Fourier expansion of the response is

Qμν (x − y) =
∫

q
e−iq·(x−y)Qμν (q), (C8)
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where
∫

q = T Ld
∑

i�m

∫ dq
(2π )d . Using the general expression in Eq. (C3), the undressed polarization response is

Qμν (q) = 1

2

∫
p

tr[G(p + q)γ μ(p + q, p)G(p)γ ν (p, p + q)]

∣∣∣∣
A=0

+ ne2

m
δμiδν jδi j . (C9)

By definition, the momentum-space vertex is defined by [1]

γ μ(x, y, x′) =
∫

p,q
eiq(x−y)eip(x−x′)γ μ(p + q, p). (C10)

Therefore, in the limit of zero external field, the momentum-space vertices are [1,28]

γ 0(p + q, p)
∣∣
A=0 = eτ3. (C11)

γ (p + q, p)|A=0 = e

m
τ0

(
p + q

2

)
= γ (p, p + q)|A=0. (C12)

For a three-dimensional system with chiral p + ip pairing, the Nambu Green’s function is

G(p) = [iωn − τ3ξp + �0
(
pxτ1 − pyτ2

)
]−1 = iωn + τ3ξp − �0(pxτ1 − pyτ2)

(iωn)2 − E2
p

, (C13)

where ξp = p2/(2m) − μ and E2
p = ξ 2

p + �2
0p2/p2

F . All other bubbles appearing in the main text can be computed in a similar
fashion.

APPENDIX D: SUPERCONDUCTING PAIRING IN RADIAL COORDINATES

Here we transform the mean-field ansatz for the case of spinless, chiral p + ip pairing to center-of-mass and relative
coordinate representation as a concrete example of Eqs. (3.18) and (3.19). The coordinate transformation is

R = x + x′

2
, r = x − x′. (D1)

The Jacobian for this transformation is unity. For a spinless fermionic system, the p + ip ansatz reads

�(x, x′, τ ) =
∣∣∣∣�(x + x′

2
, τ

)∣∣∣∣ei
(

x+x′
2 ,τ

)
(∂x + i∂y)δ(x − x′). (D2)

Thus,∫
d3xd3x′ψ†(x, τ )�(x, x′, τ )ψ†(x′, τ ) =

∫
d3R|�(R, τ )|ei(R,τ )

∫
d3rψ†(R + r/2, τ )ψ†(R − r/2, τ )

(
∂rx + i∂ry

)
δ(r)

=
∫

d3R|�(R, τ )|ei(R,τ )[ψ†(R, τ )(∂Rx + i∂Ry )ψ†(R, τ )]

=
∫

d3x|�(x, τ )|ei(x,τ )[ψ†(x, τ )(∂x + i∂y)ψ†(x, τ )], (D3)

after integrations by parts, identifications of gradients of fermion fields with respect to R and r variables, and relabelling of
dummy variables.

In general, non s-wave pairing demands a spatially dependent interaction coefficient, say g(x − x′). In this case, the p-wave
ansatz simplifies the Gaussian part of the identity introduced in the Hubbard-Stratonovich decomposition:∫

d3xd2x′ |�(x, x′, τ )|2
g(x − x′)

=
∫

d3Rd2r|�(R, τ )|e−i(R,τ )[(∂rx − i∂ry

)
δ(r)

]
g−1(r)|�(R, τ )|ei(R,τ )(∂rx + i∂ry

)
δ(r)

=
∫

d3R
|�(R, τ )|2

g̃
, (D4)

where we define the renormalized value for the (inverse) mass scale of the amplitude field as

g̃−1 =
∫

d2r
[(

∂rx − i∂ry

)
δ(r)

]
g−1(r)

(
∂rx + i∂ry

)
δ(r). (D5)

APPENDIX E: 3 × 3 RESPONSE MATRIX DETERMINANT CALCULATION

Here we sketch the calculation and simplification of det S(q) for the response of a charged superconductor in the presence of
Coulomb, amplitude, and phase fluctuations. We first consider biasing towards including the amplitude fluctuation effects. An
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expansion and consideration of the definition in Eq. (3.43) returns

det S(q) = det

⎛⎝ Sρρ iRρ0 iRρβqβ

iR0ρ V −1 − Q00 −Q0βqβ

−iqαRαρ qαQα0 qαQαβqβ

⎞⎠
= qαqβSρρ

[
(V −1 − Q00)Q

αβ + Qα0Q0β + Qαβ Rρ0R0ρ

Sρρ
− Q0β RαρRρ0

Sρρ
− Qα0 R0ρRρβ

Sρρ

]
. (E1)

With the singular-value decomposition structure in mind, we can rework the term in square brackets to produce

det S(q) = qαqβSρρ

[
(V −1 − Q00)Q

αβ + (Rρ0 Qα0)

(
Qαβ

Sρρ −Rαρ

Sρρ

−Rρβ

Sρρ 1

)(
R0ρ

Q0β

)]

= qαqβSρρ

[
(V −1 − Q

00
)Q

αβ + (Rρ0 Qα0)

(
RαρRρβ

(Sρρ )2 −Rαρ

Sρρ

−Rρβ

Sρρ 1

)(
R0ρ

Q0β

)]
. (E2)

Continuing with the decomposition, we fold the effects of Coulomb fluctuations into Q
αβ

to obtain

det S(q) = Sρρ (V −1 − Q
00

)qαQ̃
αβ

qβ. (E3)

A reversed order of the fluctuation considerations allows writing

det S(q) = qαqβ (V −1 − Q00)

[
SρρQ̃αβ − RαρRρβ − RαρRρ0Q0β(

V −1 − Q00
) − Qα0R0ρRρβ(

V −1 − Q00
) + QαβRρ0R0ρ(

V −1 − Q00
)]. (E4)

Proceeding with a similar analysis, this leads to

det S(q) = S̃ρρ
(
V −1 − Q00)qαQ̃

αβ

qβ, (E5)

proving Eq. (3.41) in the main text.
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