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We consider the class of dual-unitary quantum circuits in 1+ 1 dimensions and introduce a notion of
“solvable” matrix product states (MPSs), defined by a specific condition which allows us to tackle their time
evolution analytically. We provide a classification of the latter, showing that they include certain MPSs of
arbitrary bond dimension, and study analytically different aspects of their dynamics. For these initial states,
we show that while any subsystem of size ¢ reaches infinite temperature after a time ¢ o ¢, irrespective of the
presence of conserved quantities, the light cone of two-point correlation functions displays qualitatively different
features depending on the ergodicity of the quantum circuit, defined by the behavior of infinite-temperature
dynamical correlation functions. Furthermore, we study the entanglement spreading from such solvable initial
states, providing a closed formula for the time evolution of the entanglement entropy of a connected block. This
generalizes recent results obtained in the context of the self-dual kicked Ising model. By comparison, we also
consider a family of nonsolvable initial mixed states depending on one real parameter 8, which, as g is varied
from zero to infinity, interpolate between the infinite-temperature density matrix and arbitrary initial pure product
states. We study analytically their dynamics for small values of 8, and highlight the differences from the case of

solvable MPSs.
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I. INTRODUCTION

The extensive study of isolated quantum matter out of
equilibrium carried out in the last two decades reminded us,
once again, of how tremendously complex the quantum many-
body dynamics can be [1-3]. Even though the past decade has
witnessed the development of powerful numerical techniques
based on matrix product states [4] (MPSs) that are able to de-
termine, quite generally, the dynamics of quantum many-body
systems in one spatial dimension [5—10], these methods are
usually limited to small or intermediate timescales [10]. This
is due to the generic linear growth of the entanglement entropy
[11], which is a major obstacle for the MPS representation of
the time-evolving state. For this reason, it is of great interest to
find instances where the many-body dynamics can be solved
exactly, allowing for an analytic study of interesting physical
phenomena, such as the emergence of thermalization [12].

Integrable models provide a natural arena to search for
such solvable examples [13,14] and allowed for great progress
in the characterization of large-time properties of many-body
systems out of equilibrium [14—17]. The computation of the
full dynamics, however, remains a challenge. In particular,
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while an impressive number of results have been derived
in theories that can be mapped onto free-fermionic sys-
tems (see Ref. [14] for a comprehensive review), only a
few special cases exist where analytic computations could
be done in the presence of genuine interactions [18-29].
Furthermore, integrable models are by their own nature
very special, and can not be representative of generic sys-
tems, which are expected to display qualitatively different
features.

Recently, increasing attention has been devoted to the class
of random unitary quantum circuits, which provide an alter-
native theoretical laboratory for the study of the many-body
dynamics [30—44]. The main appeal of these systems is that
they represent minimally structured dynamical models where
analytic results can be obtained beyond the realm of inte-
grability. One typically considers a set of finite-dimensional
Hilbert spaces sequentially updated by unitary gates, which
are chosen randomly out of a suitable probability distribution.
Analytic predictions for physical quantities are then obtained
after averaging over disorder realizations [36—41]. This ap-
proach allows one to obtain exact results for quantities noto-
riously hard to compute, such as out-of-time-ordered correla-
tors (OTOCs) [35,39], operator-space entanglement entropies
[45-47], and other measures of quantum chaos such as the
so-called tripartite mutual information [48,49]. Of particular
interest for our work are the settings (sometimes called local
random unitary quantum circuits) where the unitary gates cou-
ple only neighboring sites, simulating the “local dynamics” of
generic many-body quantum systems [34—41]. One can still
wonder, however, whether the presence of disorder averages
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gives rise to qualitative differences when compared to clean,
homogeneous systems.

In this respect, an interesting class of quantum circuits
without disorder, called “dual unitary,” was recently intro-
duced [50], for which several dynamical features could be in-
vestigated analytically. These systems implement a dynamics
in which at each time step the configuration of the system is
updated by applying a product of identical unitary gates on
neighboring sites. Furthermore, as a defining feature, these
gates remain unitary under a reshuffling of their indices. Re-
markably, this class was shown to include instances of unitary
dynamics both integrable (i.e., with local conservation laws)
and chaotic, providing a rare example where the differences
between the two can be analyzed to a high degree of control.

Previous works on these circuits focused on the study of
infinite-temperature dynamical two-point functions [50], and
on the growth of the operator-space entanglement entropy
[51,52]. It is then natural to wonder whether the class of
dual-unitary circuits can also provide solvable models for
the quantum dynamics arising from given initial states. This
question represents the main motivation for this work.

For one particular dual-unitary circuit, corresponding to
the self-dual point of the kicked Ising model [53-57], this
problem has been already partially addressed in Ref. [58],
where it was shown that for two special families of initial
product states the growth of bipartite entanglement entropy
could be computed exactly. In this paper we show that there
exists a much broader family of “solvable” initial states, for
which the dynamics can be tackled analytically, irrespective
of the choice of the dual-unitary gates. This class includes
MPSs of arbitrary bond dimension, and allows for the ex-
act computation of several quantities beyond the growth of
bipartite entanglement entropy, including the spreading of
two-point correlation functions, and the thermalization time
of finite subsystems. In this work we will focus on the case
of spatially homogeneous systems, with a “Floquet-type”
time evolution in which the same product of unitary gates
is applied periodically in time. We stress, however, that our
constructions also work for circuits with explicit space-time
modulations, and can be used to obtain analytic results also in
that case.

The rest of this paper is organized as follows. In Sec. I we
introduce the local quantum circuits considered in this work,
while in Sec. III we define the class of solvable initial states
with respect to the dual-unitary dynamics. These are classified
in Secs. IV and V, while their time evolution is studied in
Sec. VI. The dynamics arising from a set of nonsolvable states
is studied for comparison in Sec. VII, while our conclusions
are reported in Sec. VIII. Finally, the most technical aspects
of our study are consigned to two appendices.

II. DUAL-UNITARY DYNAMICS

We consider a chain of 2L sites, each one associated
with a d-level system. The corresponding Hilbert space is
thus Hy;, = by ® - -+ @ hyy, where hj =~ C?. In the following,
we will denote the corresponding basis vectors by |j), j =
1,...d. We are interested in local quantum circuits, which
implement a particular periodically driven unitary evolution.

Specifically, given the initial state |¥y) we study the quantum
dynamics defined by

|Wor1) = U- W), 1
|Wory2) = Uy [W2rp1) (2)
where ¢ € N, while
U-=Up3Us5 ... Usp—201-1Ua 1, (3)
Uy =UipUs s ... Uspo1 o1 4)

Here, U, ; are two-site unitary operators acting on the product
of local spaces h; ® hy, and periodic boundary conditions are
implemented in Eq. (3). We will mainly consider the case of
infinite systems, namely, we will study the above dynamics in
the limit L — oo.

We focus on the special class of dual-unitary quantum
circuits recently introduced in Ref. [50]. These circuits are
defined as follows. Let U be a unitary gate, and define U as
the operator given by the following reshuffling of indices:

(k| ® (£101i) ® 1)) = (jl ® (£|U i) ® [k). &)

We say that U is the dual gate of U. Then, dual-unitary circuits
are defined by local unitary gates U such that U is also unitary,
namely,

vUut=U'U =1, (6)

00" =070 =1. (7

This definition is reminiscent of those of perfect tensors and
2-unitary matrices, introduced in Refs. [59,60], respectively.
The former are defined as tensors which are isometric opera-
tors for any bipartition of their indices into two subsets (not
necessarily of the same size). The latter are matrices, acting
on the tensor product of two qudits, that remain unitary for
any bipartition of indices into two pairs. We note, however,
that dual-unitary gates are generally neither 2-unitary matrices
nor perfect tensors since they only correspond to unitary
operators for two special bipartitions of the indices. Finally,
we mention that the partitioning of indices in the definition
of dual unitarity is the same appearing in the one of the
cross-norm and realignment criteria for separability [61-63].

The dual-unitary condition can be naturally expressed us-
ing the customary tensor-network graphical representation of
quantum circuits. In this language, matrix elements of local
operators are depicted as boxes with a number of incoming
and outgoing legs. To each leg corresponds an index associ-
ated with one of the local sites on which the local operator
acts on. In particular, for the operators U and U™ we have the
representation

k l k l

Uty = i (U ):( )

i J i J
When legs of different operators are joined together it is

understood that one should sum over the index of the corre-
sponding local space. Finally, an explicit label for the legs can
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be omitted when it does not generate confusion. Using this
notation, Eq. (6) can be rewritten as

2Kl

while Eq. (7) reads as

=1 - = _J o

where continuous solid lines represent the identity operator.

In the case of qubits, i.e., circuits with local dimension d =
2, it was shown in Ref. [50] that the most general dual-unitary
gate reads as

U=eus @u)V[J1(v- ® vy), an
where ¢, J € R, us, v+ € SU(2) and

T T ,
VIJ] = exp [ - i(zox ®o* + Za} Qo +Jot ®az)j|.
(12)

Furthermore, it was shown that this family includes both
integrable [64—66] and nonintegrable cases. In particular, it
contains a full parameter line of the integrable trotterized XXZ
chain [65,60]

Uxxz[J] = VIJ], 13)

and a quantum circuit representation of the self-dual kicked
Ising (SDKI) model

Uspiilh] = e " ¢'57" @ 57 V[0]e ™ @1, (14)

with

V0] =57 @ e 17V[0]eTT @7, (15)
We recall that the dynamics defined by the gate (14) is
integrable for 4 = 0, while it is chaotic otherwise [50], and,
accordingly, in the latter case its spectral form factor is
described by random matrix theory [57].

III. SOLVABLE INITIAL STATES

Even for dual-unitary quantum circuits, the computation
of the time evolution from arbitrary initial states appears to
be extremely hard. Still, in the special case corresponding
to the self-dual kicked Ising Floquet dynamics, it was found
that the evolution of the bipartite Rényi entropies could be
computed exactly for a particular family of product states [58].
This result relied on a specific mathematical property of the
latter, which was called “separating.” In this section we see
that a similar logic can be followed for arbitrary dual-unitary
circuits; in particular, we show how one can introduce a
natural notion of “solvability” for a given initial state, and how
this relates to the “separating” property in the special case of
Ref. [58].

We consider a generic initial state |\IJ(§) in the form of an
MPS

d

>0 w(A AR i), (16)

where A"/ are matrices of dimensions x j X Xj+1. Since we are
interested in the limit of infinite system sizes, it is natural to
restrict to initial states that are invariant under translation of
p sites, where p is some integer number. For reasons that will
become clear later, we choose in the following p = 2, which
also contains the class of translationally invariant states. In
this case, we can rewrite

d

W)= 3 @B LA B i), (1)

so that now |Wk) only depends on two sets of matrices {A’}%_,
and {B'}_, of dimensions x x x’ and x’ x x, respectively.
Finally, we consider MPSs that are normalized in the thermo-
dynamic limit, namely,
lim (W |we) = 1. 18
ngo( 0| %s) (18)
In analogy with the previous section, we can make use of

a standard graphical notation and represent the individual
tensors as

1

1
,. J} | * (19)
(A, = koo (BY =g ko
(A = J koo (B =] ko
(20)

l 1

so that MPSs are represented by a sequence of circles con-
nected by lines, with additional outcoming legs corresponding
to the physical local spaces.

To isolate the special property that the MPSs (17) should
have in order to generate an exactly solvable dynamics, it is
instructive to consider the computation of the time evolution
of one-point functions. Specifically, we consider (W/|O; |W]),
where O, is an arbitrary local operator acting on site j = 1. A
pictorial representation of this expectation value is reported in
Fig. 1, where we employed the graphical notations introduced
above. Borrowing standard ideas from the literature on tensor
networks [4,9,67], one can write

Jim (Wf|O|w}f) = klim tr[EX(0)Ep, (HE (1)), (1)

where E (¢) and Ep, () are appropriate transfer matrices acting
on the tensor product of 2¢ 4 2 local sites along the “trans-
verse direction.” There are several (in general inequivalent)
ways to define these operators. For the purpose of the present
discussion, it is useful to define E(¢) and Ep, (t) directly in
terms of the elementary tensors in Egs. (8), (19), and (20).
In particular, using a graphical notation and focusing for
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FIG. 1. Pictorial representation of a time-dependent one-point
correlation function. In the figure, an initial two-site shift invariant
MPS |W}) is time evolved by applying ¢ = 4 layers of unitary gates.
The operator O, localized at j = 1, is represented by a small black
dot, while black dashed lines enclose the transverse transfer matrix
E(1) [cf. Eq. (22)].

concreteness on the case where ¢ is even, we can define

t+2 t+2

Eo,(t) =0, ©(22)
t+1 t+1

Here, the right outcoming 2¢ + 2 legs correspond to the
input space on which E(¢) and Ep,(t) act on. The va-
lidity of Eq. (21) is straightforwardly established. Indeed,
one can simply note that the graphical representation for
tr[E*(t)Eo, (t)E*(¢)], which is obtained by placing 2k + 1
transfer matrices side by side, is the same as for the expec-
tation value of (¥;|O;|¥;) in a chain of 4k + 2 sites (where
periodic boundary conditions are implemented).

Next, suppose that the largest eigenvalue Ay of E(¢) is
nondegenerate; more precisely, suppose that its algebraic
multiplicity [namely, the number of diagonal elements in the
Jordan form of E (¢) that are equal to A¢] is 1 and that there are
no other eigenvalues with the same absolute value. Then, for
large L

(WH| W) = w[E@)"] ~ Ag, (23)

where we used that the length of the system is 2L. Since
(WEWE) = (W W), Eq. (18) implies Ao = 1. In turn, this

yields
Jim (U701 [ W) = (LIEo, ()IR). 24

where we denoted by |L) and |R) the left and right eigenstates
of E(¢) associated with Ag, with the normalization (L|R) = 1.
In general, the evaluation of Eq. (24) can only be done numer-
ically for small times. However, for dual-unitary circuits there
exist a class of states for which |L) and |R) can be determined
exactly.

Consider in particular an initial two-site shift invariant
MPS, as defined in Eq. (17), and suppose that there exists a
x -dimensional matrix S such that

d
) 4 1
Z(A’B")S(AJB")T = 351, iS. (25)
k=1

Then, one can show that

t+1
1
Ry =@ | —= D1 ® i) a—ssa
k=2 ‘/3 j=1
X
| Y SpalBh @ l)ssn (26)
o,f=1

is a right eigenstate of E(r) with eigenvalue Ay = 1. Here,
So.p = (@|S|B) are the matrix elements of S in the basis
{|oz)}(’x‘=1 of the auxiliary space associated with the initial
MPS. The proof can be carried out graphically by noting that
Eq. (25) can be represented as

e

where we introduced the following notation:

[0
Sg.a = . (28)

B

Indeed, as shown in Fig. 2, this allows one to compute the
action of E(t) on |R) by making use of the diagrams in
Egs. (10) and (27).

The above discussion motivates us to introduce the notion
of solvable initial states for the quantum dynamics, and take
Eq. (27) as a defining property of solvability. A priori, how-
ever, this condition alone is not sufficient to guarantee the
uniqueness of the leading eigenvalue, which is necessary, for
instance, to obtain Eq. (24). Accordingly, we say that a two-
site shift invariant MPS [as defined in Eq. (17)] is solvable
with respect to the class of dual-unitary quantum circuits if
the following two conditions are satisfied:

Cl. The transfer matrix E(¢) has a unique eigenvalue
Ao with largest absolute value, 1o = 1 and X has algebraic
multiplicity 1 V¢ € N.
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FIG. 2. Graphical representation of the transfer matrix E(¢) act-
ing on the state |R) defined in Eq. (26), for = 4. By making repeated
use of the diagrams in Eq. (10), and finally using Eq. (27), one
directly obtains E(¢) |R) = |R).

C2. There exists a nonzero y-dimensional matrix S satis-
fying Eq. (25) .

As we will see in the following, condition C1 could be
removed. Indeed, as it will be clear from our derivations, the
sum of k MPSs satisfying C1 and C2 gives us another MPS
whose transfer matrix E(¢) has k known eigenvectors with
maximum absolute value, and for which analytic results could
be derived. However, condition C1 allows us to classify the
most “elementary” solvable states, from which all the others
can be built simply out of linear superposition.

It is worth to discuss a connection between this work
and the findings of Refs. [9,67], where a folding technique
to contract infinite tensor networks was introduced. Indeed,
it can be seen that the solvable initial states are such that
the leading right eigenvector |R) of E(¢) is a product state
in the folded tensor network introduced in [9], in analogy
with what happens from different initial states in the toy
model studied in Ref. [67]. Note, however, that the latter
was manifestly noninteracting, while the dual-unitary circuits
generally implement a chaotic time evolution [52], making the
dynamics of solvable initial states nontrivial.

We also note that the logic of this paper is similar to that
of Refs. [68,69], where it was shown that for any Bethe-
ansatz integrable Hamiltonian it is always possible to find
“integrable” MPSs for which the quantum dynamics can be
tackled analytically. In that case, these MPSs were defined as
the initial states for which the transverse transfer matrix E (¢)
(obtained after a discretization of time through an appropriate
Trotterization procedure [65]) becomes Bethe-ansatz inte-
grable, so that its eigenvectors can be determined exactly. In
our case, we stress that the transfer matrix E(¢) corresponding
to solvable MPSs is in general not Bethe-ansatz integrable
and, accordingly, we only have access to the eigenstate with
largest absolute value.

Finally, before leaving this section, we recall that there is
a close relation between the above definition of solvable and
that of “separating” initial states, as defined in Ref. [58]. This
is reported in Appendix A, to which we refer the interested
reader.

IV. CLASSIFICATION OF THE SOLVABLE
INITIAL STATES

In this section, we proceed by providing a complete classi-
fication of the states that can be described by solvable MPSs
in the thermodynamic limit. This is achieved by Theorem 1,
which is stated below. The proof of the latter, which is based
on well-established techniques in quantum information and
tensor network theory [4,70,71], is rather technical and the
interested reader can find it in Appendix B. In the rest of
this section we only provide the definitions that are needed
in order to present its statement.

We begin by introducing the following parametrization for
two-site shift-invariant MPSs:

M)

d
— Ztr(M(i"iZ)M(i3’i4) L M(iszlfizL))“‘l ... i), (29)

{ij}
where {M©J )}f j=1 is a single set of x-dimensional matrices,
which encode all of the information stored in the sets {A/ }?zl

and {B/ }?:1. We note that the solvability condition (25) can be
written in terms of the tensors M@/ ag

d
ZM(f,k)S(M(j,k))T — 25,-,1»5. (30)

k=1

Next, we provide two additional definitions that are needed
in order to state our main result. First, let {|CI>3)}L be a class
of states defined on systems of increasing (even) sizes. We
say that {|¢>6)}L is equivalent to the class of two-site shift-
invariant MPSs {|‘-If(§(/\/l))} 1 if all local correlation functions
coincide in the thermodynamic limit, namely, if VR € N

lim (®f|Or|®f) = lim (WF(M)|Or|WHM)), 3D
L—o0 L—o0
where Oy is any observable acting nontrivially only on a finite
product of local Hilbert spaces hj ® --- ® hj,. In this case,
we also say that |<Dé) and |‘I’é(/\/l)) are equivalent in the
thermodynamic limit.

Second, we recall the well-known notion of injectivity
[4]: we say that a two-site shift-invariant MPS |\l’é(/\/l)) is
injective if the linear map

d
M : X — Ztl‘(XM(il’iZ) B .M(iszlyizL))h'l’ o) (32)
{i;}

is injective. It can be proven [4] that if |\IJ(§(M)) is injective
for L > 0, so is for L’ > L. This means that we can define the
class {|W§(M))}L to be injective if |\I/(§(/\/l)) is injective for
L sufficiently large.

Using the above definitions, we are now in a position to
state one of our main results, i.e., the following theorem.

Theorem 1. The state |d>6) is equivalent to a solvable MPS
|WE (M) satisfying conditions C1 and C2 if and only if | D)
is equivalent to a two-site shift-invariant MPS I\I'(I)‘ (N)) which
is injective (for L sufficiently large) and such that

d
ZN(f,k)(N(.iqk))T — %8[’1'. (33)

k=1
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As we already mentioned, the proof of this theorem is
rather technical, and is therefore reported in Appendix B.

At this point, it is important to note that Eq. (33) also allows
us to write the left eigenvector of the transfer matrix E(¢).
Indeed, it is not difficult to show that Eq. (33) implies

d
Sveoyvun = Ly (34

k=1

from which it follows that right and left eigenvectors are
equal, namely,

t+1 d
1
L) =R =@ | —= D 11k ® )23
k=2 ‘/E_,':l

1 &
®<ﬁ (; la); ® |0‘>2t+2)~ (35)

Altogether, Theorem 1 provides us with a useful criterion
to construct solvable MPSs, as we now explain. Given the
tensors V@), we begin by defining the matrix W (N\) acting
on the tensor product C? ® C* via

(il ® (]| W) ) ® |B) = N1y 5, (36)

wherei, j=1,...d,a,8 =1,...x, so that Eq. (33) can be
straightforwardly rewritten as

WWIW W) = 1. (37)

This equation is particularly useful: when combined with
Theorem 1 it tells us that solvable states can be completely
parametrized by matrices W € End(C¢ ® CX) that are uni-
tary. Next, note that if [W§ (N)) is an MPS satisfying Eq. (33),
then the same is true for the MPS

L
(W) = | T [luajvaji] | |95 N)), (38)
j=1
where u;, v; € U(d) are arbitrary unitary operators acting on
the local Hilbert space /. This means that solvable MPSs can
be classified up to products of local unitaries. On the level of
the matrix W ()V'), this transformation reads as

W) — 0], @ LOWW\)(u; ® 1), (39)

where 1, is the identity on CX.
In the next section we see how the above consideration can
be used to construct explicitly solvable MPSs.

V. QUBIT SYSTEMS: EXPLICIT SOLUTIONS

In this section we address the explicit construction of
solvable MPSs for the simplest case of a qubit system, cor-
responding to d = 2. In particular, we provide formulas for
solvable MPSs with bond dimensions x = 1 and 2. We recall
that here x denotes the bond dimension of the MPS |W§(N))
obtained by grouping together two sites, namely, it is the
dimension of the matrices A/,

A. Bond dimension y =1

The simplest example of solvable MPSs is given by prod-
uct states, corresponding to bond dimension x = 1. In this

case, up to products of local unitaries, it is always possible
to choose W (N') o 1,, which leads to the following explicit
form:

N

On the other hand, it is trivial to verify that the state I\I-fé)
defined above is injective. Putting all together, we obtain a
single solvable MPS with bond dimension x = 1.

| L
| Wy V) = = ®(|1, Dok—1.26 + 12, 2)2k—1,20).  (40)
k=1

B. Bond dimension y =2

The case of bond dimension x = 2 is more interesting.
Now, the unitary matrix W defined in Eq. (36) acts on the
tensor product C?> ® C2. Then, we can use the following
known parametrization [72] for W € U (4), which is complete
up to a global irrelevant phase:

W =GouV[{K}_]touw), (41)
where ¢, u, v, z € SU(2), while
V[{Kj}izl] = exp[—i(Ki0* ® 0 + K207 ® ¢
+K30° ®09)], (42)

with K; € R. By performing the matrix exponential
V[{Kj}jle], and rearranging the indices as in Eq. (36),
we arrive at the following general parametrization (up to
products of local unitaries):

NED = v[e_iK3 SOS . oK c(())s K+:|u’ )
N2 — |:_ie”(30$in K. —ie—iK; sin K_i| u, (44
ANED — |:—ieiK? ik —ieiKsosin K+i| u,  (45)

NED =y [eﬂ(} Cg S o—iks gos K} - (46)

where u, v € SU(2) and Ky = K| + K, € R. Finally, the MPS
|\Il(§(J\/' )) is injective, except for a set of measure zero in the
space of parameters {K 7}321 . This simply follows from the fact
that for generic choices of {K;}3_, the operators A"/ span
the whole set of 2 x 2 matrices.

VI. EXACT QUANTUM DYNAMICS

In this section we finally explore the dynamics arising from
the solvable MPSs. We focus in particular on three aspects:
the thermalization time of local observables, the two-point
correlation functions, and the entanglement growth.

A. Local thermalization and the quasiparticle picture

As we have already discussed, the knowledge of the left
and right eigenvectors of the transfer matrix E(¢) allows us
to compute the expectation values of observables that are
supported over finite regions of space. However, it follows
from Eq. (24) that the dynamics of observables localized at
one site is quite trivial. Precisely, for a solvable MPS (evolved
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at time 1) |WE(N)), we have

Jlim (W (\)|0;|WF W) =u[0;], Vi 47)

where we used Eq. (35). Namely, one-point functions remain
constant at the infinite-temperature value.

In general, we can extend this result to local observables
that are supported over finite regions of space containing more
than one site. Consider the generic operator

O = 05 ®--- 8 O3, (48)
where O% € End(h;) and where tr[O‘j?‘] = 0. First note that
due to even-odd effects, its expectation value on time-evolved
solvable MPSs will be always zero unless jg — j; = 1 (mod
2). Second, one can prove

. L {ar:ar} |\ L _ {o1:ap} *
I}an}o<\p' (N)|O{jllijk} |lII[ (N)> - tr[O{jllin} ]’ t>t (49
where

i
= %_ (50)

The proof of this can be easily performed graphically. Indeed,
for a given observable Oi;‘l‘f]‘,’l‘f}}, one can write the tensor
network corresponding to its expectation value. By a repeated
use of the graphical identities in Egs. (9), (10), and (27) it is
then straightforward to see that if + > ¢* the tensor network
simplifies to a new one, where all the “upper legs” of Ogj’]‘:ﬁ’*}}
are connected to its “lower legs.” In turn, this is exactly
the tensor network corresponding to the infinite-temperature
expectation value in the right-hand side of Eq. (49). From the
graphical representation it is also straightforward to see that
the correlation function in Eq. (49) displays an even-odd effect
in time, i.e., it is zero for all even (odd) times if j; is even (odd)
(where we are again considering traceless operators).

Equation (49) implies that, while the time evolution of
solvable MPSs is nontrivial, finite regions reach infinite tem-
perature in a time which is proportional to their sizes. It is
interesting to observe how this behavior is exactly predicted
by the standard conformal quasiparticle picture [11]. Indeed,
t* in Eq. (50) is exactly the time needed for a pair of
quasiparticles produced at the center of the region R and
moving at maximal speed (which is 1 for our choice of units)
to exit from it. Finally, we see that local thermalization to
infinite temperature takes place irrespective of the presence
of local conserved quantities (namely, of the integrability of
the unitary dynamics) and that t* does not depend on the
unitary gates chosen. In the next section, we will see that
qualitative differences emerge in the study of the light-cone
spreading of two-point correlation functions for integrable and
nonintegrable circuits.

B. Two-point correlation functions

We now move on to examine two-point correlation func-
tions. For concreteness we focus on the case of qubits (al-
though our treatment is valid for general physical local di-
mension d), and consider

CP(jrt) = (WEN)|ofal,, |WHWN)), (51)

FIG. 3. Tensor network corresponding to the two-point correla-
tion functions (W2 (N)|0;0;|WE(N)) for a solvable initial MPS and
t = 2. We see that almost all the elementary unitary operators have
canceled with each other, after repeated application of the graphical
identities in Eqgs. (9), (10), and (27). The resulting tensor network can
be efficiently contracted, as explained in Sec. V1.

where a;", o =Xx,y,z are Pauli matrices acting at site j,
while |\IJ,L (N)) is a solvable (injective) initial MPS satisfying
Eq. (33), evolved at time 7. From the results of the previous
subsection, we have that for fixed j, r the function C*A( Jjyrt)
will become zero after a time t* = (r + 1)/2. Here, however,
we are interested in its full time evolution, which is nontrivial
for generic unitaries U.

It turns out that it is possible to compute exactly
C*h( j, 1, t) for arbitrary values of j, r, and ¢, following
an approach similar to the one developed in Ref. [50] for
infinite-temperature dynamical two-point functions. The first
step consists in simplifying the graphical representation for
C%B(j, r, t) by means of the dual unitarity conditions (9), (10)
and the solvability relation (27). By doing this, we obtain the
formula

CoP(j, 1, 1) = Srimod 2,18 j—tmoa 21CEP (1 1), (52)
where
0, r<?2t+1
CP(r,ty={D"P 1), r=241 (53)
Dg’ﬁ(r,t), r>2t+ 1.

Here, D‘f‘ﬂ (t) and Dg’ﬁ (r,t) are functions which admit a
simple graphical representation. As an example, Dg"g (r,t)is
depicted in Fig. 3 forr =7 and r = 2.

The simplified tensor networks associated with D‘l’”ﬂ (t)and
D; #(r, ) can be contracted efficiently, by slightly general-
izing the method employed in Ref. [50]. In particular, based
on its graphical representation, one can derive the following
formula for the function D‘l’"ﬁ @):

1 ~
D‘f"ﬂ(t) = ;tr{P[f’(U“)][f’(Uﬁ)]T}, (54

where y is the bond dimension of the initial solvable MPS
|lI'(I)‘(N )) and ()7 denotes matrix transposition. Here, we
introduced the following definitions. First, the functions F,
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F are maps acting on the space of linear operators End(C?),
reading as

1 1
1
] : d@ |

1
Fla] = - tn [Ut(a®1)U (56)

where d = 2 for qubits. Second, the function P is a map on
the same space which is defined in coordinate space as

O
im* A rjmn m
(P[a])m’n = ai,j/\/a”ﬁ NO?[/G = " ’ (57)
O

where repeated indices are summed over.

From the above definitions, it is clear that Eq. (54) can
be easily evaluated numerically, with a little computational
effort. An expression with a similar structure can be derived
for the function Dg b (r,t). In particular, we have

Dﬁmo=§mﬁﬁwm$**ﬁﬂﬁwmﬁy6&

Here, F, F are given in Egs. (55) and (56), while £y reads as

d
EmX) =Y MUPX MUY, (59)

Jk=1

Next, the functions G and G are maps acting on the space of
linear operators End(C?), and are defined in coordinate space
as

m —()
(Gla) = @iy NP N = )
n—O
(60)
and
O m
(Gla) = ap; N NI = » (61)
O n

where repeated indices as summed over. Note that also the
function &€y admits a convenient graphical representation,

which reads as

Enlal)y, , = - (62)
n ‘

Once again, the proof of Eq. (58) can be easily obtained by
graphical inspection, and since it presents no difficulty we
omit it here.

Putting all together, Eq. (53) provides an efficient formula
for the computation of two-point correlation functions, which
allowed us to produce numerical results for different solvable
initial states |\If§ (N)) and dual-unitary operators U. Examples
of our findings are displayed in Figs. 4 and 5, where we report
data for different choices of the latter, and the same solvable
MPS. Note that in order to remove even-odd effects, we have
plotted correlations averaged over neighboring sites, namely,

1
Cg'ﬂ(r,t):z Yo PGtxryn.  (63)

x,y=%1

which only depend on the relative distance r of the two Pauli
matrices.

In Fig. 4(a), we report the two-point correlation function
Cy " (r, 1) for the integrable point of the self-dual kicked Ising
chain [cf. Eq. (14)]: we see that there is no decay along
the main light cone. Conversely, in Figs. 4(b) and 4(c) we
report data for unitary gates where integrability is broken by
increasing the value of the magnetic field & and in this case
the plots clearly display an exponential decay in time. In fact,
from the explicit formula (54) and the results of Ref. [50]
this behavior is expected. Indeed, in Ref. [50] unitary gates
were classified in four classes of increasing level of ergodicity,
depending on the behavior of dynamical infinite-temperature
correlation functions. Even though the formula for Cg P (r,t)
along the main light cone is different from the one found in
Ref. [50], both of them involve a repeated application of the
function (1-qudit channel) F defined in Eq. (55), and hence
depend essentially on the spectrum of F. Accordingly, the
classification of unitary gates reported in Ref. [50] not only
distinguishes the behavior of dynamical correlations at infinite
temperature, but also applies to predict the qualitative features
of two-point functions during the quantum dynamics arising
from solvable initial MPSs.

In Fig. 5 similar data are reported for Cj*(r, t) and different
dual-unitary quantum circuits. In particular, Fig. 5(a) displays
the case of the integrable evolution corresponding to the XXZ
gate in Eq. (13), while in Figs. 5(b) and 5(c) integrability is
broken by choosing nontrivial matrices uy, vy in Eq. (11). As
for Fig. 4, we see that a breaking of integrability corresponds
to an exponential decay of the correlations along the light
cone.

Finally, it is important to stress that the analytic formula
in Eq. (53) does not predict a broadening of the light cone
during the time evolution, as we also observe from Figs. 4 and
5. Once again, this is consistent with an exact CFT picture of
noninteracting quasiparticles that are created in pairs at time
t = 0 and spread ballistically for t > 0 [11].
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FIG. 4. Two-point correlation function C)*(r, t) [as defined in Eq. (63)] for a solvable MPS |WE(N)) with bond dimension x = 2. The
initial state corresponds to choosing # = v = 1 and {K,-}?:1 = (0.3, 0.5, 1.25) in Eqgs. (43)—(46). The dynamics is driven by the quantum circuit
corresponding to the self-dual kicked Ising chain, namely, we chose Uspk; as defined in Eq. (14), and set the magnetic field to (a) & = 0.0,

(b) h = 0.15, (c) h = 0.25.

C. Entanglement growth

As a final aspect of the dynamics arising from solvable
MPSs, we discuss the spreading of entanglement. In partic-
ular, we consider the setting already studied in Ref. [58] for
the special case of the self-dual kicked Ising chain. We focus
on a system of size 2L with periodic boundaries, and compute
the time evolution of the entanglement of the subsystem A,
composed by a connected block of £ sites, and the rest, in
the limit L — oo (see also Ref. [73], where a similar analysis
was carried out for the entanglement of half-chain). The initial
state is given by a solvable MPS | (N\)) and the system
is evolved using a dual-unitary quantum circuit. As it is
customary, in order to measure the spreading of entanglement,
we study the growth of the Rényi entropies

SOt = (64)

L logtrl(ps ()] o >0
l—«a

where p4(¢) is the density matrix reduced to the subsystem
A =[j1,j1 + £ — 1] containing £ neighboring sites. At this
point, we note that the entanglement growth displays an
even/odd effect in space and time. In order to simplify our
discussion, in the rest of this section we will consider the
case of t even, and choose j; to be odd, although a very
similar treatment can be carried out, with minor modifications,
when either 7 is odd or j; is even. In the case of ¢ even and
j1 odd, we can further assume, without loss of generality,
£ to be even. Indeed, if £ =2k + 1, it is easy to see that

Py (1) = Pay () ® (Lpp41/d), where Ay is the connected
region containing sites from j; to j; + k — 1, while 1; is the
identity acting on site j; + k — 1. Using (27) and the unitarity
of the gates we can write the thermodynamic limit of the
reduced density matrix as

. t
—0—O——0—O—0—0—0—0—0—0—-0—6-0

palt)— I b ,
O—@0—@ 0@ 0@ 0@ 0O0—@DO—@0
%%

(== ==
| I Oy I R B
(65)

where we used that, thanks to Theorem 1, the matrix S in (27)
can be chosen equal to the identity. This circuit can be further
contracted by repeated use of the initial state’s solvability
condition (27) combined with the dual-unitarity property (10).
Two different results are obtained depending on whether or

0.100
19] (@) 0100 151 (b) 124 (c) 0.08
0 0075 0075 g 0.06

"6 0050 T 0.050 0.04
0.025 3 0.025 UF 0.02
0 0.000 0 0.000 0- — o0

2 6 10 14 18 22 2 2 6 10 14 18 22 2 2 6 10 14 18 22 26

r T T

FIG. 5. Two-point correlation function Ci*(r,t) [as defined in Eq. (63)] for a solvable MPS |WEN)) with bond dimension x =
2. The initial state corresponds to choosing ¥ =v =1 and {K,v}?:1 =(0.3,0.5,1.25) in Eqgs. (43)—(46). The dynamics is given by
the dual-unitary gate U = R(x?, x0)V[J]IR(xD3, x¥4) where V[J] is defined in Eq. (12), while R(«, B) =r(e) ® r(B) and r(a) =
[(cosa, sina), (—sina, cosa)]. In the plots, we chose J = 0.3, and {79]»}‘}:l = {0.2, 0.3, 0.4, 0.5}. Finally, different subfigures correspond
to(a)x =0, (b) x =0.15, (c) x = 0.25.
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< £ we find

not 2¢ is larger than £. Specifically, for 2¢

(66)

(67)

The explicit form (66) and (67) of the reduced density matrix
directly gives

log [ tr [0
S't)=min(2t, €)logd + M Oule — 21, (68)
—

where Oy[x] is the step function (with 6y[0] = 0) and we
introduced the d*-dimensional matrix

1 (69)

The result (68) follows directly from the observation that the
reduced density matrix (66) is unitary equivalent to the tensor
product of the matrices O,_y, and 1, /d*.

To analyze (68), it is instructive to consider its prediction
for S/ga)(t)/ﬁ in the scaling limit ¢, — oo where the ratio
£/t = ¢ is kept fixed. Let us start considering the second term
on the right-hand side of (68). This term can be written in
terms of the state transfer matrix [cf. (B1)]

o

In the scaling limit, for any ¢ < 2 (the term is trivially zero
in the opposite case), the number of matrices T(N) in (71)

as follows:

becomes infinite and we can make the following replacement:

1
. , (72)

where we used that, thanks to Theorem 1, the unique eigen-
vector of T(N') corresponding to eigenvalue 1 is a maximally
entangled pair of qudits. The replacement (72) leads to

log [t[0f_y]]

0, t — 00 ]—

r=c¢

Oult — 2] = 2 log x 6ul¢ — 2].

(73)
In particular, note that the right-hand side of (73) is finite:
this means that only the first term on the right-hand side of
(68) contributes to the scaling limit when dividing by £. As a
consequence, S (“)(t )/ takes the following universal form:

lim $“(r)/¢ = min(¢, 2) logd. (74)
£, t — o0

r=¢

In the last few years, this form has been observed in con-
formal invariant models [11,74], in generic isolated systems
[75=77], and in local random unitary circuits [34-36,39]. The
ubiquitousness of Eq. (74) has been recently explained by
introducing the so-called “minimal membrane picture” [34].
In essence, the idea is to estimate the entanglement between
a subsystem A and the rest by measuring the length of the
minimal membrane in space-time that separates the subsystem
from the rest.

Reference [58] showed that (74) is exact at any time in
the self-dual kicked Ising model evolving from “separating
states.” Considering the special case y = 1 of (68) we see that
this statement carries over for generic dual-unitary circuits.
Indeed, in this case we have tr[0¢] = 1 for all &. From (68),
however, we also see that for more general initial “solvable”
MPSs there appear some corrections that can make the entan-
glement spectrum nontrivial. These corrections are encoded
by the matrix O, and depend solely on the initial state.

We remark that the corrections contained in (68) can be
generically calculated numerically with high efficiency be-
cause the rank of the matrix that encodes them is constant
and equal to x. A simple analytically tractable limit is that of
infinite length of the block A. Indeed, proceeding as we did to
obtain (73), we readily find

Jlim S (1) =2 log x + 2t logd. (75)
—00

We see that in this case the entanglement spectrum is again
completely flat.

Finally, we note that the form (66) and (67) of the reduced
density matrix can also be used to compute the evolution of the
entanglement entropy of disjoint blocks. In this case, one has
to connect some of the central uppermost and lowermost lines
of the circuits (66) and (67) to divide A into two disconnected
parts. The resulting quantum circuit is again very simple in
the case (67) and implies that for 2¢ > ¢ the reduced density
matrix is again proportional to the identity. The case (66),
however, becomes more complicated: the density matrix is not

094304-10



EXACT DYNAMICS IN DUAL-UNITARY QUANTUM ...

PHYSICAL REVIEW B 101, 094304 (2020)

unitary equivalent to Oy, ® 1y /d* anymore, and the result
depends on the specific dual-unitary gate considered.

VII. NONSOLVABLE INITIAL STATES

It is natural to wonder how the features of the quantum
dynamics studied in the previous section depend on the solv-
ability of the MPSs chosen as initial states. In general, for in-
stance, one may expect that while the system will still locally
approach an infinite-temperature density matrix for generic
initial states and unitary gates, local expectation values will
display an exponential decay to zero, rather than approaching
zero in a finite number of time steps.

The dynamics arising from generic states can be studied
using numerical MPS techniques [10]. Here, in order to
compare the solvable and nonsolvable cases, we follow a
different approach, and consider a family of initial states
which depend on one real parameter g, interpolating between
the infinite-temperature density matrix and arbitrary initial
pure product states, as § is varied from zero to infinity. This
allows us to study analytically the dynamics for small values
of B, highlighting some qualitative differences that arise with
respect to the solvable dynamics.

For concreteness, we focus once again on the case of a
qubit system and consider the initial mixed state

po(B,a) = pV(B,a)® pP(B,a)® - @ p? (B, a), (76)

where we introduced the single-site density matrix

. 1
oD (B, a) = 6.0 P [—Bal € End(h;).  (77)
Here, a € End(C?), with tr(a) =0 and «?> =1, while
Z(B, a) = tr[exp (—Ba)], so that p)(B, a) admits the expan-
sion

PP (B.a) =31 -

In this section, we will focus on the computation of time-
dependent one-point correlation functions. First, note that
according to Egs. (1) and (2), the initial density matrix (76)
is time evolved as

3 tanh(B)a. (78)

pa1(B.a) = U py(B. a)U_, (79)
prs2(B. @) = U] py1(B. )y (80)
Next, making use of Eq. (78), one can formally write
(Ojpi(B,a)) = ZCZ(t)[tanh e (81)
n=0

In the following, we show how dual unitarity allows us to
compute the coefficients c{.(¢) exactly up to n = 2, providing a
perturbative knowledge of the one-point correlation functions.

As for the solvable initial states, one-point functions for the
density matrix (76) display an even/odd effect in time, due
to the discrete nature of the dynamics. In order to simplify
the following discussion, in analogy to Sec. VIC, also in this

section we restrict for concreteness to even values of times
t=2t, tTeEN, (82)

and choose an operator placed at an odd site j = 2k + 1.

FIG. 6. Pictorial representation of a time-dependent one-point
function, where the initial state for the quantum dynamics is chosen
as in Eq. (76). In the figure, t =2 (namely, t = 4) and periodic
boundary conditions are assumed in the “time direction,” i.e., the
vertical lines at the bottom and at the top are understood to be joined
together. Small black rectangles denote the operators p)(8, a) de-
fined in Eq. (77).

We begin by noting that Eq. (81) can be pictorially repre-
sented as in Fig. 6, where a small black rectangle placed at
site j denotes the single-site density matrix p/)(8, a) defined
in Eq. (77). Next, from Eq. (78) it is clear that each operator a
bears a factor tanh(), so that at the first order in x = tanh(p8).
Figure 6 simplifies in a sum of tensor networks, each one
corresponding to setting all operators p'/)(8, a) equal to 1/2,
except for one. By means of the usual graphical identities,
it is straightforward to see that only one term in this sum is
nonzero. In the case of Fig. 6, for instance, this corresponds to
the tensor network displayed in Fig. 7, where a small green
rectangle now corresponds to the operator —1/2 tanh(g)a.
We recognize that the latter is proportional to an infinite-
temperature two-point correlation function, and can thus be
computed using the results of Ref. [50], thus obtaining

ci(v) = —Lu(FF[01a"). (83)

s

Cl(T) = 22%)(01

FIG. 7. Pictorial representation for the first coefficient ¢ (), for
7 = 2 (namely, t = 4). From the picture, it is clear that it can be
computed using the analytic formula for the infinite-temperature
dynamical two-point functions derived in Ref. [50]. The small green
rectangle corresponds to the operator —1/2 tanh(f)a.
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Here, f [a] is the map defined in Eq. (56), ()T denotes,
as before, matrix transposition, while 7 was introduced in
Eq. (82).

The same logic can be followed to compute the second-
order coefficient ¢§(7), which can be expressed as a sum of
some particular three-point correlation functions. The compu-
tation of the latter is slightly more involved, but one can once
again exploit dual unitarity to evaluate them in an efficient
way, in complete analogy with what we did in Sec. VIB
for the case of time-dependent two-point functions. Since the
computation does not present additional difficulties, we omit
the intermediate steps and in the following only present the
final result, which reads as

1 2t " N
(o) = 3 D wlF T HOBILT (@), L7 @]} (84)
r=1

Here, L[a] and E[a] are defined similarly to F[a] and F [a]
[introduced in Egs. (55) and (56)], but with U and U T ex-
changed, namely,

Lla] = %trl[U(a 1)U, (85)

Lla] = é trL[U(1 ® a)U'], (86)

with d = 2 for qubits. Finally, the function S is a map acting
on the space of linear operators End(C? ® C?):

S : End(C* ® C?) — End(C?), (87)

which is defined in coordinate space as

m

(‘f; [a, l)]) = JF pT

m,n

(88)

= ajibyp U (U]

Dual unitarity does not seem to provide a substantial
simplification in the computation of higher-order coefficients
i, (t) when compared to a generic evolution. Still, the cases
k = 1,2 already allow us to highlight some of the expected
differences with respect to the dynamics arising from solvable
MPSs. In Fig. 8 we present results for the evolution of the
expectation value of O; = o7 in a chaotic quantum circuit
corresponding to the self-dual kicked Ising chain [we chose
Uspkr as defined in Eq. (14), and set the magnetic field to
h = 0.15]. We initialized the system in the state (76) with
a=o*. We see that, as expected, both coefficients c{(7),
¢; () approach zero, although in an exponential fashion rather
than in a finite number of time steps. In general, based on this
result, we also expect that our analytic formulas for two-point
correlation functions, valid for solvable MPSs, will acquire
some “exponential corrections” in the case of generic initial
states and dual-unitary gates.

VIII. CONCLUSIONS

In this work we have considered the dynamics of the re-
cently introduced class of dual-unitary quantum circuits, and

FIG. 8. Coefficients c;(7) defined in Eq. (81). Here, we chose the
local operator O; = o7, while for the initial Gibbs state we set a =
o*. The dynamics is driven by the quantum circuit corresponding to
the self-dual kicked Ising chain, namely, we chose Uspk; as defined
in Eq. (14), and set the magnetic field to & = 0.15.

exhibited a family of initial states for which different physical
quantities can be computed exactly. We have characterized
these states in terms of a particular “solvability” condition,
and provided a complete classification of them. In particular,
we have shown that this family includes MPSs of arbitrary
bond dimension x, and provided explicit examples for x =
1,2 (cf. Sec. V).

For the dynamics arising from these initial states, we have
derived three main results. First, we were able to compute
explicitly the time it takes for an observable supported on
a finite region £ to approach its infinite-temperature value,
and shown that t o< € (Sec. VI A). Second, we have provided
an exact formula, efficient to evaluate, to compute two-point
equal-time correlation functions of local observables, and we
have shown that they display different qualitative features de-
pending on the ergodicity of the quantum circuit (Sec. VIB).
Third, we have derived a closed formula for the time evolution
of the entanglement entropy of a connected block of length
£, computing explicitly the limit £ — oo (Sec. VIC). This
generalizes the exact result of Ref. [58] to all dual-unitary
quantum circuits, extending it for more general initial states.
Remarkably, we showed that solvable MPSs with bond dimen-
sion larger than one produce nontrivial finite-time corrections.

Finally, we have also considered a family of nonsolvable
initial mixed states depending on one real parameter 8, which
interpolate between the infinite-temperature density matrix
and arbitrary initial pure product states (cf. Sec. VII). We have
studied analytically their dynamics for small values of 8, and
highlighted the main differences from the case of solvable
MPSs.

In the light of our results, there are several natural di-
rections to be explored. For example, the class of solvable
MPSs introduced in this paper was defined by the property
that the leading eigenstate of the transverse transfer matrix is
a product state in the “folded picture” of Refs. [9,67]. One can
wonder whether it is possible to find different types of initial
states or unitary gates for which such leading eigenstates are
written instead in the form of nontrivial MPSs (with fixed
bond dimension). In this case, the dynamics would still be
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solvable, but a richer phenomenology would emerge for the
evolution of local observables.

Finally, it is certainly interesting to wonder whether some
aspects of this paper can be generalized to the case of higher
spatial dimensions, where the application of numerical tech-
niques is known to be much harder with respect to the one-
dimensional case. A successful description of the dual-unitary
dynamics in higher spatial dimensions would provide a rare
benchmark, for instance, for the development of numerical
computational methods.
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APPENDIX A: COMPARISON BETWEEN THE
SOLVABILITY AND SEPARATING CONDITIONS

In this Appendix we discuss the relation between the
“separating” initial states of Ref. [58] and the solvable MPSs
introduced in this paper. First, we observe that the work
[58] focused on one particular realization of a dual-unitary
quantum circuit, corresponding to the self-dual kicked Ising
model [57]. In this specific case, the separating property was
also introduced as a technical condition on initial product
states, allowing for an analytic determination of the right
eigenstate of an appropriate transverse transfer matrix.

There are two main differences between this work and
Ref. [58]: first, here we allow for more general initial states in
the form of MPSs, and do not restrict to product states; second,
we look for initial conditions that are analytically tractable
for any dual-unitary circuit, and not just for one specific case.
In fact, we show in the following that the separating states
of Ref. [58] are not solvable MPSs for a generic dual-unitary
evolution, but become so after applying one layer of unitary
operators, which corresponds to the first time step of the
self-dual kicked Ising Floquet dynamics.

We start by recalling that the Floquet evolution associated
with the self-dual kicked Ising chain is defined by [50,73]

uszlt)KI = [UK[U?[U(S)DKI[UISDKI(Uev (A1)
uszlt;l(ll = [UK[Uf (S)DKIUSBIKNEDKN?’ (A2)

where t € N. Here, U§p,; (Ugpk,) is the transfer matrix de-
fined by applying the local gate (14) to each pair of neigh-
boring qubits, where the first one is chosen at an even (odd)
position, while Uspkr = Up;USpk;- The operators US”® and
U are defined analogously, with two-site gates given by

Ul — e—i(n/4)a‘"®az (e—ihaz ® ]l) (AS)

Finally, Ux = U2*" with

Ug = e "7/, (A4)

Next, the separating states were defined in Ref. [58] as the
two subclasses of product states

2L

0; 0;\ .
Vo.0) =) [cos (3’)| 1) + sin (3’>e’¢f| ¢>}, (A5)
j=1
defined by
T ={lYa=mre), ¢ 10,21}, (A6)
L= {hﬁé,(j))v é] € {07 7-[}}1 (A7)

where 1 denotes a vector of length 2L with all entries equal
to 1. Note that we do not need to specify the value of ¢
in Eq. (A7). In order to compare with this paper, where
we restricted to two-site shift-invariant initial states, we can
assume

$2j =¢es rjo1 =0 Jj=1,...L (A8)

Oy =0p Brj1 =0, j=1,...L. (A9

We see that the above class of states does not belong to
the family of solvable MPSs of dimension x = 1, which was
characterized in Sec. V A. However, from Egs. (A1) and (A2),
we have that the Floquet dynamics of the self-dual kicked
Ising model is made up of different steps. In particular, given
an initial state |y), the first step consists in multiplying it by
either U} or Ugp,,Ur: after that the evolution is dictated by
the dual-unitary quantum circuit encoded in Ufp,. Accord-
ingly, one should check that if [¢y) € T U L, then Uf |) and
USpki Ut |¥) are solvable. This is indeed the case, as one can
verify by direct computation.

In conclusion, the Floquet dynamics of the separating
product states introduced in Ref. [58] can be described in
terms of a dual-unitary circuit where the initial configuration
is indeed a solvable MPS with bond dimension y = 1.

APPENDIX B: PROOF OF THEOREM 1

In this Appendix we provide a full proof of Theorem 1. Let
us start by proving the first part of the statement, namely, that
each solvable MPS is equivalent in the thermodynamic limit
to an injective MPS satisfying Eq. (33).

Consider the following transfer matrix associated with the
MPS |WE(M)):

d
(M) =) MU MU, (B1)

Jk=1

which acts on the tensor product C* ® C* of two auxiliary
spaces. It is easy to show that condition C1 is equivalent to re-
quiring that the transfer matrix v (M) has a unique eigenvalue
Mo with largest absolute value, with Ay = 1 and algebraic mul-
tiplicity equal to 1. This follows from (WF|WE) = (WE|Wk),
and the identity

(WEM)IWE(M)) = tr[T(M)H], (B2)
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where we used that the system size is 2L. Defining now the
state

X
=Y Vijl)lj)eCr o, (B3)
ij=1
we see that the condition (M) |R;) =
only if

|R;) is verified if and

d
Z MUBY (MUY =y, (B4)

joe=1

where V is the x-dimensional matrix with entries V; ;. Hence,
the transfer matrix 7(M) has a unique largest eigenvalue Ag =
1 if and only if the linear map

d
EmX) = Z M(j*k)X(M(j*k))T (B5)

k=1

has a unique largest eigenvalue Ao = 1. On the other hand,
setting i = j in Eq. (30), and summing over j, we obtain

d
> MUPSMUP)T =5, (B6)

jh=1

Namely, combining conditions C1 and C2, we obtain that if
| W& (M) is a solvable MPS, then S is the only fixed point for
the linear map E,((X) in Eq. (BS).

It is important to observe now that E,((X) is a completely
positive, linear map on the space of matrices End(C*) and
that its spectral radius (defined as the largest among the
absolute values of its eigenvalues) is equal to 1. This allows
us to exploit known results in the theory of positive maps
on C* algebras. In particular, using Theorem 2.5 in Ref.
[78], it follows that £,((X) has a positive fixed point [4],
namely, there exists a Hermitian matrix 7 with a non-negative
spectrum such that £4,(T) = T. However, due to condition
Cl, it follows that T o S since E,¢(X) has a unique fixed
point. Hence, up to a proportionality factor, we just showed
that for a solvable MPS, the matrix S in condition C2 must be
positive.

Suppose now that the matrix S is invertible. Then, S must
be strictly positive and we can make use of the following
lemma to conclude that the MPS |‘I’é (M) is injective.

Lemma 1. The (normalized) MPS |\Il(§ (M) is injective for
L sufficiently large if and only if the linear map E (X)) defined
in Eq. (B5) satisfies the following two conditions:

(1) Epm(X) has a unique maximum eigenvalue Xy with
Aol =1

(2) the corresponding eigenvector A is a strictly posi-
tive operator, namely, it is Hermitian with strictly positive
spectrum.

The proof of this Lemma is nontrivial, as it requires
some technical tools in the theory of quantum channels. The
basic idea underlying the Lemma is to exploit the fact that
injectivity for sufficiently large L implies that the channel
Em(X) is primitive [70]. In turn, one can show that this
property is equivalent to the above conditions 1 and 2. We
omit further details of the proof here, and refer the reader to
Ref. [70] where it is explicitly worked out (cf. Proposition 3

therein). For a pedagogical introduction of the relevant quan-
tum information tools, see instead Ref. [79].

Conversely, suppose that the matrix S is not invertible.
Then, we can assume that there exists a basis of CX in which
the matrices M@/ can be written in block-diagonal form, so
that without loss of generality we can assume

. M(isj) 0
M<~J>:( J MS‘”)’ (B7)

where {/\/l( & )}d i j=1 are xo-dimensional matrices with o <
x,o=1,2.In order to see this, we proceed as follows

Since S is positive, we can write S = Za | M o) (o],
where x’ < x and p, > 0. Following [4], and defining Pr
to be the projector onto the space R spanned by |«)’s, we
can prove that M) Py = Pp M©D P, namely, M@9) |a) €
R,V (i, j), «. Indeed, suppose that this is not true. Then,
there exists (m, n), B such that

3 ttalet) (el — pp M B) (BILM™] 20, (BS)

But, since
Zum (o] = ZZM M ja) (@|[MEDTT, - (BY)
we obtain
Yo M ) @ [ME]T 20, (B10)
(@, j) # (m, n)
a#B

which is a contradiction. Thus, the matrices M@/ must be
block triangular. However, it is now immediate to show that
we can write the same state as an MPS | W5 (M) with tensors
M9 that are block diagonal and obtained from M) by
setting to zero off-diagonal terms. Putting all together, we
conclude that we can indeed assume Eq. (B7) without loss
of generality, with x; being the rank of the matrix S.
We note now that Eq. (B7) implies

| W5 (M) = | WMD) + WG (My)), (B11)
namely, |lIJé(M)) can be written as the sum of two distinct
MPSs. Next, we observe that the norm of |\I’§ (M3)) must be
vanishing in the thermodynamic limit since the map Exy, (X)
has spectral radius r < 1. Indeed, suppose that this is not the
case and there exists S such that EMZ(S‘) = XoS with || > 1.

Then,
S 0 0 0
Si = (0 o)’ 5= (o S)

are both eigenstates for £),(X) with eigenvalue |Ag|, |Ao| > 1
which contradicts the hypothesis. In conclusion, one can find
an injective MPS |\Ilé(/\/l1)), with bond dimension x; < ¥,
which is equivalent to |\IJ(§ (M) in the thermodynamic limit.

Putting all together, up to equivalence in the thermody-
namic limit, we can always assume that the fixed point S of
Em(X) is strictly positive, and define

N — §—

(B12)

2 MEDSH2, (B13)

094304-14



EXACT DYNAMICS IN DUAL-UNITARY QUANTUM ...

PHYSICAL REVIEW B 101, 094304 (2020)

where we also have [S'/2]' = §'/2. Tt is now straightforward to
verify that | W& (N)) is equivalent to |Wo(M)) in the thermo-
dynamic limit, is injective, and satisfies Eq. (33). This proves
the first part of the statement of Theorem 1.

Finally, let us prove the second part of Theorem 1, namely,
that if a state is equivalent to an injective MPS satisfying (33),
then it is also equivalent to a solvable MPS satisfying condi-
tions C1 and C2. Clearly, using Lemma 1, we only need to
prove that the algebraic multiplicity of the leading eigenvalue

is equal to 1. This can be done once again by invoking a gen-
eral result in the theory of quantum channels [80]: if E,¢(X)
is a positive linear map with spectral radius r = 1 satisfying
Eq. (33) (i.e., it is unital) and Aq is an eigenvalue with |Ag| =
1, then its algebraic and geometric multiplicities coincide,
namely, all blocks in the Jordan form corresponding to X, are
one dimensional. Here, we omit the proof of this statement,
for which we refer the reader to Ref. [80] (see Proposition 6.2
therein). This concludes the proof of Theorem 1. |
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