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Effect of energetic disorder on triplet-triplet annihilation in organic semiconductors
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We present a model for the triplet-triplet annihilation in organic phosphorescent host-guest systems that
considers the effect of the energetic disorder on the kinetics of the annihilation. Nonequilibrium (time-dependent)
transport of the triplets that arises from the progressive relaxation of triplets in the energy landscape is taken
into account in the model. Triplet excitons are considered to move between the guest sites (dye molecules) via
the thermally activated tunneling mechanism; the annihilation step, however, takes place through the Förster
mechanism. Based on the model developed, and by calculating the time evolution of the triplet concentration,
we investigate the effect of the various parameters on the effective annihilation coefficient. At low dye
concentrations, it is shown that relaxation of the triplets is not completed during their lifetimes, and therefore,
the annihilation process occurs entirely in the nonequilibrium. We also address the competition between two
pathways for the annihilation process: single-step, long-range annihilation, and diffusion-assisted annihilation.
By a quantitative comparison with experimental data reported in the literature, we demonstrate certain conditions
in which there is a considerable contribution from the diffusion to the total annihilation rate. The model presented
in this work can also be used for the excitons that diffuse by the Förster mechanism.
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I. INTRODUCTION

Organic semiconductors and related molecular systems
have attracted great attention in science and technology in
recent decades owing to their (potential) applications in vari-
ous electronic and optoelectronic devices [1,2]. A key factor
determining the performance of these devices is how efficient
energy excitations (singlet and/or triplet excitons) transfer
between the structural units of the system. For example,
the diffusion length of the excitons in organic photovoltaics
plays a determining role in the charge separation efficiency
of the photovoltaic cell [3]. In organic photon up-conversion
systems, also, the up-conversion yield is determined by the
triplet-triplet annihilation (TTA) process in which two triplets
that are in the vicinity of each other annihilate, resulting
in a delayed fluorescence [4,5]. The TTA in phosphorescent
OLEDs, in contrast, leads to a loss in the population of the
triplet excitons, resulting in the so-called efficiency roll off
and a limited brightness at high triplet densities [6,7]. In these
devices, as a consequence of the radiative decay of the triplet
excitons, the phosphorescent light is emitted by guest dye
molecules dispersed in an organic host system. An efficient
diffusion of the triplet excitons between the dye molecules,
however, brings the triplets to the neighborhood of each other
and enhances the rate of the TTA consequently. This picture,
which highlights the role of the diffusion [8–12], however,
has been under debate in the literature [13–16]: it has been
concluded in some research that it is mainly the direct (single-
step) annihilation process that governs the photoluminescence
(PL) kinetics of the system and the effect of the diffusion is
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marginal. Therefore, deciding what strategies are needed to be
developed to prevent the efficiency roll off in phosphorescent
OLEDs (or, to boost the up-conversion yield in photon up-
conversion systems) relies on the detailed understanding of
the effect of the triplet diffusion on the TTA rate. In this
paper, we discuss how and to what extent the triplet diffusion
influences the annihilation process in the typical host-guest
emitting systems.

One of the general features of the organic and molecu-
lar systems is that, because of the inherent structural and
orientational disorder in the system, there is not a sharp,
well-defined LUMO energy state (T1 energy state) for the
excitons; instead, one deals with a distribution of localized
states, which makes the system energetically disordered. It is
believed that the transport of the spatially localized excitons
(the so-called Frenkel excitons) occurs via the incoherent
hopping of the excitons between the neighboring sites; here,
between the dye molecules [17,18]. One can quantify this hop-
ping transport with a diffusion coefficient, although because
of the disorder, this coefficient can show a complex depen-
dency on the temperature of the system, the strength of the
disorder, and the dye concentration, as discussed elsewhere
[19,20]. In this work, however, we are going to address the
nonequilibrium feature of the transport process, also known as
dispersive transport, which arises because of the progressive
relaxation of the excitons in the energy landscape. Although
the nonequilibrium transport of exciton and its effect on the
TTA has been studied using the kinetic Monte Carlo (kMC)
simulations [21], following our recent work on the description
of the singlet transport [22], here we present a theoretical
model that can describe both the nonequilibrium (dispersive)
and equilibrium transport of the triplet excitons. Using this
time-dependent diffusion coefficient, then, the equation that
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governs the temporal evolution of the triplet concentration
is solved numerically. We also present a direct comparison
with the kMC simulation results and the PL measurements
recently reported for the TTA rate in the host-guest systems.
In what follows, we first give our theoretical model regarding
the TTA and triplet diffusion process in the energy disordered
systems, Secs. II A and II B. The next section will be devoted
to the results obtained in this work (Sec. III): we first present
the results for the diffusion coefficient, and its dependency
on the various parameters is discussed. In the following, then,
our results for the TTA rate will be discussed in detail. Finally,
Sec. IV gives the conclusion and summary.

II. THEORY AND MODELING

A. Annihilation rate coefficient

We consider the PL response of a system of dye molecules
with concentration N , randomly dispersed in a host matrix,
to a pulse illumination. Upon the illumination, an initial
population of triplet excitons with a total concentration of ρ0

is generated on the dye molecules whose time evolution is
given by

−dρ

dt
= ρ

τ
+ 1

2
kTT(t )ρ2. (1)

Here τ is the unimolecular triplet lifetime and kTT(t ) is the
TTA rate coefficient. The factor 1/2 in Eq. (1) accounts for
the fact that usually only one triplet is assumed to be lost in a
TTA event, that is, T + T → S0 + T where T and S0 stand for
the triplet excitation and an unexcited molecule, respectively.
Note that experimentally both N and ρ0 can be controlled and
tuned with sufficient precision.

Equation (1) is itself originated from the continuity equa-
tion that governs the local concentration of the triplets. There-
fore, three factors determine the functional form of the rate
coefficient kTT(t ). The first is the so-called inner boundary
conditions (BCs) of the continuity equation, which describes
the annihilation process when two triplets reach a close vicin-
ity of each other. Two possible BCs are the Smoluchowski and
the partially absorbing BC. For future reference, one notes
that in the Smoluchowski BC there is an encounter distance
Rc at (or, below), which the annihilation process between
two triplets occurs with probability one. The second is the
fundamental rate by which a TTA event occurs. For two
triplets that are at distance R from each other, this rate is
assumed to be given by the Förster expression

νF(R) = 1

τF

(
RF

R

)6

, (2)

with τF = τ/2 and RF being the lifetime and Förster radius
for the TTA, respectively. According to the Förster theory, the
radius RF is determined by the spectral overlap of the triplets
participating in the annihilation process. Also, since the origin
of the Förster process is the dipole-dipole interaction between
the dye molecules, RF also depends on the orientation of
those dipoles [23,24]. Assuming that the dipoles are free to
rotate with a rate that is much higher than the transport or
annihilation rate [23,25], the radius RF can be considered
to be the same in each annihilation event. On the opposite
limit of the fixed orientations also, one can interpret RF as

an average value over all possible annihilation processes [12].
As a consequence, in the following, we consider the Förster
radius as a constant parameter in our considerations.

The third factor, finally, is the diffusive motion of the triplet
excitons (with the diffusion coefficient D), which brings them
towards each other and thereby accelerates the annihilation
process. The diffusive motion comes from an incoherent
transfer of triplet excitons among the dye molecules that for
excitons that purely have triplet character, is given by the
Dexter expression [17],

νdiff(R) = ν0 exp

(
− 2

R

α

)
. (3)

Here ν0 is the attempt-to-jump frequency, α is a measure
of the spatial extent of the exciton wave function, and R is
the jump distance between the donor and the acceptor dye
molecule. Note that our choice for describing the TTA as
a Förster transfer and, on the other hand, triplet diffusion
motion as a Dexter transfer has been based on the quantum-
mechanical selection rules [23]. Experimental evidence also
supports Förster-type TTA in phosphorescent emitters [14,26]
and Dexter-type triplet diffusion in organic semiconductors
[27]. (Triplet diffusion in Ref. [16], however, has been de-
scribed as a Förster transfer since it was assumed that, be-
cause of the spin-orbit coupling, the spin of the exciton need
not be conserved during the transfer process and therefore
the above-mentioned selection rule does not apply for the
triplet.) In the following, we also assume that the T1 energy
difference between the host and dye molecules is high enough
to assure complete confinement of the triplet excitons in the
dye molecules. Therefore, in the following, we neglect the
possibility of host-mediated diffusion in our modeling. This
assumption is reasonable since energy differences of the order
of 0.2–0.5 eV are quite common in state-of-the-art phospho-
rescent OLEDs, which has been concluded to be adequate
to establish strong confinement [28]. As we discuss in detail
below, for the excitons that hop according to Eq. (3) we have
D = D(t, ν0, α, N, σ/kBT, ρ0), where σ is the variance of the
energy disorder that may exist in the system and kBT is the
thermal energy. We also show that even for disorder-free trans-
port, i.e., for σ/kBT � 1, the diffusion coefficient exhibits
time dependence during the exciton lifetime, especially at
small N [29] in which this time dependency can extend over
the exciton lifetime.

Considering the Smoluchowski BC for the excitons that
annihilate according to the Förster rate and diffuse with the
diffusion coefficient D, Gösele et al. suggested that the rate
coefficient kTT(t ) can be expressed as [30]

kTT(t ) = 8πReffD

[
1 + Reff√

2πtD

]
(4)

with

Reff = Az

(
R6

F

DτF

) 1
4

. (5)

Although there is not a general consensus about the coefficient
Az (especially in the case D → 0), Butler and Pilling [31]
and then Rice [32] have discussed in detail that the follow-
ing expression gives excellent agreement with the numerical
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solution of the continuity equations in almost all cases:

Az = �
(

3
4

)
2�

(
5
4

)[
1 +

√
2

π

K1/4(z)

I1/4(z)

]
, (6)

where z = (R6
F/4R4

cDτF)
1
2 , and I1/4 and K1/4 are the modified

Bessel functions of the first and second kind, respectively.
Here, however, we must point out that since in realistic
situations the rate νF always remains finite in comparison with
νdiff, the Smoluchowski condition is not likely to be fulfilled in
the experiments. Also, we note that the role of the diffusion is
merely to redistribute the excitons among the dye molecules
and the final stage of a TTA event, even at R � Rc, should
be determined only by the rate νF. Therefore there should
not be an unphysical distance Rc in the formulation, which
introduces an extra pathway for the annihilation process in
addition to the Förster transfer. Consequently, we suggest to
use Eq. (6) with Rc → 0 (i.e., z → ∞) that results in the
following constant for the coefficient in Eq. (5)

Az→∞ = �
(

3
4

)
2�

(
5
4

) ≈ 0.676. (7)

In the following, for brevity, we use the symbol A for Az→∞.
It should be noted that setting Rc → 0 does not imply that two
excitons are allowed to occupy a single dye molecule simulta-
neously. Instead, this is the dye concentration that determines
the shortest possible distance between two excitons, which is
roughly given by 1/N

1
3 . As we show in the next section, this

requirement is automatically satisfied in our modeling when
we calculate the diffusion coefficient.

With kTT(t ) in hand, one can integrate Eq. (1) to obtain
ρ(t ). By fitting the ρ(t ) to simulation or experimental PL
results then, one can find kTT(t ) that best fits the data. It
has been found, however, that due to noise of the PL data
and the sensitivity of the fit to the noise, especially at long
times or small ρ0, this method may yield a large error. Also,
since kTT(t ) is time dependent, it is worthwhile to introduce
an effective rate coefficient k′

TT to quantify the annihilation
process with a single number [note that besides its explicit
time dependence seen in Eq. (4), we may have D = D(t ) as
we show below]. Recently, Eersel et al. [11] have proposed
using the relative cumulative PL as a method to suppress the
noise and give a definition for k′

TT. A detailed explanation of
how this method is practically applied for the experimental
data can be found in Refs. [15,28]. According to this method,
we first compute the relative cumulative PL from ρ(t ) as

ηrel
cum,PL(t ) = 1

τ

∫ t

0

ρ(t ′)
ρ0

dt ′. (8)

The saturated relative cumulative PL, ηrel
cum,PL(t = ∞), is then

equated to the value that one would obtain if one used Eq. (1)
with a time-independent rate coefficient k′

TT, i.e.,

ηrel
cum,PL(∞) ≡ 2 ln (1 + ρ0τk′

TT/2)

ρ0τk′
TT

. (9)

In Fig. 1 we present a flowchart showing the numerical
procedure we use in this work to compute k′

TT. Steps needed
to compute the diffusion coefficient are also illustrated in

FIG. 1. Schematic flowchart of the computational steps applied
for calculating the effective TTA rate coefficient. See main text for
further details.

the figure, which will be discussed in detail in the following
section.

B. Transport coefficient

As pointed out in Sec. I, due to the inhomogeneity in the
local environment experienced by different dye molecules,
there is a distribution of T1 energy states of the excitons
in the system. This energy distribution, denoted below by
g(E ), is assumed to be Gaussian with a total density of
N (equal to the dye concentration) and with a variance of
σ 	 2–3 kBT . Therefore, the hopping of the excitons among
the dye molecules is, in fact, a phonon-assisted process, and
the Dexter jump rate given by Eq. (3) should be corrected
by a temperature-dependent multiplying factor. Considering
hopping of an exciton between two sites (dyes) i and j, this
factor should satisfy the detailed-balance condition

ν
i→ j
diff

ν
j→i
diff

= exp

(
− Ej − Ei

kBT

)
. (10)

We note that besides the energetic disorder (here quantified
by the variance σ ), polaronic effects, i.e., environment polar-
ization when a triplet resides in a dye molecule (quantified by
a reorganization energy) may also play a role in the exciton
transport. However, as noted in Ref. [18], in systems with
the high energetic disorder the effect of the disorder becomes
dominant and the polaronic effect can be neglected. In this
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situation, the simplest transfer rate that satisfies Eq. (10) is the
Miller-Abrahams rate, which is given by [33]

ν
i→ j
diff (R) = ν0 exp

(
− 2

R

α

)
×

⎧⎨
⎩exp

(
− Ej−Ei

kBT

)
(Ei <Ej )

1 (Ei >Ej )
.

(11)

In this work, we consider the Miller-Abrahams rate in our
modeling. However, it should be noted that there is experi-
mental evidence suggesting that the polaronic effects cannot
be neglected when describing the triplet diffusion at high tem-
peratures [34,35]. In this case, the temperature dependence of
the transfer rate should be described by Marcus theory, as

ν
i→ j
diff ∝

√
π

λ kBT
exp

(
− λ

4kBT
− Ej − Ei

2kBT
− (Ej − Ei )2

4kBT

)
(12)

in which λ is the reorganization energy [18]. Note that the
Marcus rate also satisfies the detailed-balance condition. As
suggested in Ref. [36], on the other hand, Miller-Abrahams
theory can be more appropriate in describing the nonequilib-
rium diffusion.

Experimentally, it has turned out that in the energy disor-
dered systems, excitons can be in the nonequilibrium phase
during their whole lifetime [37–42]. For example, studying the
PL spectrum of the organic semiconductors has revealed the
so-called frustrated dynamics; a situation in which the triplet
excitons vanish before their relaxation in the energy landscape
is completed [36,40,43]. Very recently, we have shown how
lowering the temperature slows down the relaxation process
of the singlet excitons thereby preventing the excitons from
reaching equilibrium [22]. One may note that any factor that
suppresses hopping of the excitons among the dye molecules
can delay the equilibrium regime. For example, considering
Eq. (11), besides the temperature, a large average R (caused
by a small dye concentration) or a small localization radius α

can be determining factors in the relaxation process. As we see
below, even in the absence of the disorder, a small N can result
in a time-dependent diffusion coefficient. In conclusion, one
notes that the equilibrium conditions (as assumed for example
in Ref. [12]) may not necessarily be a valid assumption for the
exciton dynamics during its lifetime. In Ref. [22] we presented
a model based on the concept of the transport energy that can
reproduce experimental data and kinetic Monte Carlo simula-
tion results for the singlet excitons that diffuse according to
the Förster mechanism. In the following, we adopt the same
concept and apply the procedure for the triplet excitons, which
transfer according to the rate presented in Eq. (11). We see that
the model performs well in predicting the transport properties
and annihilation features of the systems of interest.

Generally, there are two problems that make it difficult
to study the exciton or charge transport in the energy disor-
dered systems. The first is that, in contrast to the inorganic
semiconductors, there is not a mobility edge in the energy
landscape. Therefore the multiple-trapping picture (trapping
into the localized states and subsequent detrapping to the mo-
bility edge) seems not to be applicable here. Addressing this
problem, it was shown that it is possible to define an energy
level in the energy distribution, the so-called transport energy

level Etr, which plays the same role as the mobility edge in the
multiple-trapping mechanism [20,44]. For excitons that trans-
fer according to Miller-Abrahams rate, the transport energy is
determined by solving the following transcendental equation
[45] (see the following for the definition of the parameters;
see also Supplemental Material [46])

2kBT

3α
φ(Etr, E f ) =

(
4π

3Bc

) 1
3
[∫ Etr

−∞
φ(E , E f ) dE

] 4
3

. (13)

In the above considerations, as in the previous studies on the
TTA, we have assumed that the energy distribution in the
system is spatially uncorrelated; the so-called Gaussian disor-
der model (GDM). However, it should be noted that because
of, for example, long-range interactions between the electric
dipole moments of the molecules, there may exist a spatial
correlation between the dye energies, as first demonstrated for
the charge transport in organic layers [47]. Although we do
not consider this so-called correlated disorder model (CDM)
in this work, using the master-equation method it has been
suggested that the concept of transport energy for describing
the transport according to the Miller-Abrahams rate is valid
even for the CDM [48]. Therefore, by using an appropriate
definition for computing the position of the transport energy
level, our following calculations can, in principle, be applied
for the case of the CDM also.

The second problem is that, due to the nonequilibrium con-
ditions, one cannot define a Fermi level in the energy distribu-
tion and, consequently, statistical averaging methods [49,50]
are not possible. By considering progressive relaxation of
the electrons in an exponential energy distribution below a
mobility edge, Tiedje and Rose defined a time-dependent
energy level that separates electrons that during time t have
experienced several multiple-trapping events, from those that
have been immobilized in their initial sites [51]. Here, we
adopt this picture but go a step further and interpret this energy
as a time-dependent quasi-Fermi-level in the system, Em.
This enables us to perform statistical averaging to calculate
the diffusion coefficient. As we have shown in Supplemental
Material [46] one can finally obtain the following expressions
for Em and D(t ),

Em(t ) = Etr − kBT ln (tν0) + kBT

[
α3πkBT

18Bc
φ(Etr, E f )

]− 1
4

(14)

and

D(t ) = 1

t

(
3Bc

4π

) 2
3

[∫ Etr

−∞
φ(E , Em) dE

] 1
3

∫ Etr

−∞
ϕ(E , Em) dE

. (15)

Here ϕ = g(E ) f (E , E f ) and φ = g(E )[1 − f (E , E f )], where
f (E , E f ) is the Fermi distribution and E f is the equilibrium
Fermi energy determined by the population of the excitons,
ρ. Note that all the energies are counted from the center of
the Gaussian DOS g(E ), which is set to be zero. The constant
factor Bc = 2.735 comes from the percolation theory, which
demands that a mean number Bc of hopping sites with energy
� Etr be available for upward hopping events [20,52]. Also,
note that D(t ) of Eq. (15), as explained in Supplemental
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Material [46], is an instantaneous diffusion coefficient. As it
is illustrated in Fig. 1, the diffusion coefficient of Eq. (15) is
finally fed into Eq. (4) to find kTT(t ).

It should be noted that the above calculations rely on the as-
sumption that the nonequilibrium relaxation can be described
in terms of a system at equilibrium with time-varying param-
eters. Although a comparison with the previously reported
kMC results, as we present in the following section, supports
this assumption, it is useful here to provide a physical expla-
nation for its validity. We first note that Eq. (1) is meaningful
only if the differential dt is sufficiently smaller than the triplet
lifetimes. On the other hand, since Eq. (1) describes the time
evolution of a macroscopic parameter, ρ, dt should also be
much larger than the microscopic time scale of the problem;
ν−1

0 , for example. Besides the condition ν−1
0 � dt � τ , one

also notes that Eq. (1) is valid if the change in the diffusion
coefficient during time dt is negligible because, otherwise,
kTT(t ) is not definable in Eq. (1). Since the time dependence of
the diffusion coefficient comes from the quasi-Fermi level Em,
the validity of the assumption of the quasistatic equilibrium is
therefore determined by the time evolution of Em. According
to Eq. (14), at time t , change in the position of the quasi-Fermi
level Em during the time dt is Em = −kBT dt/t . Therefore,
for the time scale relevant in the problem, τ , we obtain the
condition |Em/kBT | � 1 for the validity of our assumption
which is a plausible result showing that the quasi-Fermi level
is a sufficiently slowly varying function of time.

Finally, before presenting our results in the next section,
it is useful here to highlight the essential features of our
modeling to make a comparison with the previous works
in the field. We note that the dependence of kTT(t ) on the
energetic disorder, temperature, dye concentration, and triplet
population comes from its dependency on the diffusion coef-
ficient. In addition, because of the relaxation process, besides
its apparent time dependence, kTT(t ) can acquire additional
dependency through the diffusion coefficient. Therefore, to
study the TTA, it is important to provide a theoretical model
that can describe the relaxation process, crossover to the
equilibrium condition, and time dependency of the diffusion
coefficient over a broad temperature range. Although elabo-
rate numerical and theoretical models have been developed
in the past decades in this field, to our knowledge, previous
works on the TTA in disordered systems have been based
on the existing transport theories, which are limited to the
equilibrium condition, or based on the kMC simulations. (For
a review on the transport in disordered systems, see Ref. [20].
Also, see, for examples, Refs. [11,12,16] for recent works on
the annihilation process.) The model presented here, however,
goes a step further and provides a tool to describe the effect
of the energetic disorder, and the time dependency induced by
the nonequilibrium transport, on the TTA process.

III. RESULTS AND DISCUSSION

Figure 2 shows the diffusion coefficient as a function of
time, calculated using Eq. (15) for different dye concentra-
tions and disorder parameters. We note that, in the systems
of interest, typical phosphorescence lifetimes are of the or-
der of τ = 1 μs. This characteristic time, therefore, can be
considered as a criterion to determine whether D is con-

0 2 4 6 8

100

101

102

FIG. 2. Time evolution of the diffusion coefficient, as obtained
from Eq. (15) for T = 300 K, α = 0.35 nm, ν0 = 5.5 × 1011 s−1,
and ρ0 = 1024 m−3. In the figure σ = 0.025 eV, σ ′ = 0.065 eV, N =
1027 m−3, and N ′ = 1026 m−3. The vertical line highlights the time
t = 1 μs, a typical lifetime of the triplet exciton.

stant or time dependent in the problem. We have indicated
this timescale in the figure. As seen, at high concentration
and weak disorder (upper curve), the diffusion coefficient is
almost time independent, as expected. For strong disorder
(0.065 eV, which is a typical value in organic semiconduc-
tors [25,40]) or lower dye concentration (1026 m−3, which
is relevant to OLEDs), however, the diffusion coefficient
is time dependent. The origin of this time dependence is
clear, as discussed elsewhere [49]: as time passes, because
of the relaxation of the excitons in the energy landscape,
their thermal activation to the transport energy level (that
plays the role of the mobility edge) becomes more difficult,
and consequently, D decreases with time. The relaxation
process in a Gaussian DOS, however, stops when the aver-
age energy of the excitons reaches the equilibrium energy
−σ 2/kBT [53], leading to a stationary value for the diffusion
coefficient at long enough times. A similar argument holds
for the effect of dye concentration on the diffusion process
[29,54]. This effect is in fact in close similarity to the effect
of porosity on the diffusivity in porous materials, where
increasing the porosity extends the nonequilibrium regime and
delays the stationary situation [55,56]. The results in Fig. 2
clearly show that at timescales relevant to the TTA, transport
of the excitons may occur entirely in the nonequilibrium
regime. This is in agreement with the earlier kMC simula-
tion [21] and experimental results [57–59] that the kinetics
of the annihilation in a disordered system can be governed
by the dispersive diffusion of the excitons. Also, we note that
the magnitude of the diffusion coefficient obtained for N ′ in
Fig. 2 (∼10−12 m2/s) is consistent with the typical values
observed for the triplet excitons in the disordered organic sys-
tems [8,27]. Since the diffusion coefficient is a time-varying
quantity, in the following, when we present dependence of
the diffusion coefficient on the various parameters, we only
report Dt=τ (that is, the diffusion coefficient at the specific
time t = τ ), which may or may not be the stationary value of
the diffusion coefficient.
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FIG. 3. Effect of the dye concentration on the diffusion coeffi-
cient at four different temperatures calculated from Eq. (15) with α =
0.35 nm, ν0 = 5.5 × 1011 s−1, ρ0 = 1024 m−3, and σ = 0.065 eV.
Since diffusion coefficient is time-dependent, its values at time τ =
1 μs have been plotted (see main text for details).

The dependence of the diffusion coefficient on the dye
concentration is shown in Fig. 3 for four different temper-
atures, in a system with σ = 0.065 eV. As expected, Dt=τ

monotonically increases with N , but as we see, the higher
the temperature the stronger is the dependence of Dt=τ on N .
This behavior can be understood by considering the Miller-
Abrahams rate, and noting that there is an asymmetry between
the temperature dependence of the upward and downward
rates. At low concentrations, since the system is in the
nonequilibrium regime, most of the jumps are downwards,
which according to Eq. (11) are temperature independent.
Therefore, the effect of the temperature on the diffusion
coefficient is small. In contrast, at high concentrations, the
system reaches the thermal equilibrium quickly (as we saw
in Fig. 2), and in the equilibrium, the diffusivity is mainly
determined by the upward jumps to the vicinity of the trans-
port energy [60]. Consequently, the effect of the temperature
on the diffusion coefficient increases with N . As discussed
in the previous section, the Miller-Abrahams rate is not the
only one that obeys the detailed-balance condition. Therefore,
the explanation provided above appears to be specific to
the choice of using the Miller-Abrahams rate. However, a
similar argument can also be made for the other relevant rate
expressions, which satisfy the detailed-balance condition. For
example, if we consider the Marcus rate in Eq. (12), it can
be seen that at the nonequilibrium regime, most probable
downward jumps are the jumps with Ej − Ei ≈ −λ, leading
to (Ej − Ei + λ)2/4λkBT ≈ 0 irrespective of the temperature
(note that this reasoning is correct if the energy difference
between the sites can be as high as λ, or in other words,
if λ � σ ). Nevertheless, further work, especially the kMC
simulation, will be necessary to validate our discussion.

Although the transport energy concept is generally be-
lieved to be valid only for σ/kBT > 1, let us apply it to
the case σ/kBT < 1. Figure 4 shows the results of such
calculations in the limiting case of σ/kBT � 1, that is, for
a system with (almost) no energetic disorder. To compare our

10-2 10-1 10010-4

10-2

100

102

104

this work, 
kMC simulation, Ref.61
equilibrium value, NNH
equilibrium value, NNH+percolation

FIG. 4. The diffusion coefficient as a function of the dye
concentration for a disorder-free system with α = 0.3 nm, ρ0 =
1024 m−3 and ν0 = 1.6 × 1012, ν ′

0 = 1.6 × 1011 and ν ′′
0 = 1.6 ×

1010 s−1. Solid curves: calculated using Eq. (15) at time τ = 1 μs.
Filled circles: kMC simulation results from Ref. [61]. Dashed and
dotted curves: prediction of Eq. (16) and Eq. (17), respectively (NNH
stands for nearest neighbors hopping).

results with the kMC simulation results reported in Ref. [61],
the parameters in Fig. 4 were chosen from that reference.
A very good agreement between the model (solid curves)
and the kMC results (filled circles) is seen in the figure,
implying that the method described here to calculate the
diffusion coefficient is valid even for the case that σ < kBT . In
a system of randomly distributed dye molecules, the average
distance between the hopping sites is � = 1/N

1
3 . Therefore, in

a disorder-free system, assuming a nearest-neighbor hopping
(NNH) mechanism for the transport between the hopping
sites, one can obtain the diffusion coefficient as

DNNH ≈ �2

1/νdiff(�)
= ν0

N
2
3

exp

(
− 2

αN
1
3

)
. (16)

In Fig. 4 we have also plotted the prediction of the above
equation for the diffusion coefficient (dashed curves) that
shows an agreement with the kMC simulation results only
at high concentrations (strictly speaking, the region of the
agreement is determined by Nα3 and not merely by N). Based
on the percolation theory together with the assumption of an
NNH transport mechanism, however, a similar but not identi-
cal expression has been given for the diffusion coefficient, as
[20,52]

DNNH,P ∝ ν0

N
1
3 (αN

1
3 )0.9

exp

(
−1.7351

αN
1
3

)
. (17)

The dependence of the diffusion coefficient on the concentra-
tion of the dye molecules as predicted by Eq. (17) has been
shown in Fig. 4 (dotted curves). As seen, in comparison with
the ones predicted by Eq. (16), the agreement with the kMC
simulations exists over a wider range of N . To explain the dis-
crepancy observed in Fig. 4 between Eqs. (16) and (17) on one
hand and the kMC simulation results on the other, it should
be noted that both of the equations describe the equilibrium
regime, whereas, as we saw in Fig. 2, at low concentrations
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FIG. 5. Time evolution of the (normalized) triplet density
for a system with T = 300 K, α = 0.35 nm, ν0 = 5.5 × 1011 s−1,
ρ0 = 1024 m−3, and τ = 1 μs. Solid curves, dashed curves, and
dashed-dotted curves represent results for N = 0.02, 0.2, and
0.5 × 1027 m−3, respectively. Also, top and bottom panels are for
σ = 0.025 and 0.065 eV, respectively. (a), (c) RF = 5.5 nm. b,d)
RF = 3.5 nm.

the equilibrium assumption is not valid at times t ∼ τ ∼ 1 μs.
As a conclusion to this discussion, our results suggest that
the time dependence of the transport coefficient (as a result
of a low dye concentration, low temperature, or energetic
disorder) cannot be ignored when we model processes in
which transport competes with other events [such as, exciton
disassociation, (non)radiative decay, and annihilation]. In the
following, we present our results for the effective annihila-
tion rate coefficient, obtained using the procedure illustrated
in Fig. 1.

The decay of the triplet concentration, normalized to the
initial concentration, is shown in Fig. 5 for a range of param-
eters, from which we can calculate k′

TT using Eqs. (8) and
(9). Note that since the PL intensity is proportional to ρ(t ),
Fig. 5 in fact illustrates the normalized PL intensity of the
system. As observed in the figure, for a weak disorder or a
large Förster radius, the decay clearly shows a nonexponential
behavior, implying that the kinetics of the PL decay is mainly
determined by the annihilation process in these cases. Also,
since, according to Fig. 4, a high dye concentration results in
a considerably larger diffusion coefficient, the concentration
shows a prompt decay at the initial times in this situation;
see the dashed-dotted curves in the plots. However, for the
strong disorder [Figs. 5(c) and 5(d)] the decay slows down
after the initial drop due to a small diffusion coefficient
that prevents the triplets from diffusing toward each others
efficiently. However, to go beyond this qualitative description
and reveal the relative role of the direct and diffusion-assisted
annihilation in the total annihilation rate, let us discuss the
dependence of the effective rate coefficient on the various
parameters.

Figure 6 shows the concentration dependence of the rate
coefficient k′

TT for three different Förster radii, and σ = 0.025
(dashed curves) and 0.065 eV (solid curves). As seen in the
figure, the effect of the energetic disorder on k′

TT is minimal

0.05 0.1 0.15 0.2

6
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1

2

3

4

5

FIG. 6. Effective rate coefficient as a function of the dye concen-
tration for three Förster radii and two different disorder parameters
σ = 0.025 (dashed curves) and 0.065 eV (solid curves). Results are
for T = 300 K, α = 0.35 nm, ν0 = 5.5 × 1011 s−1, ρ0 = 1024 m−3,
and τ = 1 μs.

at low concentrations, but increases as the dye concentration
increases. To explain this, we note that at low concentrations,
regardless of the strength of the disorder, the diffusion coeffi-
cient is small because of a large average distance between the
dye molecules. Therefore, a change in the amount of disorder
does not cause a significant change in the diffusion coefficient.
Consequently, k′

TT is almost independent of σ at low N . In this
regime of concentration, direct long-range Förster mechanism
is the only relevant factor in determining k′

TT. Here it should
be noted that because of the molecular aggregation in the real
host-guest systems, the distance between the dye molecules at
some points of the system may be different from the average
value � = 1/N

1
3 . In fact, as experimentally observed in real

systems, the rate of the TTA may increase due to the aggregate
formation, especially at high dye concentrations [7,26,62]. To
model this inhomogeneous distribution of the dye molecules
in a system, one needs to use network simulations in which
elaborate numerical techniques can be applied to implement
desired distance distribution in the simulations [63].

To separate the contribution of the diffusion process in the
annihilation rate coefficient from that of the direct Förster
transfer, we rewrite Eq. (4) as a sum of two terms, as

kTT(t ) = k∞
TT + k0

TT, (18)

with

k∞
TT = 4πA

(
D3

τF

) 1
4 √

R3
F, (19)

and

k0
TT = 4πA2

√
1

τFπt
R3

F. (20)

As inferred from these equations, for D → 0, the rate coeffi-
cient becomes independent of the diffusion coefficient and is
almost given by k0

TT. This implies that, at low concentrations,
the effective rate coefficient is independent of D (and σ ,
therefore) and is mainly determined by RF, as seen in Fig. 6.
At higher concentrations, however, the contribution of k∞

TT to
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FIG. 7. Error in using Eq. (19) to estimate the annihilation rate
coefficient. All the parameters are the same as in Fig. 6: σ = 0.025
and σ ′ = 0.065 eV, T = 300 K, α = 0.35 nm, ν0 = 5.5 × 1011 s−1,
ρ0 = 1024 m−3, and τ = 1 μs. To calculate k∞

TT, for each data point,
the value of the corresponding diffusion coefficient at time t = τ has
been used in Eq. (19).

the total rate increases because as we saw in Figs. 3 and 4,
the diffusion coefficient is an increasing function of N . In
addition, since a lower disorder leads to a higher diffusion rate
at high concentrations, the curves of low and high disorder
separate from each other in this regime.

To further assess the effect of the diffusion on the anni-
hilation process, let us compare the diffusion-assisted rate
k∞

TT to the effective rate coefficient k′
TT. Figure 7 illustrates

the relative error |k′
TT − k∞

TT|/k′
TT as a function of the dye

concentration, for the same parameters used in Fig. 6. [Since
D is time dependent, we have estimated D in Eq. (19) with
Dt=τ .] At low concentrations, for both strong and weak dis-
orders, the diffusion has almost no effect on the annihilation
process, since as seen in the figure the error is ∼100%. By
increasing the concentration, the error decreases so that it can
be concluded that for the case of the low energetic disorder
(dashed curves in the figure), the annihilation process occurs
mainly after some intermediate diffusive motion. For high
energetic disorder, however, as can be inferred from the figure
(solid curves), even at high concentrations more than ∼50%
of the excitons annihilate via a direct long-range Förster
transfer without any intermediate transport step. Also, we note
that since the rates k∞

TT and k0
TT show different dependence

on the Förster radius (as R3/2
F and R3

F, respectively), with
increasing the Förster radius the error also increases. In fact,
a higher Förster radius enhances the probability of the direct
annihilation process, resulting in a greater deviation from the
rate k∞

TT. In the following, we address the dependence of the
effective rate coefficient on the Förster radius in more detail.

Figure 8 shows the effective rate k′
TT as a function of the

Förster radius for two different strengths of the disorder. In
addition to the results obtained by the model (solid curves),
the scalings predicted by Eqs. (19) and (20) are also shown
in the figure (dashed-dotted and dashed lines). As a general
feature, it can be seen that none of these two limiting be-
haviors can describe the results over the whole concentration
and Förster radius range shown in the figure. This result
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FIG. 8. The dependence of the effective rate coefficient on the
Förster radius for (a) σ = 0.025 eV, and (b) σ = 0.065 eV. Other
parameters are as in Figs. 6 and 7: T = 300 K, α = 0.35 nm, ν0 =
5.5 × 1011 s−1, ρ0 = 1024 m−3, and τ = 1 μs. Dashed-dotted and
dashed lines show the scaling behaviors predicted by Eq. (19) and
Eq. (20), respectively.

implies that, because of the competition between the direct
and diffusion-assisted annihilation, one cannot neglect either
of these two mechanisms in the annihilation process. Now, let
us first consider the results for the high dye concentrations.
For the weak energetic disorder, the rate k′

TT can well be
explained by the diffusion term, leading to k′

TT ∝ k∞
TT ∝ R3/2

F ;
see Fig. 8(a). However, this does not hold for the strong
disorder where the diffusion coefficient is limited because of
the disorder. Therefore, by increasing the Förster radius the
direct annihilation starts to have a contribution in the total
annihilation rate that leads to a higher increase in k′

TT than that
expected by the scaling R3/2

F , as can be seen in Fig. 8(b). This
is in agreement with the results of Coehoorn et al. who studied
the triplet-polaron quenching via the Förster mechanism using
the kMC simulation [64]. It must be noted that if the transport
of the excitons itself occurred via the Förster mechanism
with the same Förster radius as the annihilation step, one
would have k∞

TT ∝ R6
F (because for the transport via the Förster

mechanism in a system with weak disorder D ∝ R6
F). Also,

as discussed in Ref. [64], in the steady-state in which loss
of the excitons is compensated by an external source, for
high diffusion coefficients one observes a scaling as R6

F for
the effective rate coefficient. Finally, if we consider the low
dye concentrations in Figs. 8(a) and 8(b), it is seen that both
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FIG. 9. (a) Dependence of the diffusion coefficient (at time t =
τ ) on ρ0. (b) Effect of the initial concentration of excitons, ρ0, on
the effective rate coefficient for a system with RF = 3.5 nm. The
parameters indicated in the figure are σ = 0.025 eV, σ ′ = 0.065 eV,
N = 2 × 1026 m−3, and N ′ = 2 × 1025 m−3. Other parameters are
the same as the previous figures: T = 300 K, α = 0.35 nm, ν0 =
5.5 × 1011 s−1, and τ = 1 μs.

the weak and strong energetic disorders lead to a similar
result for the effective annihilation rate. This is because in
this situation, as pointed out before, the diffusion coefficient
is mainly influenced by the large distance between the dye
molecules and the effect of the disorder becomes negligible.

The initial density of the excitons, ρ0, can readily be
changed in the experiment and, therefore, has been widely
used to infer the mechanism of annihilation taking place in
the system [13–15,28]. At first sight, it is not expected that
the rate k′

TT will be ρ0 dependent. This would be because,
as inferred from Eq. (1), the effect of exciton concentration,
ρ2, is separated from the annihilation rate, kTT(t ). However,
it should be noted that k′

TT which is defined by Eq. (1) is
an effective rate and, therefore, a fast decay caused by a
high exciton concentration can show itself as an apparent ρ0-
dependent effective rate. In addition, the diffusion coefficient
can itself show a dependence on the exciton concentration
which, according to Eq. (19), results in a ρ0-dependent annihi-
lation rate. So, let us first discuss how the diffusion coefficient
changes with the concentration of the excitons. Figure 9(a)
shows our results for two dye concentrations and two different
energetic disorder. As observed in the figure, for the case of
the dye concentration of N , the diffusion coefficient remains

almost constant over the whole range of ρ0. For N ′, however,
independent of the strength of the disorder, the diffusion
coefficient decreases by increasing ρ0. This is because as the
concentration of the excitons approaches the dye concentra-
tion, the average number of unoccupied dyes in the vicinity of
each exciton diminishes, leading gradually to a frozen state in
which excitons cannot find any sites to hop to [65,66]. Note
that we have assumed here that there is no spatial gradient
in the exciton concentration, which can be established when
the system is illuminated by a weakly absorbed light. The
drop of the diffusivity at high occupancy is a general effect,
which is known from the charge transport in the disordered
semiconductors [45,67].

Figure 9(b) shows the dependence of k′
TT on ρ0. As ex-

pected, for both the high (N = 2 × 1026 m−3) and low (N ′ =
2 × 1025 m−3) dye concentrations, the weaker disorder leads
to a higher k′

TT, which is because of the difference in the
diffusion coefficient for the weak and strong disorder cases, as
we saw in Fig. 9(a). Although in the case of N ′ the diffusion
coefficient decreases with ρ0, it is seen in Fig. 9(b) that the
effective rate coefficient is nearly constant over the range of
ρ0 presented in the figure. To explain this, we note that as
observed before in Fig. 8, at low concentrations, and for RF �
3 nm, the main contribution to the annihilation process is via
the direct long-range Förster and the influence of diffusion
on the total rate is small. Consequently, the rate k′

TT becomes
independent of ρ0. In contrast, for the higher concentration of
N , k′

TT is enhanced by increasing ρ0. Comparing this with the
results for N ′, we conclude that it is an effect that is originated
from the higher diffusion coefficient for the case of N . (As
we have shown in Supplemental Material [46], for a larger
Förster radius, for example, 5 nm, k′

TT increases by ρ0 even
for a low dye concentration. This implies that in addition to
the diffusion coefficient, a large Förster radius can also result
in a ρ0-dependent effective rate.)

Finally, we provide a direct comparison between the
model presented in this work with the experimental results
for a host-guest system with bis[2-(2-pyridinyl-N)phenyl-
C](acetylacetonato)-iridium(III) [Ir(ppy)2(acac)] as the dye
molecule in a matrix of tris(4-carbazoyl-9-ylphenyl)amine
(TCTA) with ρ0 = 1024 m−3, recently reported in Ref. [28].
Figure 10 shows the effective rate coefficient as a function of
the average distance between the dye molecules, that is, 1/N

1
3 .

A good fit to the experimental results has been also obtained
in Ref. [28] from the kMC simulation with α = 0.35 nm, σ =
0.05 eV, ν0 = 4.2 × 1011 s−1, τ = 1.36 μs, and RF = 3.5 nm.
Here, for the localization radius and the triplet lifetime we
have used the same values of Ref. [28], but with a slightly
different values for the width of the disorder (0.045 eV),
Förster radius (3.4 nm) and attempt-to-jump frequency (8.0 ×
1011 s−1) we have found an excellent fit to the experimental
results, as seen in Fig. 10. Considering the results in Figs. 6
and 8, we can conclude that both the direct and diffusion-
assisted pathways contribute to the annihilation rate. However,
the rate k′

TT in Fig. 10 seems to saturate at high average
distances (1/N

1
3 � 2.7), which highlights the role of the diffu-

sion process before reaching this regime. Also, a comparison
with Fig. 2 reveals that at least part of the annihilation process
occurs in the nonequilibrium conditions in which the diffusion
coefficient decrease with time.
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FIG. 10. Experimental (filled circles with the vertical error bar)
effective rate coefficient as a function of the average distance be-
tween dye molecules for TCTA:Ir(ppy)2(acac) host-guest system;
from Ref. [28]. Squares show the theoretical results obtained in this
work using T = 300 K, α = 0.35 nm, σ = 0.045 eV, ν0 = 8.0 ×
1011 s−1, ρ0 = 1024 m−3, τ = 1.36 μs, and RF = 3.4 nm.

IV. CONCLUSION

In this work, we have studied the effect of the ener-
getic disorder on the triplet-triplet annihilation process in
organic semiconductors. To this end, the concept of transport

energy has been used to calculate the diffusion coefficient
of the triplet excitons, which moves according to the Miller-
Abrahams model between the dye molecules; the annihilation
process, however, takes place through the Förster mechanism.
An important feature arising from the energetic disorder is
that, in addition to a substantial decrease in the diffusivity,
the diffusion coefficient can show a time dependency during
the triplet intrinsic lifetime. This implies that the annihi-
lation of the triplets occurs in the nonequilibrium regime.
Therefore, the equilibrium values for the diffusion coefficient
deduced from the conventional models cannot be used in the
annihilation rate coefficient. As we discussed in Sec. I, the
role of diffusion on the annihilation process in organic host-
guest systems has been under debate in different researches.
Our results highlight the effect of diffusion on the TTA rate
under certain conditions. The brief discussion presented in the
previous section about Fig. 10 summarizes our conclusions
that except the case of very low dye concentrations, both the
direct Förster transfer and the diffusion process (accompanied
by a Förster transfer) contribute to the effective annihilation
rate. The fit in Fig. 10 shows that the method presented in this
work can be used to model the annihilation process and also
to examine the time-resolved phosphorescence and delayed
fluorescence experiments in the disordered semiconductors. It
should also be noted that the recipe suggested here, Fig. 1, can
also straightforwardly be extended to the case of the singlet-
singlet annihilation, as will be presented in future work.
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