
PHYSICAL REVIEW B 101, 094425 (2020)
Editors’ Suggestion

Robust cycloid crossover driven by anisotropy in the skyrmion host GaV4S8
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We report on the anomalous magnetization dynamics of the cycloidally modulated spin textures under the
influence of uniaxial anisotropy in multiferroic GaV4S8. The temperature and field dependence of the linear ac
susceptibility [χ ′

1ω (T, H )], AC magnetic loss [χ ′′
1ω (T, H )], and nonlinear AC magnetic response [M3ω (T, H )]

are examined across the magnetic phase diagram in the frequency range f = 10 − 10 000 Hz. According to
recent theory, skyrmion vortices under axial crystal symmetry are confined along specific orientations, resulting
in enhanced robustness against oblique magnetic fields and altered spin dynamics. We characterize the magnetic
response of each spin texture and find that the dynamic rigidity of the Néel skyrmion lattice appears enhanced
compared to Bloch-type skyrmions in cubic systems, even in the multidomain state. Anomalous M3ω and strong
dissipation emerge over the same phase regime where strong variations in the cycloid pitch were observed
on lowering temperature in recent small-angle neutron-scattering experiments [White et al., Phys. Rev. B 97,
020401(R) (2018)]. Here, we show that strong anisotropy also drives an extended crossover of the zero-field
cycloid texture in GaV4S8. The frequency dependence of these dynamic signatures is consistent with that of a
robust anharmonic spin texture exhibiting a correlated domain arrangement. The results underpin the essential
role of magnetic anisotropy in enhancing the rigidity of topological spin textures for diverse applications.

DOI: 10.1103/PhysRevB.101.094425

I. INTRODUCTION

Topologically nontrivial spin textures have been the focus
of intense study since the experimental observation of the
magnetic skyrmion—a magnetic soliton with a vortexlike
spin arrangement—in a chiral magnet [1]. Particularly, the
nanometer size and localized nature of topological magnetic
solitons, such as the 1D kink and 2D skyrmion, hold promise
for applications in spintronics [2–5], information storage [6],
and computing [7,8]. Solitonic spin textures may be stabilized
by a variety of mechanisms brought on by competing interac-
tions [9–11], often in the presence of thermal fluctuations [1],
and may be further enhanced by magnetic anisotropic effects
[9,12].

In Dzyaloshinskii-Moriya interaction (DMI)-stabilized
spin textures, the antisymmetric exchange interaction imparts
stability to the phase, φ(r), of the spatially varying order
parameter, e.g., M ∝ exp[±iφ(r)] [13], where the sign defines
the handedness of the spin rotation. The fixed rotation sense
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[14] leads to robust spin textures with periodicity that extends
over large length scales, even across material defects [15]. As
a result, the magnetization processes in these materials re-
quire rearrangements of essentially macroscopic spin textures,
leading to very slow dynamics [16–18], extended transitions,
and large magnetic losses [19,20]. Thus, the analysis of AC
magnetization has been employed extensively in the chiral
helimagnets (CHMs) as a powerful tool to capture details of
the phase evolution due to the unique dynamic properties of
long-wavelength magnetic structures [19–22].

Another anomalous dynamic signature arises when highly
coherent spin textures are subjected to a harmonic magnetic
field and the periodic magnetic response curve, M(t ), exhibits
strong anharmonicity. Due to its relation to spatial symmetry
breaking, the leading odd harmonic of the AC magnetic re-
sponse (M3ω) has been used phenomenologically to probe the
character of phase transitions, namely ferromagnetic (FM),
spin glass, and antiferromagnetic transitions [23–25]. At very
low frequencies, �10 Hz, M3ω reflects the dynamics of mag-
netic domains, as pointed out and thoroughly explored by
Mito et al. [26–30]. Motivated by the description of mag-
netization processes for small amplitude fields by Rayleigh
[31], where the domain-wall displacement under a harmonic
force could be described by in-phase, out-of-phase, and odd
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harmonic components, they established a diagnostic approach
that characterizes domain dynamics into five types [28]. Here,
the latter two components reflect the irreversible Barkhausen
jumps as domain walls overcome energy barriers in an AC
process.

By expanding the usual treatment of a magnetic domain
wall in terms of a driven damped harmonic oscillator [32], the
anharmonic spring model was applied to account for nonlinear
contributions to the response [28],

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x + ηx3 = F sin(ωt ), (1)

where γ is the damping parameter, ω0 = (k/m)1/2 is the
(undamped) natural frequency for a domain wall with effec-
tive mass, m, attached to a spring with spring constant k,
and η controls the nonlinear term representing variations in
spring stiffness depending on the amplitude of displacement.
Replacing x with the magnetic response (i.e., the deviation
from the equilibrium magnetic state) and the right-hand side
with an oscillating magnetic field, Eq. (1) describes the shape
of an AC hysteresis loop. On the left-hand side, the first term
is connected to the domain-wall inertia, the damping term to
any magnetic dissipation, and the third term to stiffness arising
from anisotropy and pinning effects. The fourth term, ηx3,
crucially accounts for the M3ω component of the AC magnetic
response.

The phenomenological model shown above was first devel-
oped to diagnose domain dynamics from AC hysteresis loops
of itinerant helical magnet MnP [28], which exhibited anoma-
lously large anharmonicity in various regions of the magnetic
phase diagram. Analyses of both the damping and nonlinear
contributions to the total magnetization response—mainly via
the magnetic dissipation, M ′′

1ω, and M3ω, respectively—has
since been applied to a variety of materials with modulated
spin structures [20,26–30]. In the case of a crystalline material
lacking an inversion center, the DMI induces anisotropy over
the entire crystal. As a result, the enhanced thermodynamic
rigidity of the structure [13] leads to large amplitude contribu-
tions from M3ω and the magnetic loss, the character of which
depends on the spin configuration.

As distinct features of M(t ) serve as a type of dynamic
fingerprint of the magnetic structure, the following study
characterizes the incommensurate spin textures in the multi-
ferroic lacunar spinel GaV4S8 under the influence of uniaxial
magnetocrystalline anisotropy. A cooperative Jahn-Teller dis-
tortion at TJT = 42 K stretches its tetrahedral V4 clusters (each
carrying spin = 1/2) along any of four possible 〈111〉 direc-
tions, reducing the symmetry from cubic F 4̄3m to polar R3m
[33,34]. Below the Curie temperature, TC = 13 K, the long-
range magnetic order is controlled by competition between
DMI, FM exchange, easy-axis anisotropy along the direction
of ferroelectric polarization, and the Zeeman energy [35].
GaV4S8 differs from the archetypal cubic skyrmion lattice
(SkL) hosts in an important way: Its axially symmetric C3v

crystal structure confines the Néel-type skyrmion cores to the
rhombohedral easy axis [35,36]. The orientation of the Néel
SkL, which can be described by a superposition of cycloidal
spin modulations that propagate radially from the core [37], is
rigid with respect to tilted magnetic fields, unlike skyrmions
in cubic systems which orient along the field direction [12].

Additionally, the incommensurate to commensurate (IC–C)
transitions are controlled by the strength of the uniaxial
anisotropy that becomes the dominant energy scale at low
temperatures.

So far, the analysis of the nonlinear magnetic response
in systems hosting magnetic solitons has been restricted to
materials with chiral crystal structures [20,26–30]. While the
chiral spin interactions induced by the DMI lead to a fixed ro-
tation sense, the cycloidally modulated states in polar GaV4S8

do not exhibit macroscopic chirality. Thus, GaV4S8 offers a
unique opportunity to study domain dynamics of achiral spin
phases that are topologically nontrivial. In the following, we
investigate the nonlinear AC magnetic response and magnetic
dissipation phenomena across the phase boundaries of the
noncollinear magnetic states in GaV4S8 from the paramag-
netic (PM) phase down to T = 3 K for magnetic fields to
H = 2000 Oe. The magnetization dynamics are characterized
in a frequency range f = 10 − 10 000 Hz for the magnetic
cycloid (Cyc)–PM, Cyc–SkL, SkL–FM, Cyc–FM transitions
with special emphasis on the anisotropy-driven IC–C transi-
tion at low temperatures.

II. EXPERIMENTAL METHODS

Single crystals of GaV4S8 were grown by a chemical vapor
transport method using I2 gas similar to that described in
Ref. [38]. Static and dynamic magnetization measurements
were performed using a commercial physical property mea-
surement system (Quantum Design) with a vibrating sample
magnetometer and an AC measurement option, respectively.
The single crystals were oriented such that magnetic field, H ,
was applied along principle cubic directions [111], [110], and
[100].

For the dc measurements, thermal hysteresis was measured
using zero-field cooled, field-cooled-warming, and field-
cooled-cooling (FCC) protocols for selected magnetic fields.
Unless otherwise noted, AC measurements were collected as
a function of temperature for T = 3 − 20 K in 0.25 K steps in
fixed dc fields, H = 0 − 2000 Oe, in 50 Oe steps under FCC
conditions. Between each temperature sweep, the sample was
warmed to T = 50 K, well above the FM Curie temperature,
TC = 13 K, and above the temperature of the ferroelectric
Jahn-Teller distortion, TJT = 42 K.

The AC driving field, hAC = h sin ωt , where ω = 2π f ,
was varied in the frequency range f = 10 − 10 000 Hz with
amplitude h = 5 Oe. The time-dependent magnetic response
to hAC(t ) can be expanded as [32]

M(t ) = M1ω sin(ωt + θ1ω ) + M2ω sin(2ωt + θ2ω )

+ M3ω sin(3ωt + θ3ω ) + ..., (2)

where Mnω is the nth harmonic component (for integer n =
1, 2, 3,...) of the magnetic response and θnω is the delay in
phase of each component against hAC. Mnω components were
recorded using a lock-in technique. The in- and out-of-phase
components of the linear AC susceptibility, χ1ω = M1ω/h,
are given by χ ′

1ω = χ1ω cos θ1ω and χ ′′
1ω = χ1ω sin θ1ω,

respectively.
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FIG. 1. Temperature and field dependence of the AC susceptibility, χ ′
1ω (T, H ).

III. RESULTS

A. Magnetic phase diagram

Figure 1(a) presents the AC susceptibility measured as
a function of temperature in fixed dc magnetic fields,
χ ′

1ω(T, H ), at f = 1111 Hz for H applied along the pseu-
docubic [111] direction, the magnetic easy axis of one of the
four structural variants of the crystal. Due to small changes
in magnetization across phase transformations between spi-
ral, SkL, and homogenous spin states, maxima in χ ′

1ω are
typically utilized to mark the phase boundaries [19,21,22,39].
In particular, the discontinuous formation and annihilation of
magnetic vortices, first described theoretically by Bogdanov
and Yablonskii [40], physically appears in real systems as a
finite peak in χ ′

1ω on either side of the SkL phase pocket. The
H − T intensity map of χ ′

1ω is shown in Fig. 1(b). Indeed, the
maxima in χ ′

1ω delineate the boundaries between modulated
magnetic cycloid and SkL phase pockets, in agreement with
Butykai et al. [39]. Due to easy-axis anisotropy, the effective
magnetic field in each domain scales by the direction cosine of
the applied field with respect to the easy axis. Thus, two addi-
tional phase pockets are observed at higher fields in Fig. 1(b),
labeled CycII and SkLII, where structural domains stretched
along [1̄11], [11̄1], [111̄] all span 71◦ with H . Moving to-
ward low temperature, χ ′

1ω(T, H ) tracks the anisotropy-driven
transitions from the incommensurate spin textures to the com-
mensurate FM state. The IC–C transitions are centered around
critical temperatures TIC→C(H ) that increase with H from
T = 5 K at H = 0 to T = 11.75 K at H = 1500 Oe. Above
H = 1700 Oe, a relatively shallow hump near TC = 13 K
shifts to higher temperature with H > 2000 Oe, separating the
FM and PM phases.

The broadened anomalies in the H − T phase diagram
signify complex and extended phase transitions across the
IC–C phase boundaries at TIC→C(H ), particularly for H <

200 Oe. First, we consider the zero-field temperature evo-
lution of the in-phase susceptibility shown in Fig. 1(a). As
temperature is lowered from 20 K in the PM state, χ ′

1ω rises,
reaches a point of inflection at T ∗ = 13.25 K, and finally a
kink point at TC = 12.75 K. Similar to the chiral helimagnets

[41], the kink point identifies the onset of spiral long-range
order (LRO). In polar GaV4S8, the LRO takes the form of a
magnetic cycloid which propagates within the {111} planes,
along the set of directions 〈110〉 [37]. After decreasing in the
temperature range 12.75 K � T � 12 K, χ ′

1ω rises to another
peak at TIC→C(0) = 5.25 K. The broad anomaly reaches the
susceptibility value of the kink point (1.28 emu/mol Oe)
near T = 9 K and again near T = 3.75 K, spanning a large
temperature range relative to TIC→C(0).

In the literature, the peak center near T ≈ 5 K is often
identified as the transition into FM order [42,43]. Recent
small-angle neutron scattering (SANS) results by White et al.
provide microscopic evidence that the cycloid pitch gradually
stretches as temperature is lowered below TC [37]. The IC–C
process likely terminates at a FM ground state as easy-axis
anisotropy becomes the dominant energy scale at low tem-
perature. In accordance with the SANS results, the transition
centered at TIC→C(0) shown in Figs. 1(a) and 1(b) is extended
in nature. However, as demonstrated in later sections, the
transition may not be complete down to T = 3 K.

B. Dissipation mechanisms

The out-of-phase component of the AC susceptibility, χ ′′
1ω

(T, H ), is shown in Fig. 2(a) and its associated intensity plot
is shown in Fig. 2(b). Dashed lines track the magnetic phase
boundaries, as defined above from maxima in χ ′

1ω (T, H ), and
demonstrate that the broad maxima of the magnetic dissipa-
tion profile tend to shift toward lower temperatures compared
to the in-phase component. Despite the stark contrast be-
tween the phase diagrams of the chiral helimagnets and polar
GaV4S8, the loss profile bears some similarities to other SkL
hosts. Most notably, χ ′′

1ω is minimal on entering the modulated
states from high temperature [19] and at the vertex of the low-
temperature SkL boundary [30], which in GaV4S8 coincides
with the SkL–Cyc–FM triple point (10.25 K, 450 Oe). At the
boundaries of the PM phase, our instrument resolves an out-
of-phase AC moment on the order of 10−7 emu along the PM–
SkL border, above the instrument resolution of ∼10−8 emu.
Furthermore, magnetic loss is virtually absent in the pure

094425-3



E. M. CLEMENTS et al. PHYSICAL REVIEW B 101, 094425 (2020)

FIG. 2. Temperature and field dependence of the AC magnetic loss, χ ′′
1ω (T, H ).

phases, but accompanies the transitions at the upper and lower
field boundaries of the SkL pocket, namely, between the mod-
ulated states (SkLI,II−CycI,II) and into the FM state (SkLI,II–
FM), respectively. Similar behavior is observed on lower and
upper phase boundaries of the Bloch-type SkL pocket in
Cu2OSeO3, which is embedded in a conical phase [19].

Anomalous magnetic loss appears across the zero-field
Cyc–FM transition [Fig. 2(a)] where, presumably, the spin
cycloid in all four domains undergo the anisotropy-driven
IC–C transition [35,37,42,43]. Here, however, the maximum
at TIC→C(0) = 5.25 K drops rapidly with applied magnetic
field and disappears near H = 200 Oe. To analyze the pos-
sible dissipation mechanisms that contribute to χ ′′

1ω, we be-
gin with thermal hysteresis measurements, which may point
to (a) metastability in mixed-phase regimes or (b) slow
timescales of the phase transformations. Figure 3(a) displays
the static magnetization as a function of temperature and field,
M(T, H ), recorded under warming and cooling protocols,
as described in Sec. II. A plot of |MFCW − MFCC| vs T in
Fig. 3(b) quantifies the hysteresis in warming and cooling
curves for selected magnetic fields. Cyc–FM transitions dis-
play strong bifurcation, especially for H � 300 Oe. While
the hysteretic contributions from the SkL–FM and SkL–Cyc
transitions are much smaller, |MFCW − MFCC| vs T remains
nontrivial, notably across the SkLI−CycI phase boundary at
H = 300 Oe. Additionally, thermal hysteresis develops with
increasing magnetic field at T ∗ = 13.25 K, which represents
the inflection point in M(T ).

Thermal hysteresis may signal the discontinuous nature of
skyrmion formation, as predicted by Bogdanov and Yablon-
skii for magnetic field-induced vortex formation [40]. Indeed,
previous AC susceptibility studies attribute glassy behavior to
mixed magnetic phases [19,22,39] where, in light of Lorentz
and magnetic force microscopy studies, the phenomena were
related to the nucleation of short-range skyrmions as topolog-
ical defects within the longer-ranged FM phase [44,45]. As
shown previously by Butykai et al. in Ref. [39], the transitions
in GaV4S8 display a broad distribution of relaxation times.
Figures 4(a), 4(b), 5(a), and 5(b) display χ ′

1ω ( f , H ) and χ ′′
1ω

( f , H ) for Cyc–SkL and SkL–FM transitions, respectively, at

T = 10.75 K with fits to the Cole-Cole model as follows. The
measurements were performed as a function of ascending field
(H↑) after zero-field cooling and descending field (H↓) after
reaching H = 2000 Oe. The dynamics are tracked along the
susceptibility peak, to observe changes on either side of the
transitions, namely, moving from the Cyc into the SkL and
from the SkL to the FM phase.

FIG. 3. Thermal hysteresis of the static magnetization (a) under
zero-field cooled, field-cooled cooling, and field-cooled warming
protocols for H = 100, 300, 500 Oe. (b) Difference between the
magnetization between cooling and warming curves.
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FIG. 4. The frequency dependence of (a) χ ′
1ω and (b) χ ′′

1ω at
T = 10.75 K for magnetic fields spanning the CycI−SkLI mixed-
phase regime across the phase boundary fit to Eqs. (4) and (5),
respectively. Top insets in (a) and (b) display the peak shifts to higher
field with increasing frequency. Lower inset in (a) display the mean
squared error for fits at each H . (c) Parameter, α, characterizing the
symmetric distribution of relaxation times about the (d) average time,
τ0, from fits of (a) and (b) to the Cole-Cole model.

The Cole-Cole modification [46] of the Debye model,

χ (ω) = χ∞ + χ0 − χ∞
1 + (iωτ )1−α

, (3)

introduces the parameter α to account for a distribution of
relaxation times: α = 1 corresponds to an infinitely broad dis-
tribution and α = 0 accounts for a single relaxation process.
χ0 is the susceptibility in the limit of low frequency (ω → 0),
where heat exchange in the magnetic system occurs between
the spins and lattice vibrations in an isothermal process. χ∞
is the susceptibility in the high-frequency limit (ω → ∞),
where the spins remain isolated from their surroundings and
relaxation occurs via an adiabatic process [32,47]. The Cole-
Cole model assumes a logarithmic distribution of relaxation
times, τ , which is symmetric about the characteristic or av-
erage τ0 = 1/(2π f0). χ (ω) can be decomposed into in- and
out-of-phase components:

χ ′(ω) = χ∞ + [χ0 − χ∞][1 + (ωτ0)1−α sin(πα/2)]

1 + 2(ωτ0)1−α sin(πα/2) + (ωτ0)2(1−α)
,

(4)

χ ′′(ω) = [χ0 − χ∞](ωτ0)1−α cos(πα/2)

1 + 2(ωτ0)1−α sin(πα/2) + (ωτ0)2(1−α)
. (5)

For the Cyc–SkL transition, fits to the in- and out-of-phase
susceptibility for H↓ yield slightly different parameter sets,

FIG. 5. The frequency dependence of (a) χ ′
1ω and (b) χ ′′

1ω at T =
10.75 K for descending magnetic fields (H↓) spanning the SkLI–FM
mixed-phase regime across the phase boundary fit to Eqs. (4) and
(5), respectively. Insets in (a) and (b) compare curves from ascending
(H↑) and descending field protocols. (c) Parameter, α, characterizing
the symmetric distribution of relaxation times about the (d) average
time, τ0, from fits of (a) and (b) to the Cole-Cole model. The blue
curves show dynamic parameters extracted from the fit to the entire
frequency range in the ascending measurement.

especially at lower and upper field boundaries. No signif-
icant differences were observed between data in ascending
and descending fields. The transition takes on a glasslike
character, according to field dependence of α, which reaches
values of up to 0.8, indicating a stretched exponential relation.
The average relaxation time appears to drop with H , moving
from the low-field side (Cyc-dominated) into the high-field
side (SkL-dominated) of the transition peak, eventually falling
outside of our time window (∼10−4 s). For H � 350 Oe, a
hump in χ ′′

1ω forms near 50 Hz while a low-frequency tail
remains, suggesting an additional dynamic process exists at
much longer timescales. Indeed, Butykai et al. observed an
average relaxation time on the order of 100 s at T = 10.75 K
across the Cyc–SkL transition. These coexisting processes,
separated in timescale, agree with the presence of mixed phase
behavior expected at a first-order transition.

On the other hand, for the SkL–FM transition, evidence of
coexisting processes takes on a different form in χ ′′

1ω ( f , H ).
Instead of two peaks separated in frequency, on the ascending
measurement, χ ′′

1ω is asymmetric about the peak (τ0), as shown
in the inset of Fig. 5(b), where the black line represents the fit
to the high frequency side of χ ′′

1ω ( f ). After increasing the
field to H = 2000 Oe, the descending measurement displays
the symmetry expected in the Cole-Cole formalism (gold fit
line). Hysteretic behavior appears as a shift in relaxation time
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to faster timescales in the descending process as well as a
reduction in magnitude of the loss, reflecting differences be-
tween annihilation and nucleation processes across the SkL–
FM transition. A low frequency tail of enhanced susceptibility
has also been observed in the conical-SkL mixed phase in
Fe1−xCoxSi (x = 0.30) [48] and in Cr1/3NbS2, where a lattice
of 1D chiral magnetic solitons separate FM domains [20]. In
both cases, the behavior was attributed to an asymmetric dis-
tribution of relaxation times. More generalized models taking
into account the asymmetry of χ ′′

1ω ( f ) on a logarithmic scale,
such as the Cole-Davidson or Havriliak-Negrami equations,
also fail to describe the frequency dependence, as explored in
Ref. [39] for the Cyc–FM transition in GaV4S8.

In addition to the asymmetric loss profiles mentioned
above, discrepancies in the parameter sets extracted from
fits of χ ′

1ω and χ ′′
1ω to Eqs. (4) and (5), respectively, [as

in Fig. 4(c)] have also been reported by Qian et al. for
CHM-conical and conical-SkL transitions in Cu2OSeO3 [22].
While the anomalous departures from the Cole-Cole model
vary between material systems, the phenomena have all been
linked to coexisting dynamic processes from small and large
length scales. However, a full theoretical treatment accounting
for the collective dynamics of the macroscopic spin texture
remains unexplored in these systems.

Ultraslow rearrangements of the spin structures, such as
motion of coherent domain structures, may also contribute
to the observed irreversibility in GaV4S8, especially at the
boundaries between the FM phase as shown for the Cyc–FM
transition in Fig. 3 and the SkL–FM transition in Fig. 5.
Reports of slow magnetization processes are ubiquitous in
the literature for DMI-stabilized spin textures. The long-
range order of both the amplitude and phase of the spatially
varying order parameter underlies the observed phenomena.
The magnetic structures are coherent over large length scales
and the magnetization dynamics reflects the response of a
macroscopic texture. Indeed, in Ref. [39], Butykai et al.
showed that across the SkLI–FM and SkLI−CycI mixed-phase
regimes in GaV4S8, τ0 dropped dramatically with only a small
temperature step, reaching the minutes scale by T = 10 K and
virtually freezing below the triple point at T = 9.5 K.

As illustrated in Figs. 6(a) and 6(b), below the triple point,
the magnetic loss stretching along the CycI,II–FM bound-
aries for H > 200 Oe and T = 7 − 9.25 K [double arrows
in Fig. 2(b)] shows virtually no frequency dependence. The
ultraslow dynamic state exhibits a flat-lined χ ′

1ω and χ ′′
1ω vs

f (black curve), shown here at T = 8.5 K for H = 300 Oe.
However, the behavior of the zero-field IC–C transition dis-
plays strong frequency dependence in both real and imaginary
parts (colored curves), spanning temperatures in the range
7 K � T � 3 K—at much lower temperatures than the CycI,II–
FM transitions at elevated fields. In zero field, the χ ′

1ω and
χ ′′

1ω vs f curves do not follow the conventional Cole-Cole-like
behavior, in accordance with behavior observed for Cyc–FM
transitions slightly below the triple point in Ref. [39]. For
example, near TIC→C(0) a sigmoidlike frequency dependence
shows up for both real and imaginary parts, which are almost
equal in magnitude (inset). Significant differences between
the dissipation profiles of Cyc–FM for TIC→C(H < 200 Oe)
and TIC→C(H > 200 Oe) are also evident across the phase

FIG. 6. Frequency dependence of (a) χ ′
1ω and (b) χ ′′

1ω for temper-
atures spanning the extended incommensurate Cyc to commensurate
FM transition at zero-field. For comparison, χ ′

1ω ( f ) and χ ′′
1ω ( f )

across the CycI–FM transition (H = 300 Oe, T = 8.5 K) displays
weak frequency dependence. The inset in (a) compares χ ′

1ω ( f ) and
χ ′′

1ω ( f ) for T = 4.75 K and T = 5 K. (c) The normalized response
voltage to hAC = h sin ωt , where h = 5 Oe, across the zero-field
Cyc–FM transition is highly distorted while (d) Cyc–SkL and SkL–
FM transitions show predominantly linear behavior.

diagram in Fig. 2(b). At elevated fields, the loss lies along
the phase boundaries (as shown by double arrows), however,
for H = 0, the loss extends deep into the Cyc phase and
stretches from around T = 8 K down to at least T = 3 K.
Taken together, the disparities between the magnetization
dynamics for the Cyc–FM transitions at low and elevated
fields point to separate origins for their behavior.

Figures 6(c) and 6(d) compare the normalized response
voltage to the AC magnetic field, HAC(t ), for the zero-field
Cyc–FM transition and the Cyc–SkL and SkL–FM transition
regimes evaluated in Fig. 4. As expected from the nonzero χ ′′

1ω

across these transitions presented above, all three responses
show delays in phase (θ1ω) against the AC field, h sin ωt .
However, significant differences exist between the line pro-
files of the responses in Figs. 6(c) and 6(d). By inspection,
the periodic curves in Fig. 6(d) appear to be dominated by a
linear (harmonic) response to the sinusoidal driving field. In
contrast, near TIC→C(0), the periodic curve becomes strongly
distorted [Fig. 6(c)]. The implications of the anharmonic
behavior seen here, coupled with the dissipative behavior
presented above, will be explored in the following section
by looking closely at the leading nonlinear component of the
total AC magnetic response in different regimes of the phase
diagram.
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FIG. 7. Temperature and field dependence of the third harmonic magnetic response, M3ω (T, H ).

C. Nonlinear magnetic response

In a study of the itinerant helical magnet MnP, Mito
et al. developed a diagnostic approach to categorize mag-
netic domain dynamics into types 1–5, which account for
both out-of-phase and nonlinear contributions to the AC
magnetic response [28]. Type 1 accounts for a purely linear
dynamic response with no delay in phase against an AC
field: γ = 0, η = 0 in Eq. (1); type-2 dynamics introduces
damping which leads to an opening of the AC hysteresis loop:
γ �= 0, η = 0; for types 3 − 5, γ �= 0, η �= 0, and the nonlin-
ear term continuously grows. Remarkably type 5 dynamics
display the smallest AC hysteresis, where M ′′

1ω (χ ′′
1ω h) ∼ 0.

Thus, AC hysteresis loops categorized into types 1–5 note the
increasing dominance of the nonlinear contribution to the total
magnetization dynamics [28], leading to M3ω values in excess
of 10% of M1ω. The diagnostic approach was successfully
applied to describe the unique domain dynamics in several
other DMI-modulated systems [26–30].

We now investigate in more detail the anisotropy-driven
IC–C transitions by analyzing the nonlinear magnetic re-
sponse to a time-dependent field via the temperature depen-
dence of the third-order AC magnetization, M3ω. Figures 7(a)
and 7(b) show M3ω (T, H ) for f = 1111 Hz measured with
an AC field amplitude h = 5 Oe and the associated surface
plot. The dashed lines mark the phase boundaries deter-

mined from the linear susceptibility, as in Fig. 2(b). For the
SkL (Cyc), nonlinear response is absent in the pure phases,
however, small values of M3ω are restricted to the lossy
regimes along the SkLI/II−CycI/II and SkLI/II–FM (CycI/II–
FM) phase boundaries. A similar trend was reported for
MnSi, where the magnetization dynamics soften in a conical-
SkL mixed-phase regime [30]. On the other hand, at H = 0
Oe, a massive anomaly in the nonlinear magnetic response
(dashed arrow) extends from well within the Cyc phase from
T ≈ 8.75 K down to T < 3 K. The extended region reaches
a maximum near TIC→C(0) = 5.25 K, similarly to χ ′

1ω and
χ ′′

1ω. The peak drops dramatically with applied magnetic field
[Fig. 7(a)] and shifts slightly to lower temperatures, forming
a dome of enhanced nonlinear response that expands into the
FM regime of the phase diagram [Fig. 7(b)].

Figures 8(a)–8(c) plot the frequency dependence of
M3ω (T ,0) scaled by the harmonic magnetic response, M1ω

(T ,0), for AC field applied along each of the three principle
cubic axes, [111], [110], and [100], measured on warming
using a zero-field-cooling protocol across the Cyc–FM transi-
tion. The ratio M3ω/M1ω, called the Klirr factor, characterizes
the relative strength of the nonlinearity in the overall mag-
netic response [28]. In GaV4S8, the maximum magnitude of
M3ω/M1ω (T ,0) occurs at the lowest frequency measured, f =
11 Hz, on the order of characteristic frequency of magnetic

FIG. 8. M3ω/M1ω (T, 0) measured with hAC‖[111], [110], [100] for f = 11 − 10000 Hz.
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FIG. 9. Characterization of the magnetic domain dynamics using the Klirr factor, M3ω/M1ω, and loss tangent, tan θ1ω = M ′′
1ω/M ′

1ω, for
several transition regimes. For f = 11 Hz, (a) M3ω/M1ω (T, f ) reaches 11% and (b) tan θ1ω(T, f ) reaches 90% across the extended zero-field
Cyc–FM transition for H‖[111]. M3ω/M1ω (H, f ) and tan θ1ω(H, f ) for fields spanning the (c), (d) CycI−SkLI and (e), (f) SkLI–FM mixed
phase regimes across the phase boundaries at T = 10.75 K, as in Fig. 4.

domain dynamics. The Klirr factor systematically drops as the
time window of the measurement narrows, which indicates
that the anharmonic response of the Cyc–FM crossover is
related to the dynamics of the spin structure over large length
scales.

The temperature dependence of the nonlinear response also
displays anisotropic behavior. For comparison, each M3ω/M1ω

(T ,0) curve for f = 11 Hz is plotted in the inset of Fig. 8(c).
The magnitude and profile of the Klirr factor apparently
depends upon the orientation of hAC relative to the easy axes
of the domains. At zero field, the Cyc–FM transition occurs
within each of the four structural domain variants, and is
presumably driven by strong easy-axis anisotropy along the
direction of rhombohedral distortion. In the [110] orientation,
where the easy axes of two of the four domains are per-
pendicular to the AC field modulation, the Klirr factor takes
on a value of ∼5%. This value is approximately half of the
maximum Klirr values for H‖[111] (11%), where the remain-
ing three 〈111〉 directions span 71◦, and for H‖[100] (13%),
where all four domains span 55◦ with H . Such dependence
of the strength of the nonlinearity on the relative orientation
between the magnetic easy axes and hAC is consistent with ex-
perimental observations that the Cyc spin textures have a well-
defined propagation direction, namely, along 〈110〉 within the
{111} planes [37]. The AC field component perpendicular to
the modulation direction of the spin structure, that is, along the
magnetic easy axis, likely contributes to the large anharmonic
response, supporting the scenario that the strong nonlinearity
results from a well-defined domain structure as the cycloid
period expands.

Figures 9(a) and 9(b) present M3ω/M1ω (T, f ) and
tan θ1ω(T, f ) across the zero-field Cyc crossover approaching
the FM phase. The broad anomaly remains centered around

TIC→C(0) = 5.25 K up to the highest frequency and is max-
imized as the measurement window expands toward longer
timescales. The enormous magnetic loss, of up to 90% of
the in-phase component at f = 11 Hz, is also maximized
at the longest timescale. The magnitude of tan θ1ω lies far
beyond the maximum predicted by the thermodynamic Cole-
Cole model (50%) [32]. Figures 9(c)–9(f) display M3ω/M1ω

(H, f ) and tan θ1ω(H, f ) for T = 10.75 K, across the SkL
boundaries that were analyzed in Sec. III B (Figs. 4 and 5). In
Figs. 9(c) and 9(d), the Cyc–SkL transition exhibits a Klirr
factor M3ω/M1ω (310 Oe, 11 Hz) = 2% and tan θ1ω = 0.24.
The loss tangent peak shifts toward higher frequency with
increasing field and drops in magnitude. Here, the dynamics
accelerate as the SkL dominates the mixed-phase regime. In
Figs. 9(e) and 9(f), the Klirr factor for the SkL–FM transition
is maximized for frequencies that coincide with the maximum
tan θ1ω, reaching M3ω/M1ω (560 Oe, 1166 Hz) = 2.4% with
tan θ1ω = 0.55. M3ω (H, f ) peaks across the SkL–FM phase
boundaries where glassy behavior is prominent, brought on
by the softening of the SkL dynamics. The calculated values
of M3ω/M1ω and tan θ1ω for various Cyc and SkL phase
transitions are presented in Table I and are compared to other
magnetic systems in the literature, as discussed in more detail
in the following.

IV. DISCUSSION

A. Zero-field harmonic order

In DMI magnets, the fixed rotation sense of the spin
modulation results in robust textures that display long-
range spin coherence. Additionally, the symmetry of the
crystal lattice dictates the orientation of the DM vectors,
thereby imparting anisotropy over the magnetic structure. The
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TABLE I. Maximum Klirr factor, M3ω/M1ω, and loss tangent,
tan θ1ω = M ′′

1ω/M ′
1ω, values observed in GaV4S8 compared to se-

lect systems exhibiting robust spin textures stabilized via the
Dzyaloshinskii-Moriya interaction.

Regime M3ω/M1ω M ′′
1ω/M ′

1ω Typea Source

GaV4S8

Cyc → FM 0.13 0.97 4
Cyc → SkL 0.02 0.24 3 This paper
SkL → FM 0.024 0.55 3
PM → Cyc 0 0 1

MnSi
SkL → Conical 0.01 0.06 3 [30]
PM → CHM 0 0 1

Cr1/3NbS2

PM → CHM 0.1 0 5 [29]
HNL CSLb 0.13 0.5 4 [20,29]

MnP
PM → FM 0.1 ∼0 5 [28]
IT striped domainc ∼0.2 ∼0.8 4

R-GNd

PM → FiM ∼0.16 ∼0 5 [27]

aBased on the prescription developed in Ref. [28].
bHighly nonlinear chiral soliton lattice.
cIntermediate temperature (IT) structure and DM interaction identi-
fied in Ref. [49].
dChiral molecule-based magnet [Cr(CN)6][Mn(R)-pnH(H2O)]
(H2O).

enhanced structural rigidity and long-range spin coher-
ence can lead to an amplified nonlinear AC magnetic
response. Table I reviews several relevant magnetic sys-
tems in the literature. For instance, Cr1/3NbS2 exempli-
fies the CHM with a single DM vector; The spiral or-
der with virtually infinite spin coherence propagates along
the crystallographic c-axis and reaches M3ω/M1ω >10%
[20,29,30]. That the fixed rotation sense is essential to
the magnitude of the nonlinear responses of different ma-
terials was first observed by Mito et al. in a study of
a chiral molecule-based magnet, where the single-handed
structure displayed a Klirr factor on the order of 10% [26].
Conversely, in the multidomain helimagnetic state of MnSi,
where the propagation direction of the chiral helices changes
in adjacent domains, a more recent study revealed a small
nonlinear contribution (∼0.2%) across the PM–CHM phase
boundary [30]. In GaV4S8, the multidomain nature of the
magnetism results from the structural domains brought about
by the ferroelectric transition above TC. Additionally, within
domains it appears that the q vectors of the spin cycloid
may equally populate 〈110〉 directions [37]. These properties
culminate into M3ω = 0 at the PM–Cyc phase boundary in
GaV4S8, as shown in Fig. 7. However, as discussed in more
detail later, despite the multidomain state, the anisotropy-
driven Cyc–FM transition centered at TIC→C(0) displays an
enormous nonlinear response.

B. Skyrmion lattice

The solitonic structures that emerge out of the harmon-
ically modulated ground (or zero field) states also display
robust spin coherence, such as the 1D chiral soliton lattice
(CSL) or the 2D SkL, and have distinct dynamic signatures.
The CSL, a periodic system of uniaxially propagating FM
domains separated by 2π domain walls, also displays enor-
mous M3ω [20,29,30], but is accompanied by magnetic loss
due to absorption of energy as the domain walls overcome
energy barriers. However, as shown in the case of MnSi, M3ω

is absent within the highly coherent 2D SkL phase pocket
[30]. Here the timescale of the pure phase spin dynamics
is much faster than the timescales related to typical domain
dynamics; as shown in AC susceptibility studies of CHMs
and polar GaV4S8, the susceptibility approaches the adiabatic
limit (τ → 0, f → ∞) on entering the single-phase SkL and
Cyc regimes [19,39]. Notably, in MnSi, a modest M3ω/M1ω

(∼1%), approximately one order of magnitude larger than
the CHM-conical transition, emerges only along the phase
boundaries where the skyrmion domains soften and magnetic
dissipation appears [30]. As shown in the surface plot in
Fig. 7(b), M3ω appears at the Cyc–SkL (∼2% of M1ω in
Fig. 9) and SkL–FM (∼2.4% of M1ω) boundaries where
glassy dynamics were observed in Fig. 4.

Furthermore, the spatial rigidity of the SkL was found to
be much lower than that of the CSL in Ref. [30], yielding
a Klirr factor on the order of 10−2 − 10−3, similar to spin
and cluster glass states. In MnSi, the direction of the applied
magnetic field dictates the propagation direction of the q
vector, leading to a reorientation into a single helical domain
across the CHM to conical magnetic crossover boundary [18].
Depending on the magnetic field direction, the skyrmion cores
in cubic CHMs may align along, e.g., 〈111〉, 〈110〉, 〈100〉,
in a single domain structure. In GaV4S8, skyrmion cores are
confined along the easy axis of magnetization [12], which
likely provides stronger spatial rigidity in comparison to the
B20 family. However, in the multidomain configuration, the
apparent nonlinear response is on the order of 10−2. Achiev-
ing a single domain SkL state in GaV4S8 could drive the
Klirr ratio toward higher values than in SkL hosts with weak
anisotropy.

C. Cycloid crossover

At H = 0 Oe, the anisotropy-driven incommensurate Cyc
to commensurate FM transition displays anomalous AC sus-
ceptibility, magnetic loss, and nonlinear dynamic response to
the time-dependent magnetic field in the range 9 K > T > 3 K
centered around the peak at TIC→C(0) = 5.25 K. At T = 7 K,
M3ω/M1ω is nearly 2% for H‖[111], which corresponds to
the change in slope of the temperature dependence of the
cycloidal scattering vector in Ref. [37]. There, the scattering
vector decreases more rapidly and falls outside the detectable
limit as temperature is lowered to T = 4.5 K. Thus, our results
suggest that a precipitous growth in the Klirr factor accompa-
nies a more rapid increase in the cycloid wavelength. Presum-
ably, the spatially modulated structure becomes more nonlin-
ear as the cycloid pitch diverges toward the IC–C transition,
as pointed out by White et al. in Ref. [37]. Such a process was
described theoretically to occur via a soliton lattice according
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to Izyumov [50]. Interestingly, line-shape analysis of 57Fe
nuclear magnetic resonance spectra revealed the solitonic
character of the the cycloid spin profile in the quintessential
multiferroic BiFeO3 [51]. In BiFeO3, the cycloid becomes
more anharmonic on lowering temperature [51] and, based
on electron spin resonance results in Ref. [52], increasing
magnetic field. In the present study on GaV4S8, the extended
range of the nonlinear behavior and strong magnetic loss
suggests that the zero-field IC–C transition occurs via a broad
crossover process involving a correlated domain arrangement.
However, the exact form of the magnetic structure remains to
be determined.

The maximized Klirr factor of up to 13% for H‖[100]
reaches a value on the order of the highest reported in DMI
magnets, as shown in Table I. In a previous study, we observed
Klirr factors over 10% for the highly nonlinear CSL state
in Cr1/3NbS2 [20]. There the susceptibility peak does not
correspond to the metamagnetic phase transition, but it rep-
resents the center of an extended nonlinear crossover process
that terminates with an IC–C phase transition when M(n>1)ω

falls to zero.[20] The loss tangent, tan θ1ω = M ′′
1ω/M ′

1ω, at
TIC→C(0) is also enormous, ranging from 86 − 97%. Based
on the prescription developed by Mito et al. [28] to categorize
AC responses of unique magnetic domains, the dynamics fall
into the type-4 class categorized by M3ω/M1ω � 0.05 and
tan θ1ω �= 0. Studies of Cr1/3NbS2 by Tsuruta et al. place
the highly nonlinear CSL to FM transition, MnP, and R-GN
at type 4, whereas the single-domain PM–CHM transition
dynamics behave as type 5 with no M ′′

1ω [26–29]. As a large
Klirr factor for frequencies at or below ∼10 Hz is typically
associated with the dynamic character of magnetic domain
formation, the results herein support the notion that a robust
and unique domain structure could emerge out of the Cyc state
and the topic deserves further study via theoretical modeling
and neutron and microscopy techniques.

In Ref. [30], Tsuruta et al. note that the large anharmonicity
in the magnetic response due to coherent domain formation
is typically observed to peak at the boundaries of phase
transitions, where it is attributed to thermal softening of spin
dynamics. Anharmonicity is not observed at the PM–Cyc
phase boundary in GaV4S8 despite SANS evidence that the
wave vector continuously decreases from 13 K in zero field.
Such behavior is not surprising as multiple DM vectors govern
the modulated state, leading to cycloids distributed over 〈110〉,
as well as the inherent multidomain nature that breaks the
spin coherence at structural domain boundaries. In the B20
helimagnets, cubic anisotropy leading to the multidomain
zero-field CHM phase, and the resulting presence of multiple
DM axes, was attributed to the weak nonlinear response at
the CHM–PM and CHM–conical transitions [30]. However,
in stark contrast, the Cyc–FM crossover displays enormous

nonlinear response as the magnetocrystalline anisotropy be-
comes the dominant energy scale at low temperatures, thereby
enhancing the rigidity of the spin structure despite its multido-
main nature.

V. CONCLUSION

The dissipation mechanisms and nonlinear magnetization
dynamics were analyzed across the magnetic phase dia-
gram of GaV4S8 via χ1ω (T, H ) and M3ω (T, H ) for f =
10 − 10 000 Hz. Dynamic signatures of mixed-phase behavior
were observed across the Cyc–SkL and SkL–FM transitions,
consistent with dc magnetic hysteresis observed between
warming and cooling curves. The ratio M3ω/M1ω character-
izing the nonlinear response was calculated for the strongly
pinned Néel SkL. Similar to results in MnSi, nonzero M3ω

only occurred at the phase boundaries where SkL dynamics
soften. However, even with a multidomain-configured Néel
SkL, M3ω/M1ω values (Cyc–SkL: 2%, SkL–FM: 2.4%) were
slightly enhanced with respect to recent results in MnSi
(conical–SkL: %1), reflecting the influence of anisotropy on
the rigidity of the spin texture.

The frequency dependence of Cyc–FM transitions for H >

200 Oe and H < 200 Oe were compared to reveal separate
relaxation mechanisms. M3ω (T, H = 0) illustrates that the
IC Cyc displays enormous anharmonicity in its dynamic
response when the magnetocrystalline anisotropy becomes the
dominant energy scale at low temperatures, thereby increasing
the rigidity of the spin structure. M3ω/M1ω depends strongly
on the AC field orientation and for H‖[100] reaches 13% at
TIC→C(0) = 5.25 K, previously identified in the literature as
the FM critical field. Combined with the observed anomalous
magnetic loss tangent ∼90%, our results support the notion
that a robust and unique domain structure emerges out of the
Cyc state across the IC–C transition.
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