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Several generalizations of one-dimensional and two-dimensional exactly solvable low-dimensional quantum
spin-1/2 models, some of which contain off-diagonal terms of the exchange tensor, are proposed. It is shown
that off-diagonal terms of the exchange (symmetric or nonsymmetric with respect to the exchange of spins)
yield renormalization of the diagonal ones and phase shifts. The latter can be moved to eigenfunctions of the
models and do not affect eigenvalues for open geometries of the lattices. For closed geometries of the lattices
the phase shifts manifest themselves in the finite size corrections. The advantage of the proposed models is in
their simplicity and in possible realizations of the models in a number of applications, e.g., for the description
of the wide variety of correlated electron systems, ultracold atoms, and in the theory of topological quantum
computation.
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I. INTRODUCTION

In the first quantum mechanical theories of magnetism [1]
the direct exchange interaction was proposed to be the conse-
quence of the Coulomb interaction between electrons carrying
spin-1/2. It was proved that namely such an interaction is
mainly responsible for the long-range magnetic ordering in
condensed-matter physics. The Hamiltonian of the exchange
coupling H = −J

∑
nm(Sn · Sm) [here Sn is the spin operator

of the nth electron, (aḃ) is the scalar product, and J > 0 is de-
termined by the Coulomb integral and the exchange integral]
was supposed to be isotropic in spin components and sym-
metric under the exchange of spins. Then it was recognized
[2] that the sign of J can be also negative, depending on the
values of the Coulomb integral, the “bare” exchange integral,
and the overlap integral. Much later it was proposed to take
the relativistic spin-orbit interaction into account [3], within
the formalism of the indirect exchange coupling [4]. The
overlaps of electron wave functions (the key ingredient of the
exchange interaction) appeared to be strongly dependent on
positions and orientations of the wave functions of magnetic
ions and ligands (nonmagnetic ions, surrounding magnetic
ones, via which the indirect exchange/superexchange cou-
pling was realized). The theory of the anisotropic exchange
interaction was developed, e.g., in Ref. [5]. The Hamiltonian
of the exchange coupling of spins of electrons in the gen-
eral form can be written as H = ∑

nm

∑
β,β ′=x,y,z Sβ

n Jβ,β ′
|n−m|S

β ′
m ,

where Jβ,β ′
|n−m| is the 3×3 tensor. It means that in general
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nine independent parameters govern the anisotropy of the
exchange interaction. The exchange coupling usually rapidly
decays with distance between spins |n − m|. In what follows
we limit ourselves with the nearest-neighbor spins, and for
simplicity we use the notation Jββ ′

. The components of the
exchange tensor are determined by the spin-orbit interaction
of electrons, the symmetry of the positions, and the orien-
tations of the electron wave functions of magnetic ions and
ligands in the magnetic crystal. In the absence of the external
magnetic field the tensor Jββ ′

can be diagonalized, so that
only three main diagonal components Jββ define the magnetic
anisotropy. However, when studying the properties of real
magnetic materials one often has to consider off-diagonal
components. For instance, nonsymmetric under the exchange
of spins off-diagonal components of the exchange interaction
are known as the Dzyaloshinskii-Moria (DM) coupling [5,6].
Symmetric off-diagonal components (sometimes called the
� couplings) appear to be very important in the interaction
of orbitals of strongly correlated electron systems [7], in
particular in the so-called compass models [8] or in the so-
called Kitaev materials [9], where their origin is related to
pseudodipolar interactions, and also in Rydberg cold atoms
with van der Waals interactions [10] and optical lattices with
trapped ultracold fermions [11].

Unlike higher-dimensional models, their low-dimensional
quantum counterparts permit one to obtain exact (nonpertur-
bative) results [12]. The necessity of nonperturbative stud-
ies in low-dimensional quantum systems is caused by the
enhanced quantum and thermal fluctuations there, due to
the features in the density of states [13]. Exactly solv-
able models are not only important for the pure quantum
many-body theory. Nowadays they are extremely useful in
a number of areas, which are described by that theory, like
real quasi-low-dimensional spin systems, manufactured dur-
ing the last decade, topological insulators, ultracold atoms
in optical traps, strongly correlated electrons interacting via
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superexchange orbital interactions, sets of qubits (subjects of
quantum information and computation), etc. Most of the men-
tioned issues cannot be explained in the framework of weak
couplings (the perturbative theory) or the mean-field-like
approach. Low-dimensional exact quantum solutions provide
a complete and unambiguous picture of correlated quantum
many-body systems and play an essential role as the basis
for further applications of perturbative and mean-field-like
methods. Low-dimensional quantum spin models often reveal
properties of quantum spin liquids. In the latter the magnetic
order is suppressed down to the lowest temperatures due to the
frustration of spin-spin interactions and/or enhanced quantum
fluctuations in low-dimensional systems [14]. In many quan-
tum spin liquids, emergent magnetic excitations are fermions
(as a rule they carry fractionalized spin), instead of magnons
(bosons, which carry spin 1), for ordered magnetic systems.
Notice that, while bosons have their classical counterparts,
fermions, instead, have a totally quantum nature.

In this paper, we consider several generalizations of the
well-known spin-1/2 exactly solvable models. Our goal is to
find other exactly solvable quantum spin models, in particular,
the ones with off-diagonal components of the exchange tensor.

II. CONSTRUCTION OF ONE-DIMENSIONAL
EXACTLY SOLVABLE MODELS

The idea of the present work can be shown using the
known example: The one-dimensional spin-1/2 chain with
the uniaxial magnetic anisotropy, which contains off-diagonal
terms of the exchange tensor, namely, the DM interac-
tion. The Hamiltonian has the form HD = ∑

n[J (Sx
nSx

n+1 +
Sy

nSy
n+1) + D(Sx

nSy
n+1 − Sy

nSx
n+1) + JzSz

nSz
n+1]. Here Sx,y,z

n are
the operators of the projections of the spin-1/2 situated at
the site n; J and Jz are the components of the anisotropic
(uniaxial) exchange interaction; and D is the DM cou-
pling. The model is known to be exactly solvable [15].
The simplest way to prove its integrability is to rewrite it
in the form HD = (1/2)

∑
n[

√
J2 + D2(S+

n S−
n+1eiφ + H.c.) +

2JzSz
nSz

n+1], with the cylic components S±
n = Sx

n ± iSy
n and

tan φ = D/J . Then we use the unitary transformation H1 =
U −1HU , with U = exp[−i(φ)

∑
j jSz

j]. For the open chain,
that transformation removes the phase factor φ, related to
the DM interaction, from the Hamiltonian (for the ring
the latter is translated to the twisted boundary conditions,
which are realized within the Bethe ansatz equations for
quasimomenta [15] and reveal themselves in the finite size
corrections [16]). Hence, using the unitary transformation,
the system with the Hamiltonian, which contains nonzero
off-diagonal components of the exchange tensor, is exactly
mapped onto the exactly solvable Hamiltonian of the XXZ
chain with renormalized values of the diagonal (transverse,
xx and yy) components of the exchange tensor. Obviously,
the unitary transformation does not change the eigenvalues
of the Hamiltonian (up to mentioned renormalization of the
diagonal components, naturally). However, the phase factor,
which is removed from the Hamiltonian, is present in the set of
eigenfunctions. As such, it manifests itself in average values
of many operators. In particular, the phase factor, related to
the DM coupling, reveals itself in the nonzero components of
correlation functions like 〈Sx

nSy
m〉. For example, the ground-

state correlation function 〈Sx
nSy

n+r − Sy
nSx

n+r〉 for the critical
chain −√

J2 + D2 � Jz �
√

J2 + D2 for r = 1 is equal to

〈
Sx

nSy
n+1 − Sy

nSx
n+1

〉 = D

4 f1

[
I1 + Jz√

J2 + D2
I2

]
, (1)

where f1 = √
J2 + D2 − J2

z ,

I1 =
∫ ∞

−∞

dx sinh(λx)

sinh(πx) cosh[(π − λ)x]
,

I2 =
∫ ∞

−∞

xdx

sinh(πx) cosh[(π − λ)x]

×
[

cosh(λx) + sinh(λx) sinh[(π − λ)x]

cosh[(π − λ)x]

]
, (2)

where cos λ = −Jz/
√

J2 + D2. On the other hand, for Jz >√
J2 + D2, the ground-state correlation function is

〈
Sx

nSy
n+1 − Sy

nSx
n+1

〉 = D

2 f2

[
−S1 + f2Jz

(J2 + D2)
S2

]
, (3)

where f2 = √
J2

z − J2 − D2,

S1 =
∞∑

m=−∞
e−2nν tanh(nν) ,

S2 =
∞∑

m=−∞
ne−2nν[(1 − tanh2(nν) − 2 tanh(nν)], (4)

with cosh ν = −Jz/
√

J2 + D2. For the ferromagnetic case
Jz < −√

J2 + D2, the correlation function is zero. Obviously
for the zero nondiagonal components of the exchange tensor,
D = 0, such a correlation function is zero (as well as similar
correlation functions for any r). Those correlation functions
determine the spiral structure of the transverse components
with the spiral (pitch) angle φ in the system, caused by the
DM interaction [15]. Then it is not difficult to generalize
such a scheme for the construction of the exactly solvable
Hamiltonian of the dimerized spin-1/2 chain with the DM
interaction [17].

To follow our strategy, we consider then the spin-1/2 chain
with the biaxial magnetic anisotropy and with off-diagonal
exchange couplings of the DM type:

HbD =
∑

n

[
JxSx

nSx
n+1 + JySy

nSy
n+1 + D

(
Sx

nSy
n+1

− [Jy/Jx]Sy
nSx

n+1

) + JzS
z
nSz

n+1

]
. (5)

Let us rotate each second spin around the axis z through the
angle φ = tan−1[−D/Jx]. Then the phase factor can be re-
moved from the Hamiltonian (or translated to twisted bound-
ary condition) using that unitary transformation. We see that
the same properties are pertinent to that new exactly solvable
model: The Hamiltonian of the system with nonsymmetric
off-diagonal components of the exchange tensor is exactly
mapped to the exactly solvable Hamiltonian of the XYZ spin-
1/2 chain with the renormalized diagonal components of the
exchange tensor. The phase factor defines the pitch angle of
the spiral structure in the xy spin space, which exists due to
nonzero values of correlation functions like 〈Sx

nSy
m〉, etc. [15].
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It turns out that the unitary transformations, which we used
above, are the nonhomogeneous rotations of spins of the chain
around the z axis. Namely, because of that reason the unitary
transformation does not affect the z components of spins, and,
hence, zz components of the exchange tensor. Hence, such and
similar unitary transformations can be used for the models
with the external magnetic field, applied along the z axis.

Now we can use another transformation to show that
the spin-1/2 chain Hamiltonian with symmetric off-diagonal
components of the exchange tensor is also exactly solvable.
Consider the Hamiltonian

Hb2 =
∑

n

(
A
{
(Jx[1 − a] + Jya)Sx

nSx
n+1 + (Jy[1 − a]

+ Jxa)Sy
nSy

n+1 +
√

a(1 − a)(Jy − Jx )
(
Sx

nSy
n+1

+ Sy
nSx

n+1

)} + JzS
z
nSz

n+1

)
, (6)

with 0 � a � 1. The case a = 0 describes the standard XYZ
chain, and the case a = 1 interchanges the values of the
diagonal transverse components of the exchange tensor. The
Hamiltonian can be rewritten as

Hb2 = 1

4

∑
n

{
A
[
J+S+

n S−
n+1 + AJ−

(
S+

n S+
n+1e2iθ

) + H.c.
]

+ 4JzS
z
nSz

n+1

}
, (7)

where S±
n = Sx

n ± iSy
n are the operators of the cyclic

projections of spins, J± = (Jx ± Jy)/2, and θ = sin−1 √
a.

That Hamiltonian is the one of the XYZ chain after the
homogeneous rotation of spins around the z axis through the
angle θ . To prove the exact integrability of the Hamiltonian,
we can first use the Jordan-Wigner transformation
[18]: Sz

n = (1/2)(1 − 2a†
nan), S+

n = ∏n−1
m=0(1 − 2a†

mam)an,
and S−

n = a†
n

∏n−1
m=0(1 − 2a†

mam), where a†
n (an) is

the Dirac operator of creation (destruction) of the
fermion in the site n. The Hamiltonian gets the form
Hb2 = −(1/4)

∑
n{A[J+(a†

nan+1) + J−a†
na†

n+1e−2iθ + H.c.] +
Jz(1 − 2a†

nan)(1 − 2a†
n+1an+1)}. Then, using the unitary

transformation a†
n = eiθ ã†

n, with an = e−iθ ãn, and using

the inverse of the Jordan-Wigner transformation, we can
finally obtain the Hamiltonian in the form of the one
of the XYZ spin-1/2 chain, in which diagonal xx and
yy coefficients of the exchange tensor are multiplied
by A. Removing the phase θ from the Hamiltonian we
get eigenvalues independent of it, while eigenfunctions
do depend on it. At Jz = 0, for Jx > Jy the model is
ordered in the ground state [19] with the components of
the order parameters mx ≡ √

limm→∞(−1)m〈Sx
nSx

n+m〉 and

my ≡
√

limm→∞(−1)m〈Sy
nSy

n+m〉 equal to

mx =
√

J+
2Jx

(
J−
J+

cos2 θ

)1/4

,

my =
√

J+
2Jx

(
J−
J+

sin2 θ

)1/4

; (8)

i.e., the ordering is tilted. The phase factor θ also produces
nonzero nondiagonal correlation functions like 〈Sx

nSy
n+m〉. For

example, we have

lim
m→∞(−1)m

〈(
Sx

nSy
n+m + Sy

nSx
n+m

)〉 = J+
2Jx

(
J2
−

J2+
cos θ sin θ

)1/4

.

(9)

If Jy > Jx, then one has to interchange Jx ↔ Jy and cos2 θ ↔
sin2 θ . If the external magnetic field h along the z axis is
switched on, the components of the order parameter and the
nondiagonal correlation function disappear as [1 − (h/J+)]1/8

and [1 − (h/J+)]1/4, respectively. The action of the phase θ is
equivalent to the action of the phase of the order parameter
in the superconductor; hence, it can reveal itself, e.g., in the
Josephson-like coupling between chains [20], in the circuit
QED one-dimensional system of superconducting charged
qubits [21], and in the braiding of topologically protected edge
Majorana modes belonging to coupled chains [22] for Jz = 0.

Consider the dimerized spin-1/2 chain model with the
Hamiltonian containing symmetric off-diagonal components
of the exchange tensor:

Hbd = −
∑

n

[
A
{
(J1x[1 − a] + J1ya)Sx

n−1Sx
n + (J1xa + [1 − a]J1y)Sy

n−1Sy
n + (J1y − J1x )

√
a(1 − a)

(
Sx

n−1Sy
n + Sy

n−1Sx
n

)
+ (J2x[1 − a] + J2ya)Sx

nSx
n+1 + (J2xa + [1 − a]J2y)Sy

nSy
n+1 + (J2y − J2x )

√
a(1 − a)

(
Sx

nSy
n+1 + Sy

nSx
n+1

)}
+ H

(
μ1Sz

n−1 + μ2Sz
n

)]
, (10)

with 0 � a � 1. Here H is the external magnetic field along
the axis z, and μ1,2 are the effective magnetons for the even
and odd sites of the chain. (Notice that zz coupling can
be added; however, the obtained Hamiltonian is not exactly
solvable.) The limiting case J2x = J1y = 0 describes the one-
dimensional compass model or the one-dimensional limiting
case of the Kitaev honeycomb model. We can apply the
Jordan-Wigner transformation, and the consequent transfor-
mation to Majorana fermions, which removes the phase shift
θ = sin−1 √

a from the Hamiltonian. Then we diagonalize the
obtained Hamiltonian. The eigenvalues of the Hamiltonian
coincide with ones of the known exactly solvable dimerized

spin-1/2 chain model with only diagonal components of the
exchange tensor [23].

The average values of the sum and the difference of the z
projections of the two neighboring spins are

〈
Sz

n−1 ± sz
n+1

〉 = (μ1 ± μ2)H

2N

∑
k

√
α2

k + |βk|2 ± αk

εk1εk2(εk1 + εk2)
, (11)

where αk = μ1μ2H2 − (A2/4)[J1xJ1y + J2xJ2y + (J1xJ2x +
J1yJ2y) cos(2k)] and βk = −(iA2/4) sin(2k)(J1xJ2y − J1yJ2x ).
Depending on the values of H , μ12, J1,2,x,y, and A, there
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can be two, one, or no quantum phase transitions in the
model [23]. It is easy to show that there exist two zero
energy edge Majorana modes in the open chain model for
H = 0. The braiding between such topologically protected
zero modes can manifest itself in operations with qubits
in one-dimensional topological quantum computers. The
removed from the Hamiltonian phase is again present in the
eigenfunctions and can be seen, e.g., in transverse correlation
functions.

III. CONSTRUCTION OF TWO-DIMENSIONAL
EXACTLY SOLVABLE MODELS

Finally, let us consider two exactly solvable generalizations
of the two-dimensional model, namely, the Kitaev honeycomb
spin-1/2 model [24] with off-diagonal components of the
exchange tensor. For that purpose it is convenient to use the
equivalence of the honeycomb and the brick-wall lattices and
the generalization of the Jordan-Wigner transformation [25].
The Hamiltonian of the first model reads

HK1 =
∑

j+n=even

[
J1Sx

j,nSx
j+1,n + J2Sy

j−1,nSy
j,n

+ D
(
Sx

j,nSy
j+1,n − [J2/J1]Sy

j−1,nSx
j,n

) + J3Sz
j,nSz

j,n+1

]
;

(12)

i.e., it contains nonsymmetric (DM-type) off-diagonal com-
ponents of the exchange tensor. Using the rotation of each
j + n = odd spin about the z axis through the phase φ =
tan−1[−D/J1], we get the standard Kitaev model with the φ

dependence either totally removed from the Hamiltonian (for
the open geometry in the respective direction of the brick-wall
lattice) or present in the twist boundary conditions for the
closed geometry. For the latter, it manifests itself in the finite
size corrections to the energy. The phase factor defines the
behavior of the transverse correlation functions, producing
the spiral structure with the angle φ along the x axis of the
brick-wall lattice.

The Hamiltonian of the second exactly solvable Kitaev-like
model with off-diagonal components of the exchange tensor
has the form

HK2 =
∑

j+n=even

{
A
[
J1(1 − a)Sx

j,nSx
j+1,n + J1aSy

j,nSy
j+1,n

− J1

√
a(1 − a)

(
Sx

j,nSy
j+1,n + Sy

j,nSx
j+1,n

)
+ J2aSx

j−1,nSx
j,n + J2(1 − a)Sy

j−1,nSy
j,n + J2

√
a(1 − a)

× (
Sx

j−1,nSy
j,n + Sy

j−1,nSx
j,n

)] + J3Sz
j,nSz

j,n+1

}
, (13)

with 0 � a � 1; i.e., it contains symmetric off-diagonal com-
ponents of the exchange tensor. We can use the generalization
of the Jordan-Wigner transformation [25]:

S+
j,n = exp

⎛
⎝iπ

⎡
⎣ ∑

l,m<n

a†
l,mal,m +

∑
l< j

a†
l,nal,n

⎤
⎦

⎞
⎠a j,n,

S−
j,n = (S+

j,n)+, Sz
j,n = 1

2
− a†

j,na j,n, (14)

with Dirac fermion operators a†
j,n and a j,n. Then for the even

j + n, we can use the transformations a†
j,n = e−iθ (d j,n − ic j,n)

and a j,n = eiθ (d j,n + ic j,n), with c j,n and d j,n being the Majo-
rana fermion operators and θ = sin−1 √

a. For the odd j +
n, we apply the transformations a†

j,n = e−iθ (c j,n − id j,n) and
a j,n = eiθ (c j,n − id j,n). Then the Hamiltonian can be written
as

HK2 = − i

4

∑
j+n=even

(AJ1c j,nc j+1,n − AJ2c j−1,nc j,n

+ 4J3Djnc j,nc j,n+1), (15)

with the quantum numbers Djn = id j,nd j,n+1 defined on each
vertical bond of the brick-wall lattice. Those numbers com-
mute mutually and with the Hamiltonian; hence they act as
the static Z2 field. Obviously, the Majorana representation
of the Hamiltonian (13) (with off-diagonal components of
the exchange tensor) coincides up to the renormalization
multiplier A with the Majorana representation of the Kitaev
model with only diagonal components of the exchange tensor.
Again, the eigenvalues of HK2 do not depend on the removed
phase θ , while eigenfunctions do depend on that phase. The
dependence on θ can be manifested in the behavior of the
transverse correlation functions, in particular in nonzero val-
ues of 〈Sx

nSy
m〉, etc. For the open chain and open ladder limits

of the model Majorana, zero modes exist. Those modes can
manifest themselves in, e.g., the behavior of the topological
Pontryagin index (the winding number) in the momentum
space [26].

It is interesting to point out the limiting case of Eq. (13).
For A = 2, a = 1/2, and J1 = J2, we get the two-dimensional
exactly solvable model with the Hamiltonian

HK2 =
∑

j,n

(
J1

[
Sx

j,nSx
j+1,n + Sy

j,nSy
j+1,n

] + J3Sz
j,nSz

j,n+1

)
.

(16)

That brick-wall model manifests the absence of the anisotropy
between x and y axes in the spin space. Eigenvalues are the
same as those in the standard Kitaev model for J1 = J2. The
model on the honeycomb lattice is also exactly solvable and
has similar properties.

IV. ANALYSIS

Most of the proposed exactly solvable models manifest the
hidden nonlocal string order parameters [25,27].

It is possible to construct exactly solvable models combin-
ing symmetric and nonsymmetric off-diagonal components
of the exchange tensor. The solution can be obtained by the
combination of several unitary transformations, which move
the phases from the eigenvalues of the Hamiltonian to the
eigenfunctions. Similar generalizations can be obtained for
the exactly solvable models with three-spin interactions, for
example, for one-dimensional and two-dimensional models,
containing terms like Sx,y

n−1Sz
nSx,y

n+1, etc. For such models it
is also possible to introduce either DM-like nonsymmetric
off-diagonal terms or symmetric ones, using the procedure
described above. It is also possible to generalize other ex-
actly solvable spin-1/2 models [28] (as well as higher-spin
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models and models on higher-dimensional lattices) by adding
symmetric and/or nonsymmetric components of the exchange
tensor, as is proposed in the present study.

The phases, which appear in the proposed generalizations
of exactly solvable Hamiltonians, for systems like [7–11] have
the internal spin-orbit nature. However, one can consider such
phases as the consequence of the external magnetic or electric
fluxes piercing closed periodic lattices (as one-dimensional
rings or two-dimensional cylinders). Such phases (mostly
related to the nonsymmetric off-diagonal case) yield the
Aharonov-Bohm-Casher effect [29] and produce persistent
currents in closed geometries [30]. Similar phases, caused by
the external magnetic fluxes, in the symmetric off-diagonal
case were recently proposed to be present in Mott insulators
with spin-orbit coupling [31].

V. SUMMARY

In summary, we have proposed several generalizations of
one-dimensional and two-dimensional exactly solvable quan-

tum spin-1/2 models, some of which contain nonsymmetric or
symmetric, with respect to the exchange of spins, off-diagonal
terms of the exchange tensor. Off-diagonal terms produce
renormalization of the diagonal ones, and phase shifts, which
can be moved to the eigenfunctions of the system, and do not
affect eigenvalues for open lattices, or manifest themselves
in finite size corrections for closed geometries of the lattices.
The advantage of the proposed models in comparison to other
exactly solvable models is in their simplicity and in possible
realizations of the models in a number of applications. For
example, proposed exactly solvable models can be used in
the theoretical description of correlated electron systems with
orbital exchange couplings, quantum spin liquids, and ultra-
cold fermionic atoms trapped in optical lattices, and in the
models of topological quantum computers using fault-tolerant
anyonic computation.
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