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Multiple quadrupolar or nematic phases driven by the Heisenberg interactions
in a spin-1 dimer system forming a bilayer
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We explore several classes of quadrupolar ordering in a system of antiferromagnetically coupled quantum
spin-1 dimers, which are stacked in the triangular lattice geometry forming a bilayer. Low-energy properties
of this model are described by an S = 1 hard-core bosonic degrees of freedom defined on each dimer bond,
where the singlet and triplet states of the dimerized spins are interpreted as the vacuum and the occupancy of
boson, respectively. The number of bosons per dimer and the magnetic and density fluctuations of bosons are
controlled by the interdimer Heisenberg interactions. In a solid phase where each dimer hosts one boson and the
interdimer interaction is weak, a conventional spin nematic phase is realized by the pair fluctuation of bosons.
Larger interdimer interaction favors Bose-Einstein condensates (BEC) carrying quadrupolar moments. Among
them, we find one exotic phase where the quadrupoles develop a spatially modulated structure on the top of a
uniform BEC, interpreted in the original dimerized spin-1 model as coexistent p-type nematic and 120◦ magnetic
correlations. This may explain an intriguing nonmagnetic phase found in Ba3ZnRu2O9.
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I. INTRODUCTION

Nematics, regarded as a sort of liquid crystal in a more
general context, now forms a wide range of phases of mat-
ter in crystalline solids. The “electronic nematic state” was
first proposed in a doped Mott insulator as a consequence
of the melting of stripes, aiming to understand the origin
of high-Tc phase in cuprates [1]. A more recent example
is the nematicity of electronic wave functions induced by
the orbital ordering in iron-based superconductors, possibly
dominating the stability of the superconductivity [2–4]. When
defined on a crystal lattice, the nematics of charges and
orbitals, and also of spins, are all described by the quadrupolar
order parameter representing the symmetry of their wave
function.

In insulating quantum magnets [5,6], nematic phases ap-
pear when the spin moments break their rotational symmetry
and form a wave function in the shape of rodlike or disklike
director which collectively align in space. The search of spin
nematics has been a challenge since proposals relevant to
experiments are provided only in limited numbers of systems;
in a layered solid 3He [7], in an artificially designed optical
lattice [8,9], and in a quantum spin- 1

2 magnet near the satura-
tion field [10–12].

There had been some reasons that the quantum spin sys-
tems cannot easily become a good platform of spin nematics.
In materials, the electrons carry spin 1

2 , which is a dipole by
itself, and to form a quadrupole which is a rank-2 tensor, we
need at least spin 1 with three different Sz levels [see Eq. (8)].
There are two ways to construct spin 1 from spin 1

2 . One
is to use the Hund’s coupling between spin 1

2 in different
orbitals on the same site, which will generate site nematics.
The other is to efficiently compose spin 1 from two spin 1

2 ’s

on neighboring sites by the interaction, in which case the
bond nematic is formed. In the former case, a quantum spin-1
bilinear-biquadratic (BLBQ) model is known to host a spin
nematic phase for a large biquadratic interaction (Si · S j )2,
where Si is a spin-1 operator [5,13–28]. The biquadratic
interaction works as a strong quantum fluctuation exchanging
the spin-1 pairs, and kills the antisymmetric (dipolar) com-
ponent. Since the biquadratic interaction is generally much
smaller than the Heisenberg (bilinear) interaction [29], this
spin nematics is hardly realized in materials. To have the
latter bond nematics in a spin- 1

2 model [6], often a very high
magnetic field and a frustration effect are required. In a fully
polarized spin- 1

2 state, the standard lowest-energy excitation
is an Sz = −1 magnon. However, if there are good reasons to
suppress the kinetics of magnon, e.g., the frustration effect
on a J1-J2 square lattice model or a ring exchange model,
the lowest excitation is replaced by the multimagnons prop-
agating together [30–39]. For example, the bounded two-
magnons consisting of two spin 1

2 ’s pointing downward form
a quadrupole by definition, and condense into a spin nematic
phase near the saturation field in spin- 1

2 ladders [35,36].
Whereas, in practice, it is hard to realize such a high field in
experiments.

Recently, a double-layered spin- 1
2 dimer system is pro-

posed as a platform of spin nematics in a zero magnetic
field [40]. When the spin 1

2 ’s are antiferromagnetically cou-
pled within the dimer, they form a singlet, and the interdimer
Heisenberg interactions work as chemical potential and dope
the S = 1 triplets. By the additional spin- 1

2 four-body in-
terdimer interaction, a biquadratic interaction between these
doped S = 1’s is generated and two different types of spin
nematic phases appear next to the singlet phase. The model
based on the ferromagnetically coupled spin- 1

2 dimers have
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S = 1 triplet on a dimer bond by construction, and are also
found to host a small window of spin nematic phase, when the
second-order perturbative interdimer exchange coupling be-
comes relevant [41]. These works show that the spin nematics
of the same type as that of the spin-1 BLBQ model is available
in the spin- 1

2 dimer systems by introducing the interdimer
four-body exchanges which kill the antisymmetric part of the
spin- 1

2 wave function, like the biquadratic interaction does on
spin 1.

In this paper, we replace the spin- 1
2 dimer in Ref. [40] with

spin-1 dimer, and deal with the two-dimensionally stacked
spin-1 dimer forming a bilayer triangular lattice. We show that
there are abundant types of magnetic and nonmagnetic long-
range-ordered phases that are described by the quadrupolar
as well as dipolar order parameters defined on a dimer bond.
Considering a strong intradimer antiferromagnetic and bi-
quadratic coupling, where maximally S = 1 moment (S = 1
is the on-bond spin-1 throughout the paper) is generated in
each dimer out of two spin 1’s, the original dimerized spin
1’s degrees of freedom are transformed to an S = 1 hard-core
boson. The interdimer Heisenberg spin exchange interaction
is then transformed to the kinetic and pair fluctuation effect
of these bosons as well as the magnetic exchange between
S = 1’s. When the former fluctuation effect dominates, the
S = 1 bosons lose their dipolar moment and condense, par-
tially occupying the dimers as quadrupoles which we call
ferroquadrupolar-BEC (FQ-BEC) phases. Besides, for a pa-
rameter region of nearly decoupled dimers, we find a spin
nematic phase; we call “spin nematics” the phase based on
the bound pairs of S = 1, typically found in spin-1 BLBQ
model. In a dimer-based system, spin nematics can be realized
when the bosons are fully packed on dimers. These quadrupo-
lar phases are classified by the types of low-lying tower-
of-state excitations in the energy spectrum that tell us how
they break the symmetry. The richness of the phase diagram
is possibly because of the large fluctuation of spin-1 mo-
ments allowed by the larger spin space compared to spin 1

2 ’s
since the former affords larger entanglement in constructing
S = 1.

The technical aspect of this work is that, despite a seeming
difficulty in increasing the degrees of freedom of the spin
moments from spin 1

2 to 1, one can treat it within a low-energy
approximation using the same bosonic model as the spin- 1

2
dimer case [40]. Aside from the transformation of the spin- 1

2
model being exact, the only difference is how to map the
interaction parameters of spin models to those of the bosonic
model.

The direct motivation of dealing with spin-1 dimers instead
of spin- 1

2 dimers is to explain the intriguing magnetic proper-
ties of Ba3MRu2O9 (M = Ca, Co, Ni, Cu, Zn, Sr) [42–47].
These materials are triangular lattice quantum magnets made
up of dimerized Ru5+ ions that are expected to carry spin 1.
While most of them exhibit conventional types of ordered
phases such as singlet dimers or the antiferromagnet, the
case of M = Zn turned out to lack distinct signature of the
phase transition, and remains nonmagnetic down to lowest
temperature [42,43]. The possible correspondence between
one of our FQ phases is to be finally discussed.

FIG. 1. (a) Schematic illustration of the spin-1 dimer model on
a triangular lattice. (b) Intradimer and interdimer interactions, where
J > 0, J ′, J ′′ are the Heisenberg exchanges, and B is the biquadratic
exchange. (c) Eigenenergy levels of Hintra of an isolated dimer. s,
t , and q denote the singlet, triplet, and quintet states of the dimer,
respectively. (d) Eigenenergy levels of Hintra of two isolated dimers
without the interdimer J ′ and J ′′. (e), (f) Examples of the second-
order perturbation processes. Processes in (e) return to the original
state |s, t0〉. Processes in (f) exchange the Sz = +1 and −1 triplets,
which are the origins of the biquadratic interactions between two
triplets (S i · S j )

2.

II. MODEL HAMILTONIAN

We consider a system consisting of dimers of two spin 1’s.
As shown in Fig. 1(a), the dimers stack parallelly and form a
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double-layered triangular lattice. The Hamiltonian is given as

H = Hintra + Hinter,

Hintra =
N∑

i=1

[
JSi1 · Si2 + B

(
Si1 · Si2

)2]
, (1)

Hinter =
∑
〈i, j〉

∑
γ=1,2

(
J ′Siγ · S jγ + J ′′Siγ · S jγ̄

)
,

where Siγ is the spin-1 operator of γ th site on an ith dimer.
Here, we discriminate Siγ defined on a lattice site from S i

which is spin 1 defined on a dimer bond introduced in the next
section. The summation 〈i, j〉 is taken over all the neighboring
pairs of dimers, and 1̄ = 2 and 2̄ = 1. J (> 0) and B (> 0)
denote the antiferromagnetic Heisenberg and the biquadratic
interactions, respectively, J ′ and J ′′ are the interdimer Heisen-
berg interactions [Fig. 1(b)], and N is the number of dimers.

In Sec. III, we analyze the Hamiltonian (1) by trans-
forming it to the effective model of the S = 1 bosons via
the perturbation theory, and then solve it by the numerical
exact diagonalization (ED) on a finite cluster. The magnetic
properties of the model are described by the S = 1 carried by
the hard-core boson.

To disclose the details of the phase diagram, particularly to
fix the existence of the long-range order, we analyze the struc-
ture of the low-lying excited states, namely, a tower of states
in Sec. IV. There, the spin-1 bosonic description is found
to be not enough to understand several different classes of
phases that form a quadrupolar ordering, which are classified
as different types of “nematic” phases. We therefore introduce
different operators defined on a dimer bond other than S i. To
avoid confusion, we separate Sec. IV from Sec. III where the
latter deals fully with the S = 1 bosonic description.

The classification of the above-mentioned different types
of phases in comparison with the previously known phases
based on quadrupolar moments is given in Sec. V, followed
by a brief summary in Sec. VI.

III. EFFECTIVE S = 1 BOSONIC MODEL

A. Derivation of the effective Hamiltonian of bosons

1. Low-energy states of spin-1 dimers

Let us first consider an isolated dimer consisting of two
spin 1 interacting via the BLBQ interactions HBLBQ = JS1 ·
S2 + B(S1 · S2)2. The energy eigenstates of HBLBQ are clas-
sified into singlet (s), triplets (t), and quintets (q), and their
energies are given as e(s) = −2J + 4B, e(t ) = −J + B, and
e(q) = J + B, respectively. Figure 1(c) shows these energy
levels as a function of B/J . At small B/J , the Heisenberg
interaction is dominant and the lowest-energy state is a singlet.
This singlet state is replaced by the triplet state when B/J >
1
3 , while the quintet cannot have lower energy than the triplet
and remain as the excited states.

As a starting point of the perturbation, we take Hinter = 0,
where the ground state is the product state of the singlets
on the isolated dimers for B/J < 1

3 , and that of triplets for
B/J > 1

3 . In introducing Hinter �= 0, we consider the processes
up to second order in J ′/J and J ′′/J , so that the effective
interactions between two adjacent dimers appear mainly in

the result. The energies of the disconnected two dimers with
α and β multiplets E (α, β ) are shown in Fig. 1(d). One can
see that the states including quintets are higher in energy
than the states without quintets when B/J < 2

3 . Therefore,
based on the natural assumption that B/J is small enough,
we construct the effective Hamiltonian for the low-energy
manifold of states including only singlets and triplets.

The first-order process contributes to the energy correction
of singlet and triplet states, as well as to the exchange of triplet
and singlet on the neighboring two dimers. Within the second-
order perturbation processes between two adjacent dimers, the
intermediate excited states have at least one quintet as shown
in the examples of the processes; in Fig. 1(e), the two-dimer
state |s, t0〉 returns to the same state through the excited states
|t0, q0〉, |t+1, q−1〉, and |t−1, q+1〉, where |s〉 is the singlet state,
and |tμ〉 and |qμ〉 are the triplet and the quintet states with
Sz = μ, respectively. In the processes shown in Fig. 1(f),
|t+1, t−1〉, the two-dimer states with Sz = +1 and Sz = −1
triplet dimers, mixes with |t−1, t+1〉 via the three excited states
|s0, q0〉, |q0, s0〉, and |q0, q0〉.

The low-energy basis can be described in the spin-1 hard-
core bosonic language. The singlet corresponds to the vac-
uum, and the triplets are the bosons which are not allowed
to doubly occupy a dimer. This kind of treatment is equiv-
alent to the bond-operator approach, developed for the spin-
1
2 dimer systems [48,49], and later applied to spin-1 dimer
systems [50,51] and also to general spin-S dimers [52]. We
choose the time-reversal-invariant form of the basis set {|ti,α〉}
described as

|ti,x〉 = i

2
(|+1, 0〉 − |0,+1〉 − |0,−1〉 + |−1, 0〉),

|ti,y〉 = 1

2
(|+1, 0〉 − |0,+1〉 + |0,−1〉 − |−1, 0〉), (2)

|ti,z〉 = − i√
2

(|+1,−1〉 − |−1,+1〉),

where the dimer states on the right-hand side described as
|Sz

i1
, Sz

i2
〉 are those classified by the Sz values of the two spins

forming a dimer. The details of the bond-operator approach
and the description of the original spin operators using the
bosonic operators are shown in Appendix A 1.

2. Effective Hamiltonian

The triplet state with α component |ti,α〉 at site i is ex-
pressed as b†

i,α |0〉, where |0〉 is the singlet state and b†
i,α is the

creation operator of a boson representing that triplet. Using
this bosonic operator, the effective Hamiltonian Heff up to
second order in J ′/J and J ′′/J is given as

Heff = E0 + Hμ + Ht + HP + HV + HJ + HB + H3 body,

Hμ = −μ

N∑
i=1

ni, Ht = t
∑
〈i, j〉

∑
α=x,y,z

b†
i,αb j,α + H.c.,

(3)
HP = P

∑
〈i, j〉

∑
α=x,y,z

b†
i,αb†

j,α + H.c., HV = V
∑
〈i, j〉

nin j,

HJ = J
∑
〈i, j〉

S i · S jnin j, HB = B
∑
〈i, j〉

(S i · S j )
2nin j .
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Here, ni = ∑
α b†

i,αbi,α is the number operator, and the hard-
core condition ni = 0 or 1 is imposed on the number operator.
The spin-1 operator of ith boson is expressed by S i, where
Sα

i = −i
∑

β,γ εαβγ b†
i,βbi,γ and εαβγ is the Levi-Civita sym-

bol. We note that the Hamiltonian keeps the SU(2) symmetry
of triplets [40,53,54], as far as the magnetic field is not
applied [55].

The parameters included in Heff are described by the
original interaction parameters in Eq. (1) as

E0 = (−2J + 4B)N,

μ = −J + 3B + 20z

27(J − B)
(J ′ − J ′′)2,

t = 4

3
(J ′ − J ′′), P = −4

3
(J ′ − J ′′),

(4)

V =
[

40

27(J − B)
− 8

9(J + 3B)
− 2

9J

]
(J ′ − J ′′)2,

J = J ′ + J ′′

2
+

[
− 4

3(J + 3B)
+ 1

12J

]
(J ′ − J ′′)2,

B =
[
− 4

9(J + 3B)
− 1

144J

]
(J ′ − J ′′)2,

where z is the coordination number. One can immediately see
that μ, t, P, and J terms include the terms that originate
from the first-order process, whereas V and B terms do not.

There are some processes at the second-order level where
the three dimers take part in, which we denote as H3 body

in Eq. (3). We numerically evaluate the effects of H3 body

on the effective Hamiltonian by comparing the energies of
the ground states of the original Hamiltonian H [Eq. (1)],
and of the effective Hamiltonian Heff [Eq. (3)] with and
without H3 body in a small cluster, finding that it does not play
a significant role. We thus discard this H3 body term in the
following for simplicity. The details of the evaluation of the
effective model are shown in Appendix A 2. We further show
that even the other second-order terms included in Eq. (3) do
not contribute much to the majority of phases we deal with.
The way how the interdimer interactions work thus turns out
to be simple.

3. Physical quantities

For the analysis of the effective model, we calculate the
following properties that characterize the ground state. The
boson density per dimer is denoted as 〈nt 〉 = N−1 ∑N

i=1 〈ni〉,
and its structure factor is given as

N (k) = 1

N

N∑
i, j=1

〈nin j〉 eik·(ri−r j ). (5)

The magnetic properties are examined by the spin and
quadrupole structure factors

S (k) = 1

N

N∑
i, j=1

〈S i · S jnin j〉 eik·(ri−r j ), (6)

Q(k) = 1

N

N∑
i, j=1

〈Qi · Q jnin j〉 eik·(ri−r j ), (7)

where Qi is the five-component vector representation of
quadrupole operator of spin-1 bosons defined as

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎝

Qx2−y2

i

Q3z2−r2

i

Qxy
i

Qyz
i

Qzx
i

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
Sx

i

)2 − (
Sy

i

)2

1√
3

[
3
(
Sz

i

)2 − S (S + 1)
]

Sx
i S

y
i + Sy

i Sx
i

Sy
i Sz

i + Sz
i S

y
i

Sz
i Sx

i + Sx
i Sz

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

In a system with spin 1 defined on each site, typically
represented by the spin-1 BLBQ models, the quadrupole
operator Qi is the “onsite” operator. For a system with spin 1

2
per site, the quadrupole operator is defined on a bond instead
since one needs to prepare a spin 1 from two spin 1

2 ’s [32,56].
In the present case, the two sites forming a dimer each host
spin-1 operators Si1 and Si2 , and S i, which is defined on a
dimer bond, is a composition of these two spin 1’s. For this
reason, one can also define another quadrupole operator on
dimer bond as

Qαβ
i12

= Sα
i1 Sβ

i2
+ Sβ

i1
Sα

i2 − 2
3

(
Si1 · Si2

)
δαβ. (9)

Then, one finds that Qi12
and Qi are equivalent in terms of our

triplet states, namely,

〈tα|Qμν
i12

|tβ〉 = 〈tα|Qμν
i |tβ〉 (10)

holds for α, β, μ, ν = x, y, z. In the same manner, the spin
operator inside ith spin-1 dimer defined as

Sα
i12

= Sα
i1 + Sα

i2 (11)

works in the same way as Sα
i for the triplet states, i.e.,

〈tα|Sμ
i12

|tβ〉 = 〈tα|Sμ
i |tβ〉 (12)

holds for α, β, μ = x, y, z.
Unlike the spin-1 BLBQ models [18], the number of spin-1

bosons per dimer is not fixed in our Hamiltonian. However,
one can consider the spin-1 BLBQ model as the 〈nt 〉 = 1
limiting case of our model since the two models share the
same definition, Eq. (8). One can thus make use of the analysis
applied to the spin-1 BLBQ model [18]; there are so-called
SU(3) points in the BLBQ model, where the three compo-
nents of S and the five components of Q equivalently form the
eight elements of the SU(3) Lie algebra. Exactly at this point
the transition between the magnetic and the spin nematic or
quadrupolar phases is known to take place. Numerically, this
transition is identified by the point where S (k) and Q̄(k) ≡
(3/5)Q(k) take the same values. We thus use this normalized
value Q̄(k) to determine the phase transitions between the
magnetic and the quadrupolar states.

B. Results of the S = 1 bosonic model

1. Phase diagram

We numerically diagonalize Heff on the N = 12 triangular
lattice (z = 6) under the periodic boundary condition. The
phase diagrams on the plane of J ′/J and J ′′/J at B/J = 0.2
and 0.4 are shown in Figs. 2(a) and 2(b).

The phase diagram is divided into four parts over-
all. When J ′ ∼ J ′′ > 0, the antiferromagnetic phases with
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SN

FIG. 2. Ground-state phase diagram of the spin-1 dimer triangular lattice at (a) B/J = 0.2 and (b) 0.4, obtained by the numerical
diagonalization of the effective model with N = 12. Filled and open circles represent the first- and second-order phase transitions, where
the transition between FM-BEC and FQ-p-BEC is weakly first order. FM, AFM, FQ represent the ferromagnetic, antiferromagnetic, and
ferroquadrupolar phases, and 〈nt 〉 ≈ 1 and � 0.9 are the solid and BEC states of bosons. Colors in the phase diagram are the density plot of
the triplet number 〈nt 〉. The small J ′, J ′′ region marked with red square in (b) encloses the spin nematic (SN) phase [see Fig. 8(b)]. (c) Phase
diagram on the plane of J ′/J and B/J , whose fixed B/J lines correspond to the J ′ = J ′′ line of the phase diagrams in (a) and (b).

〈nt 〉 ≈ 1 (AFM-solid) and 〈nt 〉 � 0.9 (AFM-BEC) are sta-
bilized by the antiferromagnetic interaction J > 0 between
bosons occupying the neighboring dimers. On the opposite
part of the phase diagram, J ′ ∼ J ′ < 0, the ferromagnetic
phase with 〈nt 〉 ≈ 1 (FM-solid) is realized for similar reasons.
When J ′ − J ′′ < 0 and J ′ − J ′′ > 0, two different types of
ferroquadrupolar phases, FQ-BEC and FQ-p-BEC, appear
over a wide parameter region. Throughout both of the phase
diagrams, we see no particular features of bosons, i.e., N (k)
takes the maximum value at � point, which indicates that
bosons distribute uniformly in space and do not show any
translational symmetry-breaking long-range order.

The phase boundaries are determined from two aspects:
whether the bosons are fully occupied and form a quantum
spin-1 system (solid) with 〈nt 〉 = 1 or become a BEC with
〈nt 〉 < 1, and what kind of magnetic correlations they have
in terms of S (k) or Q(k). The absolute values of S (k) or
Q(k) depend on the bosonic density 〈nt 〉, but their spatial
modulations originate from the purely magnetic ones since
〈nt 〉 is spatially uniform, as we see shortly. These boundaries
are basically second-order phase transitions, and existence of
the long-range order is examined precisely in Sec. IV.

2. J′ = J′′ line

The starting point is J ′ = J ′′ = 0, at which the ground state
is the product state of the isolated-dimer state. As one can
see from Eq. (4), most of the parameters, namely, t, P,V,B,
are the linear or the square functions of (J ′ − J ′′). Therefore,
these parameters remain zero exactly at J ′ = J ′′, namely, the
interdimer interactions cancel out because of the geometrical
frustration effect.

In fact, when B/J = 0.2, the singlet product state, namely
〈nt 〉 = 0, remains a ground state along this line. The end point

of this singlet phase is evaluated in the following manner;
when J ′ = J ′′, the effective Hamiltonian consists only of two
terms

HJ ′=J ′′ = −μ

N∑
i=1

ni + J
∑
〈i, j〉

S i · S jnin j, (13)

with μ = −J + 3B and J = J ′. Regardless of its sign, J
works as an effective attractive interaction between bosons
since it is energetically favorable to occupy the neighboring
pairs of dimers with triplets to gain the magnetic interaction
energy. Then, there is a first-order transition between the
〈nt 〉 = 0 singlet and the 〈nt 〉 = 1 FM or AFM solid phases.
The phase boundary can be obtained by comparing their
energies E0(N ) and E1(N ), where there is a relationship

E1(N ) = E0(N ) − μN + 3Nebond. (14)

Here, ebond is evaluated as the bond energy of the ground state
of the spin-1 triangular lattice Heisenberg model J ′ ∑

〈i, j〉 Si ·
S j for N = 12. Figure 2(c) shows the resultant phase diagram
on the plane of J ′ = J ′′ and B with J = 1. The singlet phase
corresponding to the straight line in Fig. 2(a) shrinks toward
smaller J ′ = J ′′ value with increasing B/J , and disappears at
B/J = 1

3 . For B/J > 1
3 , 〈nt 〉 = 1 is realized throughout the

whole J ′ = J ′′ line. The singlet state in the phase diagram of
B/J = 0.2 spans over a finite range of |J ′ − J ′′|, which is to
be confirmed in the instability analysis in Sec. V A.

3. Ferromagnetic and antiferromagnetic phases

The FM and AFM phases extend from the end points of
the J ′ � J ′′ singlet phase discussed above. In Fig. 3, we show
the total energy devided by N , eall, and the contributions
from each of the terms et , eP, eJ , and eB, the boson density
〈nt 〉, and the values of the structure factors at �, K, and M
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FIG. 3. J ′/J dependencies of the physical quantities at B/J =
0.2 when (a)–(c) J ′′/J = −0.2 and (d)–(f) J ′′/J = +0.1. (a), (d)
Total energies eall and the contributions from major terms in the
effective Hamiltonian et , eP, eJ , and eB . (b), (e) Triplet densities
〈nt 〉. (c), (f) Spin [Eq. (6)] and quadrupole [Eq. (7)] structure factors
at �, K, M points in the reciprocal space. Quadrupole structure
factors denoted as Q̄(k) are normalized to be compared with the spin
structure factors S (k) (see Sec. III A 3 for details).

points of the Brillouin zone. We vary J ′/J along the fixed
J ′′/J = −0.2 and 0.1 lines. In the former case, a jump in
the physical quantity is found at the transition from the FM-
solid to the FQ-p-BEC phase. Compared to other phases, the
FM-solid phase has a large energy gain of eJ , indicating that
the magnetic interaction J is responsible for stabilizing the
FM-solid. Indeed, S (k) shows a peak at the � point in this
phase while the other S (k) and Q(k) remain small. When
we vary J ′/J along J ′′/J = 0.1 [Figs. 3(d)–3(f)], 〈nt 〉 � 0.55,
and the system remains a BEC. The transitions along this line
are of second order. At J ′/J � 0.3, S (k) at K point starts to
overwhelm Q(k) at the � point which we recognize as the
AFM-BEC phase, following the treatment in Ref. [18] (see

(a) (b)

(c) (d)

site-1

(FQ-BEC) (FQ-   -BEC)

FIG. 4. Spatial correlation functions for (J ′/J, J ′′/J ) =
(−0.2, +0.2) in FQ-BEC and (+0.2,−0.2) in FQ-p-BEC phases at
B/J = 0.2: the quadrupolar correlations in (a), (b) 〈Q1 · Q j〉 and
the boson-boson correlation in (c), (d) 〈n1nj〉. Areas of the circles
are proportional to the amplitude of correlations | 〈Q1 · Q j〉 | or
| 〈n1nj〉 |. Red and blue circles in (a) and (b) correspond to the signs
of 〈Q1 · Q j〉, positive and negative, respectively.

the last part of Sec. III A 3). The phase boundaries in Fig. 2
are classified into first- and second-order ones (filled and open
circles) according to this analysis.

4. FQ phases

In the phase diagram, there are two different ferro-
quadrupolar phases, FQ-BEC extending at J ′′ > J ′ and FQ-p-
BEC at J ′′ < J ′. As we see in Figs. 3(e) and 3(f), 〈nt 〉 and Q(k)
both decrease down to zero at the boundary of the two phases
where the singlet state appears, which marks the second-order
transition. In such a case, the order parameters of the two
phases should differ. In fact, although Q(k) at the � point is
dominant in both phases, only in the FQ-p-BEC phase Q(k)
at the K point takes as large value.

Figures 4(a) and 4(b) show the two-point quadrupole cor-
relations between site 1 and site j, 〈Q1 · Q j〉, in FQ-BEC
and FQ-p-BEC phases. The former correlation develops uni-
formly in space, whereas in the latter, there is apparently a
growth of correlation in the period of twice the lattice spacing
in all three directions. This three-sublattice-like structure of
quadrupole moments corresponds to the peak of Q(k) at the
K point. Figures 4(c) and 4(d) are the two-point correlation
of bosons, 〈n1n j〉, which are both uniform in space. This
indicates that the three-sublattice structure of the quadrupolar
moment in the FQ-p-BEC is not because of the modulated
bosonic distribution but originates purely from the correlation
between the spin degrees of freedom Si; the nearest-neighbor
quadrupolar correlation is suppressed, while the next nearest-
neighboring correlations are ferroic.

5. Case of B/J = 0.4

We now focus on the case of B/J = 0.4, where μ takes
a positive value. The singlet phase no longer exists and
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FIG. 5. J ′/J dependence of the physical quantities at B/J = 0.4
when (a)–(c) J ′′/J = −0.1 and (d)–(f) J ′′/J = +0.2. (a), (d) Total
energies eall and the contributions from major terms in the effective
Hamiltonian et , eP, eJ , and eB . (b), (e) Triplet densities 〈nt 〉. (c), (f)
Spin [Eq. (6)] and quadrupole [Eq. (7)] structure factors at �, K, M
points in the reciprocal space. Quadrupole structure factors denoted
as Q̄(k) are normalized to be compared with the spin structure factors
S (k) (See Sec. III A 3 for details).

the triplet product state realized at J ′ = J ′′ = 0 immediately
transforms to either of the phases we discussed earlier when
the interdimer interactions become finite. Figure 5 shows
the J ′/J dependencies of energies, boson density, and the
structure factors to be compared with Fig. 3. The first-order
transitions separating the FM-solid from FQ phases are ob-
served. The boson density in the FQ-BEC phase remains quite
stable at around 〈nt 〉 ≈ 0.55, indicating that the nature of the
BEC phases does not change much with B/J .

6. Orders of perturbation

The interaction parameters in Eq. (4) include the first-
and second-order terms. Among them, V and B disappear

FIG. 6. (a), (b) Phase diagrams of the effective model up to the
first order in J ′/J and J ′′/J at (a) B/J = 0.2 and (b) B/J = 0.4, ob-
tained by the analysis of the results of the numerical diagonalization
on the N = 12 cluster.

when we neglect the second-order terms. To see how much
the second-order terms contribute to the determination of the
phase diagram, we perform the numerical diagonalization by
limiting the parameter values to those up to the first order in
J ′/J and J ′′/J with N = 12. Figures 6(a) and 6(b) show the
phase diagrams at B/J = 0.2 and 0.4. The phase diagrams
are in good agreement with those in Figs. 2(a) and 2(b),
indicating that V and B do not play a major role in the five
representative phases FM-solid, AFM-solid/BEC, FQ-BEC,
and FQ-p-BEC.

IV. LONG-RANGE ORDERS OF MULTIPLE
QUADRUPOLAR PHASES

We so far disclosed the overall magnetic properties of
the system in the S = 1 bosonic description based on the
N = 12 ED. In general, the ED results suffer from a serious
finite-size effect, which however does not apply to this study.
One of the authors has previously analyzed the same bosonic
Hamiltonian (3) for the spin- 1

2 dimer model with N = 12
ED, and showed that the phase boundaries are quantitatively
in good agreement with the analytical ones at N = ∞ [40].
The remaining issue is to explicitly show the existence of
long-range FQ, AFM, and FM orderings, which is done by the
Anderson tower analysis known to be valid for ED with small
clusters [57]. For that purpose, we perform the thick-restart
Lanczos method [58] and disclose the scaling properties of the
low-lying levels of the exact spectra. The emergent quaside-
generate joint states (QDJS) at the lowest-energy levels that
are linear with respect to S(S + 1) indicate the existence
of SU(2) symmetry-broken long-range order [59–61]. For
example, the ferromagnetically ordered moments represented
by a rigid body of uniaxial rotator exhibit the QDJS with
only one level in each S sector all belonging to the � point.
The 120◦ Néel ordering of triangular lattice antiferromagnet
is the biaxial rotator or a quantum top [60,61], which gives
the (2S + 1)-degenerate levels forming QDJS. The slope of
the QDJS is proportional to 1/N , and when N → ∞, they col-
lapse into degenerate manifold of ground states that signal the
symmetry breaking. In the following analysis, we confirmed
it by comparing with the N = 9 QDJS.
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FIG. 7. Low-energy excited states as a function of S(S + 1) for (a) FQ-BEC, (b) FQ-p-BEC, (c) AFM-solid phases for N = 12 cluster.
Filled circles and triangles are the � and K points of the Brillouin zone and open circles are from the other k points. Those following the
solid line are tower of states indicating the long-range order. (d) Triplet density (left) and structure factors at �, K points (right), including
N (k) and C(k) which gives the information on the details of the magnetic properties of the dimerized spin Siγ . J ′/J is varied from FQ-BEC
(J ′/J < 0.15), FQ-p-BEC (0.15 < J ′/J < 0.25) to AFM-BEC phases.

Figures 7(a)–7(c) show the ones from the FQ-BEC, FQ-
p-BEC, and AFM-solid phases, respectively. For the (a) FQ-
BEC and (c) AFM-solid phases, we clearly find QDJS marked
with solid lines. The QDJS in Fig. 7(a) consists of S =
0, 1, 2, 3, . . . states with only one level in each S sector, all
belonging to the � point, characterizing the excitation of the
U(1) uniaxial rotator. They clearly differ from the one known
for the spin-1 nematic (ferroquadrupolar) phase, where the
low-lying states consist of even-S sectors with � points [56]
[cf. see Fig. 8(a) of the SN phase]. This indicates that the
order parameter Qαβ

i alone is not enough to physically classify
multiple quadrupolar phases of dimer systems. Indeed, the
quadrupolar moment on a dimer bond is decomposed as

Qαβ
i = −

{
3

4

[(
qα

i qβ
i + pα

i pβ
i

) + (
qβ

i qα
i + pβ

i pα
i

)] − 2

3
δαβ

}
ni,

(15)

FIG. 8. (a) Low-energy excited states as a function of S(S + 1)
at J ′/J = 0.01 and J ′′/J = −0.01, B/J = 0.4. (b) Phase diagram at
small J ′/J and J ′′/J and B/J = 0.4 determined by the Anderson
tower analysis, which is the magnification of the region indicated
by red square at the center part of Fig. 2(c). SN phase is found for
J ′ ∼ −J ′, where the lowest excited state is S = 2. The boundaries
are given both from the crossing of S = 1, 2 levels (filled circle) and
from the structural factor (open circle). Physical quantities along the
fixed J ′′/J = 0.01 line in the phase diagram are given in Fig. 12.

using the internal degrees of freedom of a dimer [54], namely,
the staggered operator of the two spins and the vector chiral
operator

qi = 1
2

(
Si1 − Si2

)
, (16)

pi = Si1 × Si2 . (17)

These operators are related to our S = 1 bosonic operator as
bi,α ∝ qα

i − ipα
i and b†

i,α ∝ qα
i + ipα

i . When at least 〈qi〉 �= 0
or 〈pi〉 �= 0 is fulfilled, we have 〈Qi〉 �= 0, whereas the vice
versa does not always hold. The structural factors of qi and pi
are

N (k) = 1

N

N∑
i, j=1

〈qi · q j〉 eik·(ri−r j ), (18)

C(k) = 1

N

N∑
i, j=1

〈pi · p j〉 eik·(ri−r j ). (19)

The classification of quadrupolar phases in terms of these
order parameters is given in Table I. The conventional SN
phase found in the BLBQ has 〈Qi〉 �= 0 and with other mag-
netic order parameters absent, and occurs only when 〈nt 〉 = 1.
Here, 〈Qi〉 �= 0 is not supported by 〈qi〉 �= 0 or 〈pi〉 �= 0,
but by 〈qα

i qβ
i 〉 �= 0 or 〈Sα

i S
β
i 〉 �= 0. For 〈pi〉 �= 0 and 〈qi〉 =

〈S i〉 = 0, the vector chirality degrees of freedom condenses
and forms a nematic order, again suppressing all types of
magnetic orderings. This phase is called the p-nematic phase
and is distinguished from the n-nematic phase (SN). In the SN

TABLE I. Classification of multiple phases by the order parame-
ters q, p, S, Q, and solid (S) or liquid (L) type boson distributions.
FQ-BEC corresponds to F-nematic in Ref. [54].

Phases 〈q〉 〈p〉 〈S〉 〈Q〉 Boson

SN (n-nematic) 0 0 0 �= 0 S
Chiral (p-nematic) 0 �= 0 0 �= 0 L
FM 0(S) or �= 0(L) 0 �= 0 �= 0 S or L
AFM 0(S) or �= 0(L) �= 0 �= 0 �= 0 S or L
FQ-BEC �= 0 0 0 �= 0 L
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phase, the tower-of low-lying states consist only of multiple
Stot sectors in units of two or three bosons since only the multi-
boson bound states are allowed as quasiparticles. Whereas, in
the p-nematic phase, typical magnon excitations are allowed
and the tower of states consists of all Stot sectors.

The standard magnetic phases, AFM and FM, are based
on 〈S i〉 �= 0. The FQ-BEC phase has 〈qi〉 �= 0 and 〈pi〉 = 0,
where the small moments induced on the dimerized two spins
are always forming an antiparallel state and keep the dimer
unit always nonmagnetic as 〈S i〉 = 0. The small moments
form a magnetic long-range order inside the upper and lower
two-dimensional (2D) layers.

In the above context, FQ-BEC phase is identified as the
F-nematic phase with ferroic ordering of staggered moments
〈qi · q j〉 > 0, breaking SU(2) down to U(1), which is previ-
ously found in the S = 1

2 spin-ladder system [54]. Figure 7(d)
shows the boson density 〈nt 〉 and structural factors when J ′/J
is varied from FQ-BEC (J ′/J < 0.15), FQ-p-BEC (0.15 <

J ′/J < 0.25), to AFM-BEC phases. Large N (k) at the �

point characterizes FQ-BEC, C(k) as well as N (k) at the K
point take large values in FQ-p-BEC and particularly C(k)
differentiates FQ-p-BEC from AFM phase.

The low-lying states of FQ-p-BEC in Fig. 7(b) have an in-
triguing QDJS-like structure. The states between two broken
lines may form a set of ground-state manifold with (2S + 1)
degeneracy for each S sector, in consistency with the biaxial
rotator of a 120◦ Néel ordering. However, these low-lying
levels are not well separated from the states above them. It
can be contrasted from the AFM-solid phase with 120◦ Néel
ordering of S = 1 moments, exhibiting distinct (2S + 1)-
degenerate QDJS levels. For this, one may expect some sort of
120◦ long-range order of 〈qi〉 compatible with the triangular
lattice geometry, which is the analog of FQ-BEC in Table I: a
combined 120◦ order of Siγ in each layer, while with dimers
remaining nonmagnetic. It corresponds to the NAF phase in
the spin-ladder system in Ref. [54]. Instead, one can also focus
only on the lowest level in each sector near the lower broken
lines; their S = 0, 3, 6 levels at the � point and S = 1, 2, 4, 5
at the K point are symmetric under the symmetry action
when putting a uniaxial rotator on triangular three sublattices,
suggesting the p-nematic type of property [62]. Both qi and
pi show large correlation [Fig. 7(d)], which is in agreement
with the QDJS, that encloses both the 120◦ Néel and the
p-nematic properties. One possibility is that the in-plane 120◦
Néel ordering of small Siγ exists but is not fully face to face
between layers. Whereas, considering the fact that 120◦ Néel
ordering is relatively subtle due to small moment in a standard
spin- 1

2 triangular lattice Heisenberg model [63], such kind of
ordering may not be stable as a long-range order in our system
where the activated local magnetic moment is expected to be
small. The 120◦ 〈q〉-order may be masked by the intradimer
quantum fluctuation, in which case either a pure p-nematic
ordering or a more exotic spin liquid may be stabilized.

Aside from these two FQ phases, we find a conventional
SN phase at B/J � 1

3 in a small region of J ′/J and J ′′/J ,
which can only be detected by the Anderson tower analysis.
Figure 8(a) shows the QDJS consisting of S = 0, 2, 4, . . . ,
which indicates the SU(2)-symmetry-broken SN on a trian-
gular lattice [56]. The phase boundary between the FQ-BEC
phase and SN is thus detected as the crossing of the S = 1

and 2 lowest excited states [see Appendix B, Fig. 12(a)]. The
structure factors [Fig. 12(b)] indicate that inside the SN phase
Q(k) at � point overwhelms N (k) at the � point, and vice
versa for the FQ-BEC phase at J ′/J � −0.015. The boson
density in the SN phase is 〈nt 〉 ∼ 1 [Fig. 12(d)], consistent
with the SN phase of a spin-1 BLBQ model. When B/J
is large, the lowest-energy state of each dimer is a triplet,
so that the bosons are fully occupied and the weak inter-
dimer coupling works to exchange these triplets and generates
a SN.

V. DISCUSSION

A. Origin of quadurupolar moments on a dimer bond

In the FQ-BEC and FQ-p-BEC phases of our S = 1 effec-
tive model [Eq. (3)], the pair-creation and annihilation term
HP seems to play a major role as indicated by the large energy
gain eP. To clarify the role of P, we choose the parameter
J ′ = −J ′′ to exclude the contribution from J . Then, Eq. (3) at
the first-order level in J ′ and J ′′ is reduced to

Hquad = −μ

N∑
i=1

ni +
∑

〈i, j〉,α
[(tb†

i,αb j,α + Pb†
i,αb†

j,α ) + H.c.],

(20)

which is transformed via b†
k,α

= 1√
N

∑N
i=1 b†

i,αe−ik·ri to

Hquad = 1

2

∑
k,α

[(tηk − μ)(b†
k,α

bk,α + bk,αb†
k,α

)

+ Pηk(b†
k,α

b†
−k,α

+ b−k,αbk,α )] + const, (21)

where ηk = 2[ cos kx + cos ( kx+
√

3ky

2 ) + cos ( kx−
√

3ky

2 )]. Then,
using the Bogoliubov transformation(

βk

β
†
−k

)
=

(
cosh θ sinh θ

sinh θ cosh θ

)(
bk

b†
−k

)
(22)

with tanh 2θ = Pηk/(tηk − μ), the Hamiltonian can be diag-
onalized as

Hquad =
∑
k,α

εk(β†
k,α

βk,α + βk,αβ
†
k,α

) + const, (23)

where the particle-hole-symmetric energy bands are obtained
as

εk = ± 1
2

√
(tηk − μ)2 − (Pηk)2. (24)

Figures 9(a) and 9(b) show εk/J for J ′ − J ′′ < 0 and J ′ −
J ′′ > 0, respectively, at B/J = 0.2. When the bottom of the
band touches the zero level, the instability takes place and
the βk,α bosons of that wave number condense and form a
BEC phase. This happens by increasing J ′ = −J ′′ only up
to |J ′ − J ′′|/J ∼ 0.05, which is consistent with the numerical
analysis that the singlet product state immediately gives way
to the FQ phases in the J ′ = −J ′′ direction. The wave number
at which the εk takes the minimum is the � point when J ′ −
J ′′ < 0, whereas it is the K point for J ′ − J ′′ > 0. The former
is the usual uniform FQ ordering, and the latter explains well
the particular three-sublattice-like structure of the quadrupole
correlations in FQ-p-BEC phase we saw in Fig. 4(b).
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FIG. 9. Energy bands of the eigenstates of the quadratic Hamil-
tonian [Eq. (20)] for (a) J ′ − J ′′ < 0 and (b) J ′ − J ′′ > 0. We set
B/J = 0.2, and use the parameters t , P, and μ defined in Eq. (4),
at the first order.

B. Classification of “nematic” phases

Conventionally, a typical SN phase in spin-1 system is
identified by the absence of net local-sublattice magnetic or-
dering and remaining quadrupolar ordering. Typically in spin-
1 BLBQ models written in the form JSi · S j + B(Si · S j )2 =
(J − B/2)Si · S j + (B/2)Qi · Q j + const, the dipolar (mag-
netic) and quadrupolar orders compete with each other, and
the latter appears when |B| � |J| where the magnetic ordering
is suppressed. The QDJS is formed by S = 0, 2, 4 . . . , indi-
cating that the SU(2) symmetry is broken by the binding of
two-magnon pairs.

Another series of spin nematics is a magnon-pair conden-
sation in the spin- 1

2 models [37]. Starting from the fully po-
larized ferromagnetic phase such as those in a high magnetic
field, two-magnon instability overwhelms the one-magnon
one when there is a frustration effect that prohibits the kinetic
motion of a single magnon. The bound pair of magnons
propagate together, which is by definition a quadrupolar order
parameter itself written as 〈b†

i↓b†
j↓〉 = 〈S−

i S−
j 〉 = Qei2θ �= 0.

This bond nematics is realized when the bond is almost fully
occupied by bosons; the adjacent bosons carrying Sz = 1 and
−1 exchange or fluctuate in pairs and form a quadrupole, and
accordingly the Sz = −1 propagate in space. It is equivalent
to the spin-2 BEC in cold atoms formed by S = 0 and 2
sectors [64]. For a particular model that excludes the S =
1 sector out of the low-energy subspace, this kind of spin
nematics can be found at zero field, which is characterized
by the QDJS of bound bosons similar to the spin-1 BLBQ
case [32,38].

These two types of ordering are categorized as n-type spin
nematics, and are only possible when the S = 1 bosons can be
bounded by a strong quantum fluctuation, mostly in a strong
magnetic field that helps to increase the population of S = 1
bosons.

The other known class of spin nematic phase is the p-type
nematic found in spin- 1

2 systems [62]. The vector chirality of
two spins pi = Si1 × Si2 defined on a bond [pi in Eq. (17)]
condenses and forms a nematic order, again suppressing the
sublattice magnetic ordering. This time the SU(2) symmetry
is broken down to U(1) of a uniaxial rotator, and the QDJS
consisting of S = 0, 1, 2, . . . indicates the BEC from a one-
magnon instability.

In 1D and 2D spin dimer systems, the quadrupolar moment
is defined on a dimer bond. Depending on the choice of

the parameters, one can control the number of bosons from
zero to one. When 〈nt 〉 = 1 the same situation as the first
spin-1 type of SN is realized, whereas for 〈nt 〉 < 1, a BEC
type of quadrupolar ordering is realized which is FQ-BEC
or F-nematic. In our FQ phases, a single magnon condenses
by the hopping and pair creation and annihilations, breaking
the SU(2) symmetry down to U(1), which is an analog of the
spinor BEC in cold atoms [65], and shares the same property
as the p-type nematics. Since the dimer remains always non-
magnetic, it can be regarded as some sort of “nematic” order
in terms of S = 1 boson. When separately looking at upper-
and lower-layer carrying small moments, they form a ferro-
magnetic sublattice long-range order, whereas the intradimer
quantum fluctuation kills the moment inside the dimer, which
should be regarded as a different phase from the mean-field
type of interlayer AF and intralayer ferromagnetic ordering
of the full spin moments observed in the ferromagnetic dimer
model [41].

We saw in Sec. IV that the FQ-p-BEC phase has a strong
chirality correlation and the possible 120◦ in-plane magnetic
long-range correlation of small moments, which are masked,
and the dimer unit remains nonmagnetic. There are two pos-
sibilities: in a mean-field analysis these two are incompatible,
whereas our treatment treating the full quantum many-body
effect may allow for a new possibility that the two types
of order may coexist. The other possibility is the absence
of sublattice magnetic ordering that may stabilize the p-type
spin nematics. The Anderson tower does not allow for the
separation of the behavior of the biaxial or uniaxial rotator,
namely, the full breaking of SU(2) or the breaking only down
to U(1) within this study.

C. Exchange of S = 1 moments

Previously, in a spin- 1
2 dimer system [29,40], we showed

that the origin of the spin nematic phase is the interdimer ring
exchange interactions that permutate the four spin 1

2 along the
twisted path as (1, 2, 3, 4) → (2, 3, 4, 1), which is shown in
Fig. 10(a). In that case, the two spin 1

2 ’s on a dimer form an
Si = 1 triplet, and the ring exchange interaction exchanges
the spin 1’s on neighboring dimers (Sz

i ,Sz
j ) = (+1,−1) with

(−1,+1) states [see Fig. 10(b)], and suppress the dipolar or-
dering. This plays the same role as the biquadratic interaction
B(S i · S j )2, and when all the dimers are filled with a triplet
Si = 1, the system is reduced to the BLBQ model.

In the ferromagnetically coupled spin- 1
2 dimer model [41],

it is shown that the exchange interaction J ′ and J ′′ (J‖ and J× in
their notation) operated twice at the second-order perturbation
is important to stabilize the spin nematic phase. As shown
schematically in Fig. 10(a), this works in the same manner
as the ring exchange interaction, and generates an effective
biquadratic term [66]. However, this time they need a larger
J ′′ as their spin nematics need to compete with the stable
ferromagnetic phase.

In our spin-1 dimer, the pair-creation and annihilation
terms result in an off-diagonal pair condensation of up and
down spin 1’s via the processes shown in Fig. 10(c). These
processes, when performed twice, will give the same effect as
the biquadratic interaction in Fig. 10(b). The advantage here is
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1

2

3

4

FIG. 10. Three different types of fluctuations that contribute
to the formation of the spin nematics. Single and double arrows
represent the spin 1

2 and spin 1, respectively. (a) In the spin- 1
2

dimer system, ring exchange interaction that permutates spin 1
2 ’s as

(1, 2, 3, 4) ↔ (2, 3, 4, 1) in the upper panel (see Refs. [29,40]) and
the second-order perturbation terms operated twice, (J ′′si · s j )2, with
si the spin- 1

2 operator discussed in Refs. [41,66], work in the similar
manner. (b) Fluctuation between on-bond spin 1’s that are equivalent
to those of (a). (c) In our spin-1 dimer system, the pair-creation and
annihilation term (P) plays a major role which originates from the
first order in J ′ and J ′′.

that it is a first-order process and can be more easily realized
than B or the ring exchange processes.

The second-order perturbation process in the spin- 1
2 dimer

systems giving the effective biquadratic interactions can also
be understood as the pair-creation and annihilation process,
although in Refs. [41] and [66] it is not discussed in the spin-1
bosonic language. Nevertheless, the pair-fluctuation effect in
the spin-1 dimer systems is stronger than that of spin- 1

2 dimer
systems; one can see from Eq. (2) that the triplet state S = 1
consists of twice as large dimer-spin terms than the triplets
formed by two spin 1

2 ’s, which means that the entanglement
between the two S = 1 can be easily enhanced. We consider
this to be the origin of a variety of quadrupolar phases in our
system.

VI. SUMMARY AND PERSPECTIVE

In conclusion, we found various types of quadrupolar
ordering in a spin-1 dimer model forming a triangular lattice
bilayer. In the decoupled dimer limit, the dimer-bond hosts
singlet at small B/J and triplet at larger B/J . Including the in-
terdimer Heisenberg exchange terms J ′ and J ′′, perturbatively
up to second order, we derived an effective hard-core bosonic

model describing the triplet on a dimer bond, which repro-
duces the low-energy properties of the original model. The
major part of the bosonic Hamiltonian consists of the hopping
(t) and pair-creation and annihilation term (P) of bosons, as
well as the chemical potential (μ) and the antiferromagnetic
exchange interaction (J ). The bosons are doped by μ and the
t term contributes to the formation of BEC. The ferromagnetic
(FM) and antiferromagnetic (AFM) phases appear due to
J < 0 and J > 0. When t and P are dominant at J ′ ∼ −J ′′,
the FQ-BEC and FQ-p-BEC phases are observed, which are
the condensation of quadrupolar moments on a dimer bond,
similarly to the anisotropic superfluidity in cold atoms [65].
Also, when B/J � 1

3 , the typical spin-1 nematic phase is
found near the interdimer decoupling (J ′, J ′′ ∼ 0) region since
each dimer is occupied by a spin-1 boson which is exchanged
by P.

Our results are widely applied to the bilayer quantum spin
dimer systems since the interactions appearing in Eq. (1) are
all standard ones that are derived naturally from the strong-
coupling perturbation theory of Mott insulator: the Heisen-
berg exchange interactions J , J ′, and J ′′ and the biquadratic
intradimer interaction B. The value of B is reported to be
relatively larger than it has been believed before [29].

The FQ-p-BEC phases discussed here might be exotic in
the sense that the distribution of S = 1 bosons are uniform
in space, whereas the quadrupolar correlation may develop
a particular spatial modulation. It differs from the SN of
the S = 1 BLBQ model and from the multimagnon bound
states of the S = 1

2 models in high fields. We consider that
the magnetic long-range ordering is possibly absent, and the
p-nematic type of correlation develops toward the long-range
ordering.

We finally discuss the relevance with the actual mate-
rial. In a family of Ba3MRu2O9 (M = Ca, Co, Ni, Cu, Zn,
Sr) [42–47] the two face-shared RuO6 octahedra form a dimer
which is stacked along the two-dimensional triangular lattice
in the same way as our model Fig. 1(a). Since the magnetic
Ru5+ ions and M ions are stacked along the interlayer di-
rection as Ru-Ru-M-Ru-Ru-. . . with dimerized Ru’s on top
of each other and M out of face, the interlayer interactions
between Ru dimer layers and magnetic M layers are frustrated
and weak. In fact, the antiferromagnetic ordering temperature
∼100 K of M = Co, Ni, Cu are determined by the intralayer
interaction J ′ of the similar magnitude [46]. For nonmagnetic
ions M = Ca, Zn, Sr, this inter-layer interaction is in principle
neglected.

The magnetic moment each Ru5+ ion carries is expected
to be S = 1 for several reasons; 4d3 electrons on t2g orbitals
basically form a high-spin state because of the strong Hund’s
coupling, and indeed the band structure calculation excludes
the possibility of the “low-spin” state of S = 1

2 [67]. While
this may imply the S = 3

2 moment from the d3 configuration,
the experiments indicate that the moments are suppressed to
smaller values, e.g., 1.0–1.5 μB in M = Ni and 1.16–1.44 μB

in M = Cu [45,46]. Since the t2g orbitals are split into doubly
degenerate eg orbitals and a1g orbital, the strong hybridiza-
tion between a1g’s of the dimerized Ru5+ ions is expected,
generating one singlet pair of spins per dimer and reducing
the spin moment of Ru5+ ion to S = 1.
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Intriguing magnetic properties were reported in this family
of materials: For a Zn compound, the uniform susceptibil-
ity is strongly suppressed down to 37 mK, a much lower
temperature than the value of J ∼ 150–200 K [42,43]. In a
Co, Ni, or Cu compound with shorter interdimer distances,
namely, having larger |J ′/J| and |J ′′/J|, the system undergoes
an antiferromagnetic transition at TN ∼ 100 K [45,46]. The
Ca and Sr compound with the longer interdimer distances
contrarily favor a standard nonmagnetic singlet state [44].
Usually, J , J ′, and J ′′ are antiferromagnetic ones, and if we in-
crease the interdimer interactions from the center of the phase
diagram in Fig. 2(a), where B/J = 0.2, toward the upper right
direction, the ground state transforms from singlet, FQ-p-
BEC, and to an antiferromagnetic phase, in good agreement
with the experimental observation (Ca, Sr) → (Zn) →(Co,
Ni, Cu). If the ground state of M = Zn is FQ-p-BEC, one can
suspect that the lack of phase transition and the suppression
of magnetic ordering down to lowest temperature may fit with
the ambiguous behavior of the tower of states of this phase
that cannot be simply attributed to any kind of already known
symmetry-breaking long-range orders.

Since the conventional SN phases were all found next
to the fully polarized ferromagnetic/antiferromagnetic phase,
the exotic nonmagnetic phase in the Zn compound was not
really connected to the quadrupolar ordering. Our series of
studies on spin dimer systems [40] point out that SN and
other quadrupolar phases of spin 1 can be found next to the
spin-0 singlet phase. Since this kind of symmetry breaking
is not directly detected from the standard susceptibility mea-
surements, the way to identify them experimentally should
be discussed in the next step for the clarification of the
unexplored nature of the spin dimer materials.
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APPENDIX A: DETAILS ON THE EFFECTIVE MODEL (3)

1. Construction of a time-reversal-invariant basis of spin-1
dimer state via bond-operator approach

To make direct connections of our representation in the
main text with the previous studies, we introduce the bond-
operator representation of the spin-1 state in a unit of
dimer. Previous bond-operator representations broke the time-
reversal symmetry [50–52], which we modify to the one that
keeps the time-reversal symmetry.

First, we write the time-reversal-invariant multiplet states
of spin-1 dimers. Using the time-reversal-invariant basis for a
single spin-1 state [18,56]

|x〉 = i(|+1〉 − |−1〉)√
2

, |y〉 = |+1〉 + |−1〉√
2

, |z〉 = −i |0〉 ,

(A1)

the singlet, triplet, and quintet dimer states can be rewritten as

|s〉 = 1√
3

(|x, x〉 + |y, y〉 + |z, z〉), (A2)

|tα〉 = − 1√
2

∑
β,γ

εαβγ |β, γ 〉 , (A3)

|qαβ〉 = − 1√
2

(|α, β〉 + |β, α〉) + (
√

2 − 1)δαβ |α, α〉 ,

(A4)

respectively (α, β = x, y, z). Since only three of four states
|s〉, |qαα〉 are linearly independent, we construct two quintet
states |q3α2−r2〉 and |qβ2−γ 2〉 as the linear combinations of
|qαα〉, whose forms are, for example,

|q3z2−r2〉 = 2 |qzz〉−|qxx〉−|qyy〉√
6

= −2 |z, z〉− |x, x〉− |y, y〉√
6

,

|qx2−y2〉 = |qxx〉 − |qyy〉√
2

= −|x, x〉 − |y, y〉√
2

, (A5)

where we take (α, β, γ ) = (z, x, y). We use the |s〉 and
|q3α2−r2〉 and |qβ2−γ 2〉 as a basis for representing Sα

iμ
, namely,

the choice of the basis |q3α2−r2〉 and |qβ2−γ 2〉 is dependent on
α = x, y, z.

In the main text, we adopted the singlet state as a vacuum,
whereas in this bond-operator approach, we redefine the vac-
uum as the state without any multiplet. Accordingly, instead
of bi,α and b†

i,α , we use si (s†
i ) and ti,α (t†

i,α) as the annihilation
(creation) operators of the singlet and triplet of component
α, and qi,α (q†

i,α) as the ones of the quintet of component α.
Then, the spin-1 operator Sα

iμ
(μ = 1, 2) in the ith dimer can

be written as follows;

Sα
i1 = i

√
2√
3

(t†
i,αsi − s†

i ti,α ) − i

2

∑
β,γ

εαβγ t†
i,βti,γ

− i√
3

(q†
i,3α2−r2ti,α − t†

i,αqi,3α2−r2 )

− i

2

∑
β �=α

(q†
i,αβti,β − t†

i,βqi,αβ ) − i

2

∑
β,γ

εαβγ q†
i,αβqi,γ α

− i

2

∑
β,γ

εαβγ (q†
i,β2−γ 2 qi,βγ − q†

i,βγ qi,β2−γ 2 ),

(A6)

Sα
i2 = −i

√
2√
3

(t†
i,αsi − s†

i ti,α ) − i

2

∑
β,γ

εαβγ t†
i,βti,γ

+ i√
3

(q†
i,3α2−r2ti,α − t†

i,αqi,3α2−r2 )

+ i

2

∑
β �=α

(q†
i,αβti,β − t†

i,βqi,αβ ) − i

2

∑
β,γ

εαβγ q†
i,αβqi,γ α

− i

2

∑
β,γ

εαβγ (q†
i,β2−γ 2 qi,βγ − q†

i,βγ qi,β2−γ 2 ).

2. Evaluation of the effective model

We examine the effect of the three-dimer interactions
H3 body in the effective Hamiltonian Heff [Eq. (3)], which was
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FIG. 11. (a), (b) Typical second-order perturbation processes
over three-dimers. (a) Processes of “correlated hopping” and (b) pair
creation of bosons. Ellipses mark the pair of sites to which the
perturbation Hamiltonian Hinter operates. (c) Energy levels of Hintra

of the three spin-1 dimer states. (d)–(g) J ′/J dependencies of the
ground-state energies of the effective Hamiltonian Heff with and
without H3 body and the original spin Hamiltonian H on the nine-
dimer triangular lattice for (B/J, (J ′ + J ′′)/J ) = (d) (0.2, +0.2), (e)
(0.2, −0.2), (f) (0.4, +0.2), and (g) (0.4, −0.2).

discarded in the calculation in the main text. First, we show
some details of H3 body, which originates from the three-dimer
processes at the second order of perturbation. We show two
examples of these processes in Figs. 11(a) and 11(b), where s,
t , q are the singlet, triplet, and quintet states, respectively, on
a dimer. Figure 11(a) is the process similar to the correlated
hoppings found in the the Shastry-Sutherland model [30,68],
and Fig. 11(b) is the pair creation of bosons.

In treating these three-dimer processes, we examined the
validity of restricting the low-energy manifold of states to
those including only singlet and triplets. Figure 11(c) shows
the energy diagram of the three-dimer states E (α, β, γ )
(α, β, γ = s, t, q). We see that (t, t, t ) states and (s, s, q)
states are degenerate at B/J = 0, whereas they are well sepa-
rated when a small B/J > 0 is introduced.

Next, we compare the ground-state energies of the effective
model Heff [Eq. (3)] with and without H3 body, and the energy
of the original spin-1 dimer model H [Eq. (1)]. We used
the nine-dimer triangular lattice under the periodic boundary
condition. The cases of B/J = 0.2 are shown in Figs. 11(d)
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(d)

FIG. 12. (a) Low-energy excited states of S = 0, 1, 2 sectors as
a function of small J ′/J with fixed J ′′/J = 0.01, where we find a
crossing of the low-lying S = 1 and 2 levels shown more clearly
in the inset (extracted data from the main panel). The region near
J ′ ∼ 0 where S = 2 is the lowest excited state is the typical spin
nematic phase found in the S = 1 BLBQ models. (b) Spin [Eq. (6)],
quadrupole [Eq. (7)], and staggered spin [Eq. (18)] structure factors
at �, K, M points. (c) The contributions from major terms in the
effective Hamiltonian et , eP, eJ , and eB . (d) Triplet densities 〈nt 〉.

and 11(e), and those of B/J = 0.4 are in Figs. 11(f) and 11(g),
where the parameters are chosen as (J ′ + J ′′)/J = +0.2 and
−0.2. It is confirmed that the energies of Heff with H3 dimer are
not always closer to those of H than those of Heff without
H3 dimer although Heff with H3 dimer fully takes the second-
order perturbation terms into account. We see that for |J ′/J|
and |J ′′/J| � 0.2, the energies are in good consistency with
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each other. The effective model may not hold quantitatively
when either of J ′, J ′′ has a large value. This might be because
the three-dimer interactions that appear at the higher order of
J ′ and J ′′, which would cancel out the three-dimer interactions
derived at the second order.

As we already saw in Sec. III B 6, the effect of second-
order perturbation is small, and setting H3 body = 0 does not
change both the quantitative and qualitative aspects of the
results. The advantage of having a simple Hamiltonian Heff

is that it corresponds exactly to the spin- 1
2 model and, re-

sultantly, the two models of different spin numbers can be
compared on equal ground.

APPENDIX B: SMALL J′/J, J′′/J REGION
OF THE PHASE DIAGRAM

We show the details of the physical quantities in the small
J ′/J , J ′′/J region at B/J = 0.4. Figure 12(a) shows the J ′/J
dependence of the low-energy excited states with J ′′/J =
0.01, together with the spin gaps of �S = 1 and 2 in the inset.
In varying J ′, the S = 1 and 2 excited states cross at around
J ′/J = −0.01, which indicates the quantum phase transition
from the FQ-BEC phase to the SN phase. The phase transition

is observed in the changes of the structure factors shown
in Fig. 12(b), where N (k) at the � point is suppressed at
J ′/J ∼ −0.01, and Q(k) at the � point solely develops.

When J ′ is increased further, the S = 2 lowest excited state
again becomes higher in energy than the S = 1 excited state,
which signals the transition from the SN phase to the AFM
phase [Fig. 12(a)]. There, Q(k) becomes smaller, and S (k) at
the K point develops.

Figure 12(c) shows the contributions of some terms in the
effective Hamiltonian [Eq. (3)] to the ground-state energy.
In the FQ-BEC phase, hoppings (et ) and pair creation and
annihilation (eP) support the FQ-BEC phase, as discussed in
Sec. V A. In the SN phase at −0.01 � J ′/J � 0, the energy
gain of eP is still dominant. The effective biquadratic inter-
actions generated by operating pair-creation and annihilation
terms twice (see Sec. V C) play a key role, while the energy
gain from the biquadratic interaction term in the Hamiltonian
eB is small. The AFM phase is stabilized by the gain eJ from
the Heisenberg exchange between the S = 1 bosons. The J ′/J
dependence of the triplet density 〈nt 〉 is plotted in Fig. 12(d).
In the vicinity of the phase transition from FQ-BEC to SN, the
triplet density rapidly increases to 〈nt 〉 ∼ 1.
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