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Retrieving CeB6’s lost magnetic entropy
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The reported temperature variations of CeB6’s magnetic entropy are inconsistent with the fourfold degeneracy
of the crystal field ground state. This old question is here addressed through new specific heat measurements
and an improved description, in the cage context, of both the phonons and crystal field contributions to the
specific heat. The antiferromagnetic transition is characterized as first order and its latent heat determined. From
the phonons’ dispersion for a cage compound, the lattice specific heat contribution is derived from the LaB6

data. Once corrected for the first-order transition and lattice contributions, the magnetic entropy displays the
characteristic plateau of the quadruplet crystal field ground state, but at temperatures in excess of 30 K. Below
30 K, as the ordering temperature is approached, the magnetic entropy is substantially reduced. This anomalous
temperature dependence is consistent with a crystal field ground state split by the rare-earth movement, a
phenomenon specific to rare-earth cage compounds.
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I. INTRODUCTION

For decades, the CeB6 compound has been a center of
interest in the fields of unconventional magnetism and heavy
fermions physics. At low temperature and under zero mag-
netic field, it undergoes two orderings: From the paramag-
netic state (phase I), an ordered state (phase II) develops at
TQ = 3.3 K, then, at TN = 2.3 K, an antiferromagnetic state
(phase III) is stabilized [1–3]. Between TN and TQ, within
phase II, the ordered state is reported to be nonmagnetic and
frequently interpreted as an antiferroquadrupolar order [4,5],
i.e., an order where 4 f electric quadrupoles alternate from site
to site. However, this interpretation is difficult to reconcile
with a number of observations [6,7]. Beside the difficulties
in the interpretation of the properties of this ordered state,
the paramagnetic phase itself is not devoid of puzzles. There,
the strong couplings of the 4 f electron with the conduction
electrons and its lattice environment are already manifest.
The measurements show a Kondo-like resistivity minimum
around 150 K [2,8] and a large contribution of the conduction
electrons to the magnetic susceptibility, which result in a
reduction of the apparent Ce3+ magnetic moment [1,9]. More-
over, the strength of the cubic crystalline electric field (CEF)
is unusually large: Inelastic neutron (INS) and Raman scatter-
ings show that the J = 5/2 multiplet is split with a 540 K
separation between the �7 doublet and �8 quadruplet [10].
From the magnetic entropy variations, derived from specific
heat measurements [11,12], the possibility of a �7 doublet
CEF ground state can be discarded. Although the reported
values at TQ = 3.3 K are close to the R ln 2 J/(K mol) value of
a doublet [11–13], the magnetic entropy steadily increases in
the paramagnetic range, rapidly exceeding the doublet value.
This variation is, however, hardly consistent with a quadruplet
ground state: The quadruplet value is not reached below 40 K
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and no plateau, characteristic of a well isolated ground state,
is to be observed. Also, the reported entropy value at TQ, close
to R ln 2, is challenging the interpretation of phase II as a
nonmagnetic state. Indeed, according to the Kramers theorem
applied to the Ce3+ case, the minimal magnetic entropy within
a nonmagnetic state is precisely R ln 2 J/(K mol). Starting
from such an already reduced entropy, how is it then possible
for the CeB6 system to undergo, first, a nonmagnetic transition
and, second, an antiferromagnetic one? A better understand-
ing of the physical mechanisms at play in CeB6 requires
clarifying this paramagnetic entropy issue. In the work intro-
duced here, this question is addressed thanks to improvements
along three directions: The experimental determination of the
specific heat, the description of the phonons’ contribution to
the specific heat, and the theory in order to account for the
specific CEF effects in the cage context.

II. EXPERIMENTAL DETERMINATION
OF THE MAGNETIC ENTROPY

A. Specific heat measurements

In order to improve the experimental determination of the
magnetic entropy of CeB6, new specific heat measurements
were performed. As regards the LaB6, nonmagnetic refer-
ence, single crystals grown in Kiev, by the team of Dr. N.
Shitsevalova, were used. These crystals were obtained from
borothermal reduction of La2O3, under vacuum at 1750 ◦C,
using amorphous natural boron. The obtained powder was
successively pressed into rods and sintered at 1800 ◦C. The
rods were then processed by zone melting under argon atmo-
sphere [14], resulting in large, single phase, LaB6 crystals.
The used CeB6 crystals are from older batches, similarly
processed [15] in Sendai by Professor S. Kunii. They were lent
to us by Dr. L. P. Regnault. These high-quality single crystals,
initially intended for neutron scattering experiments, were
produced using 11B enriched boron, whereas natural boron
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FIG. 1. The temperature dependence of the specific heat for
LaB6 (crosses) and CeB6 (round dots), as determined using the
relaxation technique. The inset gives the low temperature detail for
CeB6, showing the transitions at TN and TQ. Note the very sharp
anomaly at TN .

was used for our LaB6 reference. All the used crystals were
received in the form of oriented platelets. The small specific
heat samples of masses m = 6 mg for LaB6 and m = 2.95 mg
for CeB6, were subsequently cut from these. The specific heat
measurements were performed using the relaxation technique
in an automated [16] Quantum Design PPMS system. Two
cryogenic configurations were used, the normal 4He flux one,
for temperatures between 1.8 and 60 K, and the additional
closed-cycle 3He insert for temperatures down to 0.6 K (in the
case of CeB6 only). The thermal coupling between the sample
and the setup platform was improved by use of a very small
quantity of Apiezon N grease, which is accounted for thanks
to the addenda measurements.

The LaB6, nonmagnetic reference curve (see Fig. 1), was
obtained using the default two time constants (two-tau) fitting
of the relaxation process, as provided by the PPMS software.
The same options were used for the CeB6 sample, but this time
using the 3He insert. Figure 1 shows the resulting specific
heat curve for CeB6. Inspecting the collected data for CeB6,
it appeared that the two-tau fitting was systematically failing
at the top of the antiferromagnetic anomaly at TN . As shown
in Fig. 1, the processed relaxation data display a very sharp
anomaly at TN , in agreement with the literature. This aspect
of the anomaly and the failure of the fitting process at TN ,
made us suspect a first-order antiferromagnetic transition. To
clarify this point, a second series of measurements on the
same sample, using the standard 4He setup, was carried out,
focusing on the transition at TN . This time, the system was
forced to proceed by using long heating pulses, with adjusted
duration and temperature amplitude, which affect the heating
power, in order to cover the whole transition process. The
lower part of Fig. 2 shows two examples of time depen-
dence of the platform temperature, for long pulses processes
crossing the antiferromagnetic transition. The inflection in
the temperature evolution that reflects the expected first-

FIG. 2. Upper part: Thermal exchange scheme during a first-
order transition in heating conditions. The sample’s platform has heat
capacity CP, thermal resistance to the thermostat KP, and absorbs
a heating power P. As the transition front moves, instead of being
constant, the platform temperature TP increases. Lower part: Two
examples of TP(t ) temperature profiles, showing the crossing of
the antiferromagnetic transition in CeB6, when using long heating
pulses. These processes have the same duration but differ in their
starting temperature and temperature rise (related to the heating
power P). The full lines are adjusted considering exponential re-
laxation laws above and below a linear plateau of duration �t and
temperature rise �TP.

order plateau at TN , is well evidenced. The “plateau” actu-
ally displays a significant slope, which can be understood
considering that the sample cannot be of uniform temper-
ature (see the thermal exchange diagram of Fig. 2, upper
part): As the transition front moves through the sample,
the platform temperature keeps increasing, but at a slower
pace, until the “cold” point at TN disappears with the last
fraction of antiferromagnetic CeB6. The difficulty then lies
in defining the duration �t of the transition and the cor-
responding temperature rise �TP of the platform. This is
done here by idealizing the temperature profile during the
transition, replaced by a constant slope process. The curves
before and after the plateau can be fitted with simple re-
laxation exponentials, with identical temperature limit, but
different time constants due to different sample specific heat
above and below the transition. The process is analyzed
considering only conductive heat exchange (coupling con-
stant KP between the platform and the thermostat), a stable

094411-2



RETRIEVING CeB6’S LOST MAGNETIC ENTROPY PHYSICAL REVIEW B 101, 094411 (2020)

thermostat at temperature TTh, and constant heating power
P. During the transition process, the heat absorbed by the
sample is

Q = [P − KP(〈TP〉 − TTh)]�t − CP�TP,

where 〈TP〉 is the time averaged temperature of the platform
during the process and CP is the platform heat capacity
(including the thermal contact grease). For a good coupling
between the platform and sample, the same temperature rise
�TP will occur at the sample’s face in contact with the
platform. As the sample’s fraction that has not undergone
the transition maintains a TN temperature, there is a thermal
gradient between the transition front and the platform (Fig. 2,
upper part). At the end of the process, when the last fraction
at TN disappears, the sample is, on average, overheating with
respect to TN . In the simplest case of a linear temperature
profile and a regular sample’s shape, the sample’s average
temperature is then close to (TP + TN )/2. This means that the
extent of the overheating with respect to TN is (TP − TN )/2 =
�TP/2. In the definition of the latent heat L of the transition,
one can account for this excess of heat transfer to the sample:

L = Q − CS (TN+ )
�TP

2
,

where CS (TN+ ) is the sample specific heat immediately above
the transition temperature. Using the thermal parameters of
the PPMS “puck” (see Fig. 2), averaging the values derived
from the two pulses and estimating the uncertainty on such a
determination as not better than 10%, one obtains

L = 1.30 ± 0.13 J/mol.

The corresponding change in entropy for the transition at
TN = 2.36 K is

�S = L/TN = 0.55 ± 0.06 J/(K mol).

The characterization of the antiferromagnetic transition as
first order allows us to recover some of the missing param-
agnetic entropy of CeB6. This correction represents about 5%
of the entropy of a quadruplet ground state.

B. Phonons’ contribution to the specific heat

At this point, the remaining difficulty for extracting the
magnetic part of the specific heat, then the magnetic entropy
of CeB6, is the proper identification of the nonmagnetic
contributions. This requires determining the temperature de-
pendence of the specific heat for a nonmagnetic element in
the series, in the present case LaB6. In a nonmagnetic metal,
the specific heat C is usually well described by separating two
contributions, one from the conduction electrons Ce, and the
other from the phonons Cph:

C(T ) = Ce(T ) + Cph(T ). (1)

Due to the very low compressibility of solids, no distinction
is made here between the constant pressure and the constant
volume specific heat. At low temperature, where it is influent,
the electronic term can be reduced to the linear form Ce(T ) =
γ T , where γ is the specific heat electronic constant. As
regards the phonon term Cph, the most common approach
is to describe it using the Debye approximation which, in

the low temperature limit, yields the cubic temperature term.
This term reflects the low frequency acoustic modes and, in
principles, allows deriving, from a nonmagnetic reference, the
phonons contribution for a magnetic element in the series.
In the simplest harmonic approach, the forces that determine
the springs stiffnesses in a classical model are maintained,
whereas the inertia increases across the series. In this scheme,
the eigenfrequencies, as well as the Debye temperature, scale
via the square root of the formula masses ratio. If necessary,
more than one Debye temperature are introduced [17]. This
Debye approach is known to fail in the description of cage
compounds, where the low temperature dependence of the
phonon specific heat cannot be reduced to a cubic term. In
these systems, the weakly dispersive rattling of the cage guest
yields contributions closer to the Einstein approach than to
the dispersive (acoustic) Debye one. In the case of rare-earth
hexaborides, there has been attempts [18–20] at describing
the phonon contribution by using the Einstein model or an
empirical mixture of Einstein and Debye. This increases the
number of involved parameters and, by lack of an underlying
physical model, it is difficult to scale them from one element
to another in the series.

1. Phonons dispersion in a cage system

In light rare-earth hexaborides, the two lowest phonon
dispersion branches are well reproduced by a harmonic model
consisting of a chain, of period d , of identical rigid cages of
masses M (see the upper part of Fig. 3), interconnected by
springs of stiffness K0 (see Ref. [21]). In each cage a mass m,
the rare earth, is attached by a spring of stiffness k0. Writing
the classical equations of motion for small deviations from
the equilibrium positions along the chain axis, introducing
a propagating wave at frequency ω and wave vector q (in
reduced unit, with q = 0.5 at the zone border), one obtains
the relation

cos(2πq) = 1 − 2

(
1 + m

M

ω0
2

ω0
2 − ω2

)
ω2

�0
2 , (2)

where ω0
2 = k0/m is the natural frequency of the “rattler”

and �0
2 = 4K0/M is the top acoustic frequency for a chain

of empty cages. This allows defining the two branches
of the dispersion curves, here written by introducing x =
ω/ω0, the mass ratio α = m/M, the frequency ratio ρ =
�0/ω0, and the function K (q) = ρ2[1 − cos(2πq)]/2:

ω±(q) = ω0

√
1 + α + K (q) ±

√
[1 + α + K (q)]2 − 4K (q)

2
,

(3)

where the + and − options, respectively, give the expression
for the optical and acoustic branches.

Figure 3 shows the dispersion curves for longitudinal
waves propagating along [0 0 q] in LaB6 (from Ref. [18]) and
CeB6 (from Ref. [19]). These dispersion curves have three
characteristic points, at positions � and X in the cubic first
Brillouin zone (see Fig. 4), that allow a direct determination
of the parameters ω0 and �0: (i) the q = 0 point (� point of
the cubic zone), where all the optical branches at the energy
E� = h̄ω+(0) converge. From Eq. (2), ω+(0) = ω0

√
1 + α.
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FIG. 3. Upper part: The chain of masses (m for the guest and M
for the cage) and springs (stiffnesses k0, K0) used for the harmonic,
classical description of lattice modes in a cage system. Lower part:
The inelastic neutron scattering data for LaB6 (left, from Ref. [18])
and CeB6 (right, from Ref. [19]), showing the dispersion of the
longitudinal mode along the fourfold direction. Superimposed are the
dispersions curves (full lines) derived from the above model for the
indicated values of mass ratios and frequencies.

Using the mass ratios α for 98% enriched boron, one obtains
h̄ω0 = 13.5 meV for LaB6 and h̄ω0 = 12.7 meV for CeB6. (ii)
The zone border q = 1/2 (X point in the [0 0 q] direction),
for the acoustic and optical branches, respectively yielding
the energies EX

A and EX
O . From Eq. (2), one can identify the

frequency �0 for these longitudinal waves: h̄2 �0
2 = (EX

A )2 +
(EX

O )2 − (E� )2. In this way, one obtains h̄�0 = 51.5 meV for
LaB6 and h̄�0 = 53.7 meV for CeB6. However, caution is
required as regards the precision of these determinations. The
used dispersion curves were obtained from inelastic neutron
scattering on triple axis spectrometers. In such conditions,
the error on an energy determination can exceed 1%. Using
the above values, computed curves are superimposed on the
experimental data in Fig. 3. The agreement is very satisfactory
considering the above evoked uncertainties and the simplicity
of the model, dependent on only two parameters.

For small deviations from the equilibrium positions, the
motion equations that yield Eq. (2) for a chain generalize to a
three-dimensional lattice. One has to replace the (cage+guest)
element in the chain by an infinite plane of these same
elements, perpendicular to the wave vector. Within this plane,
all cages, respectively guests, share the same deviation. For
a given polarization, two variables are sufficient to describe
the parallel deviations, one for the cages and the other for

FIG. 4. The positive octant of the cubic’s first Brillouin zone
showing the characteristic points �, X , M, and R. These points are the
vertices of a tetrahedron (hatched faces) that, under the cubic trans-
formations, generates the whole first Brillouin zone. In the numerical
calculation of the phonons’ specific heat, all the considered samples
belong to this representative volume.

the guests. The problem is then formally identical to the
single-dimensional one and, to adapt the chain’s equations,
one only needs to consider the relevant period d , along the
wave vector direction q̂, and stiffnesses appropriate to the
polarization direction p̂. The period d that has to be con-
sidered is the smallest spacing between consecutive lattice
planes perpendicular to q̂. This minimal spacing defines the
smallest, physically relevant wavelength on the lattice λ = 2d ,
which, in the reciprocal space, is associated with the first
zone border vector Bq, parallel with q. On the segment from
the origin to Bq, the dispersion relations keep the forms of
Eq. (2), provided one replaces cos(2πq) with cos(π |q|

|Bq| ) and

defines K (q) as K (q) = ρ2[1 − cos(π |q|
|Bq| )] in Eq. (3). As the

frequency ω0, and its associated k0 stiffness, are isotropic in
a cage with Oh symmetry, they apply for all wave vectors
and polarizations. In the generalization of the dispersion
relation, only the top frequency �0, for the lattice of empty
cages, has to be adapted to the wave polarization p̂ and
propagation direction q̂, replacing the constant �0 with the
function �0 (̂q, p̂) in Eq. (2). In search for a simplification, it
is assumed that using a constant �̃0, in place of the function
�0 (̂q, p̂), can result in a satisfactory description of the low
temperature specific heat of a hexaboride. This is inspired
by the Debye approximation, but provides a more realistic
description of the cage context: The characteristic features
of the dispersion curves, in particular the flattened acoustic
branch surmounted by an energy gap, are preserved. In this
way, only two parameters are required for the description of
the phonons’s contribution: The rattler frequency ω0 and �̃0.
The parameter �̃0 represents an averaged lattice of empty
boron cages. As such, it should not vary much across the RB6

series, except for the anharmonic effect of a slight reduction
in the lattice parameter due to the lanthanide contraction.

2. Cage system specific heat

Thanks to the above simplification, for any q within the
first Brillouin zone, one can associate two frequencies ω̃±(q).
Using the polarization independent average �̃0, in place of
�0 (̂q, p̂), the same frequency applies for the longitudinal
and transverse modes. Then, at temperature T , the phonons
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FIG. 5. The specific heat for LaB6 (circles) and CeB6 (squares)
confronted with calculations based on the generalized dispersion
curves and including the electronic term (defined by the γ constant).
The full lines show the computed curves for LaB6, using ω0 and �̃0

values deduced from a fit below 20 K (see details and values in the
inset). The dashed line is an attempt at describing the nonmagnetic
background of CeB6 using the neutron data for ω0 and a �̃0 value
derived from the LaB6 fit.

specific heat Cph can be computed by summing, within the
first Brillouin zone, over all wave vectors and polarizations
describing the vibration modes:

Cph(T ) = 3
∑
q,±

kB

(
h̄ ω̃±(q)

kBT

)2 e− h̄ ω̃± (q)
kBT(

1 − e− h̄ ω̃± (q)
kBT

)2 , (4)

where the factor 3 accounts for the three polarizations and the
sum runs over all wave vectors q and associated frequencies
(±). In practice, the summation can be performed for a
discrete fraction of the first Brillouin zone, considering, inside
the positive octant, samples at a number N of q nodes on a
cubic lattice. In direct space, this amounts to the calculation
of the specific heat for a crystal consisting of N unit cells.
Obviously N needs to be large enough to approach the macro-
scopic limit. This requirement can substantially slow down
the calculation and it is preferable to take advantage of the
cubic symmetry. Redundant contributions can be avoided by
restricting to nodes included in a representative polyhedron
as represented in Fig. 4: Each considered q node accounts
for its symmetry equivalents by considering a multiplicity
factor. In Fig. 5 this method of calculation is used for de-
scribing the LaB6 experimental data. The displayed curves
are computed considering 364 × 3 representative samples of
the first Brillouin zone, equivalent to 1728 × 3 modes in the
positive octant. At the graph’s scale, calculations for as few
as 56 × 3 representative samples are indistinguishable from
the displayed curves. The electronic term is deduced from
the linear, low temperature part of the curve. As regards the
phonons contribution, only two parameters are active, ω0 and
�̃0, for adjusting the computed curve to the experimental data.
The values appearing in Fig. 5 are obtained by a mean-square

fit on the data for temperatures lower than 20 K (inset of
Fig. 5). The calculated curves, based on the low temperature
data, extrapolate very well up to 50 K. Above 50 K, the cost
of the simplification of the dispersion curves, here adapted
to the low temperature specific heat, starts to materialize:
A better description in this temperature range would require
increasing the �̃0 value. Looking at the refined values for
ω0 (reported in Fig. 5), h̄ω0 = 14 meV is larger than the
inelastic neutron scattering determination at 13.5 meV, but
the difference may be within the uncertainty of the neutron
determination (which values are not explicit in Refs. [18,19]).
In order to adapt the phonon contribution from the LaB6
reference to the CeB6 case, one can think of resorting to a
mass scaling in the harmonic model context. This is done
in the hypothesis that the underlying forces, resulting in the
stiffnesses of the elastic description, are maintained in CeB6.
Then, one should correct the eigenfrequencies by a factor
reflecting the ratios of the atomic masses,

√
MLa
MCe

for ω0, and√
MBnat.
MBenr.

for �̃0. The later correction is required in order to
account for the use of natural boron (Bnat.) in the synthesis
of LaB6 as opposed to 98% 11B enriched boron in the case
of CeB6 (Benr.). One thus derives the following values for
the phonons’ contribution parameters in CeB6: m/M = 2.125,
h̄ω0 = 13.9 meV, and h̄�̃0 = 35.6 meV. This mass scaling
has a tiny effect, resulting in a curve almost undistinguishable
from that of LaB6 at the scale of Fig. 5. It cannot account,
even in the presence of magnetic effects, for the specific heat
difference observed above 20 K between the CeB6 and LaB6
curves of Fig. 1. The failure of the mass scaling points to the
limits of the harmonic approximation, despite its seemingly
satisfactory description of the dispersions. In particular, the
cage context implies large amplitude excursions for the rare
earth within the rigid limits of the cage. This alone would
determine an anharmonic potential, even in the absence of
magnetic effects, as it implies a sharply rising potential close
to the boron framework. In the simplest picture, one can
expect the smaller Ce3+ ion to have more room than La3+,
which, independently of the mass correction, would result in
a lower ω0 frequency for CeB6.

As regards the ω0 value for CeB6, a more empirical option
is the neutron spectroscopy determination of h̄ω0 that yields
12.7 meV. In the hypothesis that the harmonic correction can
still be applied to the rigid boron framework, where small
deviations from the equilibrium position are granted, the mass
scaled value for �̃0 is maintained. This defines a second set for
the parameters defining the CeB6 nonmagnetic contribution:
m/M = 2.125, h̄ω0 = 12.7 meV, and h̄�̃0 = 35.6 meV. This
time, the corresponding curve in Fig. 5 is much closer to the
CeB6 data (dashed line for h̄ω0 = 12.7 meV). This supports
the idea that the large difference in the background specific
heat, with respect to the LaB6 reference, is essentially due
to the frequency ω0 of the guest inside the cage. Indeed, in
the temperature range of interest, the computed curve is very
sensitive to the ω0 value. Considering the uncertainty on the
neutron scattering data, and the 0.5 meV discrepancy observed
in the LaB6 case, the agreement of h̄ω0 = 12.7 meV with the
CeB6 background is somewhat lucky. Note that the value used
for the γ electronic constant, of little influence above 20 K, is
the same as the one derived from the LaB6 low temperature
data (inset of Fig. 5).
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FIG. 6. Temperature variation of CeB6 magnetic entropy. The
cross and square symbols, respectively, show data corrected, or
uncorrected, for the first-order transition at TN . The inset gives the
detail of this variation for T < 10 K. All curves are corrected for
the nonmagnetic contributions to the specific heat (computed using
the displayed parameters). The dashed horizontal lines refer to the
entropy values for a doublet (R ln 2) and a quadruplet (R ln 4). The
dotted line in the inset is a least-squares fit to the corrected data
in phase II, using the displayed expression for Smag(TQ) = 8.101
J/(K mol), TQ = 3.38 K, a = −6.066 J/(K mol), and n = 0.983.

C. The magnetic entropy of CeB6

Despite the uncertainty on the ω0 value, the computed
curve for CeB6 in Fig. 5 provides a likely nonmagnetic
background. One can then proceed with the determination
of the magnetic entropy of CeB6 by subtracting this back-
ground from the specific heat in order to define the magnetic
contribution Cmag(T ). Between zero temperature and 0.6 K,
the missing CeB6 specific heat data are extrapolated using a
power-law fit on the data between 0.6 K and TN . Integrating
Cmag dT/T from 0 to the current temperature, shifting the
values above TN by the amount of the first-order entropy
jump �S = 0.55 J/(K mol) (see Sec. II A), one obtains the
temperature variation of Smag(T ) represented by the cross
symbols in Fig. 6. This temperature dependence shows that
the paramagnetic entropy plateau, expected for the cubic �8

quadruplet CEF ground state, is recovered at temperatures in
excess of 30 K. The uncorrected data (empty squares in Fig. 6)
cannot reach the quadruplet value in the graph temperature
range. Note that, in agreement with the literature [11–13], the
uncorrected value just above TN is very close to the entropy
of a doublet. Although the corrected curve asymptotically
approaches the R ln 4 line in Fig. 6, one should remember
that this variation is subjected to a number of uncertainties. In
addition to the discrete integration errors, the jump in entropy
at TN is defined at no better than 10%, which represents
a shift in the 0.1 J/(K mol) range. Moreover, the neutron
scattering value h̄ω0 = 12.7 meV, of limited precision, is
directly responsible for the almost zero slope of Smag(T )
above 30 K. Nevertheless, it is shown here that the exper-
iments are consistent with a quadruplet CEF ground state
and that the recovery of the fourfold degeneracy entropy is

progressive: At TQ, the entropy is close to 8 J/(K mol) and
it takes more than 30 K to retrieve the missing 30% of the
quadruplet entropy.

III. ENTROPY OF A CAGE-SPLIT QUADRUPLET

The experiments show that, in the paramagnetic range, the
magnetic entropy value just above TQ is much lower than
expected for a quadruplet. It is about R ln 2.6 J/(K mol)
against R ln 4 for an effective fourfold degeneracy. This means
that the ground-state degeneracy is already largely reduced
before any ordering process. Such a premature reduction
of the entropy is usually ascribed to pair correlations that
precede the actual, long range, ordering. However, in the
CeB6 case, the ordering temperatures TQ and TN are one
order of magnitude smaller than the thermal amplitude of the
paramagnetic entropy variation. This attests to the weakness
of the pair couplings that drive the ordering, with respect to
the energy scale relevant to the entropy variation. This scale
actually fits with another one, highlighted in the Raman and
neutron scattering investigation of CeB6 crystal field scheme
[10]. At low temperature, the authors observed an increase
in the energy transfer between the �8 ground state and the
excited �7 level. They interpreted this as resulting from a split
�8 ground state over a 30 K interval, which agrees with the
temperature range of the entropy variation. As there is no
evidence of a static lattice distortion, the average symmetry of
the Ce site remaining cubic, they evoked a possibly dynamic
symmetry lowering. This is precisely what can be expected
from the large amplitude movement of the rare earth inside
its boron cage, if one considers its crystal field consequences
[21]. In the following, we apply the general considerations of
Ref. [21] to the particular case of CeB6, with the intent of a
quantitative description of the thermodynamic anomalies in
the paramagnetic range.

A. Cage crystal field

Due the movement of the rare earth inside the oversized
cage, one has to correct the central cubic CEF Hamiltonial H0.
At a position offset by r, the CEF Hamiltonian for the Ce3+

ion has to include a correction Hd (r). In the frame of the mov-
ing rare earth, the corrective term becomes time dependent,
thus dynamic. However, from the 4 f electron perspective, the
rare-earth movement is so slow that this correction can be
treated as a static one [21] at position r. This Hd (r) term
amounts to a coupling between the 4 f quadrupoles and the
deviation r from the cage center:

Hd (r) = −Dγ
[
(3z2 − r2)O0

2 + 3(x2 − y2)O2
2

]
− Dε[xy Pxy + yz Pyz + zx Pzx], (5)

where x, y, and z are the components, along the cubic axes, of
the displacement r of the rare-earth nucleus from the center of
the cage. {O0

2, O2
2} and {Pxy, Pyz, Pzx} are the quadrupolar

operators transforming, respectively, as the γ (�3) and ε

(�5) cubic representations. In the J = 5/2 manifold of the
Ce3+ ion, they are conveniently written in terms of Stevens
equivalents [22]. Dγ and Dε are constants that, within a
representation, define the magnitude of the coupling of the
4 f quadrupoles with the environment. At a given position r
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inside the cage, the time independent Schrödinger equation is
solved by diagonalization of the local crystal field Hamilto-
nian H(r) = H0 + Hd (r). This yields the local crystal field
scheme and the eigenstates with their composition in terms of
|J, mJ〉 vectors. As the rare earth is not fixed at r, the crystal
field scheme is no longer a stable property of the rare-earth
site. Instead, the scheme has a distribution reflecting that of
the guest inside the cage potential well. In turn, this spatial
dependence of the rare-earth electrostatic energy contributes
to this same potential well. This is the mechanism of the
centrifugal Jahn-Teller effect, as described in Ref. [21]. How-
ever, this crystal field contribution is a small correction to the
main, nonmagnetic, potential term responsible for an energy
separation of h̄ω0/kB ≈ 150 K between the vibration levels. In
the following, the cage potential well is therefore considered
unaltered by the CEF correction and, consequently, tempera-
ture independent. The individual vibrational states of a rare
earth inside a cage are then also temperature independent.
As phonons become thermally excited, these stationary states
get mixed. However, at temperatures below 50 K, only low
frequency phonons get populated: The rare-earth distribution
inside the cage remains essentially that of the vibrational
ground state, the slight equilibrium shifts induced by phonons
resulting, on average, in a tiny widening of the distribution.
In the following calculations, that apply for low temperatures,
the only considered rare-earth distribution is that of the unper-
turbed cage vibrational ground state, thus neglecting the Jahn-
Teller correction and the interference of excited vibrational
states.

B. Vibrational ground state distribution

With a position dependent crystal field scheme, describing
the properties of the paramagnetic state requires knowledge
of the rare-earth distribution inside the cage. There is no
direct and precise experimental determination of this distri-
bution: Spectroscopic or diffraction approaches all require
some modeling or intrinsically lack precision. As regards the
spectroscopy, for a given energy separation between the low-
est vibration levels, the simplest, cubic or higher symmetry,
potential wells all result in similar distributions for the singlet
ground state. For consistency with the phonons dispersion
analysis, we will stick with the harmonic approximation. In
this hypothesis, the Gaussian wave function of the singlet
ground state is entirely defined by the frequency ω0 and the
mass m of the rare earth. The associated distribution reads as

ρ0(r) =
(mω0

h̄π

)3/2
e− mω0r2

h̄ (6)

for which the full width at half maximum is wHM =
2
√

h̄ ln 2/mω0. Using the INS value h̄ω0 = 12.7 meV and
the mass of Ce, one obtains wHM � 0.08 Å for CeB6. This
amounts to the order of magnitude of an average 4 f shell ra-
dius and cannot, in relative terms, be neglected [21]. Then, at
temperature T , the paramagnetic value Ã(T ) of an observable
A of the rare-earth ion is the cage average:

Ã(T ) =
∫∫∫

V
ρ0(r) 〈A(r)〉T d3r, (7)

where 〈A(r)〉T is the statistical value of A at position r.
Despite the rare-earth movement, thanks to the ergodic hy-

pothesis, this value can be considered as a local time av-
erage. Alternatively, as there are as many instances of the
r position, as there are identical cages in the paramagnetic
crystal, a statistical ensemble is realized: 〈A(r)〉T becomes a
macroscopic variable. The same applies to the spatial average
Ã(T ) for which Eq. (7) is a convenient local definition. In
principle, the volume V of the integral should be infinite, but
it can be restricted to the cage extension without significant
incidence on the Ã(T ) value. This requires adapting the
normalization of ρ0(r) to the retained volume. Here the chosen
V volume is a cube of edge a = 0.3 Å, which is more than
three times the FWHM of the distribution. In a numerical
implementation of the sum of Eq. (7), one can take advantage,
as in the calculation of the phonons specific heat, of the cubic
symmetry. This is achieved by restricting to samples in V that
belong to a representative volume, analog in direct space to
the tetrahedron of Fig. 4. The numerical results that follow
are obtained by considering 286 independent samples (i.e.,
positions where the Hamiltonian is diagonalized and local
observables produced), that represent a total of 9261 samples
in V .

C. Calculation of the thermodynamic functions

At each sample position rs inside the volume V , the total
crystal field Hamiltonian HCEF(rs) = H0 + Hd (rs) has to be
numerically diagonalized. Then, at a given temperature T ,
from the local partition function Z (T, rs), the local internal
and free energies are derived, as well as the associated entropy.
The cage averages are then computed, according to the above
described method. This procedure requires a value for the
fourth order B4 CEF parameter that defines the cubic H0

crystal field Hamiltonian [23] and two other values, Dγ and
Dε, for the displacement-quadrupoles coupling constants of
Hd . The value B4 = −1.47 K is known from the Raman and
INS investigation [10], the negative sign yielding a �8 ground
state. There is no such experimental determination for the
Dγ and Dε parameters, here introduced for describing the
cage splitting of the �8 level. One predicted consequence
of this splitting in an anomalous variation of the magnetic
entropy in the paramagnetic range [21], as the one observed
in CeB6. Here it is assumed that this anomaly is entirely due
to a cage split �8. Within this assumption, the values for Dγ

and Dε are those that best describe the observed temperature
variation of CeB6 entropy. From guessed initial values for Dγ

and Dε, a least-squares approach was used for optimizing the
description of the entropy data in the 4–20 K temperature
range (see Fig. 6). In order to speed up the optimization
process, only four experimental points, at T = 4, 10, 12.5, and
20 K, were used for defining the SQ(Dγ , Dε ) sum of squared
differences to be minimized. This search points to four sets of
parameters, reported in Table I, along with their associated SQ

values.
In Fig. 7 the magnetic entropy variations, computed using

the sets of values in Table I, are compared with our experimen-
tal data. Despite an advantage to the sets with negative Dε, in
terms of SQ values, at the graph’s scale, the four sets result
in indistinguishable lines. They all satisfactorily describe the
observed variation of CeB6 entropy in the paramagnetic range.
All the zero temperature limits are very close to R ln 2. This
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TABLE I. Table of the retained sets of Dγ and Dε values that
best describe the paramagnetic variation of CeB6 magnetic entropy.
The optimization is based on the minimization of SQ, the sum of
the squared differences, between experiment and calculation, at four
selected temperatures (see text). The sets are named by reference to
the respective signs of the parameters.

Set Dγ (K/Å2) Dε (K/Å2) SQ [J2/(K2 mol2)]

++ +104.1 +3536 3.95 × 10−4

+− +75.6 −4878 2 × 10−4

−+ −107.8 +3610 2.87 × 10−4

−− −98.7 −4381 1.3 × 10−4

corresponds to the expected Kramers minimal degeneracy for
Ce3+. In the model we use, the fourfold degeneracy of the �8

level is realized only for a Ce ion at the very center of the cage,
which has vanishing weight in the cage averaged values (cf.
the distribution in Fig. 8, lower part). At all locations outside
the center, the �8 quadruplet is split into two doublets. At 0 K,
only the lowest local doublet is populated, with corresponding
magnetic entropy.

The upper parts of Fig. 8 show the dependencies of the
CEF levels as function of the displacement along the two crys-
tallographic directions: Fourfold (left) and threefold (right).
The two quadrupolar cubic representations are thus separated,
Dγ and Dε being, respectively, active for the fourfold axis
and threefold axis. Along a fourfold axis, the splitting of
the �8 level has the simplest structure, with a symmetrical
energy separation of the two resulting doublets. At the scale
of the graph, the upper �7 doublet appears unaffected. The
splitting scheme along a threefold axis differs on that point,
with a substantial interference of the �7 level at distances
greater than 0.05 Å from the center. In particular, for a
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FIG. 7. Experimental (circles) and computed variations (lines)
of CeB6 magnetic entropy for the Dγ and Dε sets from Table I.
At the graph scale, the computed curves are indistinguishable. The
horizontal, dashed lines give the reference values for a doublet
and quadruplet. The shorter dashed line at ≈R ln 2.6 points to the
experimental value at TQ.

FIG. 8. Cage splitting of the central CEF scheme as result of
a displacement r along a fourfold axis (upper left) or threefold
axis (upper right). The active quadrupole-displacement coupling
constants are, respectively, Dγ and Dε . Note that the vertical energy
axes are sliced in order to simultaneously display the energies for the
�8 and �7 levels. The graphs show the effect of Dγ , respectively Dε ,
values with opposite signs, from the sets “++” and “−−” in Table I.
Lower parts: Duplicate radial distributions of Ce3+ for the vibrational
harmonic ground state, using h̄ω0 = 12.7 meV.

negative Dε, which corresponds to the best agreement with
the entropy results, the mixing between the �7 and �8 states
induces a strong “repulsion” of the split levels. At distances
r above 0.1 Å, the doublets originating from the �8 plunges
to lower energies, while the �7 goes up. However, the actual
consequences of this modified CEF scheme are mitigated by
the distribution of the Ce3+ ion (see Fig. 8, lower part), which
limits the contribution of distances above 0.1 Å. The influence
of the cage split CEF scheme mainly results from the splitting
of the �8 level for distances r around 0.05 Å, where, for the
retained Dγ and Dε values, the splitting is of similar amplitude
(about 8 K) for these two displacement directions.

Figure 9 shows the paramagnetic variation of the internal
magnetic energy. The four computed curves correspond to
the set of parameters of Table I that optimally describe the
entropy thermal dependence. They are vertically shifted in
order to have zero internal energy at 0 K. The experimental
curve (circles in Fig. 9), obtained by numerical integration of
the magnetic part of the specific heat, is also shifted in order
to be superimposed with the computed variations. Without
surprise, the theoretical descriptions show an agreement of
similar quality as observed for the entropy. The well sepa-
rated �7 level having negligible influence in the considered
temperature range, the dependence of the computed internal
energy essentially reflects the Boltzmann population of CEF
states originating from the �8 ground state. The energy curves
actually follow the shift of the barycenter of the split �8 level.
This differs from the unsplit and unpopulated �7 level. Its
energy barycenter does not depend on the temperature (see
Fig. 8, upper part), but only on the cage distribution of Ce3+.
Consequently, as the temperature is lowered below 50 K,
the average energy separation between the �8 and �7 levels
increases, reflecting the reduction in the average �8 energy.
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FIG. 9. Experimental (circles) and computed (lines) temperature
variations of the magnetic internal energy, for the sets of Dγ and
Dε values in Table I. The chosen origin for the computed curves is
zero energy at 0 K. The experimental data are, accordingly, vertically
shifted. This energy variation is indicative of an overall ≈0.3 meV
“shift” in the average energy of the �8 level. The inset shows the
corresponding specific heat curves. The computed ones are obtained
from numerical derivation and show the cage Schottky anomaly.

This is, in effect, what has been observed via Raman and
INS scattering [10,24] that reveal an increase in the energy
transfer between the two CEF levels. However, a quantitative
examination shows a discrepancy between our calculations
that yield a shift of approximately 0.3 meV (see Fig. 9), and
the scattering experiments that point to a larger 1 meV value.
It seems that a reduction in the �8 energy, consistent with the
specific heat results, cannot entirely account for the increase
in the �8 − �7 separation. Simultaneously, with the �8 level
lowering, this would require a higher average �7 level as the
temperature is reduced. As shown in Fig. 8, right upper frame,
this could be obtained in case of an increased probability
of the presence of the Ce3+ ion along the threefold axes,
beyond r = 0.1 Å. Such a Ce3+ distribution challenges both
our assumptions of a simple harmonic oscillator ground state
and of a negligible centrifugal Jahn-Teller effect.

Another possible fault in our analysis is the confusion
between the �8 − �7 average energy separation and the peak
position in the Raman or INS scattering experiments. This
supposes that the scattering probability is independent of
the Ce3+ position in the cage. In case of enhanced tran-
sition probabilities for peripheral positions, the scattering
peak would display, in agreement with the upper part of
Fig. 8, a shift larger than expected from the simple average
�8 − �7 separation. The inset of Fig. 9 shows the computed
magnetic specific heat curves, deduced from the internal en-
ergy variations, that display a characteristic Schottky anomaly,
as predicted in Ref. [21]. They are superimposed with the
magnetic specific heat experimental data (circles). The cage
split �8 level accounts well for the increase in the specific heat
as the temperature falls below 40 K. Contrary to the usual CEF
Schottky anomalies that result from the proximity of discrete
CEF levels, the cage Schottky anomaly starts with a steep

slope at 0 K. This reflects the continuum of available energy
levels that result from the split central CEF ground state. In
the case of CeB6, the orderings at TQ and TN dominate the
low temperature part of the specific heat: No Schottky peak
is visible in the experimental data, but the excess of specific
heat above TQ could correspond with the flank of the expected
anomaly.

IV. SUMMARY AND DISCUSSION

A. The nature of the transition at TN

This study follows a long series of investigations of the
CeB6 compound. Thanks to new specific heat measurements,
the process of the antiferromagnetic transition has been de-
tailed. The temperature profiles across TN are consistent
with a first-order process, involving a latent heat of about
1.30 J/mol. Part of the missing paramagnetic entropy of CeB6

is thus recovered at TN .
In the temperature variation of CeB6 physical properties,

the first-order transition should reflect as a discontinuity at
TN , between the so-called antiferroquadrupolar (phase II) and
antiferromagnetic (phase III) phases. For instance, resistivity,
volume, and ordered magnetic moment should display a jump
at TN . From measurements on single crystals, the volume
[7,25] and resistivity [2,26] display abrupt anomalies at TN .
From the published data, whether these quantities are contin-
uous or discontinuous at TN could be discussed at length. One
has to consider that, below TN , the system is no longer cubic,
but tetragonal [7]: The domains may differently contribute to
a macroscopic quantity, possibly mitigating a discontinuity at
TN . Also, one cannot expect a spectacular discontinuity since
the jump in the entropy at TN represents less than 10% of the
total entropy variation in the antiferromagnetic range.

As regards the first-order magnetic susceptibility, it is
clearly anisotropic [7,27] below TN in agreement with the
tetragonal symmetry. In case of a second-order Néel point, this
anisotropy should progressively cancel as TN is approached
and the cubic symmetry restored. This prediction is contra-
dicted by the experiments, especially when domains effects
[7] are dealt with: Clear discontinuities are observed at TN for
the susceptibilities along the threefold and twofold axes.

Looking at microscopic probes, there is published data
showing the crossing of TN via neutron or x-ray diffraction.
In Ref. [28], the thermal dependence of two antiferromagnetic
powder neutron reflections is shown with no evident disconti-
nuity at TN . Due to the boron absorption, the intensities are
weak. It is difficult in such conditions to decide at which
temperature the intensity cancels, with a reported TN = 2.8 K
against a more common TN = 2.3 K, and whether the process
is continuous or not. X-ray single crystal data provide an
alternative insight with the temperature dependence of [ 1

2
1
2

1
2 ]

related nonresonant charge reflections. These reflections are
nonzero in both phases II and III, which helps identifying a
possible discontinuity. In Refs. [29,30], the reported depen-
dencies show a sharp anomaly at TN , with a clear discontinuity
in the graph of Ref. [30].

If, after this scrutiny, uncertainties are left as regards
the nature of the antiferromagnetic transition in CeB6, the
decisive evidence should come from the thermodynamical
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analysis. The here reported temperature profiles, while heat-
ing up the sample across TN , show a plateau which can be
quantitatively associated with an amount of heat required to
achieve the transition. This is consistent with a first-order
transition.

A first-order transition at TN allows reconsidering the re-
lationship between phases II and III. While it is generally
considered that the antiferromagnetism of CeB6 develops over
the paramagnetic, charge organization of phase II [3], some
difficulty emerges when considering the detail of the antifer-
romagnetic structure. The proposed structures for phase III
are multiaxial [3,31], with magnetic moments along twofold
axes. This contradicts the simplest, Landau or mean-field,
descriptions of a second-order magnetic ordering. Indeed,
for a magnetic ion at a site of cubic symmetry, the low
field anisotropy reflects the single-ion third-order magnetic
susceptibility that favors fourfold or threefold axes [32]. The
twofold axes cannot be the easy ones, unless a discontinuous
transformation occurs that involves higher order susceptibili-
ties at TN . In case of a first-order transition at TN , there is no
such contradiction. More generally, removing the continuity
condition between phases II and III allows for more options
to be considered as regards the mysterious nature of phase II.

B. The magnetic entropy below TQ

Other valuable information can be extracted from the low
temperature part of the experimental entropy curve (inset of
Fig. 6). It can be seen that, within phase II, from TQ to TN ,
the magnetic entropy decreases from 8 to 6.2 J/(K mol).
This leads, despite the entropy correction of the first-order
transition, to an entropy value for phase II at TN that only
slightly exceeds R ln 2 = 5.8 J/(K mol). If phase II were,
as reported, nonmagnetic, its 0 K extrapolated entropy value
should be close to that of a doublet, i.e., R ln 2. This is
the Kramers theorem applied to a Ce3+ ion. In case of a
simple, antiphase, magnetic order, the extrapolated entropy
value would be zero, as for phase III. Looking at the inset
of Fig. 6, it is likely that the 0 K extrapolated value for
phase II is much smaller than R ln 2, but still larger than
0. This intermediate value adds to the peculiarity of phase
II and puts into question its nonmagnetic nature. If the or-
dering mechanism for phase II were indeed nonmagnetic, a
0 K extrapolated entropy value much lower than R ln 2 is, at
least, indicative of strong magnetic correlations. Evidence for
magnetic correlations within phase II have been previously
obtained from polarized neutron scattering experiments [33],
indicative of short-range magnetic arrangements with [ 1

2
1
2

1
2 ]

wave vector. Another mechanism that may lower the entropy
below the Kramers’ minimum is the Kondo coupling (cf. last
paragraph).

C. The entropy in the paramagnetic range

The calculation of the phonons contribution to the spe-
cific heat of hexaborides, based on a better account of
the cage system dispersion curves, yields a satisfactory de-
scription for LaB6. It shows that, at temperatures below
50 K, it is the cage oscillator frequency that is the main
determinant of the changes across the series. No simple

method allows extrapolating from one element to another: An
experimental determination is required. In the case of CeB6,
the used value is derived from the phonons’ dispersion curves
obtained from inelastic neutron scattering. Thanks to the
correction introduced by the first-order magnetic transition
and to this improved description of the phonon contribution,
an improved experimental determination of CeB6 magnetic
entropy has been obtained. The temperature variation of this
entropy displays the paramagnetic plateau characteristic of the
fourfold degenerate �8 CEF ground state. This plateau does
not materialize immediately above the ordering temperature,
but for temperatures higher than 30 K. This is ten times higher
than the ordering temperature of CeB6 and unlikely to relate
to pair correlations.

1. The cage crystal field interpretation

The temperature scale of the abnormal thermal evolution
of CeB6 paramagnetic entropy fits with another peculiarity
of this compound: As evidenced from Raman and thermal
neutrons scattering, the �8 − �7 CEF excitation shifts towards
higher energies below 20 K. In the cage context, with an
orbitally degenerate central CEF ground state, both the en-
tropy and spectroscopy anomalies can be related to a single
mechanism: the dynamical splitting of the CEF ground state as
a result of the rare-earth movement. An attempt, based on this
crystal field mechanism, at describing the entropy anomaly of
CeB6 is satisfactory, at the price of the introduction of two
parameters describing the CEF change for an offset Ce3+. An
associated shift with the temperature of the CEF �8 − �7 ex-
citation is predicted, the simplest estimate yielding about one
third of the reported value. However, as the computed values,
confronted with the experimental data, result from Boltzmann
and spatial averages, there is some intrinsic indetermination
in this CEF description. In the case of CeB6, at least four
sets of parameters are consistent with the specific heat data.
Additional experimental data may allow us to distinguish
between them, but this also requires some theoretical effort in
order, for instance, to describe experiments under an applied
magnetic field. The first magnetic field effect one might
consider is the emergence of a magnetization, reflecting the
first-order magnetic susceptibility. In the case of CeB6, this
might be inconclusive. Indeed, however effective it might be
in the description of the zero field thermodynamical anoma-
lies, the cage crystal field model cannot significantly improve
the description of the first-order magnetic susceptibility. As
illustrated in Ref. [21], in case the CEF ground state splits
inside the cage into magnetic doublets, only a small correction
to the magnetic susceptibility is to be expected. Moreover, a
description of CeB6 paramagnetic susceptibility, based on the
known crystal field complemented with exchange couplings,
is far from satisfactory in face of the published temperature
dependencies of the inverse magnetic susceptibility [1,34]: Up
to room temperature, the computed CEF susceptibility is 10%
to 15% smaller than the experimental one, which forces to use
extravagantly large values for the negative exchange coupling
constant. It seems that the measured susceptibility includes
a significant contribution from the conduction electrons,
opposite to that of the Ce3+ ion, and no CEF based model
can account for that. Another test of the cage crystal field
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interpretation would be to look for signatures of the associated
centrifugal Jahn-Teller effect [21]. This effect has direct, but
moderate, consequences on the system volume and vibration
frequency of the rare earth. In CeB6, as for two other rare-
earth hexaborides with non-Kramers CEF ground states, PrB6

and NdB6, the thermal expansion coefficients deduced from
x-ray diffraction [35] display a minimum in the paramagnetic
range, slightly below 20 K. These x-ray results are consistent
with the low temperature thermal expansion investigation of
CeB6 and CexLa1−xB6 crystals [36]: CeB6’s linear thermal
expansion coefficient α(T ) significantly decreases from TQ

down to a minimum close to T = 15 K. At lower Ce con-
centration, in addition to this minimum, a maximum in α(T )
can be discerned just below 5 K. The authors of Ref. [36] have
ascribed this thermal expansion anomaly to the Kondo effect.
The cage CEF scenario provides an alternative interpretation,
in the form of the centrifugal Jahn-Teller effect and its natural
lattice consequences: Unlike the Kondo coupling, CEF effects
directly involve the crystal’s charge distribution. As regards
the Jahn-Teller changes in the oscillator frequency, a softening
of associated phonons in the percent range is expected [21].
Its detection requires high resolution, infrared or neutron,
spectroscopic techniques. Presently, there are no available
experimental results fulfilling these requirements.

2. On the interference of the Kondo coupling

CeB6 is often referred as an archetypical Kondo lattice
system, a logarithmic dependence and minimum being ob-
served in the temperature variation of the resistivity [26].
The reported values for the Kondo temperature TK are fairly
low [2], below 10 K, which means that the screening of the
Ce3+ spin is ineffective down to low temperatures in the para-
magnetic range. This is confirmed at lower temperature by
the antiferromagnetic ordering, which attest to the dominance
of the RKKY interactions over the Kondo coupling. Instead
of the here considered cage-split �8 CEF ground state, one
could tentatively ascribe the excess of specific heat in the
low-temperature range to the Kondo coupling. This requires
complex theoretical treatments and most of the work in this
sense is devoted to the impurity Kondo problem, not to the

Kondo lattice. Theoretically [37,38], a specific heat peak is
predicted, reflecting the screening of the Ce3+ spin and the
associated reduction of the magnetic entropy. The peak is
centered around TK and, on a logarithmic temperature scale,
extends over two decades. There is available experimental
data, obtained from measurements on dilute CexLa1−xB6

systems, that can be compared with these impurity models
[39,40]. In these systems, a specific heat peak is indeed
observed at low temperature, close to the estimated TK of
about 1 K, on which the authors of Refs. [39,40] adjusted the
Kondo impurity models’ peaks. The entropy variations in the
low temperature range, as computed from the experimental
specific heat peak or from its adjusted theoretical description,
remain below R ln 3 J/(K mol). In order to explain the differ-
ence with the quadruplet R ln 4 J/(K mol) value, the authors of
both Refs. [39,40] invoke a split �8 level, after the results of
Ref. [10]. Extrapolating to the situation of the concentrated
CeB6, one might conclude that, there also, the description
of the entropy variation requires accounting for the split �8.
This is precisely the basis of the cage CEF model. Both
models can account, at least partially, for the low-temperature
entropy variation. The crystal field model cannot totally lift
the magnetic degeneracy, but only the orbital part, yielding
a minimum R ln 2 J/(K mol) magnetic entropy. In principle,
the Kondo coupling can, as the RKKY couplings in CeB6,
completely lift the degeneracy. These two approaches are
actually nonindependent, nor exclusive, and the best model
would encompass both the cage CEF and Kondo coupling.
Evidently, this would represent a considerable theoretical
undertaking.
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