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Motivated by the difference between the dynamics of magnetization textures in ferromagnets and antifer-
romagnets, the Landau-Lifshitz equation of motion is explored. A typical one-dimensional domain wall in a
bulk ferromagnet with biaxial magnetic anisotropy is considered. In the framework of Walker-type solutions
of steady-state ferromagnetic domain wall motion, the reduction of the nonlinear Landau-Lifshitz equation to
a Lorentz-invariant sine-Gordon equation typical for antiferromagnets is formally possible for velocities lower
than a critical velocity of the topological soliton. The velocity dependence of the domain wall energy and the
domain wall width are expressed in the relativistic-like form in the limit of large ratio of the easy-plane/easy-axis
anisotropy constants. It is shown that the mapping of the Landau-Lifshitz equation of motion to the sine-Gordon
equation can be performed only by going beyond the steady-motion Walker-type solutions.
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I. INTRODUCTION

The exchange integral in the Heisenberg Hamiltonian de-
termines the relative orientation between neighboring spins.
When it is positive, the favored magnetization orientation
between neighboring atomic sites is parallel, a type of media
known as ferromagnetic (FM), while when it is negative,
an antiparallel orientation is preferred, called antiferromag-
netic (AFM). Both types of systems have similar types of
spin excitations, such as spin waves (SW) and domain walls
(DW), and the magnetization dynamics can be described, in
continuum field approximation, by the Landau-Lifshitz (LL)
equation of motion [1]. Interestingly, the dynamics in FM
and AFM results in different SW frequency modes with a
natural frequency of the order of GHz and THz, respectively.
This is due to the typical order of magnitude of the pa-
rameters that control, in each case, the frequencies of SW
excitations, relying on the magnetic anisotropy field in FM
and on the intersublattice exchange field in the case of AFM
[2]. Likewise, the dynamics of magnetic textures presents
not only quantitative differences between FM and AFM, but
also qualitative ones [3]. The stable DW dynamics in FM
is possible up to a limiting velocity, from which intrinsic
instabilities appear in the propagating magnetic texture due
to the combination of internal translational and oscillatory
modes, which is known as Walker breakdown (WB) [4]. On
the other hand, in AFM it is possible to reach higher velocities
in a stable steady-state-like motion, with, however, a limit that
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cannot be exceeded, which is given by the maximum magnon
group velocity in the medium. This is because the DW dy-
namics in AFM can be described, in the framework of the
nonlinear σ model, through a Lorentz-invariant relativistic-
like expression known as sine-Gordon (SG) equation [5]. As
a consequence, while the dynamics of DW in FM is described
in the terms of conventional Galilean dynamics, in the case of
AFM the movement of the aforementioned magnetic textures
will follow the precepts of special relativity. All of this is due
to a single change in the Heisenberg Hamiltonian. However,
the dynamics of a DW in FM and AFM is indistinguishable for
weak effective fields below the threshold associated with the
WB, provided its evolution obeys a steady-state-like regime.
The fact that sizable magnetization deviations with respect to
the DW configuration at rest do not arise in AFM is due to the
rigidity conferred to the magnetic texture in AFM due to the
strong exchange interaction between neighboring spins.

The magnetization switching in FM and AFM is typically
related to the nucleation and propagation of an inhomoge-
neous magnetization reversal mode. To implement spintronic
devices whose functionality is based on the propagation of
inhomogeneous magnetization textures, ultrafast and control-
lable dynamics is essential in order to reduce switching time.
For FM, the fundamental problem in this context lies in
the difficulty of reaching high speeds for the reversal mode
propagation while preserving stability. Thus, AFM have been
erected as a solid alternative, at least theoretically, because
DW in these media can reach speeds of the order of tens
of km/s without entering an irregular regime [6]. However,
the usefulness of AFM in the field of spintronics has been
rather directed so far to a passive role, such as a necessary
element to convert a FM free layer into a pinning one through
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the exchange field bias generated by it. This has been mainly
due to the difficulty of exciting and tracking the dynamics
of magnetic textures in this type of systems, as opposed to
FM, at least until very recently in a very particular type of
structures [7]. Accordingly, many efforts have been invested
in trying to obtain higher velocities in FM while ensuring
the integrity of magnetic textures. This could be possible if
the appearance of instabilities induced by the WB could be
avoided, or at least delayed. Some results obtained through
micromagnetic simulations show that, in fact, this is possible.
In this direction, it has been observed that it is possible to
eradicate the WB for one-dimensional (1D) DW in linear
magnetic chains [8], and also for two-dimensional (2D) DW in
FM nanowires [9]. However, the speed of the magnetic texture
will be limited in this case by the minimum phase velocity
of the SW of the medium. If this threshold is exceeded, the
DW will begin to emit SW [8], which is known as the spin
Cherenkov effect [10], and is the kind of phenomenon that
is theoretically foreseen in AFM too. Also, in the context of
1D DW, the inclusion of a Dzyaloshinskii-Moriya exchange
interaction in ultrathin films with perpendicular anisotropy
results in the stabilization of the magnetic texture, making
it possible to delay the appearance of the instabilities and to
increase the maximum DW velocity before this phenomenon
begins [11]. However, these approaches present challenges
from an experimental point of view for their implementation.

Given this background, an alternative would be to consider
analytically the dynamics of magnetic textures in a FM system
as simple as possible and try to reduce the LL equation to
a SG-like expression as in AFM. If it is possible to find a
situation in which this happened, perhaps its experimental im-
plementation could be addressed, and even more complicated
systems could be considered. The 1D motion of a DW is the
simplest case, in which the magnetization configuration can
be considered as a function of only one spatial coordinate.
The next step would be to reduce the nonlinear LL equation
into a simpler nonlinear expression. For this, there are two
main approaches: (i) the method of collective coordinates and
(ii) the asymptotic method. The first method is based on the
inclusion of the DW center position and the azimuthal angle
of the DW magnetization as the generalized coordinates of the
system. This allows, ultimately, to reduce the LL equation in
a system of coupled differential equations [4,11]. The second
method aims to describe the dynamics of the magnetic texture
in terms of a dimensionless parameter that allows to apply
perturbation theory when it can be considered small. In this
context, this condition can be transferred to one of the angles
that describe the magnetization [3]. Our work will be framed
within this second approach.

One of the simplest systems that can be evaluated analyt-
ically is a FM system with biaxial anisotropy in which the
dynamics of a DW is 1D. In this line, there is, in fact, a
simpler situation, in which a 1D FM that supports a hard-
axis anisotropy whose induced symmetry is broken by an
in-plane magnetic field is considered, which allows to perform
the aforementioned mapping, giving rise to a kink solution
not compatible with the presence of DW [12]. However, as
mentioned, the interesting thing would be to evaluate the
dynamics of DW with potential applicability. Within the
Walker approximation, where solutions to dynamic equations

are sought under the assumption that the azimuthal angle is
independent of the spatial coordinate [4], it is possible, in fact,
to find an exact solution for the aforementioned system, which
was demonstrated by Schlömann [13]. In the more realistic
context in which one works beyond the Walker-type solutions,
it was heuristically demonstrated by Enz that it is possible
to reduce the LL equation into a SG-like expression [14,15].
However, this type of approach contradicts the steady-state
DW motion regime in an infinite medium, where the spatial
and temporal derivatives of magnetization cannot be consid-
ered as independent. Also, within the context of the mapping
proposed by Enz, the expression for the DW energy has not
been found yet, or if this solution is stable. If it is stable, and
the associated DW energy is lower than that in the case of
steady-state Walker-type solutions, it could be confirmed that
there is, in fact, a case in which the dynamics of a DW in a
biaxial FM can be described by a SG-like expression for at
least a restricted range of velocities for which this solution
tends to the exact Schlömann solution.

Therefore, in this article we consider a 1D DW in a
bulk FM with biaxial magnetic anisotropy. The underlying
physical basic principles of the 1D magnetic soliton theory
are presented in Sec. II. The approach introduced by Schlö-
mann in which the DW dynamics is parameterized, without
dissipation, through the dispersion relation of the linear SW
with complex wave vector and frequency, which reside in the
tails of the moving soliton [13], is introduced in Sec. III. It is
shown that in the case of a biaxial magnetic anisotropy of the
easy-plane/easy-axis type, the maximum speed of the steady
DW motion cannot exceed the maximum phase velocity of
the linear SW with imaginary wave vector for the Walker-type
of solutions. In Sec. IV, we consider the mapping of the LL
equation of motion to the more simple SG equation within the
Walker approximation and show that the mapping can be per-
formed only by going beyond the steady-motion Walker-type
solutions assuming a constant magnetization azimuthal angle.
In order to corroborate that in the case of large easy-plane
anisotropy, the DW dynamics obeys the precepts of special
relativity, this situation was explored using atomistic spin
dynamics simulations, which is exposed in Sec. V. Finally,
conclusions are set out in Sec. VI.

II. THEORETICAL BASIS

We consider a 1D DW in a bulk anisotropic FM, as
sketched in Fig. 1. The Bloch-type DW at rest is located
in the yz easy-plane [see Fig. 1 (a)] and moves along the
xth direction [see Fig. 1(b)]. The total magnetic energy of
the system per unit DW square (per unit area) is E [m] =∫

dx e(m), with e being the energy density which, in contin-
uum approximation, is given by e(m) = A (∂xm)2 + ea(m) +
em(m). Here, A represents the exchange stiffness constant,
m(x, t ) = M(x, t )/Ms denotes the unit magnetization vector,
Ms is the saturation magnetization, ea is the anisotropy energy
density, and em stands for the magnetostatic energy density.
We consider a general quadratic form for ea(m) that, account-
ing for the restriction m2 = 1, can be expressed in the form
of a biaxial anisotropy, ea(m) = Kxm2

x − Kzm2
z [see Fig. 1(c)

for the particular case λ = 10, where λ = Kx/Kz, being the
anisotropy energy in 2Kz units]. Assuming that Kx, Kz > 0, it
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FIG. 1. 1D DW magnetization configuration. (a) Definition of
the magnetization vector M in terms of the polar θ and azimuthal
φ angles relative to a Cartesian coordinate system. The angle ε =
π/2 − φ describes deviation of the magnetization from the static yz
DW plane. (b) Sketch of the DW magnetization configuration along
the xth direction of motion. (c) Spatial distribution of the anisotropy
energy density ea(m), in 2Kz units, for λ = 10.

is possible to define the uniform “vacuum” state of magnetiza-
tion far from the DW center, x → ±∞, and that the anisotropy
Kx is of an easy-plane type. The magnetostatic energy density
for the case of a bulk FM with the magnetization varying
along the xth direction is local, em(m) = 2πM2

s m2
x , and results

in the renormalization of the anisotropy constant Kx. The
same expression for ea(m) can be applied for thin magnetic
stripes with em(m) = 2πM2

s m2
z (being in this case absorbed

by Kz), when the yth component of the demagnetizing field
is neglected [11]. Another possibility is that the DW could
propagate along the zth direction, which belongs to the yz
easy-plane, there being, in this case, an easy-axis direction
that breaks the symmetry imposed by the hard-axis anisotropy,
either along the yth or zth direction. This would constitute a
situation similar to that described above, with the difference
that a Néel-type DW would be favored in this case.

We parametrize the unit magnetization vector using the
spherical angles, m = m(θ, φ). The angles θ, φ are functions
of the spatial coordinate x and time t . Writing the DW energy
density in units of 2Kz and lengths in units of the static DW
width 	0 = √

A/Kz, an expression for the energy that depends

on a single dimensionless parameter λ can be written

e(θ, φ) = 1
2 [(θx )2 + (1 + λ cos2 φ + (φx )2) sin2 θ ], (1)

where the spatial variable subscript x indicates derivative with
respect to it. The corresponding effective Lagrangian density
for FM is given by L(θ, φ) = e(θ, φ) + φ̇ cos θ [16], where
the overdot means derivative with respect to time. Henceforth,
time is expressed in units of t0 = 1/γ Ha, where γ is the
gyromagnetic ratio, and Ha = 2Kz/Ms. The LL equations of
motion in the angular representation, θ̇ sin θ = −δe/δφ and
φ̇ sin θ = δe/δθ , can be found from a first variation of the
Lagrangian taking into account the energy density given by
Eq. (1), which results in

θ̇ sin θ = [λ cos φ sin φ + φxx] sin2 θ + θx φx sin 2θ,

φ̇ sin θ = [1 + λ cos2 φ + (φx )2] cos θ sin θ − θxx.
(2)

The system of Eqs. (2) has been intensively investigated
in literature along with its integrals of motion [3]. For the
particular case of a moving DW, the focus is usually on the
steady-state motion Walker-type solutions assuming φx = 0
[4]. We will work within the framework of the main assump-
tion of the theory of 1D topological magnetic solitons [3],
which is known as the “traveling wave” ansatz, i.e., that the
solutions of Eqs. (2) can be written in the form θ = θ (ξ ),
φ = ω̃t + φ0(ξ ), where ξ = x − vt , with v being the soliton
velocity and ω̃ being the soliton precession frequency in the
moving frame with velocity v. The moving soliton is treated
as a bounded state of many SW (magnons), and the steady
velocity of the soliton is interpreted as the group velocity
of the SW packet, v = vg. The frequencies in the laboratory
frame, ω, and moving frame, ω̃, are related by ω̃ = ω − k · vg.
Here, vg = ∂ω/∂k denotes the group velocity of the linear
SW, and k = kx̂. Therefore, it is natural that ω = ω̃ + vk.
Those magnetic solitons with ω̃ �= 0 are known as precession
or dynamic solitons [3].

III. MOVING DOMAIN WALL ENERGY AND
CRITICAL VELOCITIES

The current approach assumes that the calculation of the
DW energy and the limiting DW velocities is done through
the spectra of the linear SW that reside in the DW tails in the
case of a saturated FM. Far from the center of the moving DW,
the magnetization can be considered as uniform and parallel
to the zth anisotropy easy-axis [see Fig. 1(b)]. The magneti-
zation dynamics outside the DW can be described in terms
of small amplitude (linear) SW assuming a complex wave
vector and frequency [13]. Therefore, the DW dynamics can
be described considering the SW of its tails as long as the DW
magnetization configuration does not change. The linear SW
dispersion relation for a biaxial FM, ω(k), is well known and
can be deduced from the linearization of Eqs. (2) with respect
to the ground state at the tails of the DW. It is explicitly given
by the dispersion equation ω2 = (1 + k2)(1 + λ + k2). The
generalization to the complex wave numbers and frequencies
is straightforward,

�2 = (1 + K2)(1 + λ + K2), (3)

where � = ω + iκv, and K = k + iκ .
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From now on, we only consider stationary soliton motion,
which assume ω̃ = 0. This allows us to write the expression
� = vK . One can find from Eq. (3) that the velocity is real
in two regions disconnected from each other, [0, v−] and
[v+,∞), where v± = √

1 + λ ± 1 [13,17]. We note that ve-
locities are in units of 	0/t0 = 2γ

√
AKz/Ms. The first critical

velocity, v−, possesses physical sense of the maximum phase
velocity of SW with imaginary wave vector K = iκ and imag-
inary frequency � = iκv. In fact, this velocity corresponds
to the maximum DW velocity for the case of the steady-
state motion regime [18]. The velocity v− is higher than
the critical Walker velocity, vW, in a uniaxial FM, assuming
a driving force due to an external magnetic field or a spin
polarized current. However, the ratio v−/vW is not very large,
v−/vW = √

2 (2 + λ) (
√

1 + λ − 1)/λ, and approaches
√

2 at
λ � 1 [4]. The second critical velocity, v+, can be interpreted
as the minimal phase velocity of SW with real frequency
� = ω and real wave vector K = k. The steady motion of
DW (topological solitons satisfying the boundary conditions
θ (±∞) = 0, π ) is possible only within the interval [0, v−].
These DW solutions satisfy the condition φ(ξ ) = const, and
describe Bloch DW (φ = ±π/2), Néel DW (φ = 0, π ), or
a hybrid DW (other values of φ). The complicated solutions
existing within the velocity interval (v−, v+) accounts for soli-
tary magnetization waves, nontopological solitons, satisfying
the boundary condition θ (±∞) = 0. The region [v+,∞)
accommodates nonlinear SW with real wave vector k [17].

It is possible to find an explicit form of the complex wave
vector dependence on the soliton velocity, K (v), from Eq. (3),
which is given by

K2(v) = 1
2 (v2 − λ) − 1 ± 1

2

√
(v2 − v2−)(v2 − v2+) . (4)

The minus sign in Eq. (4) corresponds to an unstable DW
solution at v < v− (Néel DW at v = 0) [13]. The plus sign in
Eq. (4) holds for a stable solution (Bloch DW at v = 0) [19].

The first integral of Eqs. (2), (θx )2 + (φx )2 sin2 θ =
sin2 θ [1 + λ cos2 φ] [20], allows us to calculate the energy,
EDW, for the stable solution as the doubled exchange energy.
The DW energy for the Walker-type of solutions (that is,
φ = const), EDW(v) = E0 κ (v) in units of 2Kz	0, increases
with velocity up to a maximal value EDW = E0(1 + λ)1/4,
where E0 = 2 is the static DW energy. The DW width,
	(v) = 1/κ (v), decreases with velocity (dynamical contrac-
tion), reaching the finite minimal value 	(v−) = (1 + λ)−1/4.
In addition, it is possible to verify that in the [0, v−] re-
gion the DW plane orientation angle, φ(v), decreases as the
velocity v increases from π/2 to φ(v−) = arccos

√
v−/λ .

The decomposition of EDW(v) in series on small velocities
(v � v−), EDW = E0 + mDWv2/2, allows us to find the DW
Döring mass for the stable Bloch-like DW (in absolute units)
mDW = 1/2πγ 2	0 [16,21]. Therefore, Eqs. (2) and (3) lead to
correct results for relatively small SW velocities lying within
the interval [0, v−]. The second, unstable, solution of Eq. (4)
yields a negative Döring mass. The instability arises with
respect to an inhomogeneous perturbation localized at the DW
plane (corrugation mode) [19,22].

As has been pointed out, the critical velocities v± separate
regions that hold different moving magnetization textures.
Taking advantage of the parametrization of the DW dynamics

FIG. 2. Real k and imaginary κ wave vector components calcu-
lated by the generalization of the linear SW dispersion relation of
biaxial FM as functions of the soliton velocity v according to Eq. (4)
for λ = 10. The region 0 < v < v− corresponds to a moving DW.

in the region [0, v−] through Eq. (4), it is possible to discuss
how well this generalization adapts to the rest of the velocity
regions. This has been done in Fig. 2. In the interval [0, v−],
with the wave vector K = iκ and frequency � = iκv being
purely imaginary, the magnetization waves are localized, spa-
tially forming a DW. The DW width contracts as v increases
but its structure remains unchanged and the DW nonzero
topological charge is conserved, at least until reaching the
limiting velocity v−. In the velocity domain (v−, v+), where
both K and � are complex, the real component of the wave
vector k appears above the velocity v− and increases as v

increases, and the imaginary component κ decreases to be
zero at the critical velocity v+. According to Ref. [3], the mag-
netization profile within the region (v−, v+) can be described
as a localized envelope of the nontopological soliton (the area
of localization is 1/κ) modulated by a periodic pattern with
the wavelength about of 1/k (that is, some SW oscillations
appear along the soliton envelope). At this point, we would
like to emphasize that when the term “soliton” is used in the
absence of specifications on its topological charge in this text,
we will be referring to nontopological solitons, while, on the
other hand, DW constitutes topological ones. Finally, in the
last region [v+,∞), only nonlinear SW would be expected,
obtaining the logical analog in our case within the linear SW
approximation.

IV. MAPPING TO A SINE-GORDON EQUATION

The Lorentz-invariant SG equation, having the exact N-
soliton solutions [23], is one of the simplest nonlinear equa-
tions. The dynamics of FM cannot be described, in general,
by Lorentz-invariant equations, unlike in the case of AFM
dynamics, where it is naturally described by a relativistic
SG equation within the nonlinear σ model if the Zeeman
and Dzyaloshinskii-Moriya interactions are absent [24]. Is
it possible to reduce the nonlinear LL equations, given by
Eqs. (2), to the simple nonlinear SG equation? Is it really nec-
essary to consider an extremely large easy-plane anisotropy
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to achieve this mapping? [8,25]. To answer these questions,
we introduce a variable η defined as tan θ/2 = exp(−η) (such
substitution is often used in the theory of magnetic solitons)
[3]. This allows us to rewrite Eqs. (2) as

vηξ = λ cos φ sin φ + φξξ − 2φξηξ tanh η,

−vφξ = ηξξ + [1 + λ cos2 φ + (φξ )2 − (ηξ )2] tanh η. (5)

The standard approach to this problem is to consider
steady-motion Walker-type solutions, assuming φξ = 0,
φ(ξ ) = φ0 [4]. This simplification leads to the system of
equations given by vηξ = λ cos φ0 sin φ0 and 1 + λ cos2 φ0 =
(ηξ )2. A stable solution of the form η(ξ ) = ξ/	(v) exists
when the DW velocity v does not exceed v−. Interestingly,
the steady DW motion with a constant φ0 corresponds to
the conservation of the magnetization field momentum P =
2φ0 [3].

The linear dependence η(ξ ) leads to the equation θξξ =
sin 2θ/ 2	2, the same as in the static case except for the
velocity-dependent DW width, 	(v) = 1/κ (v). Although the
exact solution of the LL equation exists for the Walker case
φξ = 0, the equation for the angle θ can be formally written
as a SG equation without any assumptions about the value of
the parameter λ, giving rise to

θxx − 1

v2−
θ̈ = 1

2	2
e

sin 2θ, (6)

where 	e = 	/
√

1 − (v/v−)2, playing v− the role of the
maximum DW velocity. Although the Walker-type solution
φ(ξ ) = φ0 is stable, it is not possible to reproduce this re-
sult through an effective relativistic Lagrangian because the
kinetic part of the Lagrangian density, Lkin = −φ θ̇ sin θ , does
not contribute to the equation of motion due to the simplified
form of the solution considered. Therefore, the formal SG
equation given by Eq. (6) is nonphysical and another mapping
should be found.

On the other hand, the limit λ � 1 can be studied. Such
limit can be realized even in soft magnetic materials like
permalloy (NiFe alloy) or YIG with an induced uniaxial
magnetic anisotropy Kz, where λ = 2πM2

s /Kz � 1, Kx = 0.
For instance, a ratio λ = 21 was used by Schryer et al.
for YIG [4]. We assume that within the limit λ � 1 the
magnetization component mx, perpendicular to the easy plane,
is small, mx � 1, and develop a perturbation theory with
respect to it. A new scalar field, ψ (x, t ), is introduced for
convenience through the equations my = √

1 − m2
x sin ψ and

mz = √
1 − m2

x cos ψ . There are different ways to define mx.
We choose the ansatz mx = ε sin ψ , being ε = π/2 − φ as
sketched in Fig. 1, and we assume that ε(λ) → 0 at λ � 1.
In general, ε does not have to be small and may be a function
of x and t . The initial variables (θ, φ) are related to new ones
(ψ, ε) by the expressions cos θ =

√
1 − ε2 sin2 ψ cos ψ and

cos φ = ε/
√

1 + ε2 cos2 ψ . If ε → 0, cos φ = ε + O(ε3), and
sin φ = 1 + O(ε2). Substituting these expressions in Eqs. (5)
and assuming that ε(ξ ) = const, we obtain vηξ = λε, ηξξ =
0, and 1 + λε2 = (λε/v)2. The last equation has the solution
ε(λ, v) = v/λ

√
1 − v2/λ. At this point, a critical velocity can

be introduced: c = √
λ. It is straightforward to show that

c = lim
λ�1

v−(λ). The variable ψ (x, t ) coincides with the polar

FIG. 3. Comparison between the moving DW energy obtained
by using Eq. (4), EDW/E0, for λ = 10, and a relativistic Lorentz-like
energy, E ′

DW/E0, for which the maximum speed is given by the
maximum SW phase velocity v−.

angle, θ (x, t ), in the limit ε � 1, if the terms of order O(ε2)
are neglected. In this context, accounting for the approximate
solution η(ξ ) = ξ/	′(v) = ξ/

√
1 − v2/c2, the SG equation

for the DW profile angle θ (x, t ) = 2 arctan exp[−η(ξ )] can be
deduced,

θxx − 1

c2
θ̈ = 1

2
sin 2θ, (7)

which corresponds to the particular case of Eq. (6) in which
	 = 	′ and v− = c. The SG-like expression given by Eq. (7)
is valid not only in the case of a Bloch-type DW that
propagates in the direction perpendicular to the easy-plane,
as has been considered in our case, but also, for example,
in the case of a Néel-type DW that propagates parallel to
the direction dictated by the easy-axis symmetry-breaking
anisotropy imposed in the system [26].

Therefore, in the limit λ � 1, the DW energy and the DW
width can be represented in a relativistic like-form given by

E ′
DW(v) = E0√

1 − v2/c2
, 	′(v) =

√
1 − v2/c2. (8)

The DW energy found by Eq. (4) smoothly increases as the
velocity does so. However, this increasing behavior is far from
being that of the normalized relativistic-like form, E ′

DW/E0,
exposed in Eqs. (8), which accentuates the difference of the
discussed dynamic equations with a SG equation for any finite
λ, as can be seen in Fig. 3. The correct energy decomposition
can be obtained from Eqs. (8) only when the DW velocity is
small (v2/c2 � 1), E ′

DW(v) = E0 + E0v
2/2c2, leading to the

DW Döring mass mDW = E0/c2, which coincides with the one
defined above. However, in the limit v → c, the energy is sin-
gular, E ′

DW(v) → ∞, and the DW width matches the ultimate
case of the Lorentz contraction, 	′(v) → 0. These results are
nonphysical because the parameter ε(λ, v) = v/λ

√
1 − v2/λ

diverges at v → c and cannot be considered as a small param-
eter anymore. The exact solutions of Eqs. (2) and (3) predict
the finite DW energy EDW(v−) = E0 (1 + λ)1/4 and finite DW
width 	(v−) = (1 + λ)−1/4 at v → v−. Thus, although one
can write a SG-like expression by means of Eq. (7) and the
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relativistic-like Eqs. (8), they are strictly valid only in the
limit of small DW velocity v2/c2 � 1. However, Eqs. (8)
are very good approximation at λ � 1 if the DW velocity
is far enough from the maximal velocity, c. The subsequent
conclusion is that the approximate solution obtained for the
case in which ε = const, given by Eqs. (8), is asymptotically
exact when λ � 1, provided that v2/c2 � 1, being far from
the singularity that this solution presents, becoming virtually
indistinguishable from the exact solution in biaxial FM ob-
tained through Eq. (4).

There is another approximate solution of the sys-
tem of Eqs. (2) or (5) in the limit λ � 1 assuming
Walker-type solutions which was proposed by Sklyanin
[27], φ(ξ ) = const. The solution was found to have the
form mx(ξ ′) = εs sin �(ξ ′), being εs = V/R 	s, �(ξ ′) =
2 arctan exp(ξ ′/	s), and ξ ′ = x − V t , V = √

R v, 	s =√
R/γ ′

√
1 − (V/V0)2, and V0 = √

R , in the aforementioned
limit R2/γ ′ = λ → ∞. The function �(x, t ) satisfies a SG
equation of the form

�xx − 1

V 2
0

�̈ = γ ′

2R
sin 2�, (9)

which constitutes a particular case of Eq. (6) at 	e = √
R/γ ′.

The DW width 	s goes to infinity for any finite DW velocity
V < V0. The maximum DW velocity, V0 = (γ ′λ)1/4, is not
correct (it should be equal to v− = √

λ). A redefinition of
the value of the parameter γ ′ was proposed by Kivshar et al.,
γ ′ = 1 [28], keeping in this way the same form of the SG-like
expression given by Eq. (9).

The small parameter εs is similar to the previously defined
one, ε = v/λ 	′(v). Both of them are singular as the velocity
v approaches the critical value V0 = λ1/4 or v− = √

λ. That
is a peculiarity of all solutions of Eq. (6) with φ(ξ ) = const.
However, it must be faced that the solution studied, proposed
by Sklyanin [27], is nonphysical, since it corresponds to the
vanishing right-hand side in Eq. (9) and infinitely wide DW
at V < V0. Moreover, Sklyanin’s solution �(x, t ) does not
satisfy the LL equation, which in the limit λ → ∞ is reduced
to the SG-like expression given by Eq. (7). Therefore, Eq. (9)
is not correct. This is because Sklyanin’s assumption that Kx

is proportional to R and that Kz is proportional to 1/R and
goes to 0 at R → ∞ is physically senseless. The correct limit
corresponds to consider the ratio Kx/Kz = λ � 1, keeping a
finite value of the anisotropy constant Kz. Otherwise, the DW
separating two domains with opposite magnetizations directed
along zth axis disappears. A finite value of Kz allows the
proper normalization of the DW energy in the units of 2Kz	0

and DW width in the units of 	0.
Therefore, accounting the drawbacks of the approach with

ε(ξ ) = const, to properly calculate the limit λ � 1, mx � 1
at finite DW velocity v < v− and get a SG equation for the
polar angle θ , we need to assume that the azimuthal angle
ε(ξ ) � 1 is a function of the coordinate and time, and solve
Eq. (5). Following this approach, the Walker-type solutions
ε(ξ ) = const considered above can be refined and the high
velocity singularity of the steady DW solution, ε(ξ, v) at
v → c, disappears. However, any solution with variable angle
ε(ξ ) is beyond the current theory of 1D topological magnetic
solitons and will be considered elsewhere. It is necessary to

emphasize, at this point, that all the works we have found
within the framework of the mapping of the LL equations to a
SG-like expression operate within the perturbation approach
ε(x, t ) � 1 and fail to incorporate the traveling wave ansatz
into their formalism [12,14,15,26]. This is because, in order
to obtain the aforementioned mapping, they consider that the
spatial derivative of an angular variable equivalent to our ε is
zero, while its time derivative is finite. Therefore, the approach
developed above assuming ε(ξ ) = const, ε � 1, although it is
not completely correct at large velocities v → c, constitutes
one step further than the approaches employed so far.

We note that the SG equation given by Eq. (6) requires a
kinetic Lagrangian density term of the form Lkin ∝ θ̇2, which
is similar to the one for AFM within the nonlinear σ model,
giving rise to relativistic DW dynamics in this kind of system
[24]. To understand the appearance of such term, the kinetic
Lagrangian density term for FM, Lkin = −φ̇ cos θ , can be
rewritten in the equivalent form Lkin = −φ θ̇ sin θ . Evaluating
Eqs. (2) at φ(ξ ) = π/2 − ε(ξ ), we find that the term sin θ is
proportional to the time derivative θ̇ , namely sin θ = θ̇/λε,
which means that the kinetic Lagrangian density term can
be expressed in a masslike form, Lkin = θ̇2/λ. The effec-
tive Lagrangian density, L = e(θ, φ) − Lkin, within the limit
mx � 1, is given by the expression

L = (θx )2 + sin2 θ − 1

c2
θ̇2, (10)

which is compatible with the SG equation.
On the other hand, for an uniaxial AFM within the nonlin-

ear σ model, the SW dispersion relation is ω2 = ω2
0 + c2k2,

where ω0 is a frequency gap due to the uniaxial magnetic
anisotropy. Employing the formalism of the complex wave
vectors, K = k + iκ , it can be proved that v− = v+ = c,
and that the dependence κ (v), in units of κ0 = ω0/c, is ex-
pressed as κ (v) = 1/

√
1 − v2/c2. This immediately leads to

relativistic-like expressions for the DW energy and DW width
of AFM, 	(v) = 1/κ (v), similar to Eqs. (8), being

EDW(v) = E0√
1 − v2/c2

, 	(v) = 	0

√
1 − v2/c2. (11)

However, in comparison to the approximate Eqs. (8) for
biaxial FM, Eqs. (11) are exact within the nonlinear σ model
of an uniaxial AFM [5]. The SW velocity c in AFM, limiting
the DW velocity, is essentially higher than the one in FM due
to the exchange enhancement.

We consider that the mapping of the LL equation into a
SG-like equation for biaxial FM results in more deep under-
standing of the DW dynamics. In particular, the DW velocity
increase along with the Lorentz contraction of DW width
(as a result of the SG equation of DW motion) can lead to
considerable spin Peltier effect not only in specific AFM-like
Mn2Au [29], but also in traditional FM metals with biaxial
magnetic anisotropy.

V. RELATIVISTIC-LIKE SIGNATURES IN
ATOMISTIC SIMULATIONS

As previously introduced in Sec. III, there is a dynamical
contraction of the DW width as it travels through a biaxial FM.
Also, as the value of the magnetic anisotropy constants’ ratio
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λ increases, the greater this process will be. With this in mind,
and in the spirit of the search for signatures of relativistic-like
behaviors of the DW energy and DW width as was obtained
in Eqs. (8) for FM, we investigate this process numerically.
To do this, we studied, through atomistic spin dynamic simu-
lations (fifth-order Runge-Kutta method to solve numerically
the Landau-Lifshitz-Gilbert equation site by site), how the
velocity of the magnetic texture, v, and the DW width, 	,
behave as the applied magnetic field, H , directed along the
anisotropy easy axis, is increased. We exploited atomistic
spin dynamics simulations because the DW width for high
velocities is expected to be about of 1 nm and the contin-
uous approach fails. With this goal in mind, the simulated
system will be given by a 1D FM spin chain consisting of
60 000 atomic sites. We use the typical magnetic parameters
for the FM layers that make up the layered AFM Mn2Au
[30], with the exchange integral I = 1.588 × 10−21 J, the
atomic moment μ = 4 μB, and the lattice period a0 = 0.3328
nm. In addition, the hard-axis anisotropy constant is given
by Kx a3

0 = I , the easy-axis anisotropy constant possesses
the value Kz a3

0 = 1.302 × 10−24 J, the gyromagnetic ratio is
equal to γ = 2.21 × 105 m/(A s), and the Gilbert damping
constant is expressed by α = 0.001. These particular values
of the anisotropy constants were chosen to secure the limit
mx � 1, ε(ξ ) � 1.

To find moving DW solutions for the case of nonzero
magnetic field and nonzero damping, we include the corre-
sponding terms to Eqs. (2). We consider only the Walker-type
of solution φ(ξ ) = const, which gives rise to

θ̇ = λ cos φ sin φ sin θ,

α θ̇ − h sin θ = (1 + λ cos2 φ) cos θ sin θ − θxx,
(12)

where h = H/Ha is the reduced external magnetic field.
We want to keep the kink solution of Eqs. (2) and (5)

unchanged and search for a specific Walker-type of solu-
tion assuming that the damping and field terms cancel each
other, i.e., α θ̇ = h sin θ . Accounting for the kink solution,
v/	(v) = λ cos φ0 sin φ0, the equation connecting the DW
velocity and magnetic field for any value of λ is given by

v

	(v)
= h

α
, (13)

where the velocity-dependent DW width 	(v) = 1/κ (v) can
be determined from Eq. (4).

Now, to evaluate how well the data thrown by the simula-
tions fits into a relativistic-like behavior which is a result of
the SG equation of motion, it is necessary to take into account
the DW contraction 	(v) as the velocity increases. The DW
width dependence on the DW velocity for the limiting case
λ � 1 can be approximately described by Eqs. (8) as 	(v) =
	0

√
1 − v2/c2, where 	0 is the DW width at rest, which in

the simulations is 	0 = 11.62 nm, and c is the maximal DW
velocity, which was simulated to be c = 4.981 km/s. Recalcu-
lating the atomistic parameters to the micromagnetic ones, we
get Ms = 1006 kA/m, A = 4.77 pJ/m, Kx = 43.08 MJ/m3,
Kz = 0.0353 MJ/m3, and extremely large λ = 1220. The max-
imal steady DW velocity then is v− = 4.869 km/s. This value
is very close to the simulated maximal value of the DW
velocity, c.

FIG. 4. Atomistic spin dynamics simulations for a FM simple
cubic lattice using the parameters listed in the text, from which a
relativistic-like behavior can be extracted for the DW width 	 (which
contracts as the velocity increases) and for the DW velocity v (which
saturates as the external magnetic field increases).

The equation for the DW velocity v(h) can be easily solved
for the ultimate case λ � 1. The expression of velocity as a
function of the magnetic field is explicitly given by

v(h) = h/α√
1 + (h/αc)2

. (14)

As can be seen in Fig. 4, there is a very good match
between the simulations and what is predicted by the theory in
the limit λ � 1. We note that for small fields (velocities) the
expression for the DW velocity coincides with the standard
Walker expression derived in the limit λ = 0 [4]. On the
other side, the expression for v(h) has the same form as the
expression for DW velocity in weak FM-like YFeO3 [31].
Only the DW mobility v/H is different, because in weak FM
it is determined by the exchange and Dzyaloshinskii-Moriya
interactions. Therefore, this endorses the idea that, in the
extreme case of biaxial FM, it is possible to obtain traces
of the behavior that characterizes weak FM (AFM), since the
DW velocity saturates as the applied magnetic field increases
and the DW width contracts drastically as the velocity of the
magnetic texture increases. The DW steady motion velocity
v(h) is not an arbitrary parameter as it was assumed in
previous sections. The steady-state DW motion of this new
type of Walker solution is possible only for a definite value of
the velocity which is determined by the given magnetic field
and damping parameter according to the equation for v(h).
Good agreement between the simulated dependencies 	(v),
v(h) and the ones calculated within the Walker approximation
φ(ξ ) = const means that the effect of the variable ε(ξ ) � 1
on the DW dynamics is small for the very large λ � 1 in a
wide DW velocity region up to v−.

In fact, small values of the DW widths at high velocities
give rise to a fundamental question. In micromagnetic simu-
lations, which are usually used to evaluate the dynamics of
magnetic textures in FM, a certain cell size must be chosen at
the beginning of the numerical process. However, if the DW
width contracts, it could be the case that, at a certain moment,
the cell size chosen is insufficient to capture all the physics
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present in the problem, which could lead to artificial results
that do not correspond to reality. Therefore, it is important to
draw attention to this fact, since it could have an enormous
impact in some cases. A perhaps more precise way to work
in the context of micromagnetic simulations would be to
apply a correction to the cell size according to the effect
that a Lorentz-like factor could have on the DW width in the
medium.

VI. CONCLUSIONS

We addressed the problem of the reduction of the LL
equation of motion to the SG equation in a bulk biaxial
FM. The investigation on how to increase the DW velocity
of anisotropic FM and whether such velocity increase is
related to the SG equation of magnetization motion is of
considerable importance. In the framework of steady-state
Walker-type solutions, it is formally possible to obtain the
aforementioned Lorentz-invariant SG equation for the general
case of arbitrary λ for any DW velocity v < v−. However, the
mapping has a physical sense only in the limit of extremely
large ratio of easy-plane and easy-axis magnetic anisotropy
constants λ � 1 for DW velocities v � v−. The singularities
were found for the latter case in which the magnetization
angle ε = π/2 − φ was operated in the limit ε � 1. We
believe that accounting for the spatial and time dependence
of the variable ε is sufficient to avoid the singularities in the
limit λ � 1 and get the Lorentz-invariant Lagrangian along
with SG equation for the magnetization polar angle θ (ξ ). The
possibility of mapping the LL equation into the SG equation
does not imply an increase of the maximum DW velocity
over the Walker-type solution velocity limit v−. The case of
the variable azimuthal magnetization angle φ(ξ ) or even the
essentially simpler case of the variable ε(ξ ) � 1 are beyond
of the theory of 1D magnetic solitons and will be considered
elsewhere. The 1D DW dynamics considered above can be

used not only for the description of bulk anisotropic FM and
1D spin chains, but also for 2D magnetic systems such as
nanowires and nanostripes with small cross section, if the
conditions of applicability of 1D DW model discussed in
Refs. [11,32] are satisfied. Moreover, as it has been proven
through atomistic spin dynamics simulations, it is in fact
possible to replicate through the precepts of special relativity
the behavior of the dynamics of a DW in a biaxial FM for
the case λ � 1. Such a remarkable result supports what is
analytically predicted throughout this text and shows that if
there is a FM material for which λ was large enough a system
could be experimentally implemented in which WB-induced
instabilities disappear without using complicated geometries.
Furthermore, as mentioned in Sec. V, the selection of cell size
in micromagnetic simulations requires a deeper reconsidera-
tion. Under relativistic dynamics the cell size choice based
on the exchange length might result insufficient to fulfill the
requirement of the micromagnetism formalism. For a given
magnetic texture under high speed regime, it becomes crucial
to define a cell size based on the expected width due to Lorentz
contraction rather than on its static one. Otherwise, a poor
selection of the cell size will result into an overestimation of
the exchange interaction among neighbouring spins leading to
dynamics that could be mere numerical artefacts. As a result,
under the conditions investigated in this article, atomistic spin
dynamics simulations would yield a more precise description
of the magnetisation dynamics.
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